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Abstract 
This paper presents some our recent research on 
computational models and algorithms for real-time 
analysis of full-body human movement. The focus here is 
on techniques to extract in real-time expressive cues 
relevant to KANSEI and emotional content in human 
expressive gesture, e.g., in dance and music performances. 
Expressive gesture can contribute to new perspectives for 
the design of interactive systems. The EyesWeb open 
software platform is a main concrete result from our 
research work. EyesWeb is used in interactive applications, 
including music and other artistic productions, museum 
interactive exhibits, therapy and rehabilitation, based on 
the paradigm of expressive gesture. EyesWeb is freely 
available from www.eyesweb.org. 

1. INTRODUCTION 
The integration of gesture, music, and visual languages, 

to enable artists with conceptual as well as practical tools 
for creating novel participative, shared, interactive, mixed-
media performance spaces is a challenge faced by several 
researchers (Battier and Wanderley 2000; Camurri and 
Trocca 2000; Machover 1989; Rowe 1993, 2001; Winkler 
1998). Hyper-instruments, interactive dance, museum 
exhibits, therapy and rehabilitation are examples of 
possible concrete applications. In a broader perspective, 
the goal is to enhance man-machine communication and 
interfaces in multimedia systems.  

We deem that the process of design of interactive 
systems can benefit by adding a new channel: 
expressiveness. Computational models, analysis, and 
synthesis of expressive content are scarcely considered in 
current state of the art of interactive systems and 
interfaces. In particular, we refer to the inner qualities of 
gesture: expressive cues, emotional and KANSEI 
(Hashimoto 1997) content. 

The modeling of Expressive Gesture is a central issue 
of our work  (Camurri, De Poli, Leman and Volpe 2001). 
The concept of expressive gesture includes musical, human 
movement, visual (e.g. computer animated) gesture. This 
paper focuses on the problems of real-time analysis of 
expressive gesture in human movement, and on how the 
introduction of expressive gesture can affect the design of 
interactive systems. The research presented in this paper is 
part of a broader project on real-time analysis of expressive 
gesture in artistic contexts (with particular reference to 
non-verbal communication through human movement and 
music signals), and on multimodal/cross-modal mapping. 

Gestures carry what Cowie (2001) calls implicit 
messages: the same action can be performed in several 
different ways, stressing different qualities of the 
movement, expressing feelings, moods, intentions. It is 
also possible to recognize a person from the way he/she 
moves. The attention is focused in this paper on dance, an 
artistic expression of human gesture with strong potential 
of emotional communication and arousal on spectators. 

The analysis methods and computational models for 
analyzing expressive gesture are inspired to several 
sources, including KANSEI Information Processing 
research (Hashimoto 1997), humanistic theories of non-
verbal communication, such as Rudolf Laban's Theory of 
Effort (Laban and Lawrence, 1947; Laban, 1963), 
developed for dance and choreography and Shaeffer’s 
Morphology (Schaeffer, 1977).  

KANSEI Information Processing has been proposed as 
the third target of information processing. Hashimoto 
(1997) argued that the first target of information 
processing is the physical signal (i.e. sound, light, force), 
the second is language (i.e., the field of logic, of symbolic 
knowledge), the third is KANSEI, that refers to feelings, 
intuition, sympathy.  

Our research can be considered as an attempt to shed 
some light on aspects related to the KANSEI 
communication in artistic performance, and to formulate 
hypotheses on “KANSEI rating” by developing and 
experimenting analysis and mapping techniques.  

Consolidated research results are transferred into 
software libraries for our EyesWeb open software platform 
(www.eyesweb.org), also widely used in public concerts 
and a number of applications. 

2. METHODOLOGY 
A set of evoked basic emotions, the arousal or engagement 
on spectators by an artistic performance, or other 
components of KANSEI or emotion communication are 
usually described in terms of emotional spaces. The model 
of a KANSEI evaluation system may consist of the 
following components:  
1. The KANSEI function maps features of the studied 

phenomenon to a space (e.g., an emotional space). This 
function models the interaction between the physical 
world and the emotional space, emulating the effects 
that certain physical features of the studied 
phenomenon would have on the evoked emotional 
response. 
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2. The Interpretation Function of a point in the emotional 
space. For example, a function expressing the distance 
of a point from a set of labelled emotions in that space 
(e.g. in the well-known circumplex model, 
valence/arousal).  

The definition of the KANSEI and emotional spaces 
and the labelling of relevant points, e.g. in terms of basic 
emotions, is a crucial issue, widely faced by psychologists 
(see e.g. the survey in Cowie 2001). Another crucial issue 
concerns the modeling of the interpretation function. This 
can be based on different approaches, for example neural 
networks or clustering algorithms. In this way, neural 
networks are used to find non-linear relations between 
physical measures and the KANSEI space. An example 
can be found in (Suzuki and Hashimoto, 1997), focusing 
on sound perception, where a neural network is trained to 
place its output in a sort of KANSEI space.  

Another family of approaches involves the creation of 
an explicit description of the phenomenon. For example, 
starting from a signal on human movement, this approach 
tries to reconstruct a description in terms of expressive 
cues, such as fluentness, directness, energy, rhythm, of 
shapes, phrases, etc. As an analogy, in music this would be 
equivalent to build a perceptual representation of the music 
signal in terms of objects, for example based on Shaeffer’s 
morphology (1977). Such symbolic description would 
allow a system to detect perceptual patterns in the studied 
event (or series of events), to study each object’s relavant 
cues and invariants. Then, the next step consists of 
capturing more complex structural relations that might 
require the use of logics. 

So, in short, we might say that a KANSEI-oriented type 
of approach the focus is on an implicit, emerging model of 
KANSEI space, while in another (we might say affective 
or emotional type of approach) the focus is on explicit 
models of the emotional space. 

The important issue here is that KANSEI or emotional 
spaces can play an important role in the design of 
interaction and mapping in interactive systems. 

2.1 Conceptual Architecture 
 Gesture is the carrier of a set of temporal/spatial 
features responsible of conveying expressiveness. In this 
perspective, this work adopts the general guidelines of the 
layered conceptual framework for expressive gesture 
applications described in (Camurri, De Poli, Leman, 
Volpe, 2001), and discusses the relations to the previously 
mentioned KANSEI approach, on the special case of 
human movement analysis. 

Analysis of movement is performed through different 
layers/steps following a bottom-up approach: 

Layer 1 – Physical Signals: This is the information that 
is captured by the sensors of a computer system. Physical 
signals may have different formats strongly dependent on 
the kind of sensors used to study movement. For example, 
sampled signals from tactile, haptic, IR or US sensors, or 
low-level data frames in video. The term “sensor” is 
related to both the physical sensors employed and the 
algorithm used to extract a given set of low level data. We 
can therefore speak of “virtual” or “emulated” sensors. A 
CCD camera can be an example of a physical sensor, while 
the optical flow or the motion templates are examples of 

data extracted from “virtual sensors” implemented by the 
cited algorithms.  

Layer 2 – Low-level features and statistical 
parameters: A collection of motion cues describing the 
movements being performed. Motion cues are usually 
processed by statistical techniques. Examples include the 
amounts of contraction/expansion, the stability, the 
“rotation” in movement, the equilibrium. An important set 
of cues are those inspired to the effort dimensions 
described in Laban’s Theory of Effort (1947, 1963): space, 
time, weight, and flow. For example: straightness (i.e., 
how much a movement is direct or flexible), impulsiveness 
(a movement can be quick or sustained), fluency (bounded 
or unbounded movements).  

Layer 3 – Mid-level features and maps: “In this layer, 
the purpose is to represent expression in gestures by 
modelling the low-level features in such a way that they 
give an account of expressiveness in terms of events, 
shapes, patterns or as trajectories in spaces or maps.” 
(Camurri, De Poli, Leman, Volpe, 2001). Data from 
several different physical and virtual sensors are likely to 
be integrated in order to perform such a step. A movement 
sequence is divided in gestures. Each gesture is 
characterized by specific cues (layer 2: e.g., speed, 
impulsiveness, straightness). The problem here is to 
identify relevant strokes in movement stream and associate 
to them the qualities/cues deemed important for expressive 
communication. For example in dance analysis, a fragment 
of a performance might be segmented into a sequence of 
gestures where gesture’s boundaries are detected by 
studying velocity and direction variations, thus identifying 
a sequence of trajectories in a semantic space. A gesture is 
a trajectory in such a map, representing categories of 
semantic features related to emotion and expression on a 
pre-defined grid. A sequence of gestures is associated to a 
sequence of trajectories in the map.  

Layer 4 – Concepts and structures: for example, 
emotional content and KANSEI concepts: basic emotions 
(fear, grief…), arousal or emotional engagement measures 
in spectators of the gesture, intentional gestures such as 
Laban’s types of effort (“pushing”, “gliding”, …). This 
high-level information is built from the other layers, using 
various analysis techniques (e.g., statistical, time series). 

Following the scheme depicted in the previous section, 
the KANSEI function lies in the first three layers, while the 
Interpretation Function is a main concern of Layer 4. 

Music gesture follows the same conceptual 
architecture, as described in (Camurri, De Poli, Leman, 
Volpe, 2001): from musical low-level signals (audio, midi 
etc) at Layer 1, to general concepts of Layer 4. 

The approach to the design of interactive systems is 
grounded on this proposal of unified gesture architecture 
for movement and music gesture. 

2.2 Interactive systems design: some examples 
The inclusion of a layered model of expressive and 

emotional features can contribute to improve the design of 
interactive systems.  

An example is the demo of “expressive hi-fi system” 
presented at the EU-IST-E3 Booth at IBC2001 (Intl 
Broadcasting Convention, Amsterdam, Sept 2001) that we 



developed in collaboration with CSC-DEI University of 
Padova in the framework of the EU-IST MEGA Project. A 
music piece (Chopin and Mozart pianoforte pieces were 
used in this demo) is played, allowing the user to control 
not only the usual “volume”, “balance” etc. knobs of a 
standard hi-fi system, but also “knobs” related to the 
interpretation of the piece. User’s full-body movement is 
analysed and a set of expressive cues are extracted in real-
time (layer 2). This cues array is then compressed (the 
previously mentioned Kansei function) to a 2-dimensional 
space (the expressive space, see figure 4). In this example, 
the two axes of the expressive space (layer 3) correspond 
to the features fluentness and quantity of movement. Then, 
another function maps a point on this space into an array of 
music cues (e.g. IOI, dynamics, …) which are used in real 
time to modulate the performance of the music piece. In 
this demo we developed an intuitive mapping, at different 
time scales, of expression in movement into coherent 
music interpretation parameters: e.g., a “light” style of 
movement causes a tendency toward a “light” (leggero) 
interpretation of the piano piece. 

We participated to several artistic productions and 
workshops with artists, where we explored the role of 
expressive gesture in interactive systems. Several useful 
directives matured and some lessons were learned from 
such work with artists. An example: since expressive data 
varies slowly, the perception of the interaction process 
(awareness in the performers as well as in spectators) can 
be lost if only expressive information is used in the loop. 
Direct immediate cause-effect reactive mappings (the usual 
musical instrument metaphor adopted in interactive 
systems) can be integrated to consolidate this perception of 
dialogue and interaction in a performance. The metaphor 
of interaction goes beyond the “musical instrument”. It is 
not (only) the dance or the body that performs the music as 
a musical instrument, but rather there is a counterpoint, a 
dialogue mechanism between humans and virtual 
(acoustic/musical as well as visual or robotic) participants, 
where different modalities including music, human 
movement (dance), visual media (eg animated figures or 
synthetised images, see e.g. Fels and Mase 1999), mobile 
scenery on stage (e.g. mobile robots), in a mixed-media 
distributed scenario. See figures 5 and 7 for simple 
examples on visual mapping of expressive cues. 

2.3 Analysing human movement: Microdances 
A reference archive of microdances has being created 

and studied. We call “microdance” a short fragment of 
choreography, of typical duration of 15-90s. A microdance 
is conceived as a potential carrier of expressive 
information. Several performances of the same microdance 
can convey different expressive or emotional content to 
spectators: e.g. light/heavy, fluent/rigid, happy/sad 
dimensions. A microdance is the analogous of a musical 
score fragment, which can performed with different 
interpretation. Humans (e.g. spectators) evaluate each 
microdance performance. The outputs of developed 
algorithms for analysis of expressive cues are compared 
with corresponding spectators’ rating of the same 
microdance performance. Microdances can be useful to 
isolate factors related to KANSEI and expressiveness, to 

help to provide an experimental evidence with respect to 
the cues that choreographs and psychologists identified.  

2.4 Subtractive analysis approach 
One of the main challenges is to identify basic factors of 
KANSEI and of deep emotional arousal or engagement in 
spectators observing a dance performance. The same 
applies to spectators of a music performance. In general, 
our aim is to unify the approaches to movement and music. 

To this aim, we are developing an approach based on 
the live observation of genuinely artistic performances, and 
corresponding video (audio) recordings. A reference 
archive of artistic performances has to be carefully defined 
for this method, chosen after a strict interaction with 
artists. Image (audio) processing techniques are utilized to 
gradually subtract information from the recordings. For 
example, parts of the dancer’s body could be progressively 
hidden until only a set of moving points remain, deforming 
filters could be applied (e.g., blur), the frame rate could be 
slowed down, etc. Each time information is reduced, 
spectators are asked to rate the intensity of their “arousal” 
in a scale ranging from negative to positive values (a 
negative value meaning that the video fragment would rise 
some feeling in the spectator but such feeling is a negative 
one). The transitions between positive and negatives rates 
and a rate of zero (i.e. no expressiveness was found by the 
spectator in the analyzed video sequence) would help to 
identify what are the movement features carrying 
expressive information. A deep interaction is needed 
between the image processing phase (i.e. the decisions on 
what information has to be subtracted) and the rating 
phase.  

This subtractive approach is different from the previous 
studies by Johansson (1973) and more recently by Cowie 
(2001), where it is demonstrated that a limited number of 
visible points on human joints allow an observer to 
recognise information of movement, including certain 
emotional content.  

Our subtractive method is currently subject to 
investigations and experiments. The feedback from these 
experiments provides information on which movement 
cues our research should focus on. The cues described in 
the following sections are also motivated by the results of 
these preliminary experiments. 

2.5 Analysis Perspectives: Kinesphere and 
General Space 
According to Laban, a main distinction exists between the 
analysis of movement in the Personal Space, referred also 
as Kinesphere, and the analysis of movement in the 
General Space. In “Modern Educational Dance” (Laban 
1963, p. 85) Laban writes: “Whenever the body moves or 
stands, it is surrounded by space. Around the body is the 
sphere of movement, or Kinesphere, the circumference of 
which can be reached by normally extended limbs without 
changing one’s stance, that is, the place of support. The 
imaginary inner edge of this sphere can be touched by 
hands and feet, and all points of it can be reached. Outside 
this immediate sphere lies the “general” space, in which 
the human can enter only by moving away from his/her 
original stance. He/she has to step outside the borders of 
his immediate sphere and create a new one from the new 



stance, or, in other words, he transfers what might be 
called his “personal” sphere to another place in the general 
space. Thus, in actual fact, he never goes outside his 
personal sphere of movement, but carries it around with 
him like a shell.” 

Movement is therefore considered from two different 
perspectives:  
1. Detailed movement of a single human, e.g., the 

movement of the centre of gravity or the joints of a 
dancer, in his own “Kinesphere” or “Personal Space”; 

2. Movement of one or more humans in a wider space, the 
“General Space” (e.g., a group of dancers moving on a 
stage, a group of visitors in a museum exhibit). 

3. EXAMPLES OF ANALYSIS IN THE 
PERSONAL SPACE 
The methodology sketched above has been applied to 
analyse movement of dancers both in the Personal Space 
and in the General Space. Our General Space methods are 
described in (Camurri Mazzarino Trocca Volpe 2001). 
Here some examples of analyses in the Personal Space are 
presented, organized on the different levels according to 
the described layered approach:  
(i) Processing of low-level data coming from a camera 

(Layer 1): background subtraction techniques are used 
in order to extract the dancer’s silhouette. The resulting 
images are then used to calculate Silhouette Motion 
Images (SMI). 

(ii) Extraction of low level features and parameters (Layer 
2): in particular, the quantity of motion and the 
contraction index are here presented as examples of 
cues at this level. 

(iii) Segmentation of movement in motion and pause 
phases (Layer 3) by using the quantity of motion 
calculated in the previous layer 2.  

(iv) Examples of gesture representations by means of 
suitable feature spaces and/or symbolical descriptions 
are also shortly sketched. 
 
Analysis is here performed in real-time on a set of 

recorded (or live) microdances using a collection of 
software modules implemented in the framework of the 
EyesWeb open architecture for expressive gesture 
processing (Camurri et al, 2000).  

3.1. Layer 1: Silhouette Motion Images (SMI)  
A Silhouette Motion Image is an image carrying 
information about variations of the silhouette shape and 
position in the last few frames. SMIs can be seen as a 
special case of Motion Templates (see OpenCV Reference 
Manual: www.intel.com/research/mrl/research/opencv), where 
information about time is implicit in the image and not 
explicitly recorded. The SMI is generated by the following 
formula: 
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The motion image at frame t is generated adding 
images of the silhouette in the previous N frames and then 
subtracting the silhouette at frame t. The resulting image 
contains just variations happened in the previous frames. If 
N is the number of frames in which the SMI is calculated 
and N=1, then the SMI carries information about the 

instantaneous variations of the silhouette. Working with 
N>1 allows capturing more information about the shape of 
motion and results are smoother, because the effect is 
similar to filtering. Figure 1 shows a SMI with n=4. In the 
figure, the SMI is the grey area, while the darker contour 
shows the current silhouette.  

 
Figure 1. SMI with n=4. 

3.2. Layer 2: Quantity of Motion 
The simplest use of a SMI is calculating its area. The result 
can be thought as a rough approximation of the quantity of 
motion, i.e. q=m * v, where m is the mass and v stands for 
velocity. Of course the area of a SMI is not q, but the 
behavior is similar: actually the shape of the graph is close 
to the shape of the graphs of velocity of a marker put on a 
limb. 

However the SMI area alone is not a very reliable 
measure of movement, first because it suffers the same 
limitations of silhouette (“internal” motion is not detected, 
but more sophisticated techniques can overcome this 
problem); second, it is strongly dependent on the dancer’s 
distance from the camera; third it is difficult to compare 
results of different dancers. It is possible to partially 
overcome the last problem scaling the SMI area by the area 
of the most recent silhouette.  

 
Movement=Area(SMI[t,n])/Area(Silhouette[t]) 

 
In this way the measure becomes almost independent 

from the camera’s distance and it is expressed in terms of 
fractions of the body area that moved. For example it is 
possible to say that at instant t a movement corresponding 
to the 2.5% of the total area covered by the silhouette 
happened. 

3.3. Layer 2: Contraction Index 
The contraction index is a measure, ranging from 0 to 1, of 
how the dancer’s body uses the space surrounding it. We 
define a bounding box that surrounds the dancer’s whole 
body and compare the area covered by this rectangle with 
the area actually covered by the silhouette. Intuitively, if 
the limbs are fully stretched and not lying along the body, 
the contraction index will be low, while, if the limbs are 
kept tightly nearby the body, the contraction index will be 
high (near to 1). While the dancer is moving, the 
contraction index varies continuously. Even if it is used 
with data from only one camera, its information are still 
reliable, being almost independent from the distance of the 
dancer from the camera. Of course, in case of too long 
distance, image quantization problems appear.  



 
Figure 2. Silhouettes and their bounding boxes The leftmost one has high 
contraction index while the other has low contraction index. 

 
Figure 2 shows two examples of silhouette, displayed 

with their bounding boxes, with high and low, respectively, 
contraction indexes. A possible use of this parameter 
consists of sampling its values at the end and beginning of 
a stretch of movement, in order to classify that movement 
as a contraction or expansion. 

3.4. Layer 3: Motion segmentation and gesture 
representation 
The SMI has interesting properties: the evolution in time of 
its (normalized) area (what we called quantity of motion) 
resembles the evolution of velocity of biological motion, 
which can be roughly described as a sequence of bell-
shaped curves (motion bells). In order to segment motion 
by identifying the component gestures, it is interesting to 
extract a list of these motion bells and their features, e.g. 
peak value and duration. This can be also useful to obtain a 
first simple symbolical description of motion. One of the 
problems with the SMI approach, even dividing it in two 
vertical halves, is that several different movements may 
result super-imposed to each other, resulting in several 
motion bells to be overlapped. It is necessary to separate 
those motion bells in order to have a better description of 
motion. A first attempt at this consists in recognizing 
phases during which the dancer is moving (motion phases) 
and phases during which the dancer does not appear (i.e, 
movement is not perceived by a spectator) to move (pause 
phases). Actually, even if the dancer seems not to be 
moving, very small movements occur and they are detected 
by the motion image (together with some noise). An 
empirical threshold has been defined: the dancer is 
considered to be moving if the area of the motion image is 
greater than 2.5% of the total area of the silhouette. Figure 
3 shows motion bells after segmentation: a motion bell 
characterizes each motion phase.  
 

 
 
Figure 3. Motion segmentation 

Motion bells may also be represented as trajectories in 
suitable spaces. For example, figures 4a and 4b show a 
running EyesWeb patch in which features are represented 
as trajectories in a 2D space. The dimensions are quantity 
of motion and fluentness.  

 

 
(a)

 

 
(b) 

Figure 4a and 4b. A running EyesWeb patch: gestures are represented as 
trajectories in a 2D space (window on the right: X axis is fluentness, Y 
axis is quantity of movement).  

 
In figure 4a the dancer is not moving: the current 

position in the space (window in the right) is moving 
toward the bottom left parts of the 2D space (yellow 
stripe), a position characterized by low quantity of motion 
and low fluentness (i.e., the amount of pause phases is 
dominating the amount of motion phases). In figure 4b, a 
high-energy fluent gesture is displayed. The red shadow 
around the dancer in the upper-left window of figure 4b is 
is the SMI. The yellow point in the right window is then 
moving toward the top-right region in that window, 
characterized by high quantity of motion and high 
fluentness. 

It is interesting to notice that the motion bells approach 
can be successfully applied also to sound signal analysis.  

3.5. Toward a symbolic description of human 
movement 
An output of Layer 3 is a symbolic description of the 
movement, which can be further analyzed to produce 
inferences on the underlying emotional content (e.g., in 
terms of basic emotions expressed by the dancer). The 
following example is obtained by using the “quantity of 
motion” to operate segmentation and the “contraction 
index” to distinguish between contraction and expansion 
phases of movement:     
pause(9, 32). 
expansion( 41, 4, 0.032, 0.023, 2, 0.034,  



-0.087, 0.40). 
pause(45, 6). 
contraction(51, 12, 0.035, 0.035, 9, 0.080, 
0.092, 0.15). 
pause(63, 64). 
contraction(127, 5, 0.036, 0.024, 2, 0.039, 
0.76, 0.83). 

 
The meaning of each term in the symbolic description 
above is the following: 
• Pause(start_frame, length) corresponds to a phase of 

stillness that started at start_frame and lasted length 
frames. 

• Contraction(start_frame,length,start_value,end_value,
peak_value_offset,peak_value,contraction_index_delta,
start_contraction_index) corresponds to a phase of 
motion, started at frame start_frame and lasted length 
frames. First and last SMI area values are start_value 
and end_value, while peak_value_offset says after how 
many frames the peak value peak_value was found. 
Finally contraction_index_delta shows the variation of 
the contraction index between the start and the end of 
the phase, and start_contraction_index says what was 
the value of the contraction index at the first frame of 
this phase. 

• Expansion(…) the same has before, but while 
contraction(…) has a contraction_index_delta  greater 
than 0, for an expansion it is less than 0. 

4. IMPLEMENTATION: THE EYESWEB 
MOTION ANALYSIS LIBRARY 
The work described in the previous sections is part of a 
collection of software modules for the EyesWeb open 
architecture for expressive gesture processing (Camurri et 
al, 2000; www.eyesweb.org). These and other modules are 
grouped as a separate library of EyesWeb for real-time 
analysis of expressive cues: the EyesWeb Motion Analysis 
Library. It includes: 
(i) Blocks and patches for extraction and pre-processing of 

physical signals (typically, video frames from 
videocameras): e.g., feature tracking using the Lucas 
and Kanade algorithm (see figure 6b); 

(ii) Blocks and patches for extraction and processing of 
low-level features and statistical parameters: e.g., 
contraction index, directness index, stability index, 
quantity of motion, fluentness, pause and motion 
durations (see the examples of cues in figures 5 and 7); 

(iii) Blocks and patches for posture recognition using 
various techniques, e.g., Hu moments (Hu, 1962). For 
example, posture recognition enables to associate 
postures to pause phases. Body postures and postural 
attitudes can have an important role in conveying 
expressive intentions. Argyle (Argyle, 1980) discusses 
the importance of postural attitudes in non-verbal 
communication: postures are used to express 
interpersonal attitudes, emotions, and personality traits;  

(iv) Blocks and patches for analysis of movement in 
Laban’s General Space: e.g., position in the General 
Space, expressive potential fields, occupation rates 
(Camurri, Mazzarino, Trocca, Volpe, 2001); 

(v) Patches for segmentation of movement in pause and 
motion phases. 

5. CONCLUSIONS AND FUTURE WORKS 
This paper illustrates a methodology to face the problem of 
KANSEI analysis in human movement. This methodology 
is the application to human movement of a wider 
conceptual framework dealing with expressive gestures 
especially in their artistic manifestations, i.e., in interactive 
systems involving music, dance, visual media. In this 
perspective, this work should be considered as part of a 
broader research context in which KANSEI is seen as a 
level enabling a deeper integration of interaction and 
mapping strategies in interactive systems. Our aim is to 
contribute to better support cross-language interactions, 
and enhance human-computer communication. As a 
consequence, if from one hand future research will aim to 
better understand KANSEI by widening the set of cues to 
measure and developing cross-modal cues (e.g., based on 
comparisons of Schaeffer morphology with Laban’s Effort 
theories), building suitable representations for expressive 
gestures, developing algorithms correlating concepts 
(Layer 4) to measured values of lower level cues. In 
particular, cross-modal integration (i.e., to relate these 
findings with similar analysis in other domains such as 
music and visual media), and to mapping strategies (i.e., 
the possibility for an automatic system to synthesize 
suitable expressive outputs depending on the analyzed 
KANSEI) is still needed. Aesthetic and artistic 
implications still require further work, and composers and 
artists in general still need to metabolize these results in 
order to produce consolidated artistic outputs.  
Figures 5 and 7 show simple but effective examples of 
mapping of movement cues on perceptually relevant visual 
cues. (We use these techniques to speed-up the study of 
microdances with dancers and choreographers). Similar 
examples are used with therapists for improving therapy 
and rehabilitation in Parkinson disease and severely 
handicapped children in the EU-IST project CARE HERE. 
The EyesWeb Motion Analysis library have been used in 
several public events, including interactive concerts (e.g. 
Roberto Doati work opening La Biennale concert season, 
Sept 2001), and in museum installations (e.g. permanent 
interactive exhibits at Città della Scienza science center, 
Napoli). 
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Figure 5: Two examples of real-time extraction of cues from dance (using a single videocamera). Left window: extraction of silhouettes only in points 
where velocity has a peak. Right window: visualisation of “how the dancer occupies (or sculpt) space”; the blue zone shows visually this cue.

http://www.intel.com/research/mrl/research/opencv/
http://sourceforge.net/projects/opencvlibrary/


  

Figure 6a: An EyesWeb 
patch showing the color 
blob tracker (dev by 
M.Peri and A.Ricci). 

Figure 6b: LK Trackers.

 

Figure 7: EyesWeb kernel and specific libraries support mapping 
strategies, e.g., of movement into sound and visual outputs. In the 
example shown in the figure, the “quantity of movement” and 
“fluentness” cues are simply mapped in real-time on “intensity of 
light” and “color”, respectively. We use similar representations – 
for example - for an intuitive and immediate evaluation by dancers 
of their movement qualities during experiments on microdances. 
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