CYASM ASSEMBLER
USER'’S GUIDE
VERSION 1.77

March 3, 1998

Cypress Semiconductor Corp
19825 — 141 PI NE
Woodinville, WA 98072
Tel: 425-398-3400

Fax: 425-398-3399

OCypress Semiconductor Corp, 1998. Theinformation contained herein is subject to change without notice.

1. Installing the Cyasm assembler

The floppy disk included with distribution contains the cyasm.exe and sample source files. Copy the
executable to aworking directory or a directory included in your search path.

2. Running Cyasm

The assembler isrun by entering the following command:
cyasm sourcefileasm -b -t nn
The assembly language instructions reside in sourcefile, which has a ‘.asm’ file name extension. The .asm

extension does not need to be included in the command line. The full path including disk and directory
names may be included in the source file name.

Three options may be included on the command line:

-b Brief Suppresses warning messages for operands out of range and xpage
crossings.

-tnn Tab Sets the tab spacing in the listing file to nn, where nn is a positive
integer.

Running the assembler will result in the creation of three fiesr.cefile.rom, sourcefile.lst and
sourcefile.hex.

* sourcefilerom - ROM object file
* sourcefilelst - listing file
» sourcefilehex EPROM programming file

For example, assembling testfile.asm produces the following output:
>cyasm testfile -t 4

CYASM Version 1.77
For A and B series USB M crocontrollers
(O 1998 Cypress Seni conductor Corp.

Conpl et e!
>

Input: source: testfile.asm

Output: rom file: testfile.rom
listing file: testfile.Ist, with tab spacing of 4.

The assembler may be halted at any time during a run by pressing <Ctrl C>.

3. The Microprocessor

The M8 is an 8 hit microprocessor core. It supports 8 bit operations, and has been optimized to be small
and fast. There are two versions of this microprocessor, the A and B version. The A version is only used in
a limited number of older products, and it supports a smaller instruction set. The B version is hewer and has
extra instructions. The directive ‘CPU’ is used to specify the target microprocessor core.

The Internal registers are: the accumul&er’; the index registerX’; the data stack pointédsp’; the
program stack pointépsp’; the program countépc’. All registers are 8 bits wide excqmt which is
composed of two 8 bit registenzcl andpch) which together form a 16 bit register. The lower 6 bitgobf
and all 8 bits oficl form a 14 bit address to program memory. Wherpttis pushed on the stack, Bit 7 of
thepch stores the carry flagdf’) and bit 6 of the pchstores the zero flag (‘zf").

pch pcl
7 6 5 4 3 2 1 O 7 6 5 4 3 2 1 0
| cf|z|alalalalala| |[aJalalalala|a]a]

Upon reset, dsp and psp are reset to 0x00. The dsp grows down, with a pre-decrement, while the psp grows
upward with post-increment. Using a separate program stack simplifies data stack management, and
provides efficient function calls.

All ingtructions are 1 or 2 bytes wide and are fetched from program memory, in a separate address space
from data memory or 10. The second byte of an instruction isan 8 bit constant, referred to asthe
instruction data byte or operand. Theingruction data byteisused in four different ways. asan immediate
value, asadirect or offset Data RAM address, or as the lower byte of a 12 bit Program ROM address.

There aretwo flag bits. zf the zero flag and cf a carry / borrow flag. The flags are affected by arithmetic
operations, logic and shift operations, the INDEX ingtruction and the JACC instruction. The manner in
which each flag is changed is dependent upon the instruction being executed. Section 6 Ingtruction Set
includes information about how each ingruction affects the flags.

3.1 Address Spaces

There are three separate address spaces implemented in the CY ASM assembler: 1O, data RAM, and
program memory. The |O space is accessed through the IORD and IOWR instructions. There are 8 address
bits available to access the |O space. Thedata RAM contains the data stack, program stack, and space for
variable storage. All the read and write instructions as well asinstructions which operate on the stacks use
data RAM. Data RAM addresses are 8 bits wide, although for RAM sizes 128 bytes or smaller not dl bits
are used.

The program memory is organized into 256 byte pages, such that the pch register contains the memory
page number and the pcl register contains the offset into that memory page. The assembler automatically
inserts an XPAGE ingruction on the last location of a page to increment the page number (pch) in the
program counter. Thishasthe effect of moving the user assembly instruction that would have been last on
one page into the first location of the next page. For two byte instructions starting two bytes from the end
of apage aNOP s placed before the X PAGE so both bytes of the ingtruction are forced onto the next page.
Automatic XPAGE insertion may be controlled with the XPAGEON and XPAGEOFF assembler
directives.

The INDEX ingruction has one operand which isthe lower part of the base address of a ROM table. The
lower nibble of the INDEX opcode forms the upper part of the base address, yielding a 12 bit address
range. The offset into thetable istaken as the value of the accumulator when the INDEX instruction is
executed. The maximum readabl e table size when using asingle INDEX ingruction islimited by the range
of the accumulator to 256 bytes. An example of using an INDEX ingruction is shown below.

tabl: DS ‘“hello” ;define a table called tabl

MOV A, 04
INDEX tabl fetch the 5th byte (“0”) from table tabl.

The program memory holds the user program, as well as and data tables referenced by the INDEX
instruction. INDEX, CALL (opcode 9xh) and all jump ingtructions have a 12 bit address range and are
thereby limited to arange of 4K (see section 3.2 Instruction Format), yet the B version supports EPROM
sizesup to 8K. In order to circumvent the 4K limitation, the B version includes a second CALL ingruction
(opcode 5xh) that allows access to anywhere in the upper 4K of the 8K EPROM.

The XPAGE instruction isthe only method other than the CALL ingtruction for accessing the upper 4K
range of an 8K EPROM. After an XPAGE ingruction has been used to cross the boundary there isthen no
way to return back to the lower 4K region (other than another XPAGE instruction at the top of the upper
4K range). For thisreason the CALL/RET is the suggested method for utilizing the upper 4K of code
space.

During a CALL to the upper 4K, the lower 4K isnot accessible by either thejump or INDEX instructions,
nor isit possible to make a CALL from the upper 4K to the lower 4K. After acal into the upper 4K, access
to the lower 4K isrestored by the RET or RETI indructions; at that point the upper 4K is again not
accessible. Thefollowing table shows which operations are allowed. Please note that interrupt service
routines do continue to operate normally regardiess of the upper/lower state at the time of the interrupt.
ISRs must be located in the lower 4K range and the RETI at the end of the ISR properly returns control to
either the upper or lower 4K range.

Control flow for B version microcontroller with 8K EPROM

Instruction Type Low 4K Low 4K High 4K High 4K
to to to to
Low 4K High 4K Low 4K High 4K
JACC, JC, IMP,INC, INZ,JZ | Yes No No Yes
CALL Yes Yes No Yes
(9% opcode) | (5x opcode) (5x Opcode)
RET, RETI Yes Yes Yes Yes
INDEX Yes No No Yes
XPAGE All but Last page Last Page | All but
last page last page

The assembler examines the destination of the CALL and automatically chooses the correct opcode. If an
attempt ismade to do ajump, CALL or INDEX instruction that illegally crosses the 4K boundary, the
assembler will flag that operation asan error.

3.2 Instruction Format

Ingtruction addressing is divided into two groups:. (1) Logic, arithmetic and data movement functions; (2)
jump and cdl ingructions. (For the purpose of the following discussion, the INDEX opcode is grouped asa
jump instruction) In the following descriptions a “0” or “1” indicates the opcode group, a “c” indicates
other bits used to define opcodes, and an “a” indicates bits used to store an address or data value.

Logic, arithmetic and data movement functions are one or two byte instructions. The first byte of the
instruction contains the opcode, for that instruction. In two byte instructions, the second byte contains
either a data value or an address. The format for logic, arithmetic and data movement instructions:

Single byte instruction

7 6 5 4 3 2 1 0
[ofofcleclclecl|clc

Double bye instruction

Instruction Byte
7 6 5 4 3 2 1 0 7 6
l0flofclclclclclcl [a &

Instruction Data Byte
5 4 3 2 1 0

d 4 & h lala

All jumps, plusthe CALL and the INDEX are 2 byteingtructions. The opcodeis contained in the upper 4
bits of the first instruction byte, and the destination addressis gored in theremaining 12 bits. For memory
sizeslarger than 4 Kbytes, destination address bits above the lower 12 will be the same asthethose in the
pc at the time the ingtruction is executed. The format for jump instruction:

Instruction Byte Ingruction Data Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 10
|1lclclclalalalal |alalalala|la|ala]

3.3 Addressing Modes

Three addressing modes are supported - Immediate, Direct and Indexed. The address mode isinferred
from the syntax of the assembly code. The square brackets, [] are used to denote one level of indirection.
The three modes areillustrated in the following examples:

Immediate:
The immediate addressing mode isidentified by a value without square brackets in the operand field.
Immediate addressing causes the operand itself to be used as a valuein the operation.

ADD A 7 :In this case the value 7 is added to the accumulator.

Direct:
The direct addressing mode is identified by a value within square brackets in the operand field. This
mode causes the Data RAM value which is addressed by the operand to be used in the operation.

ADD A [7] ;Inthis case the valuein location 7 of the Data RAM is added to the
;accumulator.

Indexed:
The indexed addressing mode is identified by the “[X+ value]” syntax. This mode uses the value of
the X register as a base address and the operand as the offset to access locations in the Data RAM.
This addressing mode is useful for indexing into a block of data within the Data RAM.

ADD A [X+7] ;In this case, 7 is added to the current value of X register to form the
;address. This address is then used to access the Data RAM value
:which is to be added to the accumulator.

3.4 Destination of Instruction Results

The result of a given instruction is stored in the entity which is placed next to the opcode in the assembly
code. This allows for a given result to be stored in a location other than the accumulator. Direct and
Indexed addressed Data RAM locations, as well as the X register are additional destinations for some
instructions. The AND instruction is a goibldstration of this feature:

Syntax Operation

AND A, expr acc— acc & k

AND A, [expr] acc— acc & [K]
AND A, [X + expr] acc— acc & [X+K]
AND [expr], A [K] —~ acc & [K]

AND [X+ expr], A [X+ k] < acc & [X+K]

The ordering of the entities within the instruction determines where the result of the instruction is stored.
In this example, the last two cases perform the same operation as the previous two. The difference is the
destination of the instruction.

4. Assembly Source File Syntax

Assembly language instructions reside in files with ‘.asm’ extensions. Instructions have one operation on a
single line, each with the following format. The maximum line length is 255 characters. Each keyword is
separated by white spaces.

Syntax:

Label

Wait:
p1:

Next:
p1:

Last:

MNEMONIC

Operands

label : MNEMONIC operands ;comment

is a case sensitive set of alpha numeric characters and “_” followed by a colon *“". A
label may be up to 127 characters long. If used as shown in the Syntax line a label will
be assigned a value, but labels may also be used as operands. A label is assigned the
value of the current program counter unless it defined on a line with an EQU directive.
Labels can be included on any line, including blank lines, but are required within an EQU
directive. A label may only be defined once in an assembly program, but may be used as
an operand multiple times.

If the label begins with the ‘.’ character then that label is has only local scope and/or
existance between two global labels, ie. labels that do not begin with a *.". These local
labels can re-use the same names within differing global scope.

mov a,10 ; First global label

dec A

inz Ipl ; refers to local ‘.Ip1’ above

ret

mov A,20 ;Second global label

dec A

jnz Ipl ; refers to local ‘.Ipl’ after ‘Next’
ret

In the above example the label “.Ip1’ is reused and is unigue in both uses. This feature
allows files to be included such that label use conflicts are reduced.

Local labels are restricted to use between global labels, ie. one can not use one before a
global label has been defined, and there must be at least one global label after the last
local label.

is an assembly instruction, an assembler directive, or a user defined macro name. All are
defined in more detail in section 7 Instruction Set and section 6 Assembler Directives.
There can be 0 or 1 MNEMONIC on a line of assembly code. MNEMONICs, with the
exception of macro names, are case insensitive.

either specify the addressing mode for an instruction as described in sections 3.3 and 3.4,
or are an expression which specifies a value used by an instruction. The number and type
of operands accepted on a line depends on the MNEMONIC on that line. See section 6
Assembler Directives and section 7 Instruction Set for information on operands accepted
by specific MNEMONICs. A line with no MNEMONIC must have no operands.

Expressions may be constructed using a number of algebraic and logical operators with any of the
operand types listed in the next section. The order of precedence of the expression
operatorsis.

1. Bitwise Complement

2. Multiplication *
Division /

3. Addition +
Subtraction

4, Bitwise AND

5. Bitwise XOR
6. BitwiseOR

— >

Parenthesis may be used to force lower precedence operationsto be executed first.

Operand Types Labels used as operands arereplaced with their defined value. Definitions may be made
anywhere within the source file as described in the section on labels above. The colon
following alabd does not need to be included when used as an operand.

Constants are specified as either binary, decimal, hexadecimal, or character. Theradix
for anumber is specified by aletter following the number: b for binary, d for decimal, h
for hexadecimal. If noradix is specified it is assumed to be decimal. For example 1010b,
10d, 10, and Ah are all equivalent.

Character constants are enclosed by single quotes and have the ASCII value of the
character. One or two characters may be included in quotesto form an 8 bit or 16 hit
value. The backdash \ isused as an escape character. To enter asinglequote ‘ asa
character typeV’, to enter a\ type\\. Some character contstant examples. ‘A’ hasthe
value of 41h, ‘AB’ has the value 4142h, and \” hasthe value (the ASCII value of *).

$isreplaced by the value of the program counter. For example, theinstruction IMP $is
a Jump instruction that jumpsto itsalf.

Comment isanything following a semicolon “;” or a double slash “//" to the end of a line. A
comment is usually used to explain the assembly code and may be placed anywhere in
the source file. Comments are ignored by the assembler, however they are written to the
listing file.

5. List File Format

When cyasm is run on an assembly file a listing file with a .Ist extension is created. The listing shows how
the assembly program was mapped into actual memory values. It also provides a listing of errors and
warnings, and a reference table of labels.

Below is a small assembly program (example.asm) and its listing (example.Ist).

example.asm:
JMP START
DB 3FAh

,only a conment on this |ine
ORG 20h , set program counter to 20h
START: MV a, 16d

example.lst:

CYASM Version 1. 77
For A and B series M croprocessors
(O 1998 Cypress Seni conductor Corp.

0000 80 20 [05] JMP START

**** Marning : '3FAh’ is larger than a byte.

0002 FA [00] DB 3FAh

0003 ;only a comment on this |ine
0020 ORG 20h . set program counter to 20h
0020 19 10 [04] START: MV a, 16d

CheckSum = 01C3

Warnings = 1

Errors =0

Product: CPU=64, RAME256 bytes, ROWE8SK bytes
AAAA A A ALK A A A SYA/BO_IC%FE%M TABLE AAA AR A A A A A A A
Val ue Label # Uses

Thefirst column of the listing file shows the address a which theingruction is stored. The next two
columns show the opcode and operand for that instruction. The exceptionsto this are the define directives
(see section 6), which place defined datain each of these columns, and instructions with no operands for
which column three will be left blank. The number of clock cycles required to execute the ingtruction is
next shown in square brackets. Then the source code line corresponding to the previous information is
displayed. Any warnings and errors are shown above the line that caused them.

Following the body of the listing is a checksum, a count of warnings and errors and is the symbolic
reference table. Every label defined in the assembly program isincluded in the symbol table. The value
assigned to alabel is shown aongside a count of the number of timesthe label isused. If alabel isdefined
by an EQU directive (see section 6) an ‘=" is included between the value and label name.

As an example look at the first line of the listing file. On the right is the ‘JIMP RESET’ from the source
code. At memory location 0000 the opcode for the jump (80) is placed. At memory location 0001 a 20

is placed as the operand for the jump. The value of the operand ‘RESET’ can be checked in the reference
table at the end of the listing. The next line of the listing is an example of a warning. In this case the
operand value of the following define byte (DB) assembler directive is larger than an eight bit value.
Column two of the listing line for the DB shows that the assembler used the rightmost eight bits (FA) of the
operand.

6. Assembler Directives

The CYASM assembler allows the assembler directives listed bel ow.

+ CPU Product specification

- DB Define Byte

« DS Define ASCII String

« DSU Define UNICODE String

e DW Define Word (2 bytes)

e DWL Define Word with little endian ordering
* EQU Equate label to variable value

e FILLROM Define unused program memory value
 INCLUDE Include source file

* MACRO Macro definition

+ ORG Origin

» XPAGEON Xpage enable
+ XPAGEOFF Xpage disable

CPU - Product specification

The CPU directive specifies to the assembler the resources available within the Microcontroller.

Syntax: CPU productName ;comment

Example; CPU 63413 ; Keyboard product

DB - Define Byte

The define byte directive reserves a byte of ROM and assigns the specified value to the reserved byte. This
directive is useful for creating tablesin ROM.

Syntax: label : DB operandl, operand2, ... operand(n) ;comment

The operands may be constant or alabel. The number of operandsin a DB statement can be zeroto as
many as will fit on the sourceline. Below isasamplelisting of an assembled set of DB directives

00D1 00 [00] tabl: DB 0,3 4
oop2 03 [00]
00D3 04 [00]
00D4 06 [00] DB 0110b

DS - Define ASCI1 String

The define gring directive stores a sring of charactersas ASCII values. The string must start and end with

guotation marks"".

Syntax: labd : DS "String of characters’ ;comment

The gtring is gored character by character in ASCII hex format. Thelisting file shows the first two ASCI|
characters on the line with the source code. The backdash character \ is used in the string as an escape
character. The\ isnot assembled as part of the sring, but the character following itis evenifitisa\l. A
guotation mark “ can be entered into the middie of a string as\".

The remaining characters are shown on the following line. The string isnot null terminated. To create a
null terminated string, follow the DS with aDB. Below is asampleligting for a define ASCII gtring
directive with a DB for anull terminated string.

00D8 41 42 . .. DS " ABCDEFGHI JK"
43 44 45 46 47 48 49 4A 4B
00E3 00 [00] DB 0

DSU - Define UNICODE String

The define UNICODE dgiring directive stores a gring of characters as UNICODE values with little endian
byte order. The string must start and end with quotation marks"".

Syntax: labd : DSU "String of characters” ;comment

The string is gored character by character in UNICODE format. Each character in the string is stored with
the low byte followed by the high byte. The backdash character \ is used in the string as an escape
character. The\ isnot assembled as part of the ring, but the character followingitis evenifitisa\l. A
guotation mark “ can be entered into the middle of a string as\”.

The listing file shows the first character on the line with the source code. Theremaining charactersare
shown on the following line. The stringisnot null terminated. Below is a sample liging of an assembled
define UNICODE string directive.

O8FE 41 00 ... DSU "ABCDE"
42 00 43 00 44 00 45 00

DW - DefineWord

The define word directive reserves two bytes of ROM and assigns the specified words to the reserved two
bytes. Thisdirectiveisuseful for creating tablesin ROM.

Syntax: label : DW operandl, operand2, ... operand(n) ;comment

The operands may be constant or alabdl. The number of operandsin a DW statement is only limited by the
length of the source line. Below isasampleligting of an assembled set of DW directives.

00D1 FF FE [00] tab2: DW -2
00D3 01 DF [00] DwW 01DFh
00D5 00 11 [00] DwW X
00D7 X: EQU 11h

DWL - DefineWord, Little Endian Ordering

The define word directive reserves two bytes of ROM and assigns the specified words to the reserved two
bytes, swapping the upper and lower bytes.

Syntax: label : DW operandl, operand2, ... operand(n) ;comment

The operands may be constant or alabdl. The number of operandsin a DW statement is only limited by the
length of the source line. Below isasampleligting of an assembled set of DW directives.

00D1 FE FF [00] tab3: DW -2
00D3 DF 01 [00] Dw 01DFh
00D5 11 00 [00] DwW y
00D7 y: EQU 11h

EQU -- Equate L abel

The equate (EQU) directiveis used to assign an integer valueto alabel.

Syntax: label : EQU operand ;comment

Thelabel and operand are required for an EQU directive. The operand must be a constant or label or $

(program counter). Each EQU directive may have only one operand and if alabel is defined more than once
an assembly error will occur. Below isasamplelisting of an assembled set of EQU directives.

ooDn4 10 [00] DB zz
00D5 00 11 [00] Dw vy . Exanpl e of how | abel is used
00D7 XX: EQU 10h
00D7 yy: EQU 11h
00D7 zZ: EQU XX

FILLROM - Define unused program memory value
The fillrom directive is used to force all unused bytes of program memory to a specified value.

Syntax: label: FILLROM value ;comment

Every byte of program memory which isnot otherwise used will be assigned the value following the
FILLROM directive. Only one FILLROM statement will be used tofill all unused locations.

INCLUDE - Include sourcefile

Theinclude directiveis used to include additional source filesinto the main file being assembled.
Syntax: label : INCLUDE "source file" ;comment

Once an include directive is encountered the assembler reads in the new source file (source_file) until
either another INCLUDE is encountered or the end of fileis found. When an end of file is encountered, the
assembler resumes reading the previous file immediately following the INCLUDE directive. In other
words INCLUDE directives cause nesting of source code being assembled. The source file specified
should contain afull path nameif it does not reside in the current directory.

10

MACRO - Macro Definition Start
ENDM - M acro Definition End

The macro and endm directives are used to specify the start and end of amacro definition.

Definition Syntax: label: MACRO macroname parml,parm2,...,parm(n) ;comment
macro body consisting of lines of CY ASM code
ENDM

Call Syntax: label: macroname valuel,value2,...,value(n) ;comment

The lines of code defined between a MACRO statement and an ENDM gtatement are not directly
assembled into the program. Instead they form amacro which may later be substituted into the code by a
macro call. Following the MACRO directive isthe name used to call the macro aswell asalist of
parameters. Each of the parametersis a string which can be used in the macro body as an operand, either
alone or as part of an expression. In amacro cal each time a parameter isused in the macro body it will be
replaced by the corresponding value from the macro call. Any labels defined in a macro will have a#n,
where n isaunique number for each macro call, appended. This makes the labd unique each time the
macro is used.

One example of a macro isthe variable delay 1oop shown below.

Macro definition from source file:
MACRO wai t del ay
MYV a, del ay

I oop: DEC a
JNZ | oop
ENDM

Macro call from sourcefile
wait 50

Macro ingantiation from the listing file:

*xxx MACRO **** wait 50

00D7 19 32 [04] MV a, 50
00D9 25 [04] | oop#l: DEC a

OODA BO D9 [05] / JNZ | oop#1:

A macro must be defined earlier in the assembly filethan it is called. Macro definitions may not be nested,
but macros that are already defined may be used in following macro definitions.

ORG - Program Counter Origin

The origin (ORG) directive alows the programmer to set the value of the program counter during
assembly. Thisismost often used to set the gart of atable in conjunction with the define directives DB, DS
and DW.

Syntax: label: ORG operand ;comment
The operand isrequired for an ORG directive and may be an integer constant, alabd or $ ($indicatesthe

program counter). The assembler does not keep track of areas previoudy defined and will not flag
overlapping areasin asingle sourcefile. Below isasamplelisting of an assembled set of DB directives.

00D1 ORG 00D1h
ooD1 03 [00] DB 3
00FD ORG 00FDh

11

XPAGEOFF - Disable XPAGE Insertion

The XPAGEOFF directive disables the automatic insertion of XPAGE ingructions at page breaks. Most
often thisis useful when defining ROM tables or jump tables.
Syntax: label: XPAGEOFF

Following the XPAGEOFF directive the assembler will not insert XPAGE and NOP instructions at
program memory page crossings until an XPAGEON directive is encountered. The assembler defaults to
XPAGE insertion on at thetop of thefile.

XPAGEON - Enable XPAGE Insertion

The XPAGEON directive enables the automatic insertion of XPAGE ingtructions at page breaks. Most
often thisis useful when defining ROM tables or jump tables.
Syntax: labd: XPAGEON

The XPAGEON directive the enables automatic insertion XPAGE and NOP instructions at page breaks
after an XPAGEOFF directive has disabled it. The assembler defaultsto XPAGE insertion on at the top of
thefile.

12

7. Instruction Set

The following notation will be used throughout this section of the document:

acc Accumulator
expr expression

k operand value
X X register

ADD

Syntax:

ADD A, expr
ADD A, [expr]
ADD A, [X + expr]

Description:
Condition Flags:

CF
ZF:

| Souwce | MachineCode | Cydles |
||||_|

Set if, treating the numbers as unsigned, theresult > 255; cleared otherwise.
Set if theresult iszero; cleared otherwise.

Add without Carr

Operation:
acc —~ acc+k
acc — acc + [K]

acc — acc + [X +K]

Yy

ADD A, expr 01h Immediate byte

ADD A, [expr] 02h Direct address byte 6
ADD A, [X+expr] 03h Offset byte 7
ADC Add with Carry
Syntax: Operation:

ADC A, expr acc « acc+k+cf
ADC A, [expr] acc — acc + [K] +cf

ADC A, [X + expr]
Description:
Condition Flags:

CF
ZF:

| Souwce | MachineCode | Cydles |
||||_|

Set if, treating the numbers as unsigned, theresult > 255; cleared otherwise.
Set if theresult iszero; cleared otherwise.

acc « acc + [X +K] +cf

ADC A, expr Immediate byte
ADC A, [expr] 05h Direct address byte 6
ADC A, [X+expr] 06h Offset byte 7

ADD

ADC

Addsavalue k, [k] or [X+ K] to the contents of the accumulator and places theresult in
the accumul ator.

Adds the content of the carry bit along with the contents of the accumulator to avalue; k,
[K] or [X+ K] and places theresult in the accumulator.

13

AND Bitwise AND AND

Syntax: Operation:

AND A, expr acc — acc& k

AND A, [expr] acc — acc & [K]
AND A, [X + expr] acc — acc & [X +K]
AND [expr], A [K] <« acc & [K]
AND [X+ expr], A [X+K] < acc& [X+K]

Description: A bitwise AND of avalug; k, [K] or [X+ K] and the contents of the accumulator. The

result is placed in either the accumulator, [K] or [X+ K] according to thefield just to the

right of the opcode.

Condition Flags:
CF: Always cleared.
ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles|
|____Format | Opcode | Operand | |

AND A, expr 10h Immediate byte 4
AND A, [expr] 11h Direct address byte 6
AND A, [X+expr] 12h Offset byte 7
AND [expr], A 35h Direct address byte 7
AND [X+ expr], A 36h Offset byte 8
ASL Arithmetic Shift Left ASL
Syntax: ASL A or ASL
CF| « I N A B -
Operation: br bo 0

Description: Shiftsal bits of the accumulator one place to the left. The most significant bit of the
accumulator isloaded into the CF flag. Bit O isloaded with a zero.

Condition Flags.

CF: Set if the MSB of the accumulator was set, before the shift, cleared otherwise.

ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles |
||||_|

'ASL | 3Bh | | |

14

ASR Arithmetic Shift Right ASR

Syntax: ASR or ASRA
E‘ b7 - - - - - = bO — CF

Description: Shiftsall bits of the accumulator one place to the right. Bit 0 of the accumulator is loaded
into the CF flag. Bit 7 remainsthe same.

Operation:

Condition Flags:
CF: Set if LSB of the accumulator was set, before the shift, cleared otherwise.

ZF: Set if theresult iszero; cleared otherwise.
Sowrce	MachineCode	Cydles	
			_
ASR	3ch		
CALL Call Function CALL
Syntax: CALL address
Operation: [psp] ~ pc
psp — psp+2
pc - k
Description: Executes a jump to a subroutine starting at the address given as an operand. The Program

counter (pc) is pushed onto the program stack without disturbing the data stack. The zero
flag (zf) and carry flag (cf) are pushed along with the pc. The program stack pointer is

incremented. The program counter is loaded with the address value.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

| Sowce | MachineCode | Cycles |
||||_|
CALL addr 9xh address byte (first 4K ROM)
CALL addr 5xh address byte (second 4K ROM, B CPUs only) 10

15

CMP Non-destr uctive Compare CMP

Syntax: Operation:
CMPA, expr cf « acc-k
CMP A, [expr] of « acc - [K]
CMPA, [X + expr] of « acc - [X+K]

Description: Subtracts avalue; k, [K] or [X+ K] from the contents of the accumulator and sets the flag
bits. The contents of the accumulator are unaffected.

Condition Flags:
CF: Set if the accumulator contents < operand value; cleared otherwise.
ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles |
||||_|

CMP A, expr 16h Immediate byte

CMP A, [expr] 17h Direct address byte 7

CMP A, [X+expr] 18h Offset byte 8

CPL Complement accumulator CPL
Syntax: CPL A or CPL

Operation: acc — acc

Description: Replace each hit in the accumulator with its complement.

Condition Flags:
CF: Always set.
ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles |
||||_|
| |

'CPLA | 3Ah |

16

DEC Decrement DEC

Syntax: Operation:
DECA acc — acc- 1
DEC X X «X-1

DEC [expr] K] « [K]-1

DEC [X+ expr] [X+K] < [X+Kk]-1

Description: Subtract one from the contents of aregister or Data RAM location. Thefield to theright
of the opcode determines which entity is effected: accumulator; X register; direct or
index addressed Data RAM location.

Condition Flags:
CF: Set if theresult is-1; cleared otherwise.
ZF: Set if theresult iszero; cleared otherwise.

| Source | Machine Code | Cycles |
|___Format | Opcode | _Operand | |

DECA 25h 4

DEC X 26h 4

DEC [expr] 27h direct address byte 7

DEC [X+ expr] 28h offset address byte 8

DI Disable Interrupts DI
Syntax: DI B CPU only

Operation: None

Description: Disables interrupts.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected

| Source | Machine Code | Cycles |
|____Format | Opcode | Operand | |
DI

| | 70h | 4]

El Enable Interrupts El
Syntax: El B CPU only

Operation: None

Description: Enables interrupts.

Condition Flags:
CF. Carry flag unaffected.
ZF: Zero flag unaffected

17

| Souwce | MachineCode [Cycles|
||||_|

' E . 72h | | |
HALT Halt execution HALT
Syntax: HALT
Operation: None
Description: Halts execution of the processor core until the occurrence of areset - Watchdog, POR or
USB

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected

| Souwce | MachineCode [Cycles |
||||_|

| HALT | | | |
| NC I ncrement | NC
Syntax: Operation:
INC A acc — acc+1
INC X X« X+1
INC [expr] [K] < [K]+1
INC [X+ expr] [X+K] « [X+Kk]+1

Description: Add oneto the contents of aregister or Data RAM location. The field to theright of the
opcode determines which entity is effected: accumulator; X register; direct or index
addressed Data RAM |ocation.

Condition Flags:
CF: Set if value after the increment is 0; cleared otherwise.
ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles |
|____Format | Opcode | Operand | |

INC A 21h 4
INC X 22h 4
INC [expr] 23h direct address byte 7
INC [X+ expr] 24h offset address byte 8

18

INDEX Table Read INDEX

Syntax: INDEX address

Operation: acc — ROMJaddr + acc]

Description: Places the contents of ROM location indexed by the sum of the accumulator and the
address operand, into the accumulator.

Condition Flags:
CF: Set if computed addressis on a different page from the base address; cleared

otherwise.
ZF: Set if the low byte of the computed address is 00; cleared otherwise.

| Source | Machine Code | Cycles |
|____Format | Opcode | Operand | |

| INDEX address | Fxh | address byte |14 |
IPRET IO Write, Pop, and Return (A CPU only) IPRET
Syntax: IPRET address
Operation: IO[address] < acc, POP acc, RET

Description: Places the contents of the accumulator into 1O location indexed the by address, then pop

the accumulator from the data stack, then return from interrupt.

Condition Flags:
CF: Carry restored to the value that was pushed onto the program stack.

ZF: Zero restored to the value that was pushed onto the program stack.

| Source | Machine Code | Cycles |
|____Format | Opcode | Operand | |
|

| IPRET address | 1Eh | address byte | 13
|ORD Read 10 |ORD
Syntax: IORD address
Operation: acc — 10[K]

Description: Places the contents of 10 location indexed the by address operand into the accumulator.

Condition Flags:
CF Carry flag unaffected.
ZF: Zero flag unaffected.

| Source | Machine Code | Cycles |
|____Format | Opcode | Operand | |

| IORD address | 2%h | address byte | 5 |

19

IOWR Write 10 IOWR

Syntax: IOWR address
Operation: IO[K] < acc

Description: Place the contents of the accumulator into the 10 location indexed by the address
operand.

Condition Flags:
CF: Carry unaffected.
ZF: Zero unaffected.

| Source | Machine Code | Cycles |
|_____Format | Opcode | Operand | |

| IOWR address | 2Ah | address byte | 5 |
|OWX Indexed 10 Write |OWX
Syntax: IOWX [x + address]
Operation: IO[x + K] ~ acc
Description: Place the contents of the accumulator into the 10 location given by the sum of the index

register and the address operand.

Condition Flags:
CF: Carry unaffected.
ZF: Zero unaffected.

| Source | Machine Code | Cycles |
|_____Format | Opcode | Operand | |

| IOWX address | 3%h | address byte 6 |
JACC Jump Accumulator JACC
Syntax: JACC address
Operation: pc — acc+k

Description: Jump unconditionally to the address computed by the sum of the accumulator and the 12
bit address operand. The accumulator isnot affected by thisinstruction.

Condition Flags:
CF: Set if computed addressis on a different page from the base address; cleared
otherwise.
ZF: Set if thelow byte of the computed address is 00; cleared otherwise.

| Source | Machine Code | Cycles |

|____Format | Opcode | Operand | |

| JACC address | Exh | address byte 7

20

JC

Syntax:
Operation:

Description:

Jump if Carry JC

JC address
if CF=1, thenpc ~ k

If the carry flag is set, then jump to the address (place the address in the program
counter).

Condition Flags:

CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Source	Machine Code	Cydles	
_Format	Opcode	Operand	
JC address	Cxh	address byte	5
JMP Jump JMP
Syntax: JM P address
Operation: pc « k
Description: Jump unconditionally to the address (place the address in the program counter).

Condition Flags:

CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Source	Machine Code	Cydles	
___Format	Opcode	Operand	
JMP address	8h	address byte	5
JNC Jump if No Carry JNC
Syntax: JNC address
Operation: if CF=0then pc « k
Description: If the carry flag is hot set, then jump to the address (place the address in the program

Condition Flags:

counter).

CF: Carry flag unaffected.
ZF: Zero flag unaffected.

| Source | Machine Code | Cycles |
|____Format | Opcode | Operand | |
|

| INC address

| Dxh | address byte | 5

21

JNZ Jump if Not Zero JNZ

Syntax: JNZ address
Operation: if ZF=0thenpc « k

Description: If the zero flag is not set then jump to the address (place the address in the program
counter).

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Source	Machine Code	Cydles	
____Format	Opcode	Operand	
JINZ address	Bxh	address byte	5
JZ Jump if Zero JZ
Syntax: JZ address
Operation: if ZF=1thenpc « k
Description: If the zero flag is set then jump to the address (place the address in the program counter).

Condition Flags.
CF. Carry flag unaffected.
ZF: Zero flag unaffected.

Source	Machine Code	Cycles	
_Format	Opcode	Operand	
JZ address	Axh	address byte	5

22

MOV Move MOV
Syntax: Operation:

MOV A, expr acc « k

MOV A, [expr] acc — [K]

MOV A, [X + expr] acc « [X +K]

MOV [expr], A [K] ~ acc

MOV [X +expr], A [X +K] — acc

MOV X, expr X « k

MOV X, [expr] X « [K]

MOV X, A X < acc B CPU
MOV AX acc € X B CPU
MOV PSPA PSP < acc B CPU
Description: Thisinstruction alows for anumber of combinations of moves. Immediate, direct and

indexed addressing is supported. All movesinvolve either the accumulator or the X
register.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

| source | Machine Code | Cycles |
|____Format | Opcode | ___Operand | |

MOV A, expr 1%h Immediate byte 4
MOV A, [expr] 1Ah Direct address byte 5
MQV A, [X+expr] 1Bh Offset byte 6
MOV [expr], A 31lh Direct address byte 5
MOV [X+ expr],A 32h Offset byte 6
MOV X, expr 1Ch Immediate byte 4
MOV X, [expr] 1Dh Direct address byte 5
MOV A, X 40h 4
MOV XA 41h 4
MOV PSP,A 60h 4
NOP No Oper ation NOP
Syntax: NOP

Operation: none

Description: This one byte ingruction performs no operation.

Condition Flags.
CF: Carry flag unaffected
ZF: Zero flag unaffected.

| Source | Machine Code | Cycles |
|____Format | Opcode | Operand | |

| NOP | 20h | 4|

OR

Syntax:

OR A, expr

OR A, [expr]
ORA, [X + expr]
OR [expr], A
OR [X+ expr], A

Description:

Bitwise OR

Operation:

acc — acc Ok
acc — acc O [K]
acc — acc O [X +K]
[K] < acc O [K]

[X+K] « accO[X+K]

OR

A bitwise OR of avalug; k, [K] or [X+ K] and the contents of the accumulator. The result

is placed in either the accumulator, [k] or [X+ k] according to the field just to the right of
the opcode.

Condition Flags:
CF:
ZF:

| sSource | Machine Code SEEY

Always cleared.

Set if theresult iszero; cleared otherwise.

|___Format | Opcode ! Operand |

OR A, expr 0Dh Immediate byte 4
ORA, [expr] OEh Direct address byte 6
ORA, [X+expr] OFh Offset byte 7
OR [expr], A 33h Direct address byte 7
OR [X+ expr], A 34h Offset byte 8
POP Pop Data Stack into Register
Syntax Operation
POP A acc — [dsp]

dsp —« dsp+1
POP X X « [dsp]

dsp -« dsp+1
Description:

Condition Flags:
CF:
ZF:

| Source | Machine Code | Cycles |
|____Format | Opcode | Operand | |

POP A

Carry flag unaffected.
Zero flag unaffected.

2Bh

4

POP X

2Ch

4

POP

Place the contents of the top of the stack into the designated regigter. Increment the data
stack pointer.

24

PUSH Push Register into Data Stack PUSH

Syntax Operation

PUSH A dsp — dsp-1
[dsp] « acc

PUSH X dsp — dsp-1
[dsp] — X

Description: Decrement the data stack pointer. Push the contents of the designated register onto the
data stack.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

| Souwce | MachineCode [Cycles |
||||_|

PUSH A 2Dh
PUSH X 2Eh 5
RET Return RET
Syntax: RET
Operation: psp — psp-2
pc — [psp]

Description: Pop two bytes off of the program stack into the program counter.

Condition Flags: Dependson A or B versions CPUs

A version:
CF: Carry restored to the value that was pushed onto the program stack.
ZF: Zero restored to the val ue that was pushed onto the program stack.

B version:
CF: Carry unchanged by thisinstruction.
ZF: Zero unchanged by thisinstruction.

| Source | Opcode | MachineCode | Cycles |
II_III_I
RET 3FH A: flagsrestored
RET 3FH B: flags returned 8

25

RETI Return from Interrupt RETI

Syntax: RETI B CPU only.
Operation: psp —~ psp-2
pc — [psp]

Description: Pop two bytes off of the program stack into the program counter, and re-enables
interrupts.

Condition Flags:
CF: Carry restored to the value that was pushed onto the program stack.
ZF: Zero restored to the val ue that was pushed onto the program stack.

| Source | Opcode | Machine Code | Cycles |
. Fomat | | Opeand | Comments |

| RETI | 73H | | flagsrestored | 8 |
RLC Rotate L eft through Carry RLC
Syntax: RLC Ao RLC

|—CF‘<_b7-----_b0@,

Operation:

Description: Shiftsall bits of the accumulator one place to the left. Bit 0 isloaded with the carry flag.

The most significant bit of the accumulator isloaded into the carry flag.

Condition Flags.

CF: Set if the MSB of the accumulator was set, before the shift, cleared otherwise.

ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles |
||||_|

'RLCA | 3h | | a4 |

26

RRC

Syntax:

Operation:

Description:

Condition Flags.

Rotate Right through Carry RRC
RRC A or RRC

QCF‘ﬁb,-----_bOJ

Shiftsal bits of the accumulator one place to theright. The carry flag is loaded into the
most significant bit of the accumulator, bit 7. Bit 0 of the accumulator isloaded into the
Carry flag.

CF: Set if LSB of the accumulator was set, before the shift, cleared otherwise.
ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles|
||||_|
| |

' RRC A . 3Eh |
SUB Subtract without Borrow SUB
Syntax: Operation:
SUB A, expr acc — acc-k
SUB A, [expr] acc — acc - [K]
SUB A, [X + expr] acc — acc - [X +K]
Description: Subtracts avalue; k, [K] or [X+ K] from the contents of the accumulator and places the

Condition Flags:

result in the accumul ator.

CF: Set if, treating the numbers as unsigned, theresult < O; cleared otherwise.
ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles |
||||_|

SUB A, expr 07h Immediate byte
SUB A, [expr] 08h Direct address byte 6
SUB A, [X+expr] 0%h Offset byte 7

27

SBB Subtract with Borrow SBB

Syntax: Operation:

SBB A, expr acc — acc- (k +cf)

SBB A, [expr] acc — acc - ([K] + cf)
SBB A, [X + expr] acc — acc - ([X +Kk] +cf)

Description: Subtracts avalue; k, [K] or [X+ K], plusthe carry flag, from the contents of the
accumulator and places the result in the accumulator.

Condition Flags:

CF: Set if, treating the numbers as unsigned, theresult < O; cleared otherwise.

ZF: Set if theresult iszero; cleared otherwise.

| Souwce | MachineCode [Cycles |
||||_|

SBB A, expr OAh Immediate byte
SBB A, [expr] 0Bh Direct address byte 6
SBB A, [X+expr] 0Ch Offset byte 7
SWAP Swap SWAP
Syntax: Operation:
SWAPA, X t-X

X < acc

acc ~ t
SWAP A, DSP t —« DSP

DSP — acc

acc « t

Description: Operates on either the X register or the data stack pointer. Use the temporary register to
facilitate a swap of the contents of the accumulator with that of the X register or the data

stack pointer.

Condition Flags.
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

| Souwce | MachineCode [Cycles |
||||_|

SWAPA, X 2Fh
SWAPA, DSP 30h 5

28

XOR Bitwise XOR XOR

Syntax: Operation:

XOR A, expr acc « acc O k

XOR A, [expr] acc — acc O [K]

XOR A, [X + expr] acc — acc 0 [X +K]
XOR [expr], A [K] < acc O [K]
XOR [X+ expr], A [X+K] < acc O [X+K]

Description: A bitwise Exclusive OR of avalue; k, [K] or [X+ K] and the contents of the accumulator.
Theresult isplaced in either the accumulator, [k] or [X+ k] according to the field just to
theright of the opcode.

Condition Flags:
CF Cleared always.

ZF: Set if theresult iszero; cleared otherwise.

| Source | MachineCode | Cydles |
| ___Format | Opcode | Operand | |

XORA, expr 13h Immediate byte 4

XOR A, [expr] 14h Direct address byte 6

XOR A, [X+expr] 15h Offset byte 7

XOR [expr], A 37h Direct address byte 7

XOR [X+ expr], A 38h Offset byte 8

XPAGE Memory Page XPAGE

Syntax: XPAGE

Operation: pch — pch+1

Description: Increment the upper byte of the program counter.

Condition Flags:
CF. Carry flag unaffected.
ZF: Zero flag unaffected.

| Souwce | MachineCode [Cycles |
||||_|
| |

XPAGE | 1Fh |

29

Alphabetic Instruction Table

| Souwrce | MachineCode ||||

 ADD A, expr | expr ~ 01th | Immediatebyte byte 4 2
ADD A, [expr] 02h Direct address byte 6 2 C C
ADD A, [X+expr] 03h Offset byte 7 2 c| C
ADC A, expr 04h Immediate byte 4 2 c| C
ADC A, [expr] 05h Direct address byte 6 2 c| C
ADC A, [X+expr] 06h Offset byte 7 2 c| C
AND A, expr 10h Immediate byte 4 2 c|C
AND A, [expr] 11h Direct address byte 6 2 c| C
AND A, [X+expr] 12h Offset byte 7 2 c| C
AND [expr], A 35h Direct address byte 7 2 c| C
AND [X+ expr], A 36h Offset byte 8 2 c| C
ASL or ASL A 3Bh 4 1 c|C
ASRor ASRA 3Ch 4 1 c|C
CALL addr 9xh address byte 10 2
CALL addr 5xh address byte 10 2
CMP A, expr 16h Immediate byte 5 2 c|C
CMP A, [expr] 17h Direct address byte 7 2 c| C
CMP A, [X+expr] 18h Offset byte 8 2 c| C
CPL or CPL A 3Ah 4 1 1| C
DECA 25h 4 1 c|C
DEC X 26h 4 1 c|C
DEC [expr] 27h direct address byte 7 2 c| C
DEC [X+ expr] 28h offset address byte 8 2 c|C
DI 70h 4 1
El 72h 4 1
HALT 00h 7 1
INC A 21h 4 1 c|C
INC X 22h 4 1 c|C
INC [expr] 23h direct address byte 7 2 c| C
INC [X+ expr] 24h offset address byte 8 2 c|C
INDEX address Fxh address byte 14 2 c| C
IORD address 2%h address byte 5 2
IOWR address 2Ah address byte 5 2
IOWX [X+ expr] 3%h offset address byte 6 2
IPRET 1Eh IO address 13 2
JACC address Exh address byte 7 2 c|C
JC address Cxh address byte 5 2
JMP address 8xh address byte 5 2
JINC address Dxh address byte 5 2
JINZ address Bxh address byte 5 2
JZ address Axh address byte 5 2
MOV A, expr 1%h Immediate byte 4 2
MOV A, [expr] 1Ah Direct address byte 5 2
MQV A, [X+expr] 1Bh Offset byte 6 2
MOV [expr], A 31lh Direct address byte 5 2
MOV [X+ expr],A 32h Offset byte 6 2
MOV X, expr 1Ch Immediate byte 4 2
MOV X, [expr] 1Dh Direct address byte 5 2
MOV A X 40h 4 1
MOV XA 41h 4 1

30

MOV PSP,A 60h 4 1
NOP 20h 4 1
ORA, expr 0Dh Immediate byte 4 2 c|C
ORA, [expr] OEh Direct address byte 6 2 c|C
ORA, [X+expr] OFh Offset byte 7 2 c| C
OR [expr], A 33h Direct address byte 7 2 c| C
OR [X+ expr], A 34h Offset byte 8 2 c| C
POP A 2Bh 4 1
POP X 2Ch 4 1
PUSH A 2Dh 5 1
PUSH X 2Eh 5 1
RET (CPU A) 3Fh 8 1 cC|C
RET (CPU B) 3Fh 8 1
RETI 73h 8 1 cC | C
RLCor RLCA 3Dh 4 1 c|C
RRC or RRC A 3Eh 4 1 c|C
SUB A, expr 07h Immediate byte 4 2 c|C
SUB A, [expr] 08h Direct address byte 6 2 c|C
SUB A, [X+expr] 0%h Offset byte 7 2 c| C
SBB A, expr OAh Immediate byte 4 2 c| C
SBB A, [expr] 0Bh Direct address byte 6 2 c|C
SBB A, [X+expr] 0Ch Offset byte 7 2 c| C
SWAPA, X 2Fh 5 1
SWAPA, DSP 30h 5 1
XORA, expr 13h Immediate byte 4 2 c| C
XOR A, [expr] 14h Direct address byte 6 2 c| C
XOR A, [X+expr] 15h Offset byte 7 2 c| C
XOR [expr], A 37h Direct address byte 7 2 c| C
XOR [X+ expr], A 38h Offset byte 8 2 c| C
XPAGE 1Fh 4 1

Ingructionsin bold are not available for both CPU types
cf: carry flag, zf: zeroflag, int: B CPU interrupt enable
In Flag columns blank is unchanged, C is changed, and O or 1is set to that value

31

| Product ID | CPUtype | RAM | EPROM |

CPU Product |dentification Table

63000 63/A CPU | 128 bytes | 2K bytes
63001 63/A CPU | 128 bytes | 4K bytes
63100 63/A CPU | 128 bytes | 2K bytes
63101 63/A CPU | 128 bytes | 4K bytes
63200 63/A CPU | 128 bytes | 2K bytes
63201 63/A CPU | 128 bytes | 4K bytes
63411 64/B CPU | 256 bytes | 4K bytes
63412 64/B CPU | 256 bytes | 6K bytes
63413 64/BCPU | 256 bytes | 8K -32 bytes
63511 64/B CPU | 256 bytes | 4K bytes
63512 64/B CPU | 256 bytes | 6K bytes
63513 64/BCPU | 256 bytes | 8K - 32 bytes
64011 64/B CPU | 256 bytes | 4K bytes
64012 64/B CPU | 256 bytes | 6K bytes
64013 64/BCPU | 256 bytes | 8K - 32 bytes
64111 64/B CPU | 256 bytes | 4K bytes
64112 64/B CPU | 256 bytes | 6K bytes
64113 64/B CPU | 256 bytes | 8K bytes
65013 64/BCPU | 256 bytes | 8K - 32 bytes
65113 64/BCPU | 256 bytes | 8K - 32 bytes
66011 64/B CPU | 256 bytes | 4K bytes
66012 64/B CPU | 256 bytes | 6K bytes
66013 64/BCPU | 256 bytes | 8K - 32 bytes
66111 64/B CPU | 256 bytes | 4K bytes
66112 64/B CPU | 256 bytes | 6K bytes
66113 64/BCPU | 256 bytes | 8K - 32 bytes

32

