K22F Sub-Family Reference Manual

Supports: MK22FN512VDC12, MK22FN512VLL12, MK22FN512VLH12, MK22FN512VMP12

Document Number: K22P121M120SF7RM

Rev. 3, 7/2014

Contents

Sec	tion nu	umber Title	Page
		Chapter 1 About This Document	
1.1	Overvie	ew	49
	1.1.1	Purpose	49
	1.1.2	Audience	49
1.2	Conven	ntions	
	1.2.1	Numbering systems.	49
	1.2.2	Typographic notation	50
	1.2.3	Special terms	50
		Chapter 2 Introduction	
2.1	Overvie	ew	51
2.2	Module Functional Categories.		51
	2.2.1	ARM® Cortex®-M4 Core Modules	52
	2.2.2	System Modules	53
	2.2.3	Memories and Memory Interfaces	54
	2.2.4	Clocks	54
	2.2.5	Security and Integrity modules	55
	2.2.6	Analog modules	55
	2.2.7	Timer modules	56
	2.2.8	Communication interfaces	57
	2.2.9	Human-machine interfaces	57
2.3	Orderal	ble part numbers	58
		Chapter 3 Chip Configuration	
3.1	Introdu	ction	59

Section number		mber Title	Page
3.2	Core mo	odules	59
	3.2.1	ARM Cortex-M4 Core Configuration	59
	3.2.2	Nested Vectored Interrupt Controller (NVIC) Configuration	61
	3.2.3	Asynchronous Wake-up Interrupt Controller (AWIC) Configuration	67
	3.2.4	FPU Configuration	68
	3.2.5	JTAG Controller Configuration	68
3.3	System	modules	69
	3.3.1	SIM Configuration	69
	3.3.2	System Mode Controller (SMC) Configuration	70
	3.3.3	PMC Configuration	70
	3.3.4	Low-Leakage Wake-up Unit (LLWU) Configuration	71
	3.3.5	MCM Configuration	73
	3.3.6	Crossbar-Light Switch Configuration	73
	3.3.7	Peripheral Bridge Configuration	75
	3.3.8	DMA request multiplexer configuration	76
	3.3.9	DMA Controller Configuration.	79
	3.3.10	External Watchdog Monitor (EWM) Configuration	80
	3.3.11	Watchdog Configuration.	82
3.4	Clock m	83	
	3.4.1	MCG Configuration	83
	3.4.2	OSC Configuration	84
	3.4.3	RTC OSC configuration	85

Section number			Title	Page
3.5	Memori	ies and memory interfaces	memory interfaces	
	3.5.1	Flash Memory Configuration		86
	3.5.2	Flash Memory Controller Configura	ation	89
	3.5.3	SRAM Configuration		89
	3.5.4	System Register File Configuration		91
	3.5.5	VBAT Register File Configuration.		92
	3.5.6	EzPort Configuration		92
	3.5.7	FlexBus Configuration		93
3.6	Security	/		96
	3.6.1	CRC Configuration		96
	3.6.2	RNG Configuration		97

Sect	tion nu	ımber Title	Page
3.7	Analog		98
	3.7.1	16-bit SAR ADC Configuration	98
	3.7.2	CMP Configuration.	
	3.7.3	12-bit DAC Configuration.	107
	3.7.4	VREF Configuration.	109
3.8	Timers		110
	3.8.1	PDB Configuration	110
	3.8.2	FlexTimer Configuration.	113
	3.8.3	PIT Configuration.	119
	3.8.4	Low-power timer configuration	120
	3.8.5	RTC configuration	122
3.9	Commu	inication interfaces	123
	3.9.1	Universal Serial Bus (USB) FS Subsystem	123
	3.9.2	SPI configuration	128
	3.9.3	I2C Configuration.	
	3.9.4	UART Configuration	133
	3.9.5	LPUART configuration	136
	3.9.6	I2S configuration	136
3.10	Human-machine interfaces.		140
	3.10.1	GPIO configuration.	140
		Chapter 4 Memory Map	
4.1	Introduc	ction	143
4.2	System	memory map	143
	4.2.1	Aliased bit-band regions.	145
	4.2.2	Flash Access Control Introduction	146
4.3	Flash M	Memory Map	146
	4.3.1	Alternate Non-Volatile IRC User Trim Description	147
4.4	SRAM	memory map	147

Sec	tion nu	ımber Title	Page
4.5	Peripheral bridge (AIPS-Lite) memory map		148
	4.5.1	Read-after-write sequence and required serialization of memory operations	148
	4.5.2	Peripheral Bridge 0 (AIPS-Lite 0) Memory Map	148
4.6	Private	Peripheral Bus (PPB) memory map	152
		Chapter 5 Clock Distribution	
5.1	Introdu	ction	155
5.2	Program	nming model	155
5.3	High-L	evel device clocking diagram.	155
5.4	Clock d	lefinitions	156
	5.4.1	Device clock summary	157
5.5	Internal	160	
	5.5.1	Clock divider values after reset	161
	5.5.2	VLPR mode clocking	162
5.6	Clock C	Gating	162
5.7	Module	162	
	5.7.1	PMC 1-kHz LPO clock	164
	5.7.2	IRC 48MHz clock	164
	5.7.3	WDOG clocking	165
	5.7.4	Debug trace clock	166
	5.7.5	PORT digital filter clocking	166
	5.7.6	LPTMR clocking	167
	5.7.7	RTC_CLKOUT and CLKOUT32K clocking	167
	5.7.8	USB FS OTG Controller clocking	168
	5.7.9	UART clocking	169
	5.7.10	LPUART0 clocking	169
	5.7.11	I2S/SAI clocking	170

Chapter 6 Reset and Boot

6.1	.1 Introduction		173
6.2	Reset		174
	6.2.1	Power-on reset (POR)	174
	6.2.2	System reset sources	174
	6.2.3	MCU Resets	178
	6.2.4	Reset Pin	179
	6.2.5	Debug resets	180
6.3	Boot		181
	6.3.1	Boot sources	181
	6.3.2	Boot options	181
	6.3.3	FOPT boot options	182
	6.3.4	Boot sequence	183
		Chapter 7 Power Management	
7.1	Introdu	oction	185
7.2	Clocking modes.		
	7.2.1	Partial Stop	185
	7.2.2	DMA Wakeup	186
	7.2.3	Compute Operation	187
	7.2.4	Peripheral Doze	188
	7.2.5	Clock Gating	189
7.3	Power 1	Modes Description	189
7.4	Enterin	ng and exiting power modes	191
7.5	Power	mode transitions	192
7.6	Power	modes shutdown sequencing	193
7.7	Flash P	Program Restrictions	194
7.8	Module	e Operation in Low Power Modes	194

Sec	tion nu	imber Title	Page
9.13	Debug &	& Security	216
		Chapter 10 Signal Multiplexing and Signal Descriptions	
10.1	Introduc	ction	217
10.2	Signal N	Multiplexing Integration	217
	10.2.1	Port control and interrupt module features	218
	10.2.2	Clock gating	219
	10.2.3	Signal multiplexing constraints	219
10.3	Pinout		219
	10.3.1	K22F Signal Multiplexing and Pin Assignments	219
	10.3.2	K22 Pinouts	224
10.4	Module	228	
	10.4.1	Core Modules.	228
	10.4.2	System Modules	229
	10.4.3	Clock Modules	229
	10.4.4	Memories and Memory Interfaces.	230
	10.4.5	Analog	233
	10.4.6	Timer Modules	235
	10.4.7	Communication Interfaces.	236
	10.4.8	Human-Machine Interfaces (HMI)	239
		Chapter 11 Port Control and Interrupts (PORT)	
11.1	Introduc	ction	241
11.2	Overvie	ew	241
	11.2.1	Features	241
	11.2.2	Modes of operation.	242
11.3	External signal description.		
11.4	Detailed signal description		243

Sec	tion nur	mber Title	Page	
11.5	Memory	Memory map and register definition		
	11.5.1	Pin Control Register n (PORTx_PCRn)	250	
	11.5.2	Global Pin Control Low Register (PORTx_GPCLR)	252	
	11.5.3	Global Pin Control High Register (PORTx_GPCHR)	253	
	11.5.4	Interrupt Status Flag Register (PORTx_ISFR)	254	
	11.5.5	Digital Filter Enable Register (PORTx_DFER)	254	
	11.5.6	Digital Filter Clock Register (PORTx_DFCR)	255	
	11.5.7	Digital Filter Width Register (PORTx_DFWR)	255	
11.6	Function	al description	256	
	11.6.1	Pin control.	256	
	11.6.2	Global pin control.	257	
	11.6.3	External interrupts.	257	
	11.6.4	Digital filter	258	
		Chapter 12 System Integration Module (SIM)		
12.1	Introduct	ion	261	
	12.1.1	Features.	261	
12.2	Memory	262		
	12.2.1	System Options Register 1 (SIM_SOPT1)	263	
	12.2.2	SOPT1 Configuration Register (SIM_SOPT1CFG)	265	
	12.2.3	System Options Register 2 (SIM_SOPT2)	266	
	12.2.4	System Options Register 4 (SIM_SOPT4)	268	
	12.2.5	System Options Register 5 (SIM_SOPT5)	271	
	12.2.6	System Options Register 7 (SIM_SOPT7)	273	
	12.2.7	System Options Register 8 (SIM_SOPT8)	275	
	12.2.8	System Device Identification Register (SIM_SDID)	277	
	12.2.9	System Clock Gating Control Register 4 (SIM_SCGC4)	279	
	12.2.10	System Clock Gating Control Register 5 (SIM_SCGC5)	281	
	12.2.11	System Clock Gating Control Register 6 (SIM_SCGC6)	283	

Sec	tion nun	nber Title	Page
	12.2.12	System Clock Gating Control Register 7 (SIM_SCGC7)	286
	12.2.13	System Clock Divider Register 1 (SIM_CLKDIV1)	287
	12.2.14	System Clock Divider Register 2 (SIM_CLKDIV2)	289
	12.2.15	Flash Configuration Register 1 (SIM_FCFG1)	290
	12.2.16	Flash Configuration Register 2 (SIM_FCFG2)	292
	12.2.17	Unique Identification Register High (SIM_UIDH)	293
	12.2.18	Unique Identification Register Mid-High (SIM_UIDMH)	293
	12.2.19	Unique Identification Register Mid Low (SIM_UIDML)	294
	12.2.20	Unique Identification Register Low (SIM_UIDL)	294
12.3	Functiona	al description	294
		Chapter 13 Kinetis Flashloader	
13.1	Chip-Spe	cific Information	295
13.2	Introduct	ion	295
13.3	Functiona	al Description	297
	13.3.1	Memory Maps	297
	13.3.2	Kinetis Flashloader	297
	13.3.3	Start-up Process	298
	13.3.4	Clock Configuration	299
	13.3.5	Flashloader Protocol.	299
	13.3.6	Flashloader Packet Types	304
	13.3.7	Flashloader Command API	311
	13.3.8	Flashloader Exit state	329
13.4	Periphera	ıls Supported	331
	13.4.1	I2C Peripheral	331
	13.4.2	SPI Peripheral	332
	13.4.3	UART Peripheral	334

Section number Title		mber Title	Page
	13.4.4	USB peripheral	337
13.5	Get/SetI	Property Command Properties	339
	13.5.1	Property Definitions	340
13.6	Kinetis 1	Flashloader Status Error Codes	342
		Chapter 14 Reset Control Module (RCM)	
14.1	Introduc	ction	345
14.2	Reset m	emory map and register descriptions	345
	14.2.1	System Reset Status Register 0 (RCM_SRS0)	346
	14.2.2	System Reset Status Register 1 (RCM_SRS1)	347
	14.2.3	Reset Pin Filter Control register (RCM_RPFC)	349
	14.2.4	Reset Pin Filter Width register (RCM_RPFW)	350
	14.2.5	Mode Register (RCM_MR)	351
	14.2.6	Sticky System Reset Status Register 0 (RCM_SSRS0)	352
	14.2.7	Sticky System Reset Status Register 1 (RCM_SSRS1)	353
		Chapter 15 System Mode Controller (SMC)	
15.1	Introduc	etion	355
15.2	Modes o	of operation	355
15.3	Memory	map and register descriptions	357
	15.3.1	Power Mode Protection register (SMC_PMPROT)	358
	15.3.2	Power Mode Control register (SMC_PMCTRL)	359
	15.3.3	Stop Control Register (SMC_STOPCTRL)	361
	15.3.4	Power Mode Status register (SMC_PMSTAT)	362
15.4	Function	nal description	363
	15.4.1	Power mode transitions	363

Sec	tion nu	mber Title	Page
	15.4.2	Power mode entry/exit sequencing	366
	15.4.3	Run modes	368
	15.4.4	Wait modes	370
	15.4.5	Stop modes	371
	15.4.6	Debug in low power modes	374
		Chapter 16 Power Management Controller (PMC)	
16.1	Introduc	ction	377
16.2	Features	S	377
16.3	Low-vo	ltage detect (LVD) system	377
	16.3.1	LVD reset operation.	378
	16.3.2	LVD interrupt operation.	378
	16.3.3	Low-voltage warning (LVW) interrupt operation	378
16.4	I/O reter	ntion	379
16.5	Memory	y map and register descriptions	379
	16.5.1	Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)	380
	16.5.2	Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)	381
	16.5.3	Regulator Status And Control register (PMC_REGSC)	382
		Chapter 17 Low-Leakage Wakeup Unit (LLWU)	
17.1	Introduc	ction	385
	17.1.1	Features	385
	17.1.2	Modes of operation	386
	17.1.3	Block diagram	387
17.2	LLWU	signal descriptions	388
17.3	Memory	y map/register definition	388
	17.3.1	LLWU Pin Enable 1 register (LLWU_PE1)	389
	17.3.2	LLWU Pin Enable 2 register (LLWU_PE2)	390
	17.3.3	LLWU Pin Enable 3 register (LLWU_PE3)	391

Sect	tion nur	mber Title	Page
	17.3.4	LLWU Pin Enable 4 register (LLWU_PE4)	392
	17.3.5	LLWU Module Enable register (LLWU_ME)	393
	17.3.6	LLWU Flag 1 register (LLWU_F1)	395
	17.3.7	LLWU Flag 2 register (LLWU_F2)	397
	17.3.8	LLWU Flag 3 register (LLWU_F3)	398
	17.3.9	LLWU Pin Filter 1 register (LLWU_FILT1)	400
	17.3.10	LLWU Pin Filter 2 register (LLWU_FILT2)	401
17.4	Function	al description	402
	17.4.1	LLS mode	403
	17.4.2	VLLS modes.	403
	17.4.3	Initialization	403
		Chapter 18 Miscellaneous Control Module (MCM)	
18.1	Introduct	ion	405
	18.1.1	Features	405
18.2	Memory	map/register descriptions	405
	18.2.1	Crossbar Switch (AXBS) Slave Configuration (MCM_PLASC)	406
	18.2.2	Crossbar Switch (AXBS) Master Configuration (MCM_PLAMC)	406
	18.2.3	Crossbar Switch (AXBS) Control Register (MCM_PLACR)	407
	18.2.4	Interrupt Status and Control Register (MCM_ISCR)	408
	18.2.5	Compute Operation Control Register (MCM_CPO)	411
18.3	Function	al description	412
	18.3.1	Interrupts	412
		Chapter 19 Crossbar Switch Lite (AXBS-Lite)	
19.1	Introduct	ion	413
	19.1.1	Features	413
19.2	Memory	Map / Register Definition	414

Sec	tion nu	imber Title	Page	
19.3	Function	nal Description	414	
	19.3.1	General operation	414	
	19.3.2	Arbitration.	415	
19.4	Initializa	ation/application information	416	
		Chapter 20 Peripheral Bridge (AIPS-Lite)		
20.1	Introduc	ction	419	
	20.1.1	Features.	419	
	20.1.2	General operation.	419	
20.2	Function	nal description.	420	
	20.2.1	Access support	420	
		Chapter 21 Direct Memory Access Multiplexer (DMAMUX)		
21.1	Introduc	ction	421	
	21.1.1	Overview	421	
	21.1.2	Features	422	
	21.1.3	Modes of operation	422	
21.2	External	l signal description	423	
21.3	Memory	y map/register definition	423	
	21.3.1	Channel Configuration register (DMAMUX_CHCFGn)	424	
21.4	Function	nal description	425	
	21.4.1	DMA channels with periodic triggering capability	425	
	21.4.2	DMA channels with no triggering capability	427	
	21.4.3	Always-enabled DMA sources	427	
21.5	Initializa	ation/application information	429	
	21.5.1	Reset	429	
	21.5.2	Enabling and configuring sources	429	

Chapter 22 Enhanced Direct Memory Access (eDMA)

22.1	Introduction		433
	22.1.1	eDMA system block diagram	433
	22.1.2	Block parts	434
	22.1.3	Features	435
22.2	Modes of	f operation	437
22.3	Memory	map/register definition	437
	22.3.1	TCD memory	437
	22.3.2	TCD initialization.	438
	22.3.3	TCD structure	438
	22.3.4	Reserved memory and bit fields	440
	22.3.1	Control Register (DMA_CR)	450
	22.3.2	Error Status Register (DMA_ES)	453
	22.3.3	Enable Request Register (DMA_ERQ)	455
	22.3.4	Enable Error Interrupt Register (DMA_EEI)	457
	22.3.5	Clear Enable Error Interrupt Register (DMA_CEEI)	459
	22.3.6	Set Enable Error Interrupt Register (DMA_SEEI)	460
	22.3.7	Clear Enable Request Register (DMA_CERQ)	461
	22.3.8	Set Enable Request Register (DMA_SERQ)	462
	22.3.9	Clear DONE Status Bit Register (DMA_CDNE)	463
	22.3.10	Set START Bit Register (DMA_SSRT)	464
	22.3.11	Clear Error Register (DMA_CERR)	465
	22.3.12	Clear Interrupt Request Register (DMA_CINT)	466
	22.3.13	Interrupt Request Register (DMA_INT)	467
	22.3.14	Error Register (DMA_ERR)	469
	22.3.15	Hardware Request Status Register (DMA_HRS)	472
	22.3.16	Enable Asynchronous Request in Stop Register (DMA_EARS)	475
	22.3.17	Channel n Priority Register (DMA_DCHPRIn)	477

Section number Ti		mber Title	Page
	22.3.18	TCD Source Address (DMA_TCDn_SADDR)	478
	22.3.19	TCD Signed Source Address Offset (DMA_TCDn_SOFF)	478
	22.3.20	TCD Transfer Attributes (DMA_TCDn_ATTR)	479
	22.3.21	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCDn_NBYTES_MLNO)	480
	22.3.22	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCDn_NBYTES_MLOFFNO)	481
	22.3.23	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCDn_NBYTES_MLOFFYES)	482
	22.3.24	TCD Last Source Address Adjustment (DMA_TCDn_SLAST)	483
	22.3.25	TCD Destination Address (DMA_TCDn_DADDR)	484
	22.3.26	TCD Signed Destination Address Offset (DMA_TCDn_DOFF)	484
	22.3.27	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCDn_CITER_ELINKYES)	485
	22.3.28	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCDn_CITER_ELINKNO)	486
	22.3.29	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCDn_DLASTSGA	A)487
	22.3.30	TCD Control and Status (DMA_TCDn_CSR)	488
	22.3.31	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCDn_BITER_ELINKYES)	490
	22.3.32	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCDn_BITER_ELINKNO)	491
22.4	Function	nal description	492
	22.4.1	eDMA basic data flow	492
	22.4.2	Fault reporting and handling	495
	22.4.3	Channel preemption	497
	22.4.4	Performance.	497
22.5	Initializa	ation/application information	502
	22.5.1	eDMA initialization	502
	22.5.2	Programming errors	504

Section number Title		mber Title	Page	
	22.5.3	Arbitration mode considerations	504	
	22.5.4	Performing DMA transfers	505	
	22.5.5	Monitoring transfer descriptor status.	509	
	22.5.6	Channel Linking	511	
	22.5.7	Dynamic programming	512	
		Chapter 23 External Watchdog Monitor (EWM)		
23.1	Introduc	ction	517	
	23.1.1	Features	517	
	23.1.2	Modes of Operation.	518	
	23.1.3	Block Diagram	519	
23.2	EWM S	ignal Descriptions.	520	
23.3	Memory	Map/Register Definition	520	
	23.3.1	Control Register (EWM_CTRL)	520	
	23.3.2	Service Register (EWM_SERV)	521	
	23.3.3	Compare Low Register (EWM_CMPL)	521	
	23.3.4	Compare High Register (EWM_CMPH)	522	
	23.3.5	Clock Prescaler Register (EWM_CLKPRESCALER)	523	
23.4	Function	nal Description	523	
	23.4.1	The EWM_out Signal	523	
	23.4.2	The EWM_in Signal	524	
	23.4.3	EWM Counter	525	
	23.4.4	EWM Compare Registers	525	
	23.4.5	EWM Refresh Mechanism.	525	
	23.4.6	EWM Interrupt	526	
	23.4.7	Counter clock prescaler.	526	
		Chapter 24 Watchdog Timer (WDOG)		
24.1	Introduc	ction.	527	

Section number Title		mber Title	Page
24.2	2 Features		527
24.3	Function	nal overview	529
	24.3.1	Unlocking and updating the watchdog.	530
	24.3.2	Watchdog configuration time (WCT)	531
	24.3.3	Refreshing the watchdog	532
	24.3.4	Windowed mode of operation.	532
	24.3.5	Watchdog disabled mode of operation.	532
	24.3.6	Debug modes of operation.	533
24.4	Testing t	the watchdog	533
	24.4.1	Quick test	534
	24.4.2	Byte test	534
24.5	Backup 1	reset generator	535
24.6	Generate	ed resets and interrupts	536
24.7	Memory	536	
	24.7.1	Watchdog Status and Control Register High (WDOG_STCTRLH)	537
	24.7.2	Watchdog Status and Control Register Low (WDOG_STCTRLL)	539
	24.7.3	Watchdog Time-out Value Register High (WDOG_TOVALH)	539
	24.7.4	Watchdog Time-out Value Register Low (WDOG_TOVALL)	540
	24.7.5	Watchdog Window Register High (WDOG_WINH)	540
	24.7.6	Watchdog Window Register Low (WDOG_WINL)	541
	24.7.7	Watchdog Refresh register (WDOG_REFRESH)	541
	24.7.8	Watchdog Unlock register (WDOG_UNLOCK)	541
	24.7.9	Watchdog Timer Output Register High (WDOG_TMROUTH)	542
	24.7.10	Watchdog Timer Output Register Low (WDOG_TMROUTL)	542
	24.7.11	Watchdog Reset Count register (WDOG_RSTCNT)	543
	24.7.12	Watchdog Prescaler register (WDOG_PRESC)	543
24.8	Watchdo	og operation with 8-bit access	543
	24.8.1	General guideline	543
	24.8.2	Refresh and unlock operations with 8-bit access	544

Sec	tion nur	mber Title	Page
24.9	Restriction	ons on watchdog operation	545
		Chapter 25 Multipurpose Clock Generator (MCG)	
25.1	Introduct	tion	547
	25.1.1	Features	547
	25.1.2	Modes of Operation.	551
25.2	External	Signal Description	551
25.3	Memory	Map/Register Definition	551
	25.3.1	MCG Control 1 Register (MCG_C1)	552
	25.3.2	MCG Control 2 Register (MCG_C2)	553
	25.3.3	MCG Control 3 Register (MCG_C3)	554
	25.3.4	MCG Control 4 Register (MCG_C4)	555
	25.3.5	MCG Control 5 Register (MCG_C5)	556
	25.3.6	MCG Control 6 Register (MCG_C6)	557
	25.3.7	MCG Status Register (MCG_S)	559
	25.3.8	MCG Status and Control Register (MCG_SC)	560
	25.3.9	MCG Auto Trim Compare Value High Register (MCG_ATCVH)	562
	25.3.10	MCG Auto Trim Compare Value Low Register (MCG_ATCVL)	562
	25.3.11	MCG Control 7 Register (MCG_C7)	562
	25.3.12	MCG Control 8 Register (MCG_C8)	563
25.4	Functional description.		564
	25.4.1	MCG mode state diagram.	564
	25.4.2	Low-power bit usage	569
	25.4.3	MCG Internal Reference Clocks	569
	25.4.4	External Reference Clock	570
	25.4.5	MCG Fixed Frequency Clock	570
	25.4.6	MCG PLL clock	571
	25.4.7	MCG Auto TRIM (ATM)	571

Section number Title		imber Title	Page
25.5	Initializ	ation / Application information	572
	25.5.1	MCG module initialization sequence	572
	25.5.2	Using a 32.768 kHz reference	575
	25.5.3	MCG mode switching	575
		Chapter 26 Oscillator (OSC)	
26.1	Introduc	ction	585
26.2	Features	s and Modes	585
26.3	Block D	Diagram	586
26.4	OSC Si	gnal Descriptions	586
26.5	Externa	l Crystal / Resonator Connections	587
26.6	Externa	l Clock Connections	588
26.7	Memory	y Map/Register Definitions	589
	26.7.1	OSC Memory Map/Register Definition	589
26.8	Function	nal Description	591
	26.8.1	OSC module states	591
	26.8.2	OSC module modes	593
	26.8.3	Counter	595
	26.8.4	Reference clock pin requirements	595
26.9	Reset		595
26.10	Low po	wer modes operation	596
26.11	Interrup	ots	596
		Chapter 27 RTC Oscillator (OSC32K)	
27.1	Introduc	ction	597
	27.1.1	Features and Modes	597
	27.1.2	Block Diagram	597
27.2	RTC Si	gnal Descriptions	598
	27.2.1	EXTAL32 — Oscillator Input	598

Sec	tion nui	mber Title	Page
	27.2.2	XTAL32 — Oscillator Output	598
27.3	External	Crystal Connections.	599
27.4	Memory	Map/Register Descriptions.	599
27.5	Function	al Description	599
27.6	Reset Ov	verview	600
27.7	Interrupt	S	600
		Chapter 28 Flash Memory Controller (FMC)	
28.1	Introduc	tion	601
	28.1.1	Overview	601
	28.1.2	Features	601
28.2	Modes o	f operation	602
28.3	External	signal description	602
28.4	Memory	map and register descriptions	602
	28.4.1	Flash Access Protection Register (FMC_PFAPR)	607
	28.4.2	Flash Bank 0 Control Register (FMC_PFB0CR)	611
	28.4.3	Flash Bank 1 Control Register (FMC_PFB1CR)	614
	28.4.4	Cache Tag Storage (FMC_TAGVDW0Sn)	616
	28.4.5	Cache Tag Storage (FMC_TAGVDW1Sn)	617
	28.4.6	Cache Tag Storage (FMC_TAGVDW2Sn)	618
	28.4.7	Cache Tag Storage (FMC_TAGVDW3Sn)	619
	28.4.8	Cache Data Storage (upper word) (FMC_DATAW0SnU)	619
	28.4.9	Cache Data Storage (lower word) (FMC_DATAW0SnL)	620
	28.4.10	Cache Data Storage (upper word) (FMC_DATAW1SnU)	620
	28.4.11	Cache Data Storage (lower word) (FMC_DATAW1SnL)	621
	28.4.12	Cache Data Storage (upper word) (FMC_DATAW2SnU)	621
	28.4.13	Cache Data Storage (lower word) (FMC_DATAW2SnL)	622
	28.4.14	Cache Data Storage (upper word) (FMC_DATAW3SnU)	622
	28.4.15	Cache Data Storage (lower word) (FMC_DATAW3SnL)	623

Sec	tion nu	mber Title	Page	
28.5	Function	nal description	623	
	28.5.1	Default configuration.	623	
	28.5.2	Configuration options	624	
	28.5.3	Speculative reads	624	
28.6	Initializa	ation and application information	625	
		Chapter 29 Flash Memory Module (FTFA)		
29.1	Introduc	tion	627	
	29.1.1	Features	628	
	29.1.2	Block Diagram	628	
	29.1.3	Glossary	629	
29.2	External	Signal Description	623 624 624 625 Chapter 29 Iemory Module (FTFA) 627 628 628 629 630 631 ion. 631 631 631 632 646 646 646 647	
29.3	Memory	Map and Registers	631	
	29.3.1	Flash Configuration Field Description	631	
	29.3.2	Program Flash IFR Map	631	
	29.3.3	Register Descriptions	632	
29.4	Functional Description.		646	
	29.4.1	Flash Protection.	646	
	29.4.2	Flash Access Protection	647	
	29.4.3	Interrupts	648	
	29.4.4	Flash Operation in Low-Power Modes	649	
	29.4.5	Functional Modes of Operation	649	
	29.4.6	Flash Reads and Ignored Writes	649	
	29.4.7	Read While Write (RWW)	650	
	29.4.8	Flash Program and Erase	650	
	29.4.9	Flash Command Operations.	650	
	29.4.10	Margin Read Commands	655	

Sect	tion nui	mber Title	Page
	29.4.11	Flash Command Description.	657
	29.4.12	Security	672
	29.4.13	Reset Sequence	674
		Chapter 30 EzPort	
30.1	Overviev	w	677
	30.1.1	Block diagram	677
	30.1.2	Features	678
	30.1.3	Modes of operation	678
30.2	External	679	
	30.2.1	EzPort Clock (EZP_CK)	679
	30.2.2	EzPort Chip Select (EZP_CS)	680
	30.2.3	EzPort Serial Data In (EZP_D)	680
	30.2.4	EzPort Serial Data Out (EZP_Q)	680
30.3	Commar	nd definition	680
	30.3.1	Command descriptions	681
30.4	Flash me	emory map for EzPort access	688
		Chapter 31 External Bus Interface (FlexBus)	
31.1	Introduc	tion	691
	31.1.1	Definition	691
	31.1.2	Features	691
31.2	Signal de	escriptions	692
31.3	Memory	Map/Register Definition	695
	31.3.1	Chip Select Address Register (FB_CSARn)	696
	31.3.2	Chip Select Mask Register (FB_CSMRn)	697
	31.3.3	Chip Select Control Register (FB_CSCRn)	698
	31.3.4	Chip Select port Multiplexing Control Register (FB_CSPMCR)	701

Sec	Section number Title		Page
31.4	Function	al description	702
	31.4.1	Modes of operation	702
	31.4.2	Address comparison	702
	31.4.3	Address driven on address bus	703
	31.4.4	Connecting address/data lines	703
	31.4.5	Bit ordering	703
	31.4.6	Data transfer signals	704
	31.4.7	Signal transitions	704
	31.4.8	Data-byte alignment and physical connections	704
	31.4.9	Address/data bus multiplexing	706
	31.4.10	Data transfer states	707
	31.4.11	FlexBus Timing Examples	707
	31.4.12	Burst cycles	726
	31.4.13	Extended Transfer Start/Address Latch Enable	
	31.4.14	Bus errors	735
31.5	Initialization/Application Information.		736
	31.5.1	Initializing a chip-select	736
	31.5.2	Reconfiguring a chip-select	736
		Chapter 32 Cyclic Redundancy Check (CRC)	
32.1	Introduct	tion	737
	32.1.1	Features	737
	32.1.2	Block diagram	737
	32.1.3	Modes of operation	738
32.2	Memory	map and register descriptions.	738
	32.2.1	CRC Data register (CRC_DATA)	739
	32.2.2	CRC Polynomial register (CRC_GPOLY)	740
	32.2.3	CRC Control register (CRC_CTRL)	740

Sec	ection number Title		Page	
32.3	Function	nal description	741	
	32.3.1	CRC initialization/reinitialization.	741	
	32.3.2	CRC calculations.	742	
	32.3.3	Transpose feature	743	
	32.3.4	CRC result complement	745	
		Chapter 33 Random Number Generator Accelerator (RNGA)		
33.1	Introduc	ction	747	
	33.1.1	Overview	747	
33.2	Modes o	of operation	748	
	33.2.1	Entering Normal mode	748	
	33.2.2	Entering Sleep mode	748	
33.3	Memory	y map and register definition	749	
	33.3.1	RNGA Control Register (RNG_CR)	749	
	33.3.2	RNGA Status Register (RNG_SR)	751	
	33.3.3	RNGA Entropy Register (RNG_ER)	753	
	33.3.4	RNGA Output Register (RNG_OR)	753	
33.4	Function	nal description	754	
	33.4.1	Output (OR) register	754	
	33.4.2	Core engine / control logic	754	
33.5	Initializa	ation/application information	755	
		Chapter 34 Analog-to-Digital Converter (ADC)		
34.1	Introduc	ction	757	
	34.1.1	Features	757	
	34.1.2	Block diagram	758	
34.2	ADC sig	gnal descriptions	759	
	34.2.1	Analog Power (VDDA)	760	
	34.2.2	Analog Ground (VSSA)	760	

Section number		mber Title	Page	
	34.2.3	Voltage Reference Select	760	
	34.2.4	Analog Channel Inputs (ADx)	761	
	34.2.5	Differential Analog Channel Inputs (DADx)	761	
34.3	Memory	map and register definitions.	761	
	34.3.1	ADC Status and Control Registers 1 (ADCx_SC1n)	763	
	34.3.2	ADC Configuration Register 1 (ADCx_CFG1)	766	
	34.3.3	ADC Configuration Register 2 (ADCx_CFG2)	768	
	34.3.4	ADC Data Result Register (ADCx_Rn)	769	
	34.3.5	Compare Value Registers (ADCx_CVn)	770	
	34.3.6	Status and Control Register 2 (ADCx_SC2)	771	
	34.3.7	Status and Control Register 3 (ADCx_SC3)	773	
	34.3.8	ADC Offset Correction Register (ADCx_OFS)	775	
	34.3.9	ADC Plus-Side Gain Register (ADCx_PG)	775	
	34.3.10	ADC Minus-Side Gain Register (ADCx_MG)	776	
	34.3.11	ADC Plus-Side General Calibration Value Register (ADCx_CLPD)	776	
	34.3.12	ADC Plus-Side General Calibration Value Register (ADCx_CLPS)	777	
	34.3.13	ADC Plus-Side General Calibration Value Register (ADCx_CLP4)	777	
	34.3.14	ADC Plus-Side General Calibration Value Register (ADCx_CLP3)	778	
	34.3.15	ADC Plus-Side General Calibration Value Register (ADCx_CLP2)	778	
	34.3.16	ADC Plus-Side General Calibration Value Register (ADCx_CLP1)	779	
	34.3.17	ADC Plus-Side General Calibration Value Register (ADCx_CLP0)	779	
	34.3.18	ADC Minus-Side General Calibration Value Register (ADCx_CLMD)	780	
	34.3.19	ADC Minus-Side General Calibration Value Register (ADCx_CLMS)	780	
	34.3.20	ADC Minus-Side General Calibration Value Register (ADCx_CLM4)	781	
	34.3.21	ADC Minus-Side General Calibration Value Register (ADCx_CLM3)	781	
	34.3.22	ADC Minus-Side General Calibration Value Register (ADCx_CLM2)	782	
	34.3.23	ADC Minus-Side General Calibration Value Register (ADCx_CLM1)	782	
	34.3.24	ADC Minus-Side General Calibration Value Register (ADCx_CLM0)	783	

Section number Title		mber Title	Page	
34.4	Functional description.		783	
	34.4.1	Clock select and divide control.	784	
	34.4.2	Voltage reference selection	785	
	34.4.3	Hardware trigger and channel selects	785	
	34.4.4	Conversion control		
	34.4.5	Automatic compare function.	794	
	34.4.6	Calibration function.	795	
	34.4.7	User-defined offset function	797	
	34.4.8	Temperature sensor	798	
	34.4.9	MCU wait mode operation	799	
	34.4.10	MCU Normal Stop mode operation	799	
	34.4.11	MCU Low-Power Stop mode operation	800	
34.5	Initializa	801		
	34.5.1	ADC module initialization example	801	
34.6	Applicati	803		
	34.6.1	External pins and routing	803	
	34.6.2	Sources of error	805	
		Chapter 35 Comparator (CMP)		
35.1		tion		
	35.1.1	CMP features		
	35.1.2	6-bit DAC key features		
	35.1.3	ANMUX key features		
	35.1.4	CMP, DAC and ANMUX diagram		
	35.1.5 CMP block diagram			
35.2	·	map/register definitions		
	35.2.1	CMP Control Register 0 (CMPx_CR0)		
	35.2.2	CMP Control Register 1 (CMPx_CR1)		
	35.2.3	CMP Filter Period Register (CMPx_FPR)	819	

Section number		mber Title	Page
	35.2.4	CMP Status and Control Register (CMPx_SCR)	819
	35.2.5	DAC Control Register (CMPx_DACCR)	820
	35.2.6	MUX Control Register (CMPx_MUXCR)	821
35.3	Functional description.		
	35.3.1	CMP functional modes	822
	35.3.2	Power modes	831
	35.3.3	Startup and operation	832
	35.3.4	Low-pass filter	833
35.4	CMP int	terrupts	835
35.5	DMA su	ipport	835
35.6	CMP As	synchronous DMA support	836
35.7	Digital-t	to-analog converter	837
35.8	DAC fur	nctional description	837
	35.8.1	Voltage reference source select	837
35.9	DAC res	sets	838
35.10	DAC clo	ocks	838
35.11	DAC int	terrupts	838
		Chapter 36 12-bit Digital-to-Analog Converter (DAC)	
36.1	Introduc	tion	839
36.2	Features		839
36.3	Block di	agram	839
36.4	Memory	map/register definition	840
	36.4.1	DAC Data Low Register (DACx_DATnL)	843
	36.4.2	DAC Data High Register (DACx_DATnH)	843
	36.4.3	DAC Status Register (DACx_SR)	844
	36.4.4	DAC Control Register (DACx_C0)	845
	36.4.5	DAC Control Register 1 (DACx_C1)	846
	36.4.6	DAC Control Register 2 (DACx_C2)	847

Section number		imber Title	Page
36.5	Function	nal description	847
	36.5.1	DAC data buffer operation	847
	36.5.2	DMA operation.	849
	36.5.3	Resets	849
	36.5.4	Low-Power mode operation.	849
		Chapter 37 Voltage Reference (VREFV1)	
37.1	Introduc	ction	851
	37.1.1	Overview	852
	37.1.2	Features	852
	37.1.3	Modes of Operation	853
	37.1.4	VREF Signal Descriptions	853
37.2	Memory	854	
	37.2.1	VREF Trim Register (VREF_TRM)	854
	37.2.2	VREF Status and Control Register (VREF_SC)	855
37.3	Functional Description.		856
	37.3.1	Voltage Reference Disabled, SC[VREFEN] = 0	857
	37.3.2	Voltage Reference Enabled, SC[VREFEN] = 1	857
	37.3.3	Internal voltage regulator	858
37.4	Initializa	ation/Application Information	859
		Chapter 38 Programmable Delay Block (PDB)	
38.1	Introduc	ction	861
	38.1.1	Features	861
	38.1.2	Implementation.	862
	38.1.3	Back-to-back acknowledgment connections	863
	38.1.4	DAC External Trigger Input Connections	863
	38.1.5	Block diagram	863
	38.1.6	Modes of operation	865

Sect	Section number Title		Page	
38.2	PDB sign	PDB signal descriptions		
38.3	Memory map and register definition.		865	
	38.3.1	Status and Control register (PDBx_SC)	867	
	38.3.2	Modulus register (PDBx_MOD)	869	
	38.3.3	Counter register (PDBx_CNT)	870	
	38.3.4	Interrupt Delay register (PDBx_IDLY)	870	
	38.3.5	Channel n Control register 1 (PDBx_CHnC1)	871	
	38.3.6	Channel n Status register (PDBx_CHnS)	872	
	38.3.7	Channel n Delay 0 register (PDBx_CHnDLY0)	872	
	38.3.8	Channel n Delay 1 register (PDBx_CHnDLY1)	873	
	38.3.9	DAC Interval Trigger n Control register (PDBx_DACINTCn)	873	
	38.3.10	DAC Interval n register (PDBx_DACINTn)	874	
	38.3.11	Pulse-Out n Enable register (PDBx_POEN)	874	
	38.3.12	Pulse-Out n Delay register (PDBx_POnDLY)	875	
38.4	Function	875		
	38.4.1	PDB pre-trigger and trigger outputs	875	
	38.4.2	PDB trigger input source selection.	877	
	38.4.3	Pulse-Out's	877	
	38.4.4	Updating the delay registers	877	
	38.4.5	Interrupts	879	
	38.4.6	DMA	879	
38.5	Applicat	ion information	880	
	38.5.1	Impact of using the prescaler and multiplication factor on timing resolution	880	
		Chapter 39 FlexTimer Module (FTM)		
39.1	Introduct	881		
	39.1.1	FlexTimer philosophy	881	
	39.1.2	Features	882	
	39.1.3	Modes of operation	883	

Sect	tion nui	mber Title	Page
	39.1.4	Block diagram	884
39.2	FTM sig	nal descriptions	886
39.3	Memory	map and register definition.	886
	39.3.1	Memory map	886
	39.3.2	Register descriptions.	887
	39.3.3	Status And Control (FTMx_SC)	893
	39.3.4	Counter (FTMx_CNT)	894
	39.3.5	Modulo (FTMx_MOD)	895
	39.3.6	Channel (n) Status And Control (FTMx_CnSC)	896
	39.3.7	Channel (n) Value (FTMx_CnV)	899
	39.3.8	Counter Initial Value (FTMx_CNTIN)	899
	39.3.9	Capture And Compare Status (FTMx_STATUS)	900
	39.3.10	Features Mode Selection (FTMx_MODE)	902
	39.3.11	Synchronization (FTMx_SYNC)	904
	39.3.12	Initial State For Channels Output (FTMx_OUTINIT)	906
	39.3.13	Output Mask (FTMx_OUTMASK)	907
	39.3.14	Function For Linked Channels (FTMx_COMBINE)	909
	39.3.15	Deadtime Insertion Control (FTMx_DEADTIME)	914
	39.3.16	FTM External Trigger (FTMx_EXTTRIG)	915
	39.3.17	Channels Polarity (FTMx_POL)	917
	39.3.18	Fault Mode Status (FTMx_FMS)	919
	39.3.19	Input Capture Filter Control (FTMx_FILTER)	921
	39.3.20	Fault Control (FTMx_FLTCTRL)	922
	39.3.21	Quadrature Decoder Control And Status (FTMx_QDCTRL)	925
	39.3.22	Configuration (FTMx_CONF)	927
	39.3.23	FTM Fault Input Polarity (FTMx_FLTPOL)	928
	39.3.24	Synchronization Configuration (FTMx_SYNCONF)	929
	39.3.25	FTM Inverting Control (FTMx_INVCTRL)	931
	39.3.26	FTM Software Output Control (FTMx_SWOCTRL)	932

Section number		mber Title	Page
	39.3.27	FTM PWM Load (FTMx_PWMLOAD)	935
39.4	Function	al description	936
	39.4.1	Clock source	937
	39.4.2	Prescaler	938
	39.4.3	Counter	938
	39.4.4	Input Capture mode	944
	39.4.5	Output Compare mode	947
	39.4.6	Edge-Aligned PWM (EPWM) mode	948
	39.4.7	Center-Aligned PWM (CPWM) mode	950
	39.4.8	Combine mode	952
	39.4.9	Complementary mode	959
	39.4.10	Registers updated from write buffers	960
	39.4.11	PWM synchronization	962
	39.4.12	Inverting	978
	39.4.13	Software output control.	979
	39.4.14	Deadtime insertion.	981
	39.4.15	Output mask.	984
	39.4.16	Fault control.	985
	39.4.17	Polarity control.	988
	39.4.18	Initialization.	989
	39.4.19	Features priority.	989
	39.4.20	Channel trigger output.	990
	39.4.21	Initialization trigger	991
	39.4.22	Capture Test mode.	993
	39.4.23	DMA	994
	39.4.24	Dual Edge Capture mode	995
	39.4.25	Quadrature Decoder mode	1002
	39.4.26	BDM mode	1007
	39.4.27	Intermediate load	1008

Sec	tion nur	mber Title	Page
	39.4.28	Global time base (GTB)	1010
39.5	Reset ov	erview	1012
39.6	FTM Inte	errupts	1013
	39.6.1	Timer Overflow Interrupt	1014
	39.6.2	Channel (n) Interrupt	1014
	39.6.3	Fault Interrupt.	1014
39.7	Initializa	tion Procedure	1014
		Chapter 40 Periodic Interrupt Timer (PIT)	
40.1	Introduct	tion	1017
	40.1.1	Block diagram	1017
	40.1.2	Features	1018
40.2	.2 Signal description.		1018
40.3	Memory	1019	
	40.3.1	PIT Module Control Register (PIT_MCR)	1019
	40.3.2	Timer Load Value Register (PIT_LDVALn)	1021
	40.3.3	Current Timer Value Register (PIT_CVALn)	1021
	40.3.4	Timer Control Register (PIT_TCTRLn)	1022
	40.3.5	Timer Flag Register (PIT_TFLGn)	1022
40.4	Functional description.		1023
	40.4.1	General operation	1023
	40.4.2	Interrupts	1025
	40.4.3	Chained timers	1025
40.5	Initializa	tion and application information	1025
40.6	Example	configuration for chained timers.	1026
		Chapter 41 Low-Power Timer (LPTMR)	
41.1	Introduct	tion	1029
	41.1.1	Features	1029

Sec	tion nu	mber Title	Page
	41.1.2	Modes of operation	1029
41.2	LPTMR	signal descriptions.	1030
	41.2.1	Detailed signal descriptions	1030
41.3	Memory	1030	
	41.3.1	Low Power Timer Control Status Register (LPTMRx_CSR)	1031
	41.3.2	Low Power Timer Prescale Register (LPTMRx_PSR)	1032
	41.3.3	Low Power Timer Compare Register (LPTMRx_CMR)	1034
	41.3.4	Low Power Timer Counter Register (LPTMRx_CNR)	1034
41.4	Function	nal description	1035
	41.4.1	LPTMR power and reset	1035
	41.4.2	LPTMR clocking	1035
	41.4.3	LPTMR prescaler/glitch filter	1035
	41.4.4	LPTMR compare	1037
	41.4.5	LPTMR counter	1037
	41.4.6	LPTMR hardware trigger	1038
	41.4.7	LPTMR interrupt	1038
		Chapter 42 Real Time Clock (RTC)	
42.1	Introduc	tion	1039
	42.1.1	Features	1039
	42.1.2	Modes of operation	1039
	42.1.3	RTC signal descriptions	1040
42.2	Register	1041	
	42.2.1	RTC Time Seconds Register (RTC_TSR)	1041
	42.2.2	RTC Time Prescaler Register (RTC_TPR)	1042
	42.2.3	RTC Time Alarm Register (RTC_TAR)	1042
	42.2.4	RTC Time Compensation Register (RTC_TCR)	1043
	42.2.5	RTC Control Register (RTC_CR)	1044
	42.2.6	RTC Status Register (RTC_SR)	1046

Sect	tion nur	mber Title	Page
	42.2.7	RTC Lock Register (RTC_LR)	1047
	42.2.8	RTC Interrupt Enable Register (RTC_IER)	1048
	42.2.9	RTC Write Access Register (RTC_WAR)	1049
	42.2.10	RTC Read Access Register (RTC_RAR)	1050
42.3	Function	al description	1052
	42.3.1	Power, clocking, and reset	1052
	42.3.2	Time counter	1053
	42.3.3	Compensation.	1054
	42.3.4	Time alarm	1054
	42.3.5	Update mode	1055
	42.3.6	Register lock	1055
	42.3.7	Access control	1055
	42.3.8	Interrupt	1055
43.1	Introduct	Chapter 43 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)	1057
73.1	43.1.1	USB	
	43.1.2	USB On-The-Go	
	43.1.3	USBFS Features.	
43.2	Function	al description	
	43.2.1	Data Structures.	
43.3	Program	mers interface	1060
	43.3.1	Buffer Descriptor Table	1060
	43.3.2	RX vs. TX as a USB target device or USB host	1061
	43.3.3	Addressing BDT entries	1062
	43.3.4	Buffer Descriptors (BDs)	1062
	43.3.5	USB transaction	1065
43.4	Memory	map/Register definitions	1067
	43.4.1	Peripheral ID register (USBx_PERID)	1069

Section nur	nber Title	Page
43.4.2	Peripheral ID Complement register (USBx_IDCOMP)	1070
43.4.3	Peripheral Revision register (USBx_REV)	1070
43.4.4	Peripheral Additional Info register (USBx_ADDINFO)	1071
43.4.5	OTG Interrupt Status register (USBx_OTGISTAT)	1071
43.4.6	OTG Interrupt Control register (USBx_OTGICR)	1072
43.4.7	OTG Status register (USBx_OTGSTAT)	1073
43.4.8	OTG Control register (USBx_OTGCTL)	1074
43.4.9	Interrupt Status register (USBx_ISTAT)	1075
43.4.10	Interrupt Enable register (USBx_INTEN)	1076
43.4.11	Error Interrupt Status register (USBx_ERRSTAT)	1077
43.4.12	Error Interrupt Enable register (USBx_ERREN)	1078
43.4.13	Status register (USBx_STAT)	1080
43.4.14	Control register (USBx_CTL)	1081
43.4.15	Address register (USBx_ADDR)	1082
43.4.16	BDT Page register 1 (USBx_BDTPAGE1)	1083
43.4.17	Frame Number register Low (USBx_FRMNUML)	1083
43.4.18	Frame Number register High (USBx_FRMNUMH)	1084
43.4.19	Token register (USBx_TOKEN)	1084
43.4.20	SOF Threshold register (USBx_SOFTHLD)	1085
43.4.21	BDT Page Register 2 (USBx_BDTPAGE2)	1086
43.4.22	BDT Page Register 3 (USBx_BDTPAGE3)	1086
43.4.23	Endpoint Control register (USBx_ENDPTn)	1087
43.4.24	USB Control register (USBx_USBCTRL)	1088
43.4.25	USB OTG Observe register (USBx_OBSERVE)	1089
43.4.26	USB OTG Control register (USBx_CONTROL)	1089
43.4.27	USB Transceiver Control register 0 (USBx_USBTRC0)	1090
43.4.28	Frame Adjust Register (USBx_USBFRMADJUST)	1091
43.4.29	USB Clock recovery control (USBx_CLK_RECOVER_CTRL)	1092
43.4.30	IRC48M oscillator enable register (USBx_CLK_RECOVER_IRC_EN)	1093

Sec	tion nu	mber Title	Page
	43.4.31	Clock recovery combined interrupt enable (USBx_CLK_RECOVER_INT_EN)	1094
	43.4.32	Clock recovery separated interrupt status (USBx_CLK_RECOVER_INT_STATUS)	1094
43.5	OTG and	d Host mode operation	1095
43.6	Host Mo	ode Operation Examples	1096
43.7	On-The-	Go operation	1099
	43.7.1	OTG dual role A device operation.	1099
	43.7.2	OTG dual role B device operation	1101
43.8	Device r	mode IRC48 operation	1102
		Chapter 44 USB Voltage Regulator (VREG)	
44.1	Introduc	tion	1105
	44.1.1	Overview	1105
	44.1.2	Features	1106
	44.1.3	Modes of Operation.	1107
44.2	USB Vo	ltage Regulator Module Signal Descriptions	1107
		Chapter 45 Serial Peripheral Interface (SPI)	
45.1	Introduc	tion	1109
	45.1.1	Block Diagram	1109
	45.1.2	Features	1110
	45.1.3	Interface configurations.	1112
	45.1.4	Modes of Operation	1112
45.2	Module	signal descriptions	1114
	45.2.1	PCS0/SS—Peripheral Chip Select/Slave Select	1114
	45.2.2	PCS1–PCS3—Peripheral Chip Selects 1–3	1115
	45.2.3	PCS4—Peripheral Chip Select 4	1115
	45.2.4	PCS5/PCSS—Peripheral Chip Select 5/Peripheral Chip Select Strobe	1115
	45.2.5	SCK—Serial Clock	1115
	45.2.6	SIN—Serial Input.	1115

Sect	tion nui	mber Title	Page
	45.2.7	SOUT—Serial Output	1116
45.3	Memory	Map/Register Definition	1116
	45.3.1	Module Configuration Register (SPLx_MCR)	1118
	45.3.2	Transfer Count Register (SPIx_TCR)	1121
	45.3.3	Clock and Transfer Attributes Register (In Master Mode) (SPIx_CTARn)	1121
	45.3.4	Clock and Transfer Attributes Register (In Slave Mode) (SPIx_CTARn_SLAVE)	1126
	45.3.5	Status Register (SPIx_SR)	1128
	45.3.6	DMA/Interrupt Request Select and Enable Register (SPIx_RSER)	1131
	45.3.7	PUSH TX FIFO Register In Master Mode (SPIx_PUSHR)	1133
	45.3.8	PUSH TX FIFO Register In Slave Mode (SPIx_PUSHR_SLAVE)	1134
	45.3.9	POP RX FIFO Register (SPLx_POPR)	1135
	45.3.10	Transmit FIFO Registers (SPLx_TXFRn)	1136
	45.3.11	Receive FIFO Registers (SPIx_RXFRn)	1136
45.4	Function	al description	1137
	45.4.1	Start and Stop of module transfers	1138
	45.4.2	Serial Peripheral Interface (SPI) configuration.	1138
	45.4.3	Module baud rate and clock delay generation	1142
	45.4.4	Transfer formats	1146
	45.4.5	Continuous Serial Communications Clock	1151
	45.4.6	Slave Mode Operation Constraints	1152
	45.4.7	Interrupts/DMA requests	1153
	45.4.8	Power saving features.	1155
45.5	Initializa	tion/application information	1156
	45.5.1	How to manage queues	1156
	45.5.2	Switching Master and Slave mode	1157
	45.5.3	Initializing Module in Master/Slave Modes	1157
	45.5.4	Baud rate settings	1158
	45.5.5	Delay settings	1158

Sec	tion nur	mber Title	Page
	45.5.6	Calculation of FIFO pointer addresses	1159
		Chapter 46 Inter-Integrated Circuit (I2C)	
46.1	Introduct	tion	1163
	46.1.1	Features	1163
	46.1.2	Modes of operation	1164
	46.1.3	Block diagram	1164
46.2	I2C signa	al descriptions	1165
46.3	Memory	map/register definition.	1166
	46.3.1	I2C Address Register 1 (I2Cx_A1)	1167
	46.3.2	I2C Frequency Divider register (I2Cx_F)	1167
	46.3.3	I2C Control Register 1 (I2Cx_C1)	1168
	46.3.4	I2C Status register (I2Cx_S)	1170
	46.3.5	I2C Data I/O register (I2Cx_D)	1172
	46.3.6	I2C Control Register 2 (I2Cx_C2)	1172
	46.3.7	I2C Programmable Input Glitch Filter Register (I2Cx_FLT)	1173
	46.3.8	I2C Range Address register (I2Cx_RA)	1175
	46.3.9	I2C SMBus Control and Status register (I2Cx_SMB)	1175
	46.3.10	I2C Address Register 2 (I2Cx_A2)	1177
	46.3.11	I2C SCL Low Timeout Register High (I2Cx_SLTH)	1177
	46.3.12	I2C SCL Low Timeout Register Low (I2Cx_SLTL)	1178
46.4	Function	nal description	1178
	46.4.1	I2C protocol.	1178
	46.4.2	10-bit address.	1183
	46.4.3	Address matching.	1185
	46.4.4	System management bus specification	1186
	46.4.5	Resets	1188
	46.4.6	Interrupts	1188
	46.4.7	Programmable input glitch filter	1191

Sec	tion nu	mber Title	Page
	46.4.8	Address matching wake-up	1191
	46.4.9	DMA support	1192
46.5	Initializa	ation/application information	1193
		Chapter 47 Universal Asynchronous Receiver/Transmitter (UART)	
47.1	Introduc	tion	1197
	47.1.1	Features	1197
	47.1.2	Modes of operation.	1199
47.2	UART s	ignal descriptions	1200
	47.2.1	Detailed signal descriptions.	1200
47.3	Memory	map and registers	1201
	47.3.1	UART Baud Rate Registers: High (UARTx_BDH)	1206
	47.3.2	UART Baud Rate Registers: Low (UARTx_BDL)	1207
	47.3.3	UART Control Register 1 (UARTx_C1)	1208
	47.3.4	UART Control Register 2 (UARTx_C2)	1209
	47.3.5	UART Status Register 1 (UARTx_S1)	1211
	47.3.6	UART Status Register 2 (UARTx_S2)	1214
	47.3.7	UART Control Register 3 (UARTx_C3)	1216
	47.3.8	UART Data Register (UARTx_D)	1217
	47.3.9	UART Match Address Registers 1 (UARTx_MA1)	1218
	47.3.10	UART Match Address Registers 2 (UARTx_MA2)	1219
	47.3.11	UART Control Register 4 (UARTx_C4)	1219
	47.3.12	UART Control Register 5 (UARTx_C5)	1220
	47.3.13	UART Extended Data Register (UARTx_ED)	1221
	47.3.14	UART Modem Register (UARTx_MODEM)	1222
	47.3.15	UART Infrared Register (UARTx_IR)	1223
	47.3.16	UART FIFO Parameters (UARTx_PFIFO)	1224
	47.3.17	UART FIFO Control Register (UARTx_CFIFO)	1225
	47.3.18	UART FIFO Status Register (UARTx_SFIFO)	1226

Section	า nun	nber Title	Page
47	.3.19	UART FIFO Transmit Watermark (UARTx_TWFIFO)	1227
47	.3.20	UART FIFO Transmit Count (UARTx_TCFIFO)	1228
47	.3.21	UART FIFO Receive Watermark (UARTx_RWFIFO)	1228
47	.3.22	UART FIFO Receive Count (UARTx_RCFIFO)	1229
47	.3.23	UART 7816 Control Register (UARTx_C7816)	1229
47	.3.24	UART 7816 Interrupt Enable Register (UARTx_IE7816)	1231
47	.3.25	UART 7816 Interrupt Status Register (UARTx_IS7816)	1232
47	.3.26	UART 7816 Wait Parameter Register (UARTx_WP7816)	1234
47	.3.27	UART 7816 Wait N Register (UARTx_WN7816)	1234
47	.3.28	UART 7816 Wait FD Register (UARTx_WF7816)	1235
47	.3.29	UART 7816 Error Threshold Register (UARTx_ET7816)	1235
47	.3.30	UART 7816 Transmit Length Register (UARTx_TL7816)	1236
47.	.3.31	UART 7816 ATR Duration Timer Register A (UARTx_AP7816A_T0)	1236
47.	.3.32	UART 7816 ATR Duration Timer Register B (UARTx_AP7816B_T0)	1237
47	.3.33	UART 7816 Wait Parameter Register A (UARTx_WP7816A_T0)	1238
47	.3.34	UART 7816 Wait Parameter Register A (UARTx_WP7816A_T1)	1238
47	.3.35	UART 7816 Wait Parameter Register B (UARTx_WP7816B_T0)	1239
47.	.3.36	UART 7816 Wait Parameter Register B (UARTx_WP7816B_T1)	1239
47	.3.37	UART 7816 Wait and Guard Parameter Register (UARTx_WGP7816_T1)	1240
47.	.3.38	UART 7816 Wait Parameter Register C (UARTx_WP7816C_T1)	1240
47.4 Fu	nctiona	ıl description	1241
47	.4.1	Transmitter	1241
47	.4.2	Receiver	1247
47.	.4.3	Baud rate generation	1261
47.	.4.4	Data format (non ISO-7816)	1263
47.	.4.5	Single-wire operation.	1266
47.	.4.6	Loop operation	1267

Sec	tion nu	mber Title	Page
	47.4.7	ISO-7816/smartcard support	1267
	47.4.8	Infrared interface	1272
47.5	Reset		1274
47.6	System	level interrupt sources	1274
	47.6.1	RXEDGIF description.	1274
47.7	DMA op	peration	1275
47.8	Applicat	ion information	1276
	47.8.1	ISO-7816 initialization sequence	1276
	47.8.2	Initialization sequence (non ISO-7816)	1278
	47.8.3	Overrun (OR) flag implications.	1279
	47.8.4	Overrun NACK considerations.	1280
	47.8.5	Match address registers	1281
	47.8.6	Modem feature.	1281
	47.8.7	IrDA minimum pulse width	1282
	47.8.8	Clearing 7816 wait timer (WT, BWT, CWT) interrupts	1282
	47.8.9	Legacy and reverse compatibility considerations.	1283
		Chapter 48 Low Power Universal asynchronous receiver/transmitter (LPUART)	
48.1	Introduc	tion	1285
	48.1.1	Features	1285
	48.1.2	Modes of operation	1286
	48.1.3	Signal Descriptions	1286
	48.1.4	Block diagram	1287
48.2	Register	definition.	1288
	48.2.1	LPUART Baud Rate Register (LPUARTx_BAUD)	1289
	48.2.2	LPUART Status Register (LPUARTx_STAT)	1291
	48.2.3	LPUART Control Register (LPUARTx_CTRL)	1295
	48.2.4	LPUART Data Register (LPUARTx_DATA)	1300
	48.2.5	LPUART Match Address Register (LPUARTx_MATCH)	1302

Sec	tion nui	mber Title	Page
	48.2.6	LPUART Modem IrDA Register (LPUARTx_MODIR)	1302
48.3	Function	al description	1304
	48.3.1	Baud rate generation.	1304
	48.3.2	Transmitter functional description.	1305
	48.3.3	Receiver functional description.	1308
	48.3.4	Additional LPUART functions	1314
	48.3.5	Infrared interface	1316
	48.3.6	Interrupts and status flags	1317
	lr	Chapter 49 ntegrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)	
49.1		tion	1319
	49.1.1	Features.	1319
	49.1.2	Block diagram	1320
	49.1.3	Modes of operation.	1320
49.2	External	signals	1321
49.3	Memory	map and register definition	1322
	49.3.1	SAI Transmit Control Register (I2Sx_TCSR)	1324
	49.3.2	SAI Transmit Configuration 1 Register (I2Sx_TCR1)	1327
	49.3.3	SAI Transmit Configuration 2 Register (I2Sx_TCR2)	1327
	49.3.4	SAI Transmit Configuration 3 Register (I2Sx_TCR3)	1329
	49.3.5	SAI Transmit Configuration 4 Register (I2Sx_TCR4)	1330
	49.3.6	SAI Transmit Configuration 5 Register (I2Sx_TCR5)	1332
	49.3.7	SAI Transmit Data Register (I2Sx_TDRn)	1332
	49.3.8	SAI Transmit FIFO Register (I2Sx_TFRn)	1333
	49.3.9	SAI Transmit Mask Register (I2Sx_TMR)	1333
	49.3.10	SAI Receive Control Register (I2Sx_RCSR)	1335
	49.3.11	SAI Receive Configuration 1 Register (I2Sx_RCR1)	1338
	49.3.12	SAI Receive Configuration 2 Register (I2Sx_RCR2)	1338
	49.3.13	SAI Receive Configuration 3 Register (I2Sx_RCR3)	1340

Sec	tion nur	mber Title	Page
	49.3.14	SAI Receive Configuration 4 Register (I2Sx_RCR4)	1341
	49.3.15	SAI Receive Configuration 5 Register (I2Sx_RCR5)	1343
	49.3.16	SAI Receive Data Register (I2Sx_RDRn)	1343
	49.3.17	SAI Receive FIFO Register (I2Sx_RFRn)	1344
	49.3.18	SAI Receive Mask Register (I2Sx_RMR)	1344
	49.3.19	SAI MCLK Control Register (I2Sx_MCR)	1345
	49.3.20	SAI MCLK Divide Register (I2Sx_MDR)	1346
49.4	Function	al description	1347
	49.4.1	SAI clocking	1347
	49.4.2	SAI resets.	1349
	49.4.3	Synchronous modes	1350
	49.4.4	Frame sync configuration.	1350
	49.4.5	Data FIFO.	1351
	49.4.6	Word mask register	1354
	49.4.7	Interrupts and DMA requests	1354
		Chapter 50 General-Purpose Input/Output (GPIO)	
50.1	Introduct	tion	1357
	50.1.1	Features	1357
	50.1.2	Modes of operation.	1357
	50.1.3	GPIO signal descriptions.	1358
50.2	Memory	map and register definition.	1359
	50.2.1	Port Data Output Register (GPIOx_PDOR)	1361
	50.2.2	Port Set Output Register (GPIOx_PSOR)	1362
	50.2.3	Port Clear Output Register (GPIOx_PCOR)	1362
	50.2.4	Port Toggle Output Register (GPIOx_PTOR)	1363
	50.2.5	Port Data Input Register (GPIOx_PDIR)	1363
	50.2.6	Port Data Direction Register (GPIOx_PDDR)	1364

Sec	tion nu	imber Title	Page
50.3	Function	nal description	1364
	50.3.1	General-purpose input	1364
	50.3.2	General-purpose output	1364
		Chapter 51 JTAG Controller (JTAGC)	
51.1	Introduc	ction	1367
	51.1.1	Block diagram	1367
	51.1.2	Features	1368
	51.1.3	Modes of operation.	1368
51.2	Externa	l signal description	1370
	51.2.1	TCK—Test clock input	1370
	51.2.2	TDI—Test data input	1370
	51.2.3	TDO—Test data output	1370
	51.2.4	TMS—Test mode select	1370
51.3	Register	r description	1371
	51.3.1	Instruction register	1371
	51.3.2	Bypass register	1371
	51.3.3	Device identification register	1371
	51.3.4	Boundary scan register	1372
51.4	Function	nal description	1373
	51.4.1	JTAGC reset configuration	1373
	51.4.2	IEEE 1149.1-2001 (JTAG) Test Access Port	1373
	51.4.3	TAP controller state machine	1373
	51.4.4	JTAGC block instructions	1375
	51.4.5	Boundary scan	1378
51.5	Initializ	ation/Application information	1378

Chapter 1 About This Document

1.1 Overview

1.1.1 Purpose

This document describes the features, architecture, and programming model of the microcontroller.

1.1.2 Audience

This document is intended for system architects and software application developers who are using (or considering using) the microcontroller in a system.

1.2 Conventions

1.2.1 Numbering systems

The following suffixes identify different numbering systems:

This suffix	Identifies a
b	Binary number. For example, the binary equivalent of the number 5 is written 101b. In some cases, binary numbers are shown with the prefix <i>0b</i> .
d	Decimal number. Decimal numbers are followed by this suffix only when the possibility of confusion exists. In general, decimal numbers are shown without a suffix.
h	Hexadecimal number. For example, the hexadecimal equivalent of the number 60 is written 3Ch. In some cases, hexadecimal numbers are shown with the prefix <i>0x</i> .

1.2.2 Typographic notation

The following typographic notation is used throughout this document:

Example	Description
placeholder, x	Items in italics are placeholders for information that you provide. Italicized text is also used for the titles of publications and for emphasis. Plain lowercase letters are also used as placeholders for single letters and numbers.
code	Fixed-width type indicates text that must be typed exactly as shown. It is used for instruction mnemonics, directives, symbols, subcommands, parameters, and operators. Fixed-width type is also used for example code. Instruction mnemonics and directives in text and tables are shown in all caps; for example, BSR.
SR[SCM]	A mnemonic in brackets represents a named field in a register. This example refers to the Scaling Mode (SCM) field in the Status Register (SR).
REVNO[6:4], XAD[7:0]	Numbers in brackets and separated by a colon represent either: • A subset of a register's named field
	For example, REVNO[6:4] refers to bits 6–4 that are part of the COREREV field that occupies bits 6–0 of the REVNO register.
	A continuous range of individual signals of a bus
	For example, XAD[7:0] refers to signals 7–0 of the XAD bus.

1.2.3 Special terms

The following terms have special meanings:

Term	Meaning
asserted	Refers to the state of a signal as follows: • An active-high signal is asserted when high (1). • An active-low signal is asserted when low (0).
deasserted	Refers to the state of a signal as follows: • An active-high signal is deasserted when low (0). • An active-low signal is deasserted when high (1). In some cases, deasserted signals are described as negated.
reserved	Refers to a memory space, register, or field that is either reserved for future use or for which, when written to, the module or chip behavior is unpredictable.
w1c	Write 1 to clear: Refers to a register bitfield that must be written as 1 to be "cleared."

Chapter 2 Introduction

2.1 Overview

This chapter provides high-level descriptions of the modules available on the devices covered by this document.

2.2 Module Functional Categories

The modules on this device are grouped into functional categories. The following sections describe the modules assigned to each category in more detail.

Table 2-1. Module functional categories

Module category	Description
ARM® Cortex®-M4 core	32-bit MCU core from ARM's Cortex-M class adding DSP instructions and single-precision floating point unit based on ARMv7 architecture
System	System integration module Power management and mode controllers Multiple power modes available based on high speed run, run, wait, stop, and power-down modes Low-leakage wakeup unit Miscellaneous control module Crossbar switch Peripheral bridge Direct memory access (DMA) controller with multiplexer to increase available DMA requests. External watchdog monitor Watchdog
Memories	Internal memories include: Program flash memory SRAM External memory or peripheral bus interface: FlexBus Serial programming interface: EzPort

Module Functional Categories

Table 2-1. Module functional categories (continued)

Module category	Description
Clocks	Multiple clock generation options available from internally- and externally- generated clocks System oscillator to provide clock source for the MCU RTC oscillator to provide clock source for the RTC
Security	Cyclic Redundancy Check module for error detection
Analog	 High speed analog-to-digital converter Comparator Digital-to-analog converter Internal voltage reference Bandgap voltage reference
Timers	Programmable delay block FlexTimers Periodic interrupt timer Low power timer Independent real time clock
Communications	USB OTG controller with built-in FS/LS transceiver USB voltage regulator Serial peripheral interface Inter-integrated circuit (I ² C) UART Low-power UART (LPUART) Integrated interchip sound (I ² S)
Human-Machine Interfaces (HMI)	General purpose input/output controller

2.2.1 ARM® Cortex®-M4 Core Modules

The following core modules are available on this device.

Table 2-2. Core modules

Module	Description
ARM Cortex-M4	The ARM® Cortex®-M4 is the newest member of the Cortex M Series of processors targeting microcontroller cores focused on very cost sensitive, deterministic, interrupt driven environments. The Cortex M4 processor is based on the ARMv7 Architecture and Thumb®-2 ISA and is upward compatible with the Cortex M3, Cortex M1, and Cortex M0 architectures. Cortex M4 improvements include an ARMv7 Thumb-2 DSP (ported from the ARMv7-A/R profile architectures) providing 32-bit instructions with SIMD (single instruction multiple data) DSP style multiply-accumulates and saturating arithmetic.
Floating point unit (FPU)	A single-precision floating point unit (FPU) that is compliant to the <i>IEEE Standard</i> for Floating-Point Arithmetic (IEEE 754).

Table 2-2. Core modules (continued)

Module	Description
	The ARMv7-M exception model and nested-vectored interrupt controller (NVIC) implement a relocatable vector table supporting many external interrupts, a single non-maskable interrupt (NMI), and priority levels.
	The NVIC replaces shadow registers with equivalent system and simplified programmability. The NVIC contains the address of the function to execute for a particular handler. The address is fetched via the instruction port allowing parallel register stacking and look-up. The first sixteen entries are allocated to ARM internal sources with the others mapping to MCU-defined interrupts.
AWIC	The primary function of the Asynchronous Wake-up Interrupt Controller (AWIC) is to detect asynchronous wake-up events in stop modes and signal to clock control logic to resume system clocking. After clock restart, the NVIC observes the pending interrupt and performs the normal interrupt or event processing.
Debug interfaces	Most of this device's debug is based on the ARM CoreSight [™] architecture. Four debug interfaces are supported:
	 IEEE 1149.1 JTAG IEEE 1149.7 JTAG (cJTAG) Serial Wire Debug (SWD) ARM Real-Time Trace Interface

2.2.2 System Modules

The following system modules are available on this device.

Table 2-3. System modules

Module	Description
System integration module (SIM)	The SIM includes integration logic and several module configuration settings.
System mode controller	The SMC provides control and protection on entry and exit to each power mode, control for the Power management controller (PMC), and reset entry and exit for the complete MCU.
Power management controller (PMC)	The PMC provides the user with multiple power options that allow the user to optimize power consumption for the level of functionality needed. Includes power-on-reset (POR) and integrated low voltage detect (LVD) with reset (brownout) capability and selectable LVD trip points.
Low-leakage wakeup unit (LLWU)	The LLWU module allows the device to wake from low leakage power modes (LLS and VLLS) through various internal peripheral and external pin sources.
Miscellaneous control module (MCM)	The MCM includes integration logic
Crossbar switch (XBS)	The XBS connects bus masters and bus slaves, allowing all bus masters to access different bus slaves simultaneously and providing arbitration among the bus masters when they access the same slave.
Peripheral bridges	The peripheral bridge converts the crossbar switch interface to an interface to access a majority of peripherals on the device.
DMA multiplexer (DMAMUX)	The DMA multiplexer selects from many DMA requests down to a smaller number for the DMA controller.

Table 2-3. System modules (continued)

Module	Description
Direct memory access (DMA) controller	The DMA controller provides programmable channels with transfer control descriptors for data movement via dual-address transfers for 8-bit, 16-bit, 32-bit, 16-byte and 32-byte data values.
External watchdog monitor (EWM)	The EWM is a redundant mechanism to the software watchdog module that monitors both internal and external system operation for fail conditions.
Software watchdog (WDOG)	The WDOG monitors internal system operation and forces a reset in case of failure. It can run from an independent 1 KHz low power oscillator with a programmable refresh window to detect deviations in program flow or system frequency.

2.2.3 Memories and Memory Interfaces

The following memories and memory interfaces are available on this device.

Table 2-4. Memories and memory interfaces

Module	Description
Flash memory	Program flash memory — non-volatile flash memory that can execute program code
Flash memory controller	Manages the interface between the device and the on-chip flash memory.
SRAM	Internal system RAM. Partial SRAM kept powered in LLS2 and VLLS2 low leakage mode.
System register file	32-byte register file that is accessible during all power modes and is powered by VDD.
VBAT register file	32-byte register file that is accessible during all power modes and is powered by VBAT.
Serial programming interface (EzPort)	Same serial interface as, and subset of, the command set used by industry-standard SPI flash memories. Provides the ability to read, erase, and program flash memory and reset command to boot the system after flash programming.
FlexBus	External bus interface with multiple independent, user-programmable chip-select signals that can interface with external SRAM, PROM, EPROM, EEPROM, flash, and other peripherals via 8-, 16- and 32-bit port sizes. Configurations include multiplexed or non-multiplexed address and data buses using 8-bit, 16-bit, 32-bit, and 16-byte line-sized transfers.

2.2.4 Clocks

The following clock modules are available on this device.

Table 2-5. Clock modules

Module	Description
Multi-clock generator (MCG)	The MCG provides several clock sources for the MCU that include:
	 Phase-locked loop (PLL) — Voltage-controlled oscillator (VCO) Frequency-locked loop (FLL) — Digitally-controlled oscillator (DCO) Internal reference clocks — Can be used as a clock source for other on-chip peripherals
48 MHz Internal Reference Clock (IRC48M)	The IRC48M provides an internally generated clock source. Clock Recovery circuitry uses the incoming USB data stream to adjust the internal oscillator and enables the internal oscillator to meet the requirements for USB clock tolerance.
System oscillator	The system oscillator, in conjunction with an external crystal or resonator, generates a reference clock for the MCU.
Real-time clock oscillator	The RTC oscillator has an independent power supply and supports a 32 kHz crystal oscillator to feed the RTC clock. Optionally, the RTC oscillator can replace the system oscillator as the main oscillator source.

2.2.5 Security and Integrity modules

The following security and integrity modules are available on this device:

Table 2-6. Security and integrity modules

Module	Description
Random number generator (RNG)	Supports the key generation algorithm defined in the Digital Signature Standard.
	Hardware CRC generator circuit using 16/32-bit shift register. Error detection for all single, double, odd, and most multi-bit errors, programmable initial seed value, and optional feature to transpose input data and CRC result via transpose register.

2.2.6 Analog modules

The following analog modules are available on this device:

Table 2-7. Analog modules

Module	Description
16-bit analog-to-digital converters (ADC)	16-bit successive-approximation ADC
Analog comparators	Compares two analog input voltages across the full range of the supply voltage.
6-bit digital-to-analog converters (DAC)	64-tap resistor ladder network which provides a selectable voltage reference for applications where voltage reference is needed.
12-bit digital-to-analog converters (DAC)	Low-power general-purpose DAC, whose output can be placed on an external pin or set as one of the inputs to the analog comparator or ADC.

Module Functional Categories

Table 2-7. Analog modules (continued)

Module	Description
	Supplies an accurate voltage output that is trimmable in 0.5 mV steps. The VREF can be used in medical applications, such as glucose meters, to provide a reference voltage to biosensors or as a reference to analog peripherals, such as the ADC, DAC, or CMP.

2.2.7 Timer modules

The following timer modules are available on this device:

Table 2-8. Timer modules

Module	Description
Programmable delay block (PDB)	 16-bit resolution 3-bit prescaler Positive transition of trigger event signal initiates the counter Supports two triggered delay output signals, each with an independently-controlled delay from the trigger event Outputs can be OR'd together to schedule two conversions from one input trigger event and can schedule precise edge placement for a pulsed output. This feature is used to generate the control signal for the CMP windowing feature and output to a package pin if needed for applications, such as critical conductive mode power factor correction. Continuous-pulse output or single-shot mode supported, each output is independently enabled, with possible trigger events Supports bypass mode Supports DMA
Flexible timer modules (FTM)	 Selectable FTM source clock, programmable prescaler 16-bit counter supporting free-running or initial/final value, and counting is up or up-down Input capture, output compare, and edge-aligned and center-aligned PWM modes Operation of FTM channels as pairs with equal outputs, pairs with complimentary outputs, or independent channels with independent outputs Deadtime insertion is available for each complementary pair Generation of hardware triggers Software control of PWM outputs Up to 4 fault inputs for global fault control Configurable channel polarity Programmable interrupt on input capture, reference compare, overflowed counter, or detected fault condition Quadrature decoder with input filters, relative position counting, and interrupt on position count or capture of position count on external event DMA support for FTM events
Periodic interrupt timers (PIT)	 Four general purpose interrupt timers Interrupt timers for triggering ADC conversions 32-bit counter resolution DMA support

Table 2-8. Timer modules (continued)

Module	Description			
Low-power timer (LPTimer)	 Selectable clock for prescaler/glitch filter of 1 kHz (internal LPO), 32.768 kHz (external crystal), or internal reference clock Configurable Glitch Filter or Prescaler with 16-bit counter 16-bit time or pulse counter with compare Interrupt generated on Timer Compare Hardware trigger generated on Timer Compare 			
Real-time clock (RTC)	 Independent power supply, POR, and 32 kHz Crystal Oscillator 32-bit seconds counter with 32-bit Alarm 16-bit Prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm 			

2.2.8 Communication interfaces

The following communication interfaces are available on this device:

Table 2-9. Communication modules

Module	Description
USB OTG (low-/full-speed)	USB 2.0 compliant module with support for host, device, and On-The-Go modes. Includes an on-chip transceiver for full and low speeds.
USB voltage regulator	Up to 5 V regulator input typically provided by USB VBUS power with 3.3 V regulated output that powers on-chip USB subsystem, capable of sourcing 120 mA to external board components.
Serial peripheral interface (SPI)	Synchronous serial bus for communication to an external device
Inter-integrated circuit (I2C)	Allows communication between a number of devices. Also supports the System Management Bus (SMBus) Specification, version 2.
Universal asynchronous receiver/ transmitters (UART)	Asynchronous serial bus communication interface with programmable 8- or 9-bit data format and support of ISO 7816 smart card interface
I2S	The I ² S is a full-duplex, serial port that allows the chip to communicate with a variety of serial devices, such as standard codecs, digital signal processors (DSPs), microprocessors, peripherals, and audio codecs that implement the inter-IC sound bus (I ² S) and the Intel [®] AC97 standards
LPUART	Low power UART module that retains functionality in stop modes.

2.2.9 Human-machine interfaces

The following human-machine interfaces (HMI) are available on this device:

Table 2-10. HMI modules

Module	Description	
	All general purpose input or output (GPIO) pins are capable of interrupt and DMA request generation.	

2.3 Orderable part numbers

The following table summarizes the part numbers of the devices covered by this document.

Table 2-11. Orderable part numbers summary

Freescale part number	CPU frequency	Pin count	Package	Program flash	SRAM	GPIO
MK22FN512VDC12	120 MHz	121	XFBGA	512 KB	128 KB	81
MK22FN512VLL12	120 MHz	100	LQFP	512 KB	128 KB	66
MK22FN512VLH12	120 MHz	64	LQFP	512 KB	128 KB	40
MK22FN512VMP12	120 MHz	64	MAPBGA	512 KB	128 KB	40

Chapter 3 Chip Configuration

3.1 Introduction

This chapter provides details on the individual modules of the microcontroller. It includes:

- module block diagrams showing immediate connections within the device,
- specific module-to-module interactions not necessarily discussed in the individual module chapters, and
- links for more information.

3.2 Core modules

3.2.1 ARM Cortex-M4 Core Configuration

This section summarizes how the module has been configured in the chip. Full documentation for this module is provided by ARM and can be found at **arm.com**.

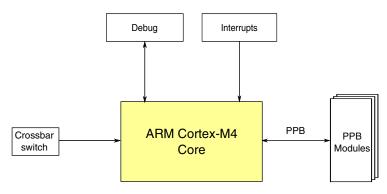


Figure 3-1. Core configuration

Table 3-1. Reference links to related information

Topic	Related module	Reference
Full description	ARM Cortex-M4 core	ARM Cortex-M4 Technical Reference Manual
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
System/instruction/data bus module	Crossbar switch	Crossbar switch
Debug	IEEE 1149.1 JTAG	Debug
	IEEE 1149.7 JTAG (cJTAG)	
	Serial Wire Debug (SWD)	
	ARM Real-Time Trace Interface	
Interrupts	Nested Vectored Interrupt Controller (NVIC)	NVIC
Private Peripheral Bus (PPB) module	Miscellaneous Control Module (MCM)	MCM
Private Peripheral Bus (PPB) module	Single-precision floating point unit (FPU)	FPU

3.2.1.1 Buses, interconnects, and interfaces

The ARM Cortex-M4 core has four buses as described in the following table.

Bus name	Description
, , ,	The ICODE and DCODE buses are muxed. This muxed bus is called the CODE bus and is
Data code (DCODE) bus	connected to the crossbar switch via a single master port.
System bus	The system bus is connected to a separate master port on the crossbar.

Bus name	Description
Private peripheral (PPB) bus	The PPB provides access to these modules: • ARM modules such as the NVIC, ITM, DWT, FBP, and ROM table • Freescale Miscellaneous Control Module (MCM)

3.2.1.2 System Tick Timer

The System Tick Timer's clock source is always the core clock, FCLK. This results in the following:

- The CLKSOURCE bit in SysTick Control and Status register is always set to select the core clock.
- Because the timing reference (FCLK) is a variable frequency, the TENMS bit in the SysTick Calibration Value Register is always zero.
- The NOREF bit in SysTick Calibration Value Register is always set, implying that FCLK is the only available source of reference timing.

3.2.1.3 Debug facilities

This device has extensive debug capabilities including run control and tracing capabilities. The standard ARM debug port that supports JTAG and SWD interfaces. Also the cJTAG interface is supported on this device.

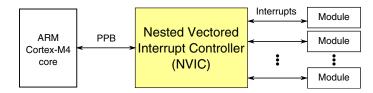
3.2.1.4 Core privilege levels

The ARM documentation uses different terms than this document to distinguish between privilege levels.

If you see this term	it also means this term	
Privileged	Supervisor	
Unprivileged or user	User	

3.2.2 Nested Vectored Interrupt Controller (NVIC) Configuration

This section summarizes how the module has been configured in the chip. Full documentation for this module is provided by ARM and can be found at **arm.com**.



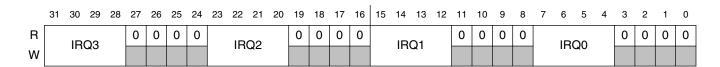

Figure 3-2. NVIC configuration

Table 3-2. Reference links to related information

Topic	Related module	Reference
Full description	Nested Vectored Interrupt Controller (NVIC)	ARM Cortex-M4 Technical Reference Manual
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Private Peripheral Bus (PPB)	ARM Cortex-M4 core	ARM Cortex-M4 core

3.2.2.1 Interrupt priority levels

This device supports 16 priority levels for interrupts. Therefore, in the NVIC each source in the IPR registers contains 4 bits. For example, IPR0 is shown below:

3.2.2.2 Non-maskable interrupt

The non-maskable interrupt request to the NVIC is controlled by the external $\overline{\text{NMI}}$ signal. The pin the $\overline{\text{NMI}}$ signal is multiplexed on, must be configured for the $\overline{\text{NMI}}$ function to generate the non-maskable interrupt request.

3.2.2.3 Interrupt channel assignments

The interrupt source assignments are defined in the following table.

- Vector number the value stored on the stack when an interrupt is serviced.
- IRQ number non-core interrupt source count, which is the vector number minus 16.

The IRQ number is used within ARM's NVIC documentation.

Table 3-4. Interrupt vector assignments

Address	Vector	IRQ ¹	NVIC non-IPR register number	NVIC IPR register number	Source module	Source description	
ARM Core System Handler Vectors							
0x0000_0000	0	_	_	_	ARM core	Initial Stack Pointer	
0x0000_0004	1	_	_	_	ARM core	Initial Program Counter	
0x0000_0008	2	_	_	_	ARM core	Non-maskable Interrupt (NMI)	
0x0000_000C	3	_	_	_	ARM core	Hard Fault	
0x0000_0010	4	_	_	_	ARM core	MemManage Fault	
0x0000_0014	5	_	_	_	ARM core	Bus Fault	
0x0000_0018	6	_	_	_	ARM core	Usage Fault	
0x0000_001C	7	_	_	_	_	_	
0x0000_0020	8	_	_	_	_	_	
0x0000_0024	9	_	_	_	_	_	
0x0000_0028	10	_	_	_	_	_	
0x0000_002C	11	_	_	_	ARM core	Supervisor call (SVCall)	
0x0000_0030	12	_	_	_	ARM core	Debug Monitor	
0x0000_0034	13	_	_	_	_	_	
0x0000_0038	14	_	_	_	ARM core	Pendable request for system service (PendableSrvReq)	
0x0000_003C	15	_	_	_	ARM core	System tick timer (SysTick)	
Non-Core Vectors	3						
0x0000_0040	16	0	0	0	DMA	DMA channel 0 transfer complete	
0x0000_0044	17	1	0	0	DMA	DMA channel 1 transfer complete	
0x0000_0048	18	2	0	0	DMA	DMA channel 2 transfer complete	
0x0000_004C	19	3	0	0	DMA	DMA channel 3 transfer complete	
0x0000_0050	20	4	0	1	DMA	DMA channel 4 transfer complete	
0x0000_0054	21	5	0	1	DMA	DMA channel 5 transfer complete	
0x0000_0058	22	6	0	1	DMA	DMA channel 6 transfer complete	
0x0000_005C	23	7	0	1	DMA	DMA channel 7 transfer complete	
0x0000_0060	24	8	0	2	DMA	DMA channel 8 transfer complete	
0x0000_0064	25	9	0	2	DMA	DMA channel 9 transfer complete	
0x0000_0068	26	10	0	2	DMA	DMA channel 10 transfer complete	
0x0000_006C	27	11	0	2	DMA	DMA channel 11 transfer complete	

Table 3-4. Interrupt vector assignments (continued)

Address	Vector	IRQ ¹	NVIC non-IPR register number	register number 3	Source module	Source description
0x0000_0070	28	12	0	3	DMA	DMA channel 12 transfer complete
0x0000_0074	29	13	0	3	DMA	DMA channel 13 transfer complete
0x0000_0078	30	14	0	3	DMA	DMA channel 14 transfer complete
0x0000_007C	31	15	0	3	DMA	DMA channel 15 transfer complete
0x0000_0080	32	16	0	4	DMA	DMA error interrupt channels 0-15
0x0000_0084	33	17	0	4	MCM	FPU sources
0x0000_0088	34	18	0	4	Flash memory	Command complete
0x0000_008C	35	19	0	4	Flash memory	Read collision
0x0000_0090	36	20	0	5	Mode Controller	Low-voltage detect, low-voltage warning
0x0000_0094	37	21	0	5	LLWU	Low Leakage Wakeup
						NOTE: The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit stop mode on an LLS recovery.
0x0000_0098	38	22	0	5	WDOG or EWM	Both watchdog modules share this interrupt.
0x0000_009C	39	23	0	5	RNG	Randon Number Generator
0x0000_00A0	40	24	0	6	I ² C0	_
0x0000_00A4	41	25	0	6	I ² C1	_
0x0000_00A8	42	26	0	6	SPI0	Single interrupt vector for all sources
0x0000_00AC	43	27	0	6	SPI1	Single interrupt vector for all sources
0x0000_00B0	44	28	0	7	I ² S0	Transmit
0x0000_00B4	45	29	0	7	I ² S0	Receive
0x0000_00B8	46	30	0	7	LPUART0	Status and error
0x0000_00BC	47	31	0	7	UART0	Single interrupt vector for UART status sources
0x0000_00C0	48	32	1	8	UART0	Single interrupt vector for UART error sources
0x0000_00C4	49	33	1	8	UART1	Single interrupt vector for UART status sources
0x0000_00C8	50	34	1	8	UART1	Single interrupt vector for UART error sources
0x0000_00CC	51	35	1	8	UART2	Single interrupt vector for UART status sources
0x0000_00D0	52	36	1	9	UART2	Single interrupt vector for UART error sources
0x0000_00D4	53	37	1	9	_	_
0x0000_00D8	54	38	1	9	_	_

Table 3-4. Interrupt vector assignments (continued)

Address	Vector	IRQ ¹	NVIC non-IPR register number	NVIC IPR register number	Source module	Source description
0x0000_00DC	55	39	1	9	ADC0	_
0x0000_00E0	56	40	1	10	CMP0	_
0x0000_00E4	57	41	1	10	CMP1	_
0x0000_00E8	58	42	1	10	FTM0	Single interrupt vector for all sources
0x0000_00EC	59	43	1	10	FTM1	Single interrupt vector for all sources
0x0000_00F0	60	44	1	11	FTM2	Single interrupt vector for all sources
0x0000_00F4	61	45	1	11	_	_
0x0000_00F8	62	46	1	11	RTC	Alarm interrupt
0x0000_00FC	63	47	1	11	RTC	Seconds interrupt
0x0000_0100	64	48	1	12	PIT	Channel 0
0x0000_0104	65	49	1	12	PIT	Channel 1
0x0000_0108	66	50	1	12	PIT	Channel 2
0x0000_010C	67	51	1	12	PIT	Channel 3
0x0000_0110	68	52	1	13	PDB	_
0x0000_0114	69	53	1	13	USB OTG	_
0x0000_0118	70	54	1	13	_	_
0x0000_011C	71	55	1	13	_	_
0x0000_0120	72	56	1	14	DAC0	_
0x0000_0124	73	57	1	14	MCG	_
0x0000_0128	74	58	1	14	Low Power Timer	_
0x0000_012C	75	59	1	14	Port control module	Pin detect (Port A)
0x0000_0130	76	60	1	15	Port control module	Pin detect (Port B)
0x0000_0134	77	61	1	15	Port control module	Pin detect (Port C)
0x0000_0138	78	62	1	15	Port control module	Pin detect (Port D)
0x0000_013C	79	63	1	15	Port control module	Pin detect (Port E)
0x0000_0140	80	64	2	16	Software	Software interrupt ⁴
0x0000_0144	81	65	2	16		_
0x0000_0148	82	66	2	16	_	
0x0000_014C	83	67	2	16	_	_
0x0000_0150	84	68	2	17		_
0x0000_0154	85	69	2	17	_	_
0x0000_0158	86	70	2	17	_	
0x0000_015C	87	71	2	17	FTM3	Single interrupt vector for all sources
0x0000_0160	88	72	2	18	DAC1	
0x0000_0164	89	73	2	18	ADC1	_

^{1.} Indicates the NVIC's interrupt source number.

Core modules

- 2. Indicates the NVIC's ISER, ICER, ISPR, ICPR, and IABR register number used for this IRQ. The equation to calculate this value is: IRQ div 32
- 3. Indicates the NVIC's IPR register number used for this IRQ. The equation to calculate this value is: IRQ div 4
- 4. This interrupt can only be pended or cleared via the NVIC registers.

3.2.2.3.1 Determining the bitfield and register location for configuring a particular interrupt

Suppose you need to configure the low-power timer (LPTMR) interrupt. The following table is an excerpt of the LPTMR row from Interrupt channel assignments.

Table 3-5. LPTMR interrupt vector assignment

Address	Vector	IRQ ¹	NVIC non-IPR register number	NVIC IPR register number	Source module	Source description
0x0000_0128	74	58	1	14	Low Power Timer	_

- 1. Indicates the NVIC's interrupt source number.
- 2. Indicates the NVIC's ISER, ICER, ISPR, ICPR, and IABR register number used for this IRQ. The equation to calculate this value is: IRQ div 32
- 3. Indicates the NVIC's IPR register number used for this IRQ. The equation to calculate this value is: IRQ div 4
 - The NVIC registers you would use to configure the interrupt are:
 - NVICISER1
 - NVICICER1
 - NVICISPR1
 - NVICICPR1
 - NVICIABR1
 - NVICIPR14
 - To determine the particular IRQ's bitfield location within these particular registers:
 - NVICISER1, NVICICER1, NVICISPR1, NVICICPR1, NVICIABR1 bit location = IRO mod 32 = 26
 - NVICIPR14 bitfield starting location = $8 * (IRQ \mod 4) + 4 = 20$

Since the NVICIPR bitfields are 4-bit wide (16 priority levels), the NVICIPR14 bitfield range is 20-23

Therefore, the following bitfield locations are used to configure the LPTMR interrupts:

- NVICISER1[26]
- NVICICER1[26]
- NVICISPR1[26]
- NVICICPR1[26]
- NVICIABR1[26]
- NVICIPR14[23:20]

3.2.3 Asynchronous Wake-up Interrupt Controller (AWIC) Configuration

This section summarizes how the module has been configured in the chip. Full documentation for this module is provided by ARM and can be found at **arm.com**.

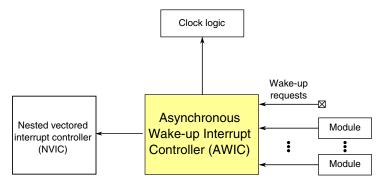


Figure 3-3. Asynchronous Wake-up Interrupt Controller configuration

 Topic
 Related module
 Reference

 System memory map
 System memory map

 Clocking
 Clock distribution

 Power management
 Power management

 Nested Vectored Interrupt Controller (NVIC)
 NVIC

 Wake-up requests
 AWIC wake-up sources

Table 3-6. Reference links to related information

3.2.3.1 Wake-up sources

The device uses the following internal and external inputs to the AWIC module.

Table 3-7. AWIC Partial Stop, Stop and VLPS Wake-up Sources

Wake-up source	Description
Available system resets	RESET pin and WDOG when LPO is its clock source, and JTAG
Low-voltage detect	Power Mode Controller
Low-voltage warning	Power Mode Controller
Pin interrupts	Port Control Module - Any enabled pin interrupt is capable of waking the system
ADCx	The ADC is functional when using internal clock source

Table 3-7. AWIC Partial Stop, Stop and VLPS Wake-up Sources (continued)

Wake-up source	Description
СМРх	Since no system clocks are available, functionality is limited, trigger mode provides wakeup functionality with periodic sampling
I ² C	Address match wakeup
UART	Active edge on RXD
LPUART	Functional when using clock source which is active in Stop and VLPS modes
USB FS/LS Controller	Wakeup
LPTMR	Functional when using clock source which is active in Stop and VLPS modes
RTC	Functional in Stop/VLPS modes
I2S (SAI)	Functional when using an external bit clock or external master clock
NMI	Non-maskable interrupt

3.2.4 FPU Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

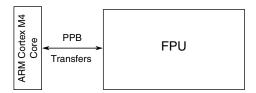


Figure 3-4. FPU configuration

Table 3-8. Reference links to related information

Topic	Related module	Reference
Full description	FPU	ARM Cortex-M4 Technical Reference Manual
System memory map		System memory map
Clocking		Clock Distribution
Power Management		Power Management
Transfers	ARM Cortex M4 core	ARM Cortex-M4 core
Private Peripheral Bus (PPB)		

3.2.5 JTAG Controller Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

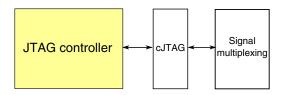


Figure 3-5. JTAGC Controller configuration

Table 3-9. Reference links to related information

Topic	Related module	Reference
Full description	JTAGC	JTAGC
Signal multiplexing	Port control	Signal multiplexing

3.3 System modules

3.3.1 SIM Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

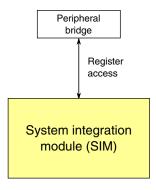


Figure 3-6. SIM configuration

Table 3-10. Reference links to related information

Topic	Related module	Reference
Full description	SIM	
System memory map		System memory map

Table 3-10. Reference links to related information (continued)

Topic	Related module	Reference
Clocking		Clock distribution
Power management		Power management

3.3.2 System Mode Controller (SMC) Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

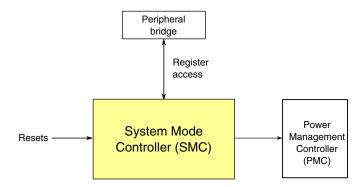


Figure 3-7. System Mode Controller configuration

Table 3-11. Reference links to related information

Topic	Related module	Reference
Full description	System Mode Controller (SMC)	SMC
System memory map		System memory map
Power management		Power management
	Power management controller (PMC)	PMC
	Low-Leakage Wakeup Unit (LLWU)	LLWU
	Reset Control Module (RCM)	Reset

3.3.3 PMC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

Topic	Related module	Reference
Full description	PMC	
System memory map		System memory map
Power management		Power management
Full description		
	Low-Leakage Wakeup	LLWU

Table 3-12. Reference links to related information

3.3.4 Low-Leakage Wake-up Unit (LLWU) Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

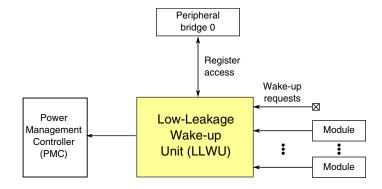


Figure 3-8. Low-Leakage Wake-up Unit configuration

Table 3-13. Reference links to related information

Topic Related module Reference

Topic	Related module	Reference
Full description	LLWU	
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management chapter
	Power Management Controller (PMC)	Power Management Controller (PMC)
	Mode Controller	
Wake-up requests		LLWU wake-up sources

3.3.4.1 Wake-up Sources

The device uses the following internal peripheral and external pin inputs as wakeup sources to the LLWU module. LLWU_Px are external pin inputs, and LLWU_M0IF-M7IF are connections to the internal peripheral interrupt flags.

NOTE

In addition to the LLWU wakeup sources, the device also wakes from low power modes when NMI or RESET pins are enabled and the respective pin is asserted.

Table 3-14. Wakeup sources for LLWU inputs

Input	Wakeup source
LLWU_P0	PTE1/LLWU_P0 pin
LLWU_P1	PTE2/LLWU_P1 pin
LLWU_P2	PTE4/LLWU_P2 pin
LLWU_P3	PTA4/LLWU_P3 pin ¹
LLWU_P4	PTA13/LLWU_P4 pin
LLWU_P5	PTB0/LLWU_P5 pin
LLWU_P6	PTC1/LLWU_P6 pin
LLWU_P7	PTC3/LLWU_P7 pin
LLWU_P8	PTC4/LLWU_P8 pin
LLWU_P9	PTC5/LLWU_P9 pin
LLWU_P10	PTC6/LLWU_P10 pin
LLWU_P11	PTC11/LLWU_P11 pin
LLWU_P12	PTD0/LLWU_P12 pin
LLWU_P13	PTD2/LLWU_P13 pin
LLWU_P14	PTD4/LLWU_P14 pin
LLWU_P15	PTD6/LLWU_P15 pin
LLWU_M0IF	LPTMR ²
LLWU_M1IF	CMP0 ²
LLWU_M2IF	CMP1 ²
LLWU_M3IF	Reserved
LLWU_M4IF	Reserved
LLWU_M5IF	RTC Alarm ²
LLWU_M6IF	Reserved
LLWU_M7IF	RTC Seconds ²

^{1.} The EZP_CS signal is checked only on *Chip Reset not VLLS*, so a VLLS wakeup via a non-reset source does not cause EzPort mode entry. If NMI was enabled on entry to LLS/VLLS, asserting the NMI pin generates an NMI interrupt on exit from the low power mode. NMI can also be disabled via the FOPT[NMI_DIS] bit.

^{2.} Requires the peripheral and the peripheral interrupt to be enabled. The LLWU's WUME bit enables the internal module flag as a wakeup input. After wakeup, the flags are cleared based on the peripheral clearing mechanism.

3.3.5 MCM Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

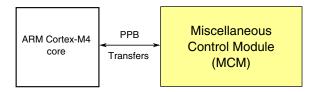


Figure 3-9. MCM configuration

Table 3-15. Reference links to related information

Topic	Related module	Reference
Full description	Miscellaneous control module (MCM)	MCM
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Transfers	ARM Cortex-M4 core	ARM Cortex-M4 core
Private Peripheral Bus (PPB)		

3.3.6 Crossbar-Light Switch Configuration

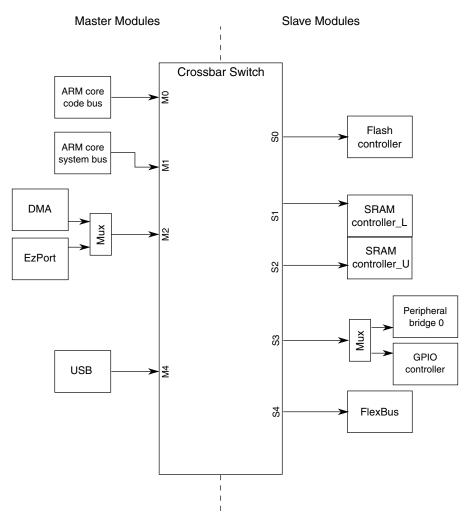


Figure 3-10. Crossbar-Light switch integration

Table 3-16. Reference links to related information

Topic	Related module	Reference
Full description	Crossbar switch	Crossbar Switch
System memory map		System memory map
Clocking		Clock Distribution
Crossbar switch master	ARM Cortex-M4 core	ARM Cortex-M4 core
Crossbar switch master	DMA controller	DMA controller
Crossbar switch master	EzPort	EzPort
Crossbar switch master	USB FS/LS	USB FS/LS
Crossbar switch slave	Flash	Flash
Crossbar switch slave	Peripheral bridges	Peripheral bridge
Crossbar switch slave	GPIO controller	GPIO controller
Crossbar switch slave	FlexBus/	FlexBus

3.3.6.1 Crossbar-Light Switch Master Assignments

The masters connected to the crossbar switch are assigned as follows:

Master module	Master port number
ARM core code bus	0
ARM core system bus	1
DMA /EzPort	2
USB OTG	4

NOTE

The DMA and EzPort share a master port. Since these modules never operate at the same time, no configuration or arbitration explanations are necessary.

3.3.6.2 Crossbar-Light Switch Slave Assignments

The slaves connected to the crossbar switch are assigned as follows:

Slave module	Slave port number
Flash memory controller	0
SRAM controllers	1,2
Peripheral bridge 0/GPIO ¹	3
FlexBus	4

^{1.} See System memory map for access restrictions.

3.3.7 Peripheral Bridge Configuration

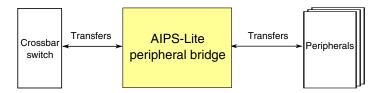


Figure 3-11. Peripheral bridge configuration

Table 3-17. Reference links to related information

Topic	Related module	Reference
Full description	Peripheral bridge (AIPS-Lite)	Peripheral bridge (AIPS-Lite)
System memory map		System memory map
Clocking		Clock Distribution
Crossbar switch	Crossbar switch	Crossbar switch

3.3.7.1 Number of peripheral bridges

This device contains one peripheral bridge.

3.3.7.2 Memory maps

The peripheral bridges are used to access the registers of most of the modules on this device. See AIPSO Memory Map for the memory slot assignment for each module.

3.3.8 DMA request multiplexer configuration

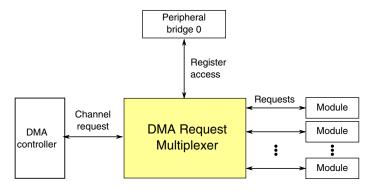


Figure 3-12. DMA request multiplexer configuration

Table 3-18. Reference links to related information

Topic	Related module	Reference
Full description	DMA request multiplexer	DMA Mux
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Channel request	DMA controller	DMA Controller
Requests		DMA request sources

3.3.8.1 DMA MUX request sources

This device includes a DMA request mux that allows up to 63 DMA request signals to be mapped to any of the 16 DMA channels. Because of the mux there is not a hard correlation between any of the DMA request sources and a specific DMA channel.

Some of the modules support Asynchronous DMA operation as indicated by the last column in the following DMA source assignment table.

Table 3-19. DMA request sources - MUX 0

Source number	Source module	Source description	Async DMA capable
0	_	Channel disabled ¹	
1	Reserved	Not used	
2	UART0	Receive	
3	UART0	Transmit	
4	UART1	Receive	
5	UART1	Transmit	
6	UART2	Receive	
7	UART2	Transmit	

Table continues on the next page...

Table 3-19. DMA request sources - MUX 0 (continued)

Source number	Source module	Source description	Async DMA capable
8	Reserved	_	
9	Reserved	_	
10	Reserved	_	
11	Reserved	_	
12	I ² S0	Receive	Yes
13	I ² S0	Transmit	Yes
14	SPI0	Receive	
15	SPI0	Transmit	
16	SPI1	Transmit or Receive	
17	Reserved	_	
18	I ² C0	_	
19	I ² C1	_	
20	FTM0	Channel 0	
21	FTM0	Channel 1	
22	FTM0	Channel 2	
23	FTM0	Channel 3	
24	FTM0	Channel 4	
25	FTM0	Channel 5	
26	FTM0	Channel 6	
27	FTM0	Channel 7	
28	FTM1	Channel 0	
29	FTM1	Channel 1	
30	FTM2	Channel 0	
31	FTM2	Channel 1	
32	FTM3	Channel 0	
33	FTM3	Channel 1	
34	FTM3	Channel 2	
35	FTM3	Channel 3	
36	FTM3	Channel 4	
37	FTM3	Channel 5	
38	FTM3	Channel 6	
39	FTM3	Channel 7	
40	ADC0	_	Yes
41	ADC1	_	Yes
42	CMP0	_	Yes
43	CMP1	_	Yes
44	Reserved	_	
45	DAC0	_	
46	DAC1	_	

Table continues on the next page...

Table 3-19. DMA request sources - MUX 0 (continued)

Source number	Source module	Source description	Async DMA capable
47	Reserved	_	
48	PDB	_	
49	Port control module	Port A	Yes
50	Port control module	Port B	Yes
51	Port control module	Port C	Yes
52	Port control module	Port D	Yes
53	Port control module	Port E	Yes
54	Reserved	_	
55	Reserved	_	
56	Reserved	_	
57	Reserved	_	
58	LPUART0	Receive	Yes
59	LPUART0	Transmit	Yes
60	DMA MUX	Always enabled	
61	DMA MUX	Always enabled	
62	DMA MUX	Always enabled	
63	DMA MUX	Always enabled	

^{1.} Configuring a DMA channel to select source 0 or any of the reserved sources disables that DMA channel.

3.3.8.2 DMA transfers via PIT trigger

The PIT module can trigger a DMA transfer on the first four DMA channels. The assignments are detailed at PIT/DMA Periodic Trigger Assignments.

3.3.9 DMA Controller Configuration

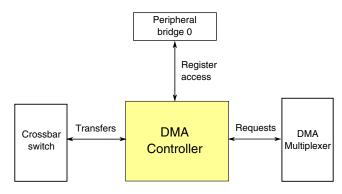


Figure 3-13. DMA Controller configuration

Table 3-20. Reference links to related information

Topic	Related module	Reference
Full description	DMA Controller	DMA Controller
System memory map		System memory map
Register access	Peripheral bridge (AIPS-Lite 0)	AIPS-Lite 0
Clocking		Clock distribution
Power management		Power management
Transfers	Crossbar switch	Crossbar switch

3.3.10 External Watchdog Monitor (EWM) Configuration

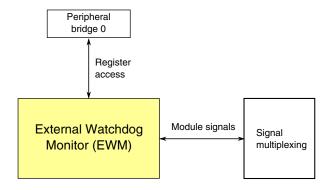


Figure 3-14. External Watchdog Monitor configuration

Table 3-21. Reference links to related information

Topic	Related module	Reference
Full description	External Watchdog Monitor (EWM)	EWM
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port Control Module	Signal multiplexing

3.3.10.1 EWM clocks

This table shows the EWM clocks and the corresponding chip clocks.

Table 3-22. EWM clock connections

Module clock	Chip clock
Low Power Clock	1 kHz LPO Clock

3.3.10.2 EWM low-power modes

This table shows the EWM low-power modes and the corresponding chip low-power modes.

Table 3-23. EWM low-power modes

Module mode	Chip mode
Wait	Wait, VLPW
Stop	Stop, VLPS, LLS

3.3.10.3 **EWM_OUT** pin state in low power modes

When the CPU enters a Run mode from Wait or Stop recovery, the pin resumes its previous state before entering Wait or Stop mode. When the CPU enters Run mode from Power Down, the pin returns to its reset state.

3.3.11 Watchdog Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

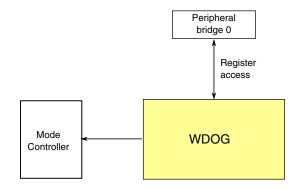


Figure 3-15. Watchdog configuration

Table 3-24. Reference links to related information

Topic	Related module	Reference
Full description	Watchdog	Watchdog
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
	Mode Controller (MC)	

3.3.11.1 WDOG clocks

This table shows the WDOG module clocks and the corresponding chip clocks.

Table 3-25. WDOG clock connections

Module clock	Chip clock	
LPO Oscillator	1 kHz LPO Clock	

Table continues on the next page...

Table 3-25. WDOG clock connections (continued)

Module clock	Chip clock
Alt Clock	Bus Clock
Fast Test Clock	Bus Clock
System Bus Clock	Bus Clock

3.3.11.2 WDOG low-power modes

This table shows the WDOG low-power modes and the corresponding chip low-power modes.

Table 3-26. WDOG low-power modes

Module mode	Chip mode
Wait	Wait, VLPW
Stop	Stop, VLPS
Power Down	LLS, VLLSx

3.4 Clock modules

3.4.1 MCG Configuration

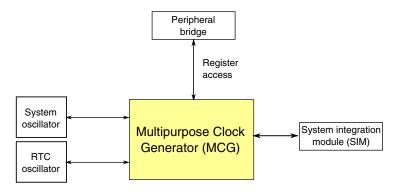


Figure 3-16. MCG configuration

Table 3-27. Reference links to related information

Topic	Related module	Reference
Full description	MCG	MCG
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.4.1.1 MCG oscillator clock input options

The MCG has multiple oscillator input clock sources. Within the context of the MCG these are all referred to as the external reference clock and selection is determined by MCG_C7[OSCSEL] bitfield. The following table shows the chip-specific clock assignments for this bitfield.

Table 3-28. MCG Oscillator Reference Options

MCG_C7[OSCSEL]	MCG defined selection	Chip clock
00	OSCCLK0 - System Oscillator	OSCCLK - Undivided system oscillator output. Derived from external crystal circuit or directly from EXTAL.
01	OSC2/RTC Oscillator	RTC 32kHz oscillator output. RTC clock is derived from external crystal circuit associated with RTC.
10	OSCCLK1 - Oscillator	IRC48MCLK. Derived from internal 48 MHz oscillator.
11	Reserved	_

See Clock Distribution for more details on these clocks.

3.4.2 OSC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

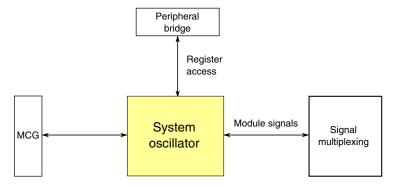


Figure 3-17. OSC configuration

Table 3-29. Reference links to related information

Topic	Related module	Reference
Full description	OSC	OSC
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing
Full description	MCG	MCG

3.4.2.1 OSC modes of operation with MCG

The MCG's C2 register bits configure the oscillator frequency range. See the OSC and MCG chapters for more details.

3.4.3 RTC OSC configuration

Memories and memory interfaces

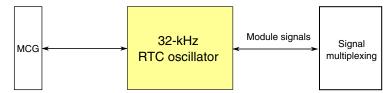


Figure 3-18. RTC OSC configuration

Table 3-30. Reference links to related information

Topic	Related module	Reference
Full description	RTC OSC	RTC OSC
Signal multiplexing	Port control	Signal multiplexing
Full description	MCG	MCG

3.5 Memories and memory interfaces

3.5.1 Flash Memory Configuration

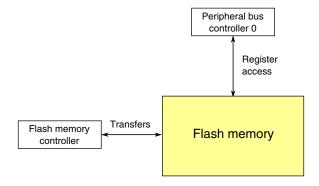


Figure 3-19. Flash memory configuration

Table 3-31. Reference links to related information

Topic	Related module	Reference
Full description	Flash memory	
System memory map		System memory map
Clocking		Clock Distribution
Transfers	Flash memory controller	Flash memory controller
Register access	Peripheral bridge	Peripheral bridge

3.5.1.1 Flash memory types

This device contains the following types of flash memory:

• Program flash memory — non-volatile flash memory that can execute program code

3.5.1.2 Flash Memory Sizes

The devices covered in this document contain:

• 2 blocks of program flash consisting of 2 KB sectors

The amounts of flash memory for the devices covered in this document are:

Device	Program flash (KB)	Block 0 address range	Block 1 address range
MK22FN512VDC12	512	0x0000_0000-0x0003_FFFF	0x0004_0000-0x0007_FFFF
MK22FN512VLL12	512	0x0000_0000-0x0003_FFFF	0x0004_0000-0x0007_FFFF
MK22FN512VLH12	512	0x0000_0000-0x0003_FFFF	0x0004_0000-0x0007_FFFF
MK22FN512VMP12	512	0x0000_0000-0x0003_FFFF	0x0004_0000-0x0007_FFFF

3.5.1.3 Flash Memory Map

The flash memory and the flash registers are located at different base addresses as shown in the following figure. The base address for each is specified in System memory map.

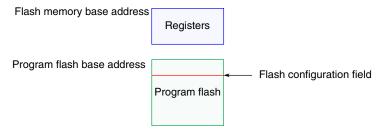


Figure 3-20. Flash memory map

The on-chip Flash is implemented in a portion of the allocated Flash range to form a contiguous block in the memory map beginning at address 0x0000_0000. See Flash Memory Sizes for details of supported ranges.

Memories and memory interfaces

Accesses to the flash memory ranges outside the amount of Flash on the device causes the bus cycle to be terminated with an error followed by the appropriate response in the requesting bus master. Read collision events in which flash memory is accessed while a flash memory resource is being manipulated by a flash command also generates a bus error response.

3.5.1.4 Flash Security

How flash security is implemented on this device is described in Chip Security.

3.5.1.5 Flash Program Restrictions

The flash memory on this device should not be programmed or erased while operating in High Speed Run or VLPR power modes.

3.5.1.6 Flash Modes

The flash memory operates in NVM normal and NVM special modes. The flash memory enters NVM special mode when the EzPort is enabled (EZP_CS asserted during reset). Otherwise, flash memory operates in NVM normal mode.

3.5.1.7 Erase All Flash Contents

An Erase All Flash Blocks operation can be launched by software through a series of peripheral bus writes to flash registers. In addition the entire flash memory may be erased external to the flash memory from the SWJ-DP debug port by setting DAP_CONTROL[0]. DAP_STATUS[0] is set to indicate the mass erase command has been accepted. DAP_STATUS[0] is cleared when the mass erase completes.

The EzPort can also initiate an erase of flash contents by issuing a bulk erase (BE) command. See the EzPort chapter for more details.

3.5.1.8 FTF_FOPT Register

The flash memory's FTF_FOPT register allows the user to customize the operation of the MCU at boot time. See FOPT boot options for details of its definition.

3.5.2 Flash Memory Controller Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

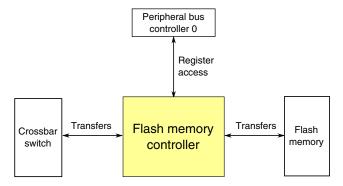


Figure 3-21. Flash memory controller configuration

Topic	Related module	Reference	
Full description Flash memory controller		Flash memory controller	
System memory map		System memory map	
Clocking		Clock Distribution	
Transfers	Flash memory	Flash memory	
Transfers	Crossbar switch	Crossbar Switch	
Register access	Peripheral bridge	Peripheral bridge	

Table 3-32. Reference links to related information

3.5.2.1 Number of masters

The Flash Memory Controller supports up to eight crossbar switch masters. However, this device has a different number of crossbar switch masters. See Crossbar-Light Switch Configuration for details on the master port assignments.

3.5.3 SRAM Configuration

This section summarizes how the module has been configured in the chip.

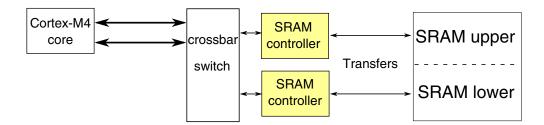


Figure 3-22. SRAM configuration

Table 3-33. Reference links to related information

Topic	Related module	Reference		
Full description	SRAM	SRAM		
System memory map		System memory map		
Clocking		Clock Distribution		
Transfers	SRAM controller	SRAM controller		
	ARM Cortex-M4 core	ARM Cortex-M4 core		

3.5.3.1 **SRAM** sizes

This device contains SRAM accessed by bus masters through the cross-bar switch. The on-chip SRAM is split into SRAM_L and SRAM_U regions where the SRAM_L and SRAM_U ranges form a contiguous block in the memory map anchored at address 0x2000_0000. As such:

- SRAM_L is anchored to 0x1FFF_FFFF and occupies the space before this ending address.
- SRAM_U is anchored to 0x2000_0000 and occupies the space after this beginning address.

NOTE

Misaligned accesses across the 0x2000_0000 boundary are not supported in the ARM Cortex-M4 architecture.

The amount of SRAM for the devices covered in this document is shown in the following table.

Device	SRAM_L size (KB)	SRAM_U size (KB)	Total SRAM (KB)	Address Range
MK22FN512VDC12	64	64	128	0x1FFF_0000-0x2000_FFFF
MK22FN512VLL12	64	64	128	0x1FFF_0000-0x2000_FFFF
MK22FN512VLH12	64	64	128	0x1FFF_0000-0x2000_FFFF
MK22FN512VMP12	64	64	128	0x1FFF_0000-0x2000_FFFF

3.5.3.2 SRAM retention in low power modes

The SRAM is retained down to LLS3 and VLLS3 mode.

In LLS2 and VLLS2 the 32 KB region of SRAM_U from 0x2000_0000 is powered.

In VLLS1 and VLLS0 no SRAM is retained; however, the 32-byte register file is available.

3.5.4 System Register File Configuration

This section summarizes how the module has been configured in the chip.

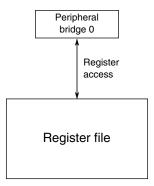


Figure 3-23. System Register file configuration

Table 3-34. Reference links to related information

Topic	Related module	Reference	
Full description	Register file	Register file	
System memory map		System memory map	
Clocking		Clock distribution	
Power management		Power management	

3.5.4.1 System Register file

This device includes a 32-byte register file that is powered in all power modes. The System Register file is made up of eight 4-byte registers RFSYS_REG*n*, where *n* ranges from 0 to 7.

Also, it retains contents during low-voltage detect (LVD) events and is only reset during a power-on reset.

3.5.5 VBAT Register File Configuration

This section summarizes how the module has been configured in the chip.

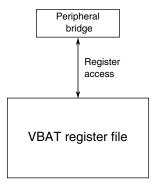


Figure 3-24. VBAT Register file configuration

Table 3-35. Reference links to related information

Topic	Related module	Reference
Full description	VBAT register file	VBAT register file
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management

3.5.5.1 VBAT register file

This device includes a 32-byte register file that is powered in all power modes and is powered by VBAT. The VBAT Register file is made up of eight 4-byte registers RFVBAT_REGn, where n ranges from 0 to 7.

It is only reset during VBAT power-on reset.

3.5.6 EzPort Configuration

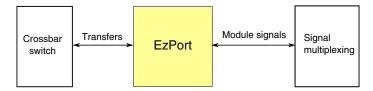


Figure 3-25. EzPort configuration

Table 3-36. Reference links to related information

Topic	Related module	Reference		
Full description	EzPort	EzPort		
System memory map		System memory map		
Clocking		Clock Distribution		
Transfers	Crossbar switch	Crossbar switch		
Signal Multiplexing	Port control	Signal Multiplexing		

3.5.6.1 JTAG instruction

The system JTAG controller implements an EZPORT instruction. When executing this instruction, the JTAG controller resets the core logic and asserts the EzPort chip select signal to force the processor into EzPort mode.

3.5.6.2 Flash Option Register (FOPT)

The FOPT[EZPORT_DIS] bit can be used to prevent entry into EzPort mode during reset. If the FOPT[EZPORT_DIS] bit is cleared, then the state of the chip select signal (EZP_CS) is ignored and the MCU always boots in normal mode.

This option is useful for systems that use the $\overline{EZP_CS}/NMI$ signal configured for its NMI function. Disabling EzPort mode prevents possible unwanted entry into EzPort mode if the external circuit that drives the NMI signal asserts it during reset.

The FOPT register is loaded from the flash option byte. If the flash option byte is modified the new value takes effect for any subsequent resets, until the value is changed again.

3.5.7 FlexBus Configuration

Memories and memory interfaces

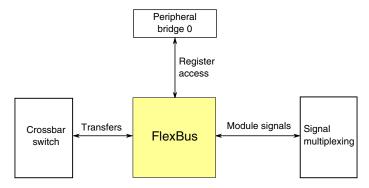


Figure 3-26. FlexBus configuration

Table 3-37. Reference links to related information

Topic	Related module	Reference		
Full description	FlexBus	FlexBus		
System memory map		System memory map		
Clocking		Clock distribution		
Power management		Power management		
Signal multiplexing	Port control	Signal multiplexing		

3.5.7.1 FlexBus clocking

The system provides a dedicated clock source to the FlexBus module's external CLKOUT. Its clock frequency is derived from a divider of the MCGOUTCLK. See Clock Distribution for more details.

3.5.7.2 FlexBus signal multiplexing

The multiplexing of the FlexBus address and data signals is controlled by the port control module. However, the multiplexing of some of the FlexBus control signals are controlled by the port control and FlexBus modules. The port control module registers control whether the FlexBus or another module signals are available on the external pin, while the FlexBus's CSPMCR register configures which FlexBus signals are available from the modules. The control signals are grouped as illustrated:

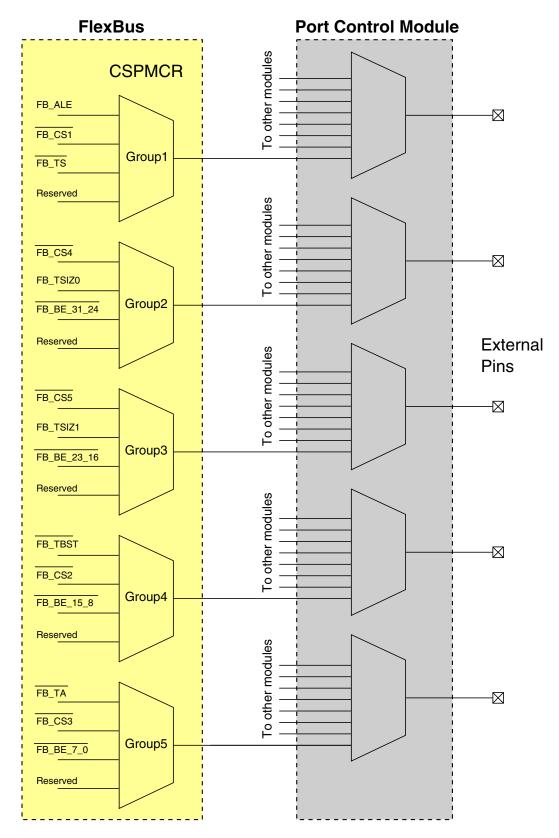


Figure 3-27. FlexBus control signal multiplexing

Security

Therefore, use the CSPMCR and port control registers to configure which control signal is available on the external pin. All control signals, except for FB_TA, are assigned to the ALT5 function in the port control module. Since, unlike the other control signals, FB_TA is an input signal, it is assigned to the ALT6 function.

3.5.7.3 FlexBus CSCR0 reset value

On this device the CSCR0 resets to 0x003F_FC00. Configure this register as needed before performing any FlexBus access.

3.5.7.4 FlexBus Security

When security is enabled on the device, FlexBus accesses may be restricted by configuring SIM_SOPT2[]. See System Integration Module (SIM) for details.

3.5.7.5 FlexBus line transfers

Line transfers are not possible from the ARM Cortex-M4 core. Ignore any references to line transfers in the FlexBus chapter.

3.6 Security

3.6.1 CRC Configuration

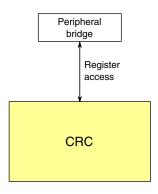


Figure 3-28. CRC configuration

Table 3-38. Reference links to related information

Topic	Related module	Reference	
Full description	CRC	CRC	
System memory map		System memory map	
Power management		Power management	

3.6.2 RNG Configuration

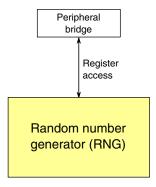


Figure 3-29. RNG configuration

Table 3-39. Reference links to related information

Topic	Related module	Reference
Full description	RNG	RNG
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management

3.7 Analog

3.7.1 16-bit SAR ADC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

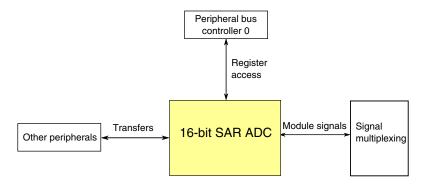


Figure 3-30. 16-bit SAR ADC configuration

Table 3-40. Reference links to related information

Topic	Related module	Reference		
Full description	16-bit SAR ADC	16-bit SAR ADC		
System memory map		System memory map		
Clocking		Clock distribution		
Power management		Power management		
Signal multiplexing	Port control	Signal multiplexing		

3.7.1.1 ADC instantiation information

This device contains two ADCs.

3.7.1.1.1 Number of ADC channels

The number of ADC channels present on the device is determined by the pinout of the specific device package. For details regarding the number of ADC channel available on a particular package, refer to the signal multiplexing chapter of this MCU.

3.7.1.2 DMA Support on ADC

Applications may require continuous sampling of the ADC (4K samples/sec) that may have considerable load on the CPU. Though using PDB to trigger ADC may reduce some CPU load, the ADC supports DMA request functionality for higher performance when the ADC is sampled at a very high rate or cases where PDB is bypassed. The ADC can trigger the DMA (via DMA req) on conversion completion.

3.7.1.3 ADCx Connections/Channel Assignment

NOTE

As indicated by the following sections, each ADCx_DPx input and certain ADCx_DMx inputs may operate as single-ended ADC channels in single-ended mode.

3.7.1.3.1 ADC0 channel assignment Table 3-41. ADC0 Assignments

ADC Channel	Channel	Input signal (SC1n[DIFF]= 1)	Input signal (SC1n[DIFF]= 0)
(SC1n[ADCH])			
00000	DAD0	ADC0_DP0 and ADC0_DM0 ¹	ADC0_DP0 ²
00001	DAD1	ADC0_DP1 and ADC0_DM1	ADC0_DP1
00010	DAD2	ADC0_DP2 and ADC0_DM2 ³	ADC0_DP2 ⁴
00011	DAD3	ADC0_DP3 and ADC0_DM3 ⁵	ADC0_DP3 ⁶
00100 ⁷	AD4a	Reserved	Reserved
00101 ⁷	AD5a	Reserved	Reserved
00110 ⁷	AD6a	Reserved	Reserved
00111 ⁷	AD7a	Reserved	Reserved
00100 ⁷	AD4b	Reserved	ADC0_SE4b
00101 ⁷	AD5b	Reserved	ADC0_SE5b
00110 ⁷	AD6b	Reserved	ADC0_SE6b
00111 ⁷	AD7b	Reserved	ADC0_SE7b
01000	AD8	Reserved	ADC0_SE8 ⁸
01001	AD9	Reserved	ADC0_SE9 ⁹
01010	AD10	Reserved	Reserved
01011	AD11	Reserved	Reserved
01100	AD12	Reserved	ADC0_SE12
01101	AD13	Reserved	ADC0_SE13
01110	AD14	Reserved	ADC0_SE14
01111	AD15	Reserved	ADC0_SE15
10000	AD16	Reserved	ADC0_SE16

Table continues on the next page...

Table 3-41. ADC0 Assignments (continued)

ADC Channel	Channel	Input signal (SC1n[DIFF]= 1)	Input signal (SC1n[DIFF]= 0)
(SC1n[ADCH])			
10001	AD17	Reserved	ADC0_SE17
10010	AD18	Reserved	ADC0_SE18
10011	AD19	Reserved	ADC0_DM0 ¹⁰
10100	AD20	Reserved	ADC0_DM1
10101	AD21	Reserved	ADC0_SE21
10110	AD22	Reserved	ADC0_SE22
10111	AD23	Reserved	12-bit DAC0 Output/ADC0_SE23
11000	AD24	Reserved	Reserved
11001	AD25	Reserved	Reserved
11010	AD26	Temperature Sensor (Diff)	Temperature Sensor (S.E)
11011	AD27	Bandgap (Diff) ¹¹	Bandgap (S.E) ¹¹
11100	AD28	Reserved	Reserved
11101	AD29	-VREFH (Diff)	VREFH (S.E)
11110	AD30	Reserved	VREFL
11111	AD31	Module Disabled	Module Disabled

- 1. Interleaved with ADC1_DP3 and ADC1_DM3
- 2. Interleaved with ADC1_DP3
- 3. Interleaved with ADC1_DP1 and ADC1_DM1
- 4. Interleaved with ADC1_DP1
- 5. Interleaved with ADC1_DP0 and ADC1_DM0
- 6. Interleaved with ADC1_DP0
- 7. ADCx_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b. Refer to MUXSEL description in ADC chapter for details.
- 8. Interleaved with ADC1_SE8
- 9. Interleaved with ADC1_SE9
- Interleaved with ADC1_DM3
- 11. This is the PMC bandgap 1V reference voltage and not the VREF module 1.2 V reference voltage. Prior to reading from this ADC channel, ensure that you enable the bandgap buffer by setting the PMC_REGSC[BGBE] bit. Refer to the device data sheet for the bandgap voltage (V_{BG}) specification.

3.7.1.3.2 ADC1 channel assignment Table 3-42. ADC1 Assignments

ADC Channel	Channel	Input signal (SC1n[DIFF]= 1)	Input signal (SC1n[DIFF]= 0)
(SC1n[ADCH])			
00000	DAD0	ADC1_DP0 and ADC1_DM0 ¹	ADC1_DP0 ²
00001	DAD1	ADC1_DP1 and ADC1_DM1	ADC1_DP1
00010	DAD2	Reserved	Reserved
00011	DAD3	ADC1_DP3 and ADC1_DM3 ³	ADC1_DP3 ⁴
00100 ⁵	AD4a	Reserved	ADC1_SE4a
00101 ⁵	AD5a	Reserved	ADC1_SE5a

Table continues on the next page...

Table 3-42. ADC1 Assignments (continued)

ADC Channel	Channel	Input signal (SC1n[DIFF]= 1)	Input signal (SC1n[DIFF]= 0)
(SC1n[ADCH])			
00110 ⁵	AD6a	Reserved	ADC1_SE6a
00111 ⁵	AD7a	Reserved	ADC1_SE7a
00100 ⁵	AD4b	Reserved	ADC1_SE4b
00101 ⁵	AD5b	Reserved	ADC1_SE5b
00110 ⁵	AD6b	Reserved	ADC1_SE6b
00111 ⁵	AD7b	Reserved	ADC1_SE7b
01000	AD8	Reserved	ADC1_SE8 ⁶
01001	AD9	Reserved	ADC1_SE9 ⁷
01010	AD10	Reserved	Reserved
01011	AD11	Reserved	Reserved
01100	AD12	Reserved	ADC1_SE12
01101	AD13	Reserved	ADC1_SE13
01110	AD14	Reserved	ADC1_SE14
01111	AD15	Reserved	ADC1_SE15
10000	AD16	Reserved	ADC1_SE16
10001	AD17	Reserved	ADC1_SE17
10010	AD18	Reserved	VREF Output/ADC1_SE18
10011	AD19	Reserved	ADC1_DM0 ⁸
10100	AD20	Reserved	ADC1_DM1
10101	AD21	Reserved	Reserved
10110	AD22	Reserved	VBAT
10111	AD23	Reserved	12-bit DAC1 Output/ADC1_SE23
11000	AD24	Reserved	Reserved
11001	AD25	Reserved	Reserved
11010	AD26	Temperature Sensor (Diff)	Temperature Sensor (S.E)
11011	AD27	Bandgap (Diff) ⁹	Bandgap (S.E) ⁹
11100	AD28	Reserved	Reserved
11101	AD29	-VREFH (Diff)	VREFH (S.E)
11110	AD30	Reserved	VREFL
11111	AD31	Module Disabled	Module Disabled
	l .	l	1

- 1. Interleaved with ADC0_DP3 and ADC0_DM3
- 2. Interleaved with ADC0_DP3
- 3. Interleaved with ADC0_DP0 and ADC0_DM0
- 4. Interleaved with ADC0_DP0
- 5. ADCx_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b. Refer to MUXSEL description in ADC chapter for details.
- 6. Interleaved with ADC0_SE8
- 7. Interleaved with ADC0_SE9
- 8. Interleaved with ADC0_DM3
- 9. This is the PMC bandgap 1V reference voltage and not the VREF module 1.2 V reference voltage. Prior to reading from this ADC channel, ensure that you enable the bandgap buffer by setting the PMC_REGSC[BGBE] bit. Refer to the device data sheet for the bandgap voltage (V_{BG}) specification.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

3.7.1.4 ADC Channels MUX Selection

The following figure shows the assignment of ADCx_SEn channels a and b through a MUX selection to ADC. To select between alternate set of channels, refer to ADCx_CFG2[MUXSEL] bit settings for more details.

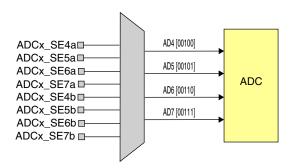


Figure 3-31. ADCx_SEn channels a and b selection

3.7.1.5 ADC Hardware Interleaved Channels

The AD8 and AD9 channels on ADCx are interleaved in hardware using the following configuration.

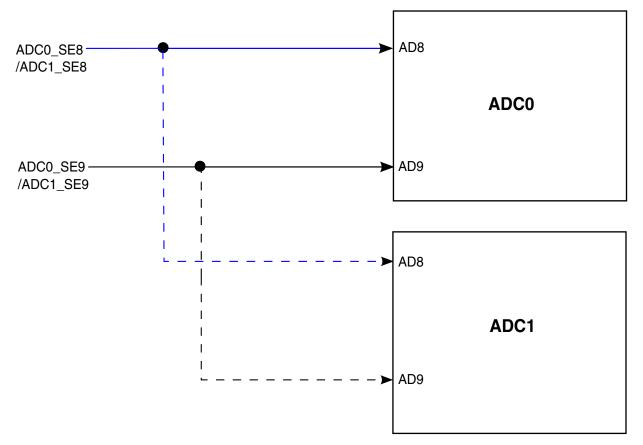


Figure 3-32. ADC hardware interleaved channels integration

There are other pins on this device that have a similar interleave configuration, including the plus side of differential pair pins available (for example ADC0_DP0 and ADC1_DP3). Refer to the Signal Multiplexing and Pin Assignments table for this device.

3.7.1.6 ADC Reference Options

The ADC supports the following references:

- VREFH/VREFL connected as the primary reference option
- 1.2 V VREF_OUT connected as the $V_{ALT} \, reference \, option$

ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC. Refer to REFSEL description in ADC chapter for more details.

3.7.1.7 VBAT connection to ADC input channel

The VBAT supply input can be converted as a single ended input to ADC1 Channel 22. When VBAT is greater than the selected voltage reference, the conversion result will show a saturated result (~0xFFFF in 16-bit operation). When measuring the VBAT voltage level the ADC should be configured for a long sample time (ADC1_CFG1[ADLSMP]=1, ADC1_CFG2[ADLSTS]=00).

3.7.1.8 ADC triggers

The ADC supports both software and hardware triggers. The primary hardware mechanism for triggering the ADC is the PDB. The PDB itself can be triggered by other peripherals. For example: RTC (Alarm, Seconds) signal is connected to the PDB. The PDB input trigger can receive the RTC (alarm/seconds) trigger forcing ADC conversions in run mode (where PDB is enabled). On the other hand, the ADC can conduct conversions in low power modes, not triggered by PDB. This allows the ADC to do conversions in low power mode and store the output in the result register. The ADC generates interrupt when the data is ready in the result register that wakes the system from low power mode. The PDB can also be bypassed by using the ADCxTRGSEL bits in the SIM_SOPT7 register.

SIM_SOPT7[ADCxTRGSEL] Selected source 0000 PDB external trigger pin input (PDB0_EXTRG) 0001 CMP0 output 0010 CMP1 output 0011 Reserved 0100 PIT trigger 0 PIT trigger 1 0101 0110 PIT trigger 2 PIT trigger 3 0111 1000 FTM0 trigger 1001 FTM1 trigger 1010 FTM2 trigger 1011 FTM3 trigger 1100 RTC alarm 1101 RTC seconds 1110 LPTMR trigger 1111 Reserved

Table 3-43. ADC Alternate trigger options

For operation of triggers in different modes, refer to Power Management chapter.

3.7.1.9 ADC conversion clock options

The ADC has multiple input clock sources. Selection is determined by ADCx_CFG1[ADICLK] bitfield. The following table shows the chip-specific clock assignments for this bitfield.

NOTE

The ALTCLK option is only usable when OSCERCLK is in the MHz range. A system with OSCERCLK in the kHz range has the optional clock source below minimum ADC clock operating frequency.

ADCx_CFG1[ADICLK] **ADC** defined Chip clock Note selection 00 **Bus Clock Bus Clock** Note 1 01 ALTCLK2 IRC48MCLK 10 **OSCERCLK** Note 1 ALTCLK 11 Asynchronous clock Note¹ N/A - sourced from (ADACK) within ADC block

Table 3-44. ADC Conversion Clock Options

3.7.1.10 ADC low-power modes

This table shows the ADC low-power modes and the corresponding chip low-power modes.

Module mode	Chip mode	
Wait	Wait, VLPW	
Normal Stop	Stop, VLPS	
Low Power Stop	LLS, VLLS3, VLLS2, VLLS1, VLLS0	

Table 3-45. ADC low-power modes

3.7.2 CMP Configuration

^{1.} For ADC operation in Compute only, PSTOP1, Stop and VLPS, ADACK and the alternate clock sources are allowed clock sources. Note however that ALTCLK2 is force disabled and therefore not available in VLPS.

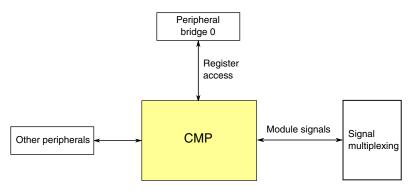


Figure 3-33. CMP configuration

Table 3-46. Reference links to related information

Topic	Related module	Reference
Full description	Comparator (CMP)	Comparator
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.7.2.1 CMP input connections

The following table shows the fixed internal connections to the CMP.

Table 3-47. CMP input connections

CMP Inputs	СМРО	CMP1
IN0	CMP0_IN0	CMP1_IN0
IN1	CMP0_IN1	CMP1_IN1
IN2	CMP0_IN2	CMP1_IN2
IN3	CMP0_IN3	12-bit DAC0_OUT/CMP1_IN3
IN4	12-bit DAC1 Output/CMP0_IN4	_
IN5	VREF Output/CMP0_IN5	VREF Output/CMP1_IN5
IN6	Bandgap	Bandgap
IN7	6b DAC0 Reference	6b DAC1 Reference

3.7.2.2 CMP external references

The 6-bit DAC sub-block supports selection of two references. For this device, the references are connected as follows:

- VREF_OUT V_{in1} input
- VDD V_{in2} input

3.7.2.3 External window/sample input

Individual PDB pulse-out signals control each CMP Sample/Window timing.

3.7.2.4 CMP trigger mode

The CMP and 6-bit DAC sub-block supports trigger mode operation when the CMPx_CR1[TRIGM] is set. When trigger mode is enabled, the trigger event will initiate a compare sequence that must first enable the CMP and DAC prior to performing a CMP operation and capturing the output. In this device, control for this two staged sequencing is provided from the LPTMR. The LPTMR provides a single trigger output to all implemented comparators. Through configuration of the CMPx_CR1[TRIGM] bits the trigger can be used to trigger a single comparator or multiple comparators concurrently. The LPTMR triggering output is always enabled when the LPTMR is enabled. The first signal is supplied to enable the CMP and DAC and is asserted at the same time as the TCF flag is set. The delay to the second signal that triggers the CMP to capture the result of the compare operation is dependent on the LPTMR configuration. In Time Counter mode with prescaler enabled, the delay is 1/2 Prescaler output period. In Time Counter mode with prescaler bypassed, the delay is 1/2 Prescaler clock period.

The delay between the first signal from LPTMR and the second signal from LPTMR must be greater than the Analog comparator initialization delay as defined in the device datasheet.

3.7.3 12-bit DAC Configuration

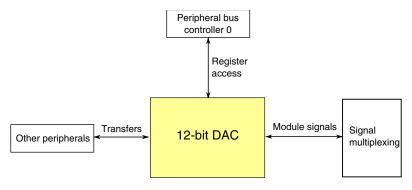


Figure 3-34. 12-bit DAC configuration

Table 3-48. Reference links to related information

Topic	Related module	Reference
Full description	12-bit DAC	12-bit DAC
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.7.3.1 12-bit DAC Overview

This device contains two 12-bit digital-to-analog converters (DAC) with programmable reference generator output. The DAC includes a FIFO for DMA support.

3.7.3.2 12-bit DAC Output

The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator or ADC.

3.7.3.3 12-bit DAC Reference

For this device VREF_OUT and VDDA are selectable as the DAC reference. VREF_OUT is connected to the DACREF_1 input and VDDA is connected to the DACREF_2 input. Use DACx_C0[DACRFS] control bit to select between these two options.

Be aware that if the DAC and ADC use the VREF_OUT reference simultaneously, some degradation of ADC accuracy is to be expected due to DAC switching.

3.7.4 VREF Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

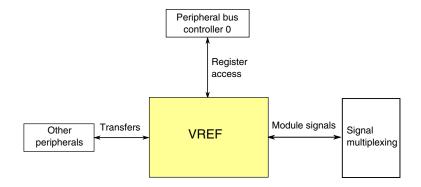


Figure 3-35. VREF configuration

 Topic
 Related module
 Reference

 Full description
 VREF
 VREF

 System memory map
 System memory map

 Clocking
 Clock distribution

 Power management
 Power management

 Signal multiplexing
 Port control

 Signal multiplexing

Table 3-49. Reference links to related information

3.7.4.1 VREF Overview

This device includes a voltage reference (VREF) to supply an accurate 1.2 V voltage output.

The voltage reference can provide a reference voltage to external peripherals or a reference to analog peripherals, such as the ADC, DAC, or CMP.

NOTE

PMC_REGSC[BGEN] bit must be set if the VREF regulator is required to remain operating in VLPx modes.

NOTE

For either an internal or external reference if the VREF_OUT functionality is being used, VREF_OUT signal must be

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

connected to an output load capacitor. Refer the device data sheet for more details.

3.8 Timers

3.8.1 PDB Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

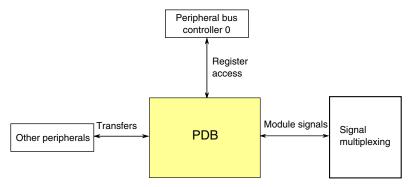


Figure 3-36. PDB configuration

Table 3-50. Reference links to related information

Topic	Related module	Reference	
Full description	PDB	PDB	
System memory map		System memory map	
Clocking		Clock distribution	
Power management		Power management	
Signal multiplexing	Port control	Signal multiplexing	

3.8.1.1 PDB Instantiation

3.8.1.1.1 PDB Output Triggers

Table 3-51. PDB output triggers

Number of PDB channels for ADC trigger	2
Number of pre-triggers per PDB channel	2

Table continues on the next page...

Table 3-51. PDB output triggers (continued)

Number of DAC triggers	2
Number of PulseOut	2

3.8.1.1.2 PDB Input Trigger Connections Table 3-52. PDB Input Trigger Options

PDB Trigger	PDB Input
0000	External Trigger
0001	CMP 0
0010	CMP 1
0011	Reserved
0100	PIT Ch 0 Output
0101	PIT Ch 1 Output
0110	PIT Ch 2 Output
0111	PIT Ch 3 Output
1000	FTM0 initialization trigger and channel triggers, as programmed in the FTM external trigger register (EXTTRIG)
1001	FTM1 initialization trigger and channel triggers, as programmed in the FTM external trigger register (EXTTRIG)
1010	FTM2 initialization trigger and channel triggers, as programmed in the FTM external trigger register (EXTTRIG)
1011	FTM3 initialization trigger and channel triggers, as programmed in the FTM external trigger register (EXTTRIG)
1100	RTC Alarm
1101	RTC Seconds
1110	LPTMR Output
1111	Software Trigger

3.8.1.2 PDB Module Interconnections

PDB trigger outputs	Connection	
Channel 0 triggers	ADC0 trigger	
Channel 1 triggers	ADC1 trigger and synchronous input 1 of FTM0	
DAC triggers DAC0 and DAC1 trigger		
Pulse-out	Pulse-out connected to each CMP module's sample/window input to control sample operation	

3.8.1.3 Back-to-back acknowledgement connections

Back-to-back operation enables the ADC conversions complete to trigger the next PDB channel pre-trigger and trigger output.

In this MCU, PDB back-to-back operation acknowledgment connections are implemented as follows:

- PDB channel 0 trigger/pre-trigger 0 acknowledgement input: ADC1SC1B COCO
- PDB channel 0 trigger/pre-trigger 1 acknowledgement input: ADC0SC1A_COCO
- PDB channel 1 trigger/pre-trigger 0 acknowledgement input: ADC0SC1B_COCO
- PDB channel 1 trigger/pre-trigger 1 acknowledgement input: ADC1SC1A_COCO

So, the back-to-back chain is connected as a ring:

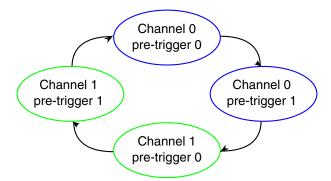


Figure 3-37. PDB back-to-back chain

The application code can set the PDBx_CHnC1[BB] bits to configure the PDB pre-triggers as a single chain or several chains.

3.8.1.4 PDB Interval Trigger Connections to DAC

In this MCU, PDB interval trigger connections to DAC are implemented as follows.

- PDB interval trigger 0 connects to DAC0 hardware trigger input.
- PDB interval trigger 1 connects to DAC1 hardware trigger input.

3.8.1.5 DAC External Trigger Input Connections

In this MCU, the following DAC external trigger inputs are implemented.

- DAC external trigger input 0: ADC0SC1A_COCO
- DAC external trigger input 1: ADC1SC1A_COCO

NOTE

Application code can set the PDBx_DACINTCn[EXT] bit to allow DAC external trigger input when the corresponding ADC Conversion complete flag, ADCx_SC1n[COCO], is set.

3.8.1.6 Pulse-Out Connection

Individual PDB Pulse-Out signals are connected to each CMP block and used for sample window.

3.8.1.7 Pulse-Out Enable Register Implementation

The following table shows the comparison of pulse-out enable register at the module and chip level.

Table 3-53. PDB pulse-out enable register

Register	Module implementation	Chip implementation
POnEN	7:0 - POEN	0 - POEN[0] for CMP0
	31:8 - Reserved	1 - POEN[1] for CMP1
		31:2 - Reserved

3.8.2 FlexTimer Configuration

Timers

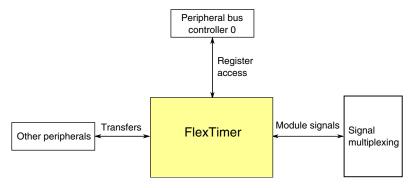


Figure 3-38. FlexTimer configuration

Table 3-54. Reference links to related information

Topic	Related module	Reference	
Full description	FlexTimer	FlexTimer	
System memory map		System memory map	
Clocking		Clock distribution	
Power management		Power management	
Signal multiplexing	Port control	Signal multiplexing	

3.8.2.1 Instantiation Information

This device contains four FlexTimer modules.

The following table shows how these modules are configured.

Table 3-55. FTM Instantiations

FTM instance	Number of channels	Features/usage
FTM0	8	3-phase motor + 2 general purpose or stepper motor
FTM1	21	Quadrature decoder or general purpose
FTM2	21	Quadrature decoder or general purpose
FTM3	8	3-phase motor + 2 general purpose or stepper motor

1. Only channels 0 and 1 are available.

3.8.2.2 External Clock Options

By default each FTM is clocked by the internal bus clock (the FTM refers to it as system clock). Each module contains a register setting that allows the module to be clocked from an external clock instead. There are two external FTM_CLKINx pins that can be selected by any FTM module via the SIM_SOPT4 register.

3.8.2.3 Fixed frequency clock

The fixed frequency clock for each FTM is MCGFFCLK.

3.8.2.4 FTM Interrupts

The FlexTimer has multiple sources of interrupt. However, these sources are OR'd together to generate a single interrupt request per FTM module to the interrupt controller. When an FTM interrupt occurs, read the FTM status registers (FMS, SC, and STATUS) to determine the exact interrupt source.

3.8.2.5 FTM Fault Detection Inputs

The following fault detection input options for the FTM modules are selected via the SIM_SOPT4 register. The external pin option is selected by default.

- FTM0 FAULT0 = FTM0_FLT0 pin or CMP0 output
- FTM0 FAULT1 = FTM0_FLT1 pin or CMP1 output
- FTM0 FAULT2 = FTM0_FLT2 pin
- FTM0 FAULT3 = FTM0_FLT3 pin
- FTM1 FAULT0 = FTM1_FLT0 pin or CMP0 output
- FTM1 FAULT1 = CMP1 output
- FTM2 FAULT0 = FTM2_FLT0 pin or CMP0 output
- FTM2 FAULT1 = CMP1 output
- FTM3 FAULT0 = FTM3_FLT0 pin or CMP0 output

3.8.2.6 FTM Hardware Triggers

The FTM synchronization hardware triggers are connected in the chip as follows:

Timers

- FTM0 hardware trigger 0 = SIM_SOPT8[FTM0SYNCBIT] or CMP0 Output or FTM1 Match (when enabled in the FTM1 External Trigger (EXTTRIG) register)
- FTM0 hardware trigger 1 = PDB channel 1 Trigger Output or FTM2 Match (when enabled in the FTM2 External Trigger (EXTTRIG) register)
- FTM0 hardware trigger 2 = FTM0_FLT0 pin
- FTM1 hardware trigger 0 = SIM_SOPT8[FTM1SYNCBIT] or CMP0 Output
- FTM1 hardware trigger 1 = CMP1 Output
- FTM1 hardware trigger 2 = FTM1_FLT0 pin
- FTM2 hardware trigger 0 = SIM_SOPT8[FTM2SYNCBIT] or CMP0 Output
- FTM2 hardware trigger 2 = FTM2_FLT0 pin
- FTM3 hardware trigger 0 = SIM_SOPT8[FTM3SYNCBIT] or FTM1 Match (when enabled in the FTM1 External Trigger (EXTTRIG) register)
- FTM3 hardware trigger 1 = FTM2 Match (when enabled in the FTM2 External Trigger (EXTTRIG) register)
- FTM3 hardware trigger 2 = FTM3_FLT0 pin

Having FTMxSYNCBIT fields in the same SOPTx register allows the user to synchronise all FTM timers via their respective TRIG0 input. For the triggers with more than one additional option, the SIM_SOPT4 register implements control fields for selecting the option.

3.8.2.7 Input capture options for FTM module instances

The following channel 0 input capture source options are selected via SIM_SOPT4. The external pin option is selected by default.

- FTM1 channel 0 input capture = FTM1_CH0 pin or CMP0 output or CMP1 output or USB start of frame pulse
- FTM2 channel 0 input capture = FTM2_CH0 pin or CMP0 output or CMP1 output
- FTM2 channel 1 input capture = FTM2_CH1 pin or exclusive OR of FTM2_CH0, FTM2_CH1, and FTM1_CH1. See FTM Hall sensor support.

NOTE

When the USB start of frame pulse option is selected as an FTM channel input capture, disable the USB SOF token interrupt in the USB Interrupt Enable register (INTEN[SOFTOKEN]) to avoid USB enumeration conflicts.

3.8.2.8 FTM Hall sensor support

For 3 phase motor control sensor-ed applications the use of Hall sensors, generally 3 sensors placed 120 degrees apart around the rotor, are deployed to detect position and speed. Each of the 3 sensors provides a pulse that applied to an input capture pin, can then be analyzed and both speed and position can be deduced. This device has two 2-channel FTMs. (FTM1 and FTM2) and thus provides 4 input capture pins. To simplify the calculations required by the CPU on each hall sensor's input, if all 3 inputs are "exclusively OR'd" into one timer channel and the free running counter is refreshed on every edge then this can simplify the speed calculation.

Via the SIM module and SIM_SOPT4 register the FTM2CH1SRC bit provides the choice of normal FTM2_CH1 input or the XOR of FTM2_CH0, FTM2_CH1 and FTM1_CH1 pins that will be applied to FTM2_CH1.

Note: If the user utilizes FTM1_CH1 to be an input to FTM2_CH1, FTM1_CH0 can still be utilized for other functions.

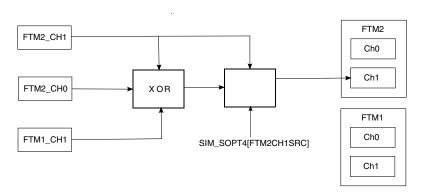


Figure 3-39. FTM Hall Sensor Configuration

3.8.2.9 FTM modulation implementation

FTM0 and FTM3 support a modulation function where the output channels when configured as PWM or Output Compare mode modulate another timer output when the channel signal is asserted. Any of the 8 channels of FTM0 and any of the 8 channels of FTM3 can be configured to support this modulation function.

The SIM_SOPT8 register has eight control bits (FTM0CHySRC) that allow the user to select normal PWM/Output Compare mode on the corresponding FTM timer channel or modulate with FTM1_CH1. The diagram below shows the implementation for FTM0. FTM3 has similar implementation controlled by SIM_SOPT8[FTM3CHySRC] on each of its 8 channels with modulation possible via FTM2_CH1. See SIM Block Guide for further information.

Timers

When FTM1_CH1 is used to modulate an FTM0 channel, then the user must configure FTM1_CH1 to provide a signal that has a higher frequency than the modulated FTM0 channel output. Also it limits the use of the FTM1_CH0 function, as the FTM1_CH1 will be programmed to provide a 50% duty PWM signal and limit the start and modulus values for the free running counter. FTM2 has a similar restriction when FTM2_CH1 is used for modulating an FTM3 channel.

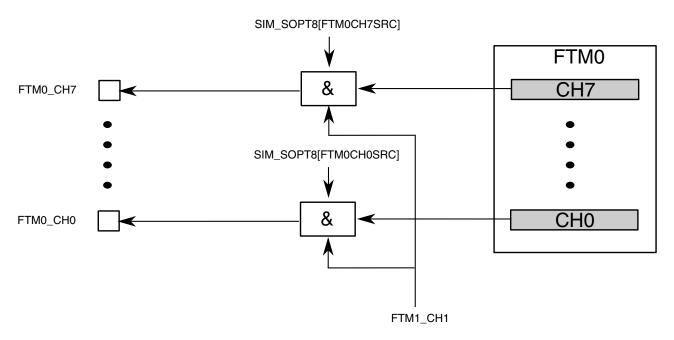


Figure 3-40. FTM Output Modulation

3.8.2.10 FTM output triggers for other modules

FTM output triggers can be selected as input triggers for the PDB and ADC modules. See PDB Instantiation and ADC triggers.

3.8.2.11 FTM Global Time Base

This chip provides the optional FTM global time base feature (see Global time base (GTB)).

FTM0 provides the only source for the FTM global time base. The other FTM modules can share the time base as shown in the following figure:

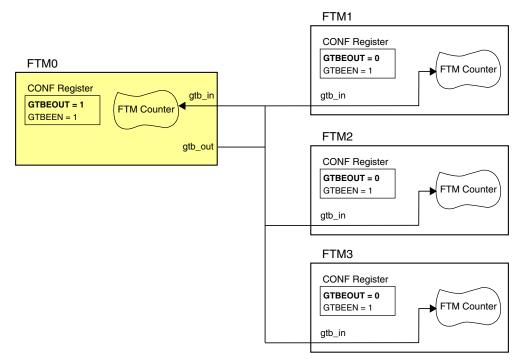


Figure 3-41. FTM Global Time Base Configuration

3.8.2.12 FTM BDM and debug halt mode

In the FTM chapter, references to the chip being in "BDM" are the same as the chip being in "debug halt mode".

3.8.3 PIT Configuration

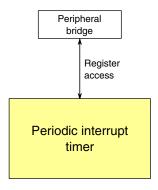


Figure 3-42. PIT configuration

Table 3-56. Reference links to related information

Topic	Related module	Reference	
Full description	PIT	PIT	
System memory map		System memory map	
Clocking		Clock Distribution	
Power management		Power management	

3.8.3.1 PIT/DMA Periodic Trigger Assignments

The PIT generates periodic trigger events to the DMA Mux as shown in the table below.

Table 3-57. PIT channel assignments for periodic DMA triggering

DMA Channel Number	PIT Channel
DMA Channel 0	PIT Channel 0
DMA Channel 1	PIT Channel 1
DMA Channel 2	PIT Channel 2
DMA Channel 3	PIT Channel 3

3.8.3.2 PIT/ADC Triggers

PIT triggers are selected as ADCx trigger sources using the SIM_SOPT7[ADCxTRGSEL] fields. For more details, refer to SIM chapter.

3.8.4 Low-power timer configuration

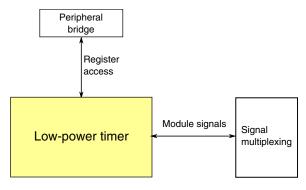


Figure 3-43. LPTMR configuration

Table 3-58. Reference links to related information

Topic	Related module	Reference	
Full description	Low-power timer	Low-power timer	
System memory map		System memory map	
Clocking		Clock Distribution	
Power management		Power management	
Signal Multiplexing	Port control	Signal Multiplexing	

3.8.4.1 LPTMR prescaler/glitch filter clocking options

The prescaler and glitch filter of the LPTMR module can be clocked from one of four sources determined by the LPTMR0_PSR[PCS] bitfield. The following table shows the chip-specific clock assignments for this bitfield.

NOTE

The chosen clock must remain enabled if the LPTMR is to continue operating in all required low-power modes.

LPTMR0_PSR[PCS]	Prescaler/glitch filter clock number	Chip clock
00	0	MCGIRCLK — internal reference clock (not available in VLPS/LLS/VLLS modes)
01	1	LPO — 1 kHz clock (not available in VLLS0 mode)
10	2	ERCLK32K — secondary external reference clock
11	3	OSCERCLK_UNDIV — Undivided external reference clock (not available in VLLS0 mode)

See Clock Distribution for more details on these clocks.

3.8.4.2 LPTMR pulse counter input options

The LPTMR_CSR[TPS] bitfield configures the input source used in pulse counter mode. The following table shows the chip-specific input assignments for this bitfield.

LPTMR_CSR[TPS]	Pulse counter input number	Chip input
00	0	CMP0 output
01	1	LPTMR_ALT1 pin
10	2	LPTMR_ALT2 pin
11	3	Reserved

3.8.5 RTC configuration

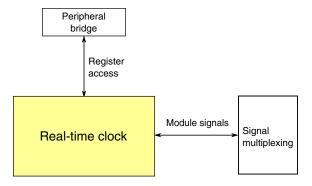


Figure 3-44. RTC configuration

Table 3-59. Reference links to related information

Topic	Related module	Reference
Full description	RTC	RTC
System memory map		System memory map
Clocking		Clock Distribution
Power management		Power management

3.8.5.1 RTC_CLKOUT signal

When the RTC is enabled and the port control module selects the RTC_CLKOUT function, the RTC_CLKOUT signal outputs a 1 Hz or 32 kHz output derived from RTC oscillator as shown below.

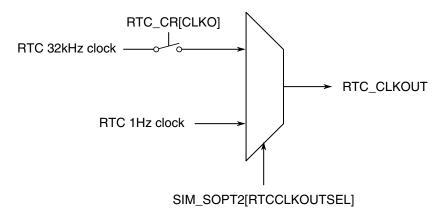


Figure 3-45. RTC_CLKOUT generation

3.9 Communication interfaces

3.9.1 Universal Serial Bus (USB) FS Subsystem

The USB FS subsystem includes these components:

- Dual-role USB OTG-capable (On-The-Go) controller that supports a full-speed (FS) device or FS/LS host. The module complies with the USB 2.0 specification.
- USB transceiver that includes internal 15 $k\Omega$ pulldowns on the D+ and D- lines for host mode functionality.
- A 3.3 V regulator.
- VBUS detect signal: To detect a valid VBUS in device mode, use a GPIO signal that can wake the chip in all power modes. See VBUS detect.
- IRC48 with clock recovery block to eliminate the 48MHz crystal. This is available for USB device mode only.

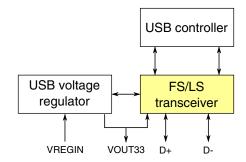


Figure 3-46. USB FS/LS Subsystem Overview

NOTE

Use the following code sequence to select USB clock source, USB clock divide ratio, and enable its clock gate to avoid potential clock glitches which may result in USB enumeration stage failure.

- 1. Select the USB clock source by configuring SIM_SOPT2.
- 2. Select the desired clock divide ratio by configuring SIM_CLKDIV2.
- 3. Enable USB clock gate by setting SIM_SCGC4.

3.9.1.1 **USB Wakeup**

When the USB detects that there is no activity on the USB bus for more than 3 ms, the INT_STAT[SLEEP] bit is set. This bit can cause an interrupt and software decides the appropriate action.

Waking from a low power mode (except in LLS/VLLS mode where USB is not powered) occurs through an asynchronous interrupt triggered by activity on the USB bus. Setting the USBTRC0[USBRESMEN] bit enables this function.

3.9.1.2 USB Power Distribution

This chip includes an internal 5 V to 3.3 V USB regulator that powers the USB transceiver or the MCU (depending on the application).

NOTE

In the following examples, VREGIN is used instead of VREG_INO. Similarly, VOUT33 is used instead of VREGOUT. See Signal multiplexing and signal descriptions for details on the signals for this device.

3.9.1.2.1 AA/AAA cells power supply

The chip can be powered by two AA/AAA cells. In this case, the MCU is powered through VDD which is within the 1.8 to 3.0 V range. After USB cable insertion is detected, the USB regulator is enabled to power the USB transceiver.

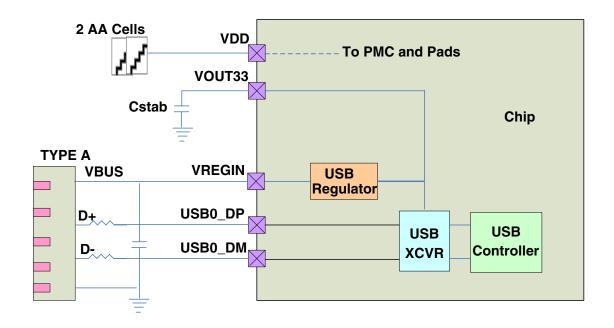


Figure 3-47. USB regulator AA cell usecase

3.9.1.2.2 Li-lon battery power supply

The chip can also be powered by a single Li-ion battery. In this case, VOUT33 is connected to VDD. The USB regulator must be enabled by default to power the MCU. When connected to a USB host, the input source of this regulator is switched to the USB bus supply from the Li-ion battery.

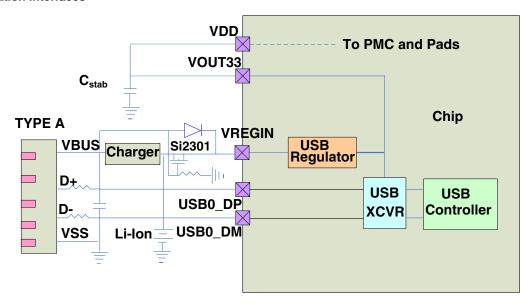


Figure 3-48. USB regulator Li-ion usecase

3.9.1.2.3 USB bus power supply

The chip can also be powered by the USB bus directly. In this case, VOUT33 is connected to VDD. The USB regulator must be enabled by default to power the MCU, then to power USB transceiver or external sensor.

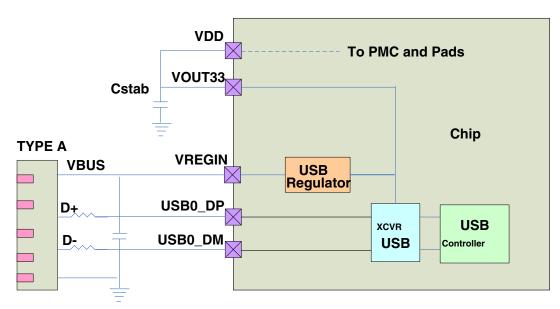


Figure 3-49. USB regulator bus supply

3.9.1.3 USB power management

The regulator should be put into STANDBY mode whenever the chip is in Stop mode.

3.9.1.4 **VBUS** detect

The USB FS controller does not include a dedicated VBUS detect pin. However, a GPIO pin with interrupt capability can be used to detect the presence of VBUS in device mode. If a GPIO pin with LLWU capability is used, VBUS can be detected in all low power modes, including LLS and VLLS.

Software is responsible for detecting VBUS via a GPIO pin and configuring the USB controller appropriately in response to the rising or falling edge of VBUS.

NOTE

An appropriately sized resistive voltage divider must be used if the GPIO pin does not directly support a 5V input.

3.9.1.5 USB controller configuration

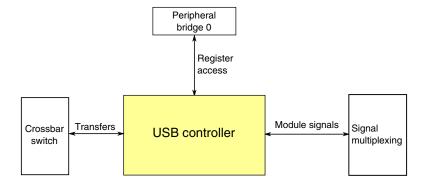


Figure 3-50. USB controller configuration

Table 3-60. Reference links to related information

Topic	Related module	Reference	
Full description	USB controller	USB controller	
System memory map		System memory map	
Clocking		Clock Distribution	
Transfers	Crossbar switch	Crossbar switch	
Signal Multiplexing	Port control	Signal Multiplexing	

NOTE

When USB is not used in the application, it is recommended that the USB regulator VREGIN and VOUT33 pins remain floating.

3.9.1.6 USB Voltage Regulator Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

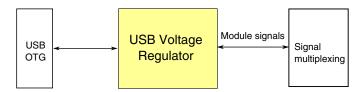


Figure 3-51. USB Voltage Regulator configuration

Table 3-61. Reference links to related information

Topic	Related module	Reference		
Full description	USB Voltage Regulator	USB Voltage Regulator		
System memory map		System memory map		
Clocking		Clock Distribution		
	USB controller	USB controller		
Signal Multiplexing	Port control	Signal Multiplexing		

NOTE

When USB is not used in the application, it is recommended that the USB regulator VREGIN and VOUT33 pins remain floating.

3.9.2 SPI configuration

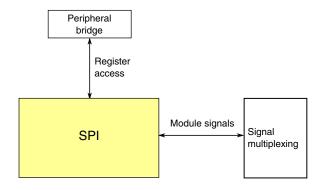


Figure 3-52. SPI configuration

Table 3-62. Reference links to related information

Topic	Related module	Reference	
Full description	SPI	SPI	
System memory map		System memory map	
Clocking		Clock Distribution	
Signal Multiplexing	Port control	Signal Multiplexing	

3.9.2.1 SPI Modules Configuration

This device contains two SPI modules.

3.9.2.2 SPI clocking

The SPI module is clocked by the internal bus clock (the DSPI refers to it as system clock). The module has an internal divider, with a minimum divide is two. So, the SPI can run at a maximum frequency of bus clock/2.

3.9.2.3 Number of CTARs

SPI CTAR registers define different transfer attribute configurations. The SPI module supports up to eight CTAR registers. This device supports two CTARs on all instances of the SPI.

In master mode, the CTAR registers define combinations of transfer attributes, such as frame size, clock phase, clock polarity, data bit ordering, baud rate, and various delays. In slave mode only CTAR0 is used, and a subset of its bitfields sets the slave transfer attributes.

3.9.2.4 TX FIFO size

Table 3-63. SPI transmit FIFO size

SPI Module	Transmit FIFO size	
SPI0	4	
SPI1	1	

3.9.2.5 RX FIFO Size

SPI supports up to 16-bit frame size during reception.

Table 3-64. SPI receive FIFO size

SPI Module	Receive FIFO size	
SPI0	4	
SPI1	1	

3.9.2.6 Number of PCS signals

The following table shows the number of peripheral chip select signals available per SPI module.

Table 3-65. SPI PCS signals

SPI Module	PCS Signals	
SPI0	For packages with greater than 64 pins: SPI_PCS[5:0]	
	For packages with 64 pins: SPI_PCS[4:0]	
SPI1	For packages with greater than 64 pins: SPI_PCS[3:0]	
	For packages with 64 pins: SPI_PCS[1:0]	

3.9.2.7 SPI Operation in Low Power Modes

In VLPR and VLPW modes the SPI is functional; however, the reduced system frequency also reduces the max frequency of operation for the SPI. In VLPR and VLPW modes the max SPI_CLK frequency is 2MHz.

In stop and VLPS modes, the clocks to the SPI module are disabled. The module is not functional, but it is powered so that it retains state.

There is one way to wake from stop mode via the SPI, which is explained in the following section.

3.9.2.7.1 Using GPIO Interrupt to Wake from stop mode

Here are the steps to use a GPIO to create a wakeup upon reception of SPI data in slave mode:

- 1. Point the GPIO interrupt vector to the desired interrupt handler.
- 2. Enable the GPIO input to generate an interrupt on either the rising or falling edge (depending on the polarity of the chip select signal).
- 3. Enter Stop or VLPS mode and Wait for the GPIO interrupt.

NOTE

It is likely that in using this approach the first word of data from the SPI host might not be received correctly. This is dependent on the transfer rate used for the SPI, the delay between chip select assertion and presentation of data, and the system interrupt latency.

3.9.2.8 SPI Doze Mode

The Doze mode for the SPI module is the same as the Wait and VLPW modes for the chip.

3.9.2.9 SPI Interrupts

The SPI has multiple sources of interrupt requests. However, these sources are OR'd together to generate a single interrupt request per SPI module to the interrupt controller. When an SPI interrupt occurs, read the SPI_SR to determine the exact interrupt source.

3.9.2.10 SPI clocks

This table shows the SPI module clocks and the corresponding chip clocks.

Table 3-66. SPI clock connections

Module clock	Chip clock
System Clock	Bus Clock

3.9.2.11 Writing SPI Transmit FIFO

The SPI supports 8-bit or 16-bit writes to the PUSH TX FIFO, allowing a single write to the command word followed by multiple writes to the transmit word. The TX FIFO will save the last command word written, and convert a 8-bit/16-bit write to the transmit word into a 32-bit write that pushes both the command word and transmit word into the TX FIFO (PUSH TX FIFO Register In Master Mode)

A 32-bit write to the SPI_PUSH register will push all 32-bits to the TX FIFO. An 8-bit or 16-bit write to the 16-bit transmit data field will push the data together with the last written command word. An 8-bit or 16-bit write to the command word does not push data onto the FIFO, but that command word is pushed to the TX FIFO on all subsequent 8-bit or 16-bit writes to the transmit data field. This allows a single 16-bit write to the command word to be used for all subsequent 8-bit or 16-bit writes to the transmit data word. Writing a different 16-bit command word will cause all subsequent 8-bit or 16-bit writes to the transmit data word to be pushed to the TX FIFO with the new command word.

3.9.3 I2C Configuration

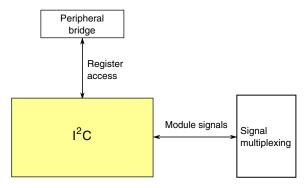


Figure 3-53. I2C configuration

Table 3-67. Reference links to related information

Topic	Related module	Reference	
Full description	I2C	I2C	
System memory map		System memory map	
Clocking		Clock Distribution	
Power management		Power management	
Signal Multiplexing	Port control	Signal Multiplexing	

3.9.3.1 I2C Instantiation Information

This device has two I²C modules.

The I2C module includes SMBus support and DMA support. It also has optional address match wakeup in Stop/VLPS mode.

The digital glitch filter implemented in the IIC module, controlled by the I2Cx_FLT[FLT] registers, is clocked from the bus clock and thus has filter granularity in bus clock cycle counts.

3.9.4 UART Configuration

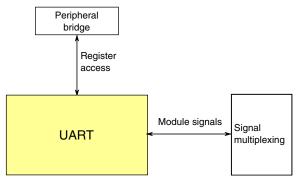


Figure 3-54. UART configuration

Table 3-68. Reference links to related information

Topic	Related module	Reference	
Full description	UART	UART	
System memory map		System memory map	
Clocking		Clock Distribution	
Power management		Power management	
Signal Multiplexing	Port control	Signal Multiplexing	

3.9.4.1 UART configuration information

This chip contains three UART modules. This section describes how each module is configured on this device.

- 1. Standard features of all UARTs:
 - RS-485 support
 - Hardware flow control (RTS/CTS)
 - 9-bit UART to support address mark with parity
 - MSB/LSB configuration on data
- 2. UART0 and UART1 are clocked from the core clock, the remaining UARTs are clocked on the bus clock. The maximum baud rate is 1/16 of related source clock frequency.
- 3. IrDA is available on all UARTs
- 4. UART0 contains the standard features plus ISO7816
- 5. UART0 contains 8-entry transmit and 8-entry receive FIFOs
- 6. All other UARTs contain a 1-entry transmit and receive FIFOs

3.9.4.2 UART wakeup

The UART can be configured to generate an interrupt/wakeup on the first active edge that it receives.

3.9.4.3 UART interrupts

The UART has multiple sources of interrupt requests. However, some of these sources are OR'd together to generate a single interrupt request. See below for the mapping of the individual interrupt sources to the interrupt request:

The status interrupt combines the following interrupt sources:

Source	UART 0	UART 1	UART 2
Transmit data empty	х	x	х
Transmit complete	х	х	х
Idle line	х	х	х
Receive data full	х	x	х
LIN break detect	х	Х	х
RxD pin active edge	x	x	x
Initial character detect	х	_	_

The error interrupt combines the following interrupt sources:

Source	UART 0	UART 1	UART 2
Receiver overrun	х	х	х
Noise flag	х	х	х
Framing error	х	х	х
Parity error	х	х	х
Transmitter buffer overflow	х	х	х
Receiver buffer overflow	х	х	х
Receiver buffer underflow	х	х	х
Transmit threshold (ISO7816)	х	_	_
Receiver threshold (ISO7816)	х	_	_
Wait timer (ISO7816)	х	_	_
Character wait timer (ISO7816)	х	_	_
Block wait timer (ISO7816)	х	_	_
Guard time violation (ISO7816)	х	_	_
ATR duration timer (ISO7816)	х	_	_

3.9.5 LPUART configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

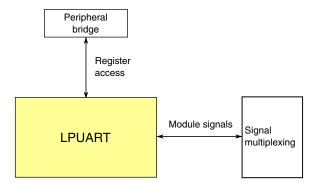


Figure 3-55. LPUART configuration

Table 3-69. Reference links to related information

Topic	Related module	Reference
Full description	LPUART0	LPUART
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.9.5.1 LPUART0 overview

The LPUART0 module supports basic UART with DMA interface function and x4 to x32 oversampling of baud-rate.

The module can remain functional in Stop and VLPS mode provided the clock it is using remains enabled.

This module supports LIN slave operation.

3.9.6 I²S configuration

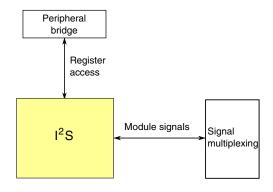


Figure 3-56. I²S configuration

Table 3-70. Reference links to related information

Topic	Related module	Reference
Full description	>l ² S	I2S
System memory map		System memory map
Clocking		Clock Distribution
Power management		Power management
Signal multiplexing	Port control	Signal Multiplexing

3.9.6.1 Instantiation information

This device contains one I²S module.

As configured on the device, module features include:

• TX data lines: 1

• RX data lines: 1

• FIFO size (words): 8

Maximum words per frame: 16
Maximum bit clock divider: 512

3.9.6.2 I²S/SAI clocking

3.9.6.2.1 Audio Master Clock

The audio master clock (MCLK) is used to generate the bit clock when the receiver or transmitter is configured for an internally generated bit clock. The audio master clock can also be output to or input from a pin. The transmitter and receiver have the same audio master clock inputs.

3.9.6.2.2 Bit Clock

The I²S/SAI transmitter and receiver support asynchronous bit clocks (BCLKs) that can be generated internally from the audio master clock or supplied externally. The module also supports the option for synchronous operation between the receiver and transmitter product.

3.9.6.2.3 Bus Clock

The bus clock is used by the control registers and to generate synchronous interrupts and DMA requests.

3.9.6.2.4 I²S/SAI clock generation

Each SAI peripheral can control the input clock selection, pin direction and divide ratio of one audio master clock.

The MCLK Input Clock Select bit of the MCLK Control Register (MCR[MICS]) selects the clock input to the I²S/SAI module's MCLK divider.

The following table shows the input clock selection options on this device.

MCR[MICS]	Clock Selection	
00	System clock	
01	OSC0ERCLK	
10	Not supported	
11	MCGPLLCLK, MCGFLLCLK, or IRC48MCLK	

Table 3-71. I2S0 MCLK input clock selection

The module's MCLK Divide Register (MDR) configures the MCLK divide ratio.

The module's MCLK Output Enable bit of the MCLK Control Register (MCR[MOE]) controls the direction of the MCLK pin. The pin is the input from the pin when MOE is 0, and the pin is the output from the clock divider when MOE is 1.

The transmitter and receiver can independently select between the bus clock and the audio master clock to generate the bit clock. Each module's Clocking Mode field of the Transmit Configuration 2 Register and Receive Configuration 2 Register (TCR2[MSEL] and RCR2[MSEL]) selects the master clock.

The following table shows the TCR2[MSEL] and RCR2[MSEL] field settings for this device.

Table 3-72. I2S0 master clock settings

TCR2[MSEL], RCR2[MSEL]	Master Clock
00	Bus Clock
01	I2S0_MCLK
10	Not supported
11	Not supported

3.9.6.2.5 Clock gating and I²S/SAI initialization

The clock to the I²S/SAI module can be gated using a bit in the SIM. To minimize power consumption, these bits are cleared after any reset, which disables the clock to the corresponding module. The clock enable bit should be set by software at the beginning of the module initialization routine to enable the module clock before initialization of any of the I²S/SAI registers.

3.9.6.3 I²S/SAI operation in low power modes

3.9.6.3.1 Stop and very low power modes

In Stop mode, the SAI transmitter and/or receiver can continue operating provided the appropriate Stop Enable bit is set (TCSR[STOPE] and/or RCSR[STOPE], respectively), and provided the transmitter and/or receiver is/are using an externally generated bit clock or an Audio Master Clock that remains operating in Stop mode. The SAI transmitter and/or receiver can generate an asynchronous interrupt to wake the CPU from Stop mode.

In VLPS mode, the module behaves as it does in stop mode if VLPS mode is entered from run mode. However, if VLPS mode is entered from VLPR mode, the FIFO might underflow or overflow before wakeup from stop mode due to the limits in bus bandwidth. In VLPW and VLPR modes, the module is limited by the maximum bus clock frequencies.

When operating from an internally generated bit clock or Audio Master Clock that is disabled in stop modes:

Human-machine interfaces

In Stop mode, if the Transmitter Stop Enable (TCSR[STOPE]) bit is clear, the transmitter is disabled after completing the current transmit frame, and, if the Receiver Stop Enable (RCSR[STOPE]) bit is clear, the receiver is disabled after completing the current receive frame. Entry into Stop mode is prevented—not acknowledged—while waiting for the transmitter and receiver to be disabled at the end of the current frame.

3.9.6.3.2 Low-leakage modes

When entering low-leakage modes, the Stop Enable (TCSR[STOPE] and RCSR[STOPE]) bits are ignored and the SAI is disabled after completing the current transmit and receive Frames. Entry into stop mode is prevented (not acknowledged) while waiting for the transmitter and receiver to be disabled at the end of the current frame.

3.10 Human-machine interfaces

3.10.1 GPIO configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

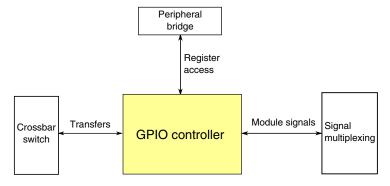


Figure 3-57. GPIO configuration

Table 3-73. Reference links to related information

Topic	Related module	Reference
Full description	GPIO	GPIO
System memory map		System memory map
Clocking		Clock Distribution

Table continues on the next page...

Table 3-73. Reference links to related information (continued)

Topic	Related module	Reference
Power management		Power management
Transfers	Crossbar switch	Clock Distribution
Signal Multiplexing	Port control	Signal Multiplexing

3.10.1.1 Number of GPIO signals

The number of GPIO signals available on the devices covered by this document are detailed in Orderable part numbers.

Eight GPIO pins support a high drive capability - PTB0, PTB1, PTD4, PTD5, PTD6, PTD7, PTC3, and PTC4. All other GPIO support normal drive option only.

PTA4 includes a passive input filter that is enabled or disabled by PORTA_PCR4[PFE] control. This reset default is to have this function disabled.

Human-machine interfaces

Chapter 4 Memory Map

4.1 Introduction

This device contains various memories and memory-mapped peripherals which are located in one 32-bit contiguous memory space. This chapter describes the memory and peripheral locations within that memory space.

4.2 System memory map

The following table shows the high-level device memory map. This map provides the complete architectural address space definition for the various sections. Based on the physical sizes of the memories and peripherals, the actual address regions used may be smaller.

The system memory map includes address spaces that are intended for specific purposes.

- The two ICode regions (address < 0x2000_0000) mapped to the FlexBus space allow code to be executed with maximum performance.
- There is an aliased region that maps a system address space to the Program flash section. Flash region aliasing is specifically intended for references to read-only data coefficients in the flash while still preserving a full Harvard memory organization in the processor core supporting concurrent instruction fetches (for example, from RAM) and data accesses (from flash via the aliased space).
- The bitbanding functionality supported by the processor core uses aliased regions that map to the basic RAM and peripheral address spaces. This functionality maps each 32-bit word of the aliased address space to a unique bit in the underlying RAM or peripheral address space to support single-bit insert and extract operations from the processor.

Table 4-1. System memory map

System 32-bit Address Range	Destination Slave	Access
0x0000_0000-0x07FF_FFFF ¹	Program flash and read-only data	All masters
	(Includes exception vectors in first 1024 bytes)	
0x0800_0000-0x0FFF_FFFF	FlexBus	Cortex-M4 core (M0) only
0x1000_0000-0x17FF_FFFF	Reserved	_
0x1800_0000-0x1BFF_FFFF	FlexBus	Cortex-M4 core (M0) only
0x1C00_0000-0x1FFF_FFFF ²	SRAM_L: Lower SRAM (ICODE/DCODE)	All masters
0x2000_0000-0x200F_FFFF ²	SRAM_U: Upper SRAM bitband region	All masters
0x2010_0000-0x21FF_FFFF	Reserved	_
0x2200_0000-0x23FF_FFFF	Aliased to SRAM_U bitband	Cortex-M4 core only
0x2400_0000-0x2FFF_FFF	Reserved	_
0x3000_0000-0x33FF_FFFF ¹	Program Flash and read-only data	Cortex-M4 core only
0x3400_0000-0x3FFF_FFF	Reserved	_
0x4000_0000-0x4007_FFFF	Bitband region for peripheral bridge 0 (AIPS-Lite0)	Cortex-M4 core & DMA/EzPort
0x4008_0000-0x400F_EFFF	Reserved	_
0x400F_F000-0x400F_FFFF	Bitband region for general purpose input/output (GPIO)	Cortex-M4 core & DMA/EzPort
0x4010_0000-0x41FF_FFFF	Reserved	_
0x4200_0000-0x42FF_FFFF	Aliased to peripheral bridge (AIPS-Lite) bitband	Cortex-M4 core only
0x4300_0000-0x43FD_FFFF	Reserved	_
0x43FE_0000-0x43FF_FFFF	Aliased to general purpose input/output (GPIO) bitband	Cortex-M4 core only
0x4400_0000-0x5FFF_FFF	Reserved	_
0x6000_0000-0x9FFF_FFF	FlexBus (External Memory)	All masters
0xA000_0000-0xDFFF_FFF	FlexBus (External Peripheral - Not executable)	All masters
0xE000_0000-0xE00F_FFFF	Private peripherals	Cortex-M4 core only
0xE010_0000-0xFFFF_FFF	Reserved	_

^{1.} This map provides the complete architectural address space definition for the flash. Based on the physical sizes of the memories implemented for a particular device, the actual address regions used may be smaller. See Flash Memory Sizes for details.

NOTE

1. EzPort master port is statically muxed with DMA master port. Access rights to AIPS-Lite peripheral bridge and general purpose input/output (GPIO) module address space is limited to the core, DMA and EzPort.

^{2.} This range varies depending on amount of SRAM implemented for a particular device. See SRAM sizes for details.

2. ARM Cortex-M4 core access privileges also includes accesses via the debug interface.

4.2.1 Aliased bit-band regions

The SRAM_U, AIPS-Lite, and general purpose input/output (GPIO) module resources reside in the Cortex-M4 processor bit-band regions.

The processor also includes two 32 MB aliased bit-band regions associated with the two 1 MB bit-band spaces. Each 32-bit location in the 32 MB space maps to an individual bit in the bit-band region. A 32-bit write in the alias region has the same effect as a read-modify-write operation on the targeted bit in the bit-band region.

Bit 0 of the value written to the alias region determines what value is written to the target bit:

- Writing a value with bit 0 set writes a 1 to the target bit.
- Writing a value with bit 0 clear writes a 0 to the target bit.

A 32-bit read in the alias region returns either:

- a value of 0x0000_0000 to indicate the target bit is clear
- a value of 0x0000_0001 to indicate the target bit is set

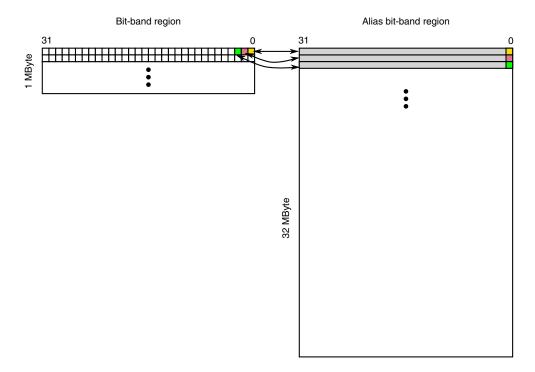


Figure 4-1. Alias bit-band mapping

NOTE

Each bit in bit-band region has an equivalent bit that can be manipulated through bit 0 in a corresponding long word in the alias bit-band region.

4.2.2 Flash Access Control Introduction

The Flash Access Control (FAC) is a Freescale or third-party configurable memory protection scheme optimized to allow end users to utilize software libraries while offering programmable restrictions to these libraries. The flash memory is divided into equal size segments that provide protection to proprietary software libraries. The protection of these segments is controlled as the FAC provides a cycle-by-cycle evaluation of the access rights for each transaction routed to the on-chip flash memory. Configurability allows an increasing number of protected segments while supporting two levels of vendors adding their proprietary software to a device.

Flash access control aligns to the three privilege levels supported by ARM Cortex-M family products where the most secure state - supervisor/privileged secure - aligns to the execute-only and supervisor-only access control. The unsecure state of user non-secure aligns to no access control states set, and the mid-level state where user secure aligns to using the access control of execute-only.

Control for this protection scheme is implemented in Program Once NVM locations and is configurable through a Program Once flash command operations. The NVM locations controlling FAC are unaffected by Erase All Blocks flash command and debug interface initiated mass erase operations.

NOTE

The FAC protection scheme has eight XACC and eight SACC registers to control up to 64 segments. For program flash sizes 128KB or less, the memory is divided into 32 segments, controlled by the four lower-order XACC and SACC registers.

4.3 Flash Memory Map

The flash memory and the flash registers are located at different base addresses as shown in the following figure. The base address for each is specified in System memory map.

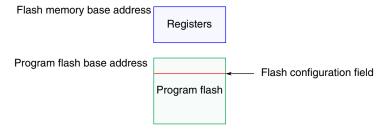


Figure 4-2. Flash memory map

The on-chip Flash is implemented in a portion of the allocated Flash range to form a contiguous block in the memory map beginning at address 0x0000_0000. See Flash Memory Sizes for details of supported ranges.

Accesses to the flash memory ranges outside the amount of Flash on the device causes the bus cycle to be terminated with an error followed by the appropriate response in the requesting bus master. Read collision events in which flash memory is accessed while a flash memory resource is being manipulated by a flash command also generates a bus error response.

4.3.1 Alternate Non-Volatile IRC User Trim Description

The following non-volatile locations (4 bytes) are reserved for custom IRC user trim supported by some development tools. An alternate IRC trim to the factory loaded trim can be stored at this location. To override the factory trim, user software must load new values into the MCG trim registers.

Non-Volatile Byte Address	Alternate IRC Trim Value
0x0000_03FC	Reserved
0x0000_03FD	Reserved
0x0000_03FE (bit 0)	SCFTRIM
0x0000_03FE (bit 4:1)	FCTRIM
0x0000_03FE (bit 6)	FCFTRIM
0x0000_03FF	SCTRIM

4.4 SRAM memory map

The on-chip RAM is split in two regions: SRAM_L and SRAM_U. The RAM is implemented such that the SRAM_L and SRAM_U ranges form a contiguous block in the memory map. See SRAM Configuration for details.

Peripheral bridge (AIPS-Lite) memory map

Accesses to the SRAM_L and SRAM_U memory ranges outside the amount of RAM on the device causes the bus cycle to be terminated with an error followed by the appropriate response in the requesting bus master.

4.5 Peripheral bridge (AIPS-Lite) memory map

Modules that are disabled via their clock gate control bits in the SIM registers disable the associated AIPS slots. Access to any address within an unimplemented or disabled peripheral bridge slot results in a transfer error termination.

For programming model accesses via the peripheral bridges, there is generally only a small range within the 4 KB slots that is implemented. Accessing an address that is not implemented in the peripheral results in a transfer error termination.

4.5.1 Read-after-write sequence and required serialization of memory operations

In some situations, a write to a peripheral must be completed fully before a subsequent action can occur. Examples of such situations include:

- Exiting an interrupt service routine (ISR)
- Changing a mode
- Configuring a function

In these situations, the application software must perform a read-after-write sequence to guarantee the required serialization of the memory operations:

- 1. Write the peripheral register.
- 2. Read the written peripheral register to verify the write.
- 3. Continue with subsequent operations.

NOTE

One factor contributing to these situations is processor write buffering. The processor architecture has a programmable configuration bit to disable write buffering:

ACTLR[DISDEFWBUF]. However, disabling buffered writes is likely to degrade system performance much more than simply performing the required memory serialization for the situations that truly require it.

4.5.2 Peripheral Bridge 0 (AIPS-Lite 0) Memory Map

Table 4-2. Peripheral bridge 0 slot assignments

System 32-bit base address	Slot number	Module
0x4000_0000	0	_
0x4000_1000	1	_
0x4000_2000	2	_
0x4000_3000	3	_
0x4000_4000	4	_
0x4000_5000	5	_
0x4000_6000	6	_
0x4000_7000	7	_
0x4000_8000	8	DMA controller
0x4000_9000	9	DMA controller transfer control descriptors
0x4000_A000	10	_
0x4000_B000	11	_
0x4000_C000	12	FlexBus
0x4000_D000	13	_
0x4000_E000	14	_
0x4000_F000	15	_
0x4001_0000	16	_
0x4001_1000	17	_
0x4001_2000	18	_
0x4001_3000	19	_
0x4001_4000	20	_
0x4001_5000	21	_
0x4001_6000	22	_
0x4001_7000	23	_
0x4001_8000	24	_
0x4001_9000	25	_
0x4001_A000	26	_
0x4001_B000	27	_
0x4001_C000	28	_
0x4001_D000	29	_
0x4001_E000	30	_
0x4001_F000	31	Flash memory controller
0x4002_0000	32	Flash memory
0x4002_1000	33	DMA channel mutiplexer
0x4002_2000	34	_
0x4002_3000	35	_
0x4002_4000	36	_

Table 4-2. Peripheral bridge 0 slot assignments (continued)

System 32-bit base address	Slot number	Module	
0x4002_5000	37	_	
0x4002_6000	38	FlexTimer (FTM) 3	
0x4002_7000	39	Analog-to-digital converter (ADC) 1	
0x4002_8000	40	DAC1	
0x4002_9000	41	Random Number Generator (RNGA)	
0x4002_A000	42	LPUART0	
0x4002_B000	43	_	
0x4002_C000	44	SPI 0	
0x4002_D000	45	SPI 1	
0x4002_E000	46	_	
0x4002_F000	47	I2S 0	
0x4003_0000	48	_	
0x4003_1000	49	_	
0x4003_2000	50	CRC	
0x4003_3000	51	_	
0x4003_4000	52	_	
0x4003_5000	53	_	
0x4003_6000	54	Programmable delay block (PDB)	
0x4003_7000	55	Periodic interrupt timers (PIT)	
0x4003_8000	56	FlexTimer (FTM) 0	
0x4003_9000	57	FlexTimer (FTM) 1	
0x4003_A000	58	FlexTimer (FTM) 2	
0x4003_B000	59	Analog-to-digital converter (ADC) 0	
0x4003_C000	60	_	
0x4003_D000	61	Real-time clock (RTC)	
0x4003_E000	62	VBAT register file	
0x4003_F000	63	DAC0	
0x4004_0000	64	Low-power timer (LPTMR)	
0x4004_1000	65	System register file	
0x4004_2000	66	_	
0x4004_3000	67	_	
0x4004_4000	68	_	
0x4004_5000	69	_	
0x4004_6000	70	_	
0x4004_7000	71	SIM low-power logic	
0x4004_8000	72	System integration module (SIM)	
0x4004_9000	73	Port A multiplexing control	
0x4004_A000	74	Port B multiplexing control	
0x4004_B000	75	Port C multiplexing control	

Table 4-2. Peripheral bridge 0 slot assignments (continued)

System 32-bit base address	Slot number	Module
0x4004_C000	76	Port D multiplexing control
0x4004_D000	77	Port E multiplexing control
0x4004_E000	78	_
0x4004_F000	79	_
0x4005_0000	80	_
0x4005_1000	81	_
0x4005_2000	82	Software watchdog
0x4005_3000	83	_
0x4005_4000	84	_
0x4005_5000	85	_
0x4005_6000	86	_
0x4005_7000	87	_
0x4005_8000	88	_
0x4005_9000	89	_
0x4005_A000	90	_
0x4005_B000	91	_
0x4005_C000	92	_
0x4005_D000	93	_
0x4005_E000	94	_
0x4005_F000	95	_
0x4006_0000	96	_
0x4006_1000	97	External watchdog
0x4006_2000	98	_
0x4006_3000	99	_
0x4006_4000	100	Multi-purpose Clock Generator (MCG)
0x4006_5000	101	System oscillator (OSC)
0x4006_6000	102	I ² C 0
0x4006_7000	103	I ² C 1
0x4006_8000	104	_
0x4006_9000	105	_
0x4006_A000	106	UART 0
0x4006_B000	107	UART 1
0x4006_C000	108	UART 2
0x4006_D000	109	_
0x4006_E000	110	_
0x4006_F000	111	
0x4007_0000	112	_
0x4007_1000	113	_
0x4007_2000	114	USB OTG FS/LS

Table 4-2. Peripheral bridge 0 slot assignments (continued)

System 32-bit base address	Slot number	Module
0x4007_3000	115	Analog comparator (CMP) / 6-bit digital-to-analog converter (DAC)
0x4007_4000	116	Voltage reference (VREF)
0x4007_5000	117	_
0x4007_6000	118	_
0x4007_7000	119	_
0x4007_8000	120	_
0x4007_9000	121	_
0x4007_A000	122	_
0x4007_B000	123	_
0x4007_C000	124	Low-leakage wakeup unit (LLWU)
0x4007_D000	125	Power management controller (PMC)
0x4007_E000	126	System Mode controller (SMC)
0x4007_F000	127	Reset Control Module (RCM)
0x400F_F000		GPIO controller

4.6 Private Peripheral Bus (PPB) memory map

The PPB is part of the defined ARM bus architecture and provides access to select processor-local modules. These resources are only accessible from the core; other system masters do not have access to them.

Table 4-3. PPB memory map

System 32-bit Address Range	Resource
0xE000_0000-0xE000_0FFF	Instrumentation Trace Macrocell (ITM)
0xE000_1000-0xE000_1FFF	Data Watchpoint and Trace (DWT)
0xE000_2000-0xE000_2FFF	Flash Patch and Breakpoint (FPB)
0xE000_3000-0xE000_DFFF	Reserved
0xE000_E000-0xE000_EFFF	System Control Space (SCS) (for NVIC and FPU)
0xE000_F000-0xE003_FFFF	Reserved
0xE004_0000-0xE004_0FFF	Trace Port Interface Unit (TPIU)
0xE004_1000-0xE004_1FFF	Reserved
0xE004_2000-0xE004_2FFF	Reserved
0xE004_3000-0xE004_3FFF	Reserved
0xE004_4000-0xE007_FFFF	Reserved
0xE008_0000-0xE008_0FFF	Miscellaneous Control Module (MCM)
0xE008_1000-0xE008_1FFF	Reserved

Table 4-3. PPB memory map (continued)

System 32-bit Address Range	Resource
0xE008_2000-0xE00F_EFFF	Reserved
0xE00F_F000-0xE00F_FFFF	ROM Table - allows auto-detection of debug components

Private Peripheral Bus (PPB) memory map

Chapter 5 Clock Distribution

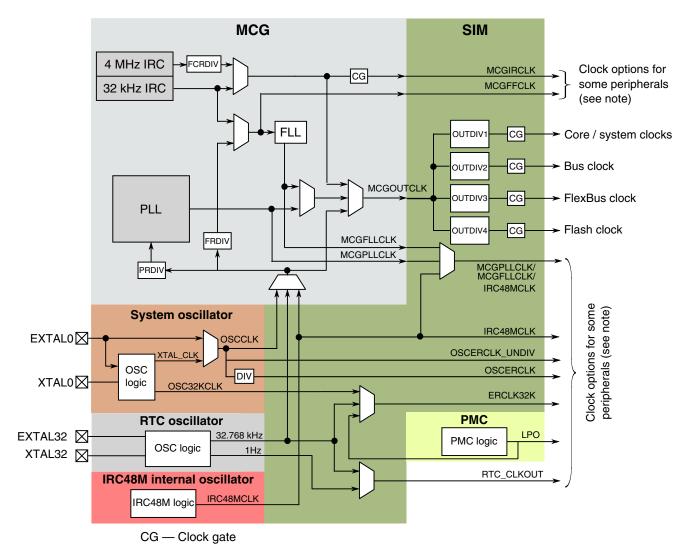
5.1 Introduction

The MCG module controls which clock source is used to derive the system clocks. The clock generation logic divides the selected clock source into a variety of clock domains, including the clocks for the system bus masters, system bus slaves, and flash memory. The clock generation logic also implements module-specific clock gating to allow granular shutoff of modules.

The primary clocks for the system are generated from the MCGOUTCLK clock. The clock generation circuitry provides several clock dividers that allow different portions of the device to be clocked at different frequencies. This allows for trade-offs between performance and power dissipation.

Various modules, such as the USB OTG Controller, have module-specific clocks that can be generated from the IRC48MCLK or MCGPLLCLK or MCGFLLCLK clock. In addition, there are various other module-specific clocks that have other alternate sources. Clock selection for most modules is controlled by the SOPT registers in the SIM module.

5.2 Programming model


The selection and multiplexing of system clock sources is controlled and programmed via the MCG module. The setting of clock dividers and module clock gating for the system are programmed via the SIM module. Reference those sections for detailed register and bit descriptions.

5.3 High-Level device clocking diagram

The following system oscillator, MCG, and SIM module registers control the multiplexers, dividers, and clock gates shown in the below figure:

Clock definitions

	osc	MCG	SIM
Multiplexers	MCG_Cx	MCG_Cx	SIM_SOPT1, SIM_SOPT2
Dividers	_	MCG_Cx	SIM_CLKDIVx
Clock gates	OSC_CR	MCG_C1	SIM_SCGCx

Note: See subsequent sections for details on where these clocks are used.

Figure 5-1. Clocking diagram

5.4 Clock definitions

The following table describes the clocks in the previous block diagram.

Clock name	Description
Core clock	MCGOUTCLK divided by OUTDIV1 clocks the ARM Cortex- M4 core
Platform clock	MCGOUTCLK divided by OUTDIV1, clocks the crossbar switch and NVIC.
System clock	MCGOUTCLK divided by OUTDIV1, clocks the bus masters directly. In addition, this clock is used for UART0 and UART1.
Bus clock	MCGOUTCLK divided by OUTDIV2 clocks the bus slaves and peripheral (excluding memories)
FlexBus clock	MCGOUTCLK divided by OUTDIV3 clocks the external FlexBus interface
Flash clock	MCGOUTCLK divided by OUTDIV4 clocks the flash memory
MCGIRCLK	MCG output of the slow or fast internal reference clock
MCGFFCLK	MCG output of the slow internal reference clock or a divided MCG external reference clock.
MCGOUTCLK	MCG output of either IRC, MCGFLLCLK, MCGPLLCLK or MCG's external reference clock that sources the core, system, bus, FlexBus, and flash clock. It is also an option for the debug trace clock.
MCGFLLCLK	MCG output of the FLL. MCGFLLCLK may clock some modules.
MCGPLLCLK	MCG output of the PLL. MCGFLLCLK or MCGPLLCLK may clock some modules.
IRC48MCLK	Internal 48 MHz oscillator that can be used as a reference to the MCG and also may clock some on-chip modules.
OSCCLK	System oscillator output of the internal oscillator or sourced directly from EXTAL
OSCERCLK	System oscillator output sourced from OSCCLK that may clock some on-chip modules. Dividable by 1, 2, 4, or 8.
OSC32KCLK	System oscillator 32kHz output
ERCLK32K	Clock source for some modules that is chosen as OSC32KCLK or the RTC clock.
RTC clock	RTC oscillator output for the RTC module
LPO	PMC 1kHz output

5.4.1 Device clock summary

The following table provides more information regarding the on-chip clocks.

Table 5-1. Clock Summary

Clock name	High Speed Run mode clock frequency	Run mode clock frequency	VLPR mode clock frequency	Clock source	Clock is disabled when
MCGOUTCLK	Up to 120 MHz	Up to 120 MHz	Up to 4 MHz	MCG	In all stop modes except for partial stop modes and during PLL locking when MCGOUTCLK derived from PLL.
MCGFLLCLK	Up to 100 MHz	Up to 100 MHz	N/A	MCG	MCG clock controls do not enable. Overriding forced disable in all low powers modes (including STOP and VLPx modes).
MCGPLLCLK	Up to 120 MHz	Up to 120 MHz	N/A	MCG	MCG clock controls do not enable,
					in Stop mode but PLLSTEN=0,
					or in VLPS, LLS and VLLSx modes
Core clock	Up to 120 MHz	Up to 80 MHz	Up to 4 MHz	MCGOUTCLK clock divider	In all wait and stop modes
System clock	Up to 120 MHz	Up to 80 MHz	Up to 4 MHz	MCGOUTCLK clock divider	In all stop modes and Compute Operation
Bus clock	Up to 60 MHz	Up to 50 MHz	Up to 4 MHz	MCGOUTCLK clock divider	In all stop modes except for partial STOP2 mode, and Compute Operation
FlexBus clock	Up to 30 MHz	Up to 30 MHz	Up to 4 MHz	MCGOUTCLK clock divider	In all stop modes or
(FB_CLK) Flash clock	Up to 26.67 MHz	Up to 26.67 MHz	Up to 1 MHz in BLPE, Up to 800 kHz in BLPI	MCGOUTCLK clock divider	FlexBus disabled In all stop modes except for partial STOP2 mode
Internal reference	30-40 kHz or 4 MHz	30-40 kHz or 4 MHz	4 MHz only	MCG	MCG_C1[IRCLKEN] cleared,
(MCGIRCLK)	IVII 1Z	IVII IZ			Stop or VLPS mode and MCG_C1[IREFSTE N] cleared, or LLS/VLLS mode

Table 5-1. Clock Summary (continued)

Clock name	High Speed Run mode clock frequency	Run mode clock frequency	VLPR mode clock frequency	Clock source	Clock is disabled when
External reference (OSCERCLK)	Up to 50 MHz (bypass), 30-40 kHz, or 3-32 MHz (crystal)	Up to 50 MHz (bypass), 30-40 kHz, or 3-32 MHz (crystal)	Up to 16 MHz (bypass), 30-40 kHz (low- range crystal) or Up to 16 MHz (high-range crystal)	System OSC	System OSC's OSC_CR[ERCLKE N] cleared, or Stop mode and OSC_CR[EREFST EN] cleared
External reference 32kHz (ERCLK32K)	30-40 kHz	30-40 kHz	30-40 kHz	System OSC or LPO or RTC OSC depending on SIM_SOPT1[OSC3 2KSEL]	System OSC's OSC_CR[ERCLKE N] cleared or RTC's RTC_CR[OSCE] cleared
Internal 48 MHz clock (IRC48MCLK)	48 MHz	48 MHz	N/A	IRC48M	USB MCG or SIM control does not enable. Overriding forced disable in VLPS, LLSx, VLLSx.
RTC_CLKOUT	1 Hz or 32 kHz	1 Hz or 32 kHz	1 Hz or 32 kHz	RTC clock	RTC_CLKOUT is disabled in LLS and VLLSx modes. Overriding clocking is possible via SIM_SOPT1[OSC3 2KOUT] to drive CLKOUT32K out in all low power modes.
CLKOUT32K	32 kHz	32 kHz	32 kHz	ERCLK32K - which is system OSC or LPO or RTC OSC depending on SIM_SOPT1[OSC3 2KSEL]	SIM_SOPT1[OSC3 2KOUT] not configured to drive ERCLK32K out.
LPO	1 kHz	1 kHz	1 kHz	PMC	in VLLS0
USB FS clock	48 MHz	48 MHz	N/A	IRC48MCLK orMCGPLLCLK or MCGFLLCLK with fractional clock divider, or USB_CLKIN	USB FS OTG is disabled

Table 5-1. Clock Summary (continued)

Clock name	High Speed Run mode clock frequency	Run mode clock frequency	VLPR mode clock frequency	Clock source	Clock is disabled when
I2S master clock	Up to 25 MHz	Up to 25 MHz	Up to 12.5 MHz	System clock , MCGPLLCLK, IRC48MCLK, OSCERCLK with fractional clock divider, or I2S_CLKIN	I ² S is disabled
TRACE clock	Up to 120 MHz	Up to 120 MHz	Up to 4 MHz	System clock or MCGOUTCLK	Trace is disabled
LPUART0 clock	Up to 100 MHz	Up to 100MHz	Up to 16MHz	MCGFLLCLK or IRC48MCLK or MCGIRCLK or OSCERCLK	LPUART0 is disabled

5.5 Internal clocking requirements

The clock dividers are programmed via the SIM module's CLKDIV registers. Each divider is programmable from a divide-by-1 through divide-by-16 setting. The following requirements must be met when configuring the clocks for this device:

- 1. The core and system clock frequencies must be 120 MHz or slower in HSRUN, 80 MHz or slower in RUN.
- 2. The bus clock frequency must be programmed to 60 MHz or less in HSRUN, 50 MHz or less in RUN, and an integer divide of the core clock. The core clock to bus clock ratio is limited to a max value of 8.
- 3. The flash clock frequency must be programmed to 26.67 MHz or less, less than or equal to the bus clock, and an integer divide of the core clock. The core clock to flash clock ratio is limited to a max value of 8.
- 4. The FlexBus clock frequency must be programmed to be less than or equal to the bus clock frequency. The FlexBus also has pad interface restrictions that limits the maximum frequency. For this device the FlexBus maximum frequency is 30 MHz. The core clock to FlexBus clock ratio is limited to a max value of 8.

The following are a few of the more common clock configurations for this device:

Option 1:

Clock	Frequency
Core clock	50 MHz
System clock	50 MHz
Bus clock	50 MHz
FlexBus clock	25 MHz
Flash clock	25 MHz

Option 2: Run

Clock	Frequency
Core clock	80 MHz
System clock	80 MHz
Bus clock	40 MHz
FlexBus clock	20 MHz
Flash clock	26.67 MHz

Option 3: High Speed Run

Clock	Frequency
Core clock	120 MHz
System clock	120 MHz
Bus clock	60 MHz
FlexBus clock	30 MHz
Flash clock	24 MHz

5.5.1 Clock divider values after reset

Each clock divider is programmed via the SIM module's CLKDIV*n* registers. The flash memory's FTF_FOPT[LPBOOT] bit controls the reset value of the core clock, system clock, bus clock, and flash clock dividers as shown below:

FTF_FOPT [LPBOOT]	Core/system clock	Bus clock	FlexBus clock	Flash clock	Description
0	0x7 (divide by 8)	0x7 (divide by 8)	0xF (divide by 16)	0xF (divide by 16)	Low power boot
1	0x0 (divide by 1)	0x0 (divide by 1)	0x1 (divide by 2)	0x1 (divide by 2)	Fast clock boot

This gives the user flexibility for a lower frequency, low-power boot option. The flash erased state defaults to fast clocking mode, since where the low power boot (FTF_FOPT[LPBOOT]) bit resides in flash is logic 1 in the flash erased state.

Clock Gating

To enable the low power boot option program FTF_FOPT[LPBOOT] to zero. During the reset sequence, if LPBOOT is cleared, the system is in a slow clock configuration. Upon any system reset, the clock dividers return to this configurable reset state.

5.5.2 VLPR mode clocking

The clock dividers cannot be changed while in VLPR mode. They must be programmed prior to entering VLPR mode to guarantee:

- the core/system, FlexBus, and bus clocks are less than or equal to 4 MHz, and
- the flash memory clock is less than or equal to 1 MHz

NOTE

When the MCG is in BLPI and clocking is derived from the Fast IRC, the clock divider controls, MCG_SC[FCRDIV] and SIM_CLKDIV1[OUTDIV4], must be programmed such that the resulting flash clock nominal frequency is 800 kHz or less. In this case, one example of correct configuration is MCG_SC[FCRDIV]=000b and SIM_CLKDIV1[OUTDIV4]=0100b, resulting in a divide by 5 setting.

5.6 Clock Gating

The clock to each module can be individually gated on and off using the SIM module's SCGCx registers. These bits are cleared after any reset, which disables the clock to the corresponding module to conserve power. Prior to initializing a module, set the corresponding bit in SCGCx register to enable the clock. Before turning off the clock, make sure to disable the module.

Any bus access to a peripheral that has its clock disabled generates an error termination.

5.7 Module clocks

The following table summarizes the clocks associated with each module.

Table 5-2. Module clocks

Module	Bus interface clock	Internal clocks	I/O interface clocks	
Core modules				

Table 5-2. Module clocks (continued)

Module	Bus interface clock	Internal clocks	I/O interface clocks	
ARM Cortex-M4 core	System clock	Core clock	-	
NVIC	System clock	_	_	
DAP	System clock	_	_	
ITM	System clock	_	_	
cJTAG, JTAGC	_	_	JTAG_CLK	
	System	modules		
DMA	System clock	_	_	
DMA Mux	Bus clock	_	_	
Port control	Bus clock	LPO	_	
Crossbar Switch	System clock	_	_	
Peripheral bridges	System clock	Bus clock, Flash clock	_	
LLWU, PMC, SIM, RCM	Flash clock	LPO	_	
Mode controller	Flash clock	-	-	
MCM	System clock	_	_	
EWM	Bus clock	LPO	_	
Watchdog timer	Bus clock	LPO	_	
	Cle	ocks		
MCG	Flash clock	MCGOUTCLK, MCGPLLCLK, MCGFLLCLK, MCGIRCLK, OSCCLK, RTC OSC, IRC48MCLK	_	
OSC	Bus clock	OSCERCLK, OSCCLK, OSCERCLK_UNDIV, OSC32KCLK	-	
IRC48M	_	IRC48MCLK	_	
	Memory and m	emory interfaces		
Flash Controller	System clock	Flash clock	-	
Flash memory	Flash clock	_	_	
FlexBus	System clock	_	CLKOUT	
EzPort	System clock	_	EZP_CLK	
	Security			
CRC	Bus clock	_	_	
RNGA	Bus clock	_	_	
Analog				
ADC	Bus clock	OSCERCLK, IRC48MCLK	_	
CMP	Bus clock	_	_	
DAC	Bus clock	_	_	
VREF	Flash clock	_	_	
	Timers			
PDB	Bus clock	_		
FlexTimers	Bus clock	MCGFFCLK	FTM_CLKINx	

Table 5-2. Module clocks (continued)

Module	Bus interface clock	Internal clocks	I/O interface clocks	
PIT	Bus clock	_	_	
LPTMR	Flash clock	LPO, OSCERCLK_UNDIV, MCGIRCLK, ERCLK32K	_	
RTC	Flash clock	EXTAL32	_	
	Communication interfaces			
USB FS OTG	System clock	USB FS clock	_	
DSPI	Bus clock	_	DSPI_SCK	
I ² C	Bus clock	_	I2C_SCL	
UART0, UART1	System clock	_	_	
UART2	Bus clock	_	_	
LPUART0	Bus clock	LPUART0 clock	_	
l ² S	Bus clock	I ² S master clock	I2S_TX_BCLK, I2S_RX_BCLK	
	Human-machine interfaces			
GPIO	Platform clock	_	_	

5.7.1 PMC 1-kHz LPO clock

The Power Management Controller (PMC) generates a 1-kHz clock that is enabled in all modes of operation, including all low power modes except VLLS0. This 1-kHz source is commonly referred to as LPO clock or 1-kHz LPO clock.

5.7.2 IRC 48MHz clock

The integrated 48 MHz internal reference clock source (IRC48MCLK) is available in High Speed Run, Run, WAIT and Stop modes of operation. IRC48MCLK is also available in Compute Only, PSTOP2 and PSTOP1 modes of operation when entered from Run mode. IRC48MCLK is forced disabled when the MCU transitions into VLPS, LLSx, and VLLSx low power modes.

NOTE

IRC48MCLK is not forced disabled in Stop modes and should be disabled by software prior to Stop entry unless it is required. IRC48MCLK is not forced disabled in VLPR and should be disabled by software prior to VLPR entry.

IRC48MCLK is enabled via any of the following control settings while operating in these modes:

- USB Control register enables enabled when USB_CLK_RECOVER_IRC_EN[IRC_EN]=1
- MCG Control register selects IRC48 MHz clock (enabled when MCG_C7[OSCSEL]=10) and either MCG is configured in an external clocking mode (PBE, BLPE, PEE, FBE or FEE) or MCG_C5[PLLCLKEN0] = 1.
- SIM Control register selects IRC48 MHz clock enabled when SIM_SOPT2[PLLFLLSEL]=11

In USB Device applications, the IRC48M block can be enabled in USB Clock Recovery mode in which the internal IRC48M oscillator is tuned to match the clock extracted from the incoming USB data stream. This functionality provides the capability of generating a high precision 48MHz clock source without requiring an on-chip PLL or an associated off-chip crystal circuit.

If the USB Device connection is removed from the Host, the IRC48M USB Clock Recovery functionality stops tuning the internal IRC48M oscillator since the clock extracted from the USB data stream is disconnected. The 48MHz clock source frequency does not shift after the USB Device is removed from the USB Host. If the IRC48M clock is selected as the source of the PLL with MCG_C7[OSCSEL]=10 then the clock frequency of the system clocks can shift as the USB device connects to the USB Host starting clock recovery tuning.

The IRC48MCLK is also available for use as:

- an oscillator reference to the MCG from which core, system, bus, and flash clock sources can be derived
- an ADC alternate clock source
- clock source for LPUART communications
- clock source for I2S/SAI communications

5.7.3 WDOG clocking

The WDOG may be clocked from two clock sources as shown in the following figure.

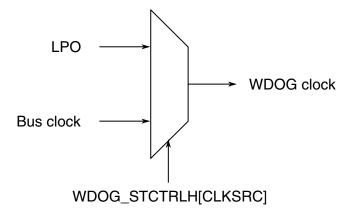


Figure 5-2. WDOG clock generation

5.7.4 Debug trace clock

The debug trace clock source can be clocked as shown in the following figure.

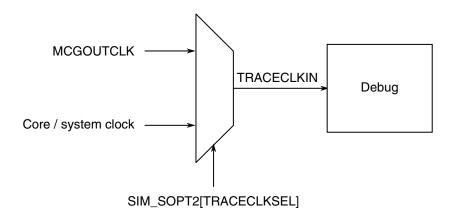


Figure 5-3. Trace clock generation

5.7.5 PORT digital filter clocking

The digital filters in the PORTD module can be clocked as shown in the following figure.

NOTE

In stop mode, the digital input filters are bypassed unless they are configured to run from the 1 kHz LPO clock source.

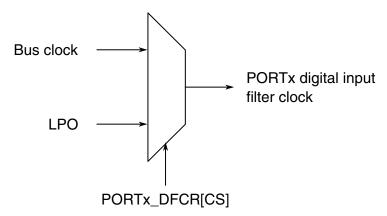


Figure 5-4. PORTx digital input filter clock generation

5.7.6 LPTMR clocking

The prescaler and glitch filters in each of the LPTMRx modules can be clocked as shown in the following figure.

NOTE

The chosen clock must remain enabled if the LPTMRx is to continue operating in all required low-power modes.

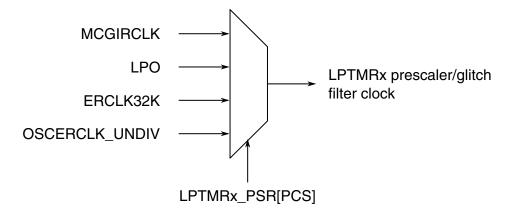


Figure 5-5. LPTMRx prescaler/glitch filter clock generation

5.7.7 RTC_CLKOUT and CLKOUT32K clocking

When the RTC is enabled, the RTC_CLKOUT signal can be configured to drive to an external pin via the associated pin muxing control, as shown below.

NOTE

RTC_CLKOUT is disabled in LLSx and VLLSx modes.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Module clocks

CLKOUT32K, controlled by SIM_SOPT1[OSC32KOUT], can also be driven on the pins where the RTC_CLKOUT signal is an option, overriding the existing pin mux configuration for that pin. The CLKOUT32K function is available in all modes of operation. In VLLS0 mode only the RTC oscillator is available.

PTE0 is available in all packages for this device. PTE26 is not available in 64-pin packages for this device.

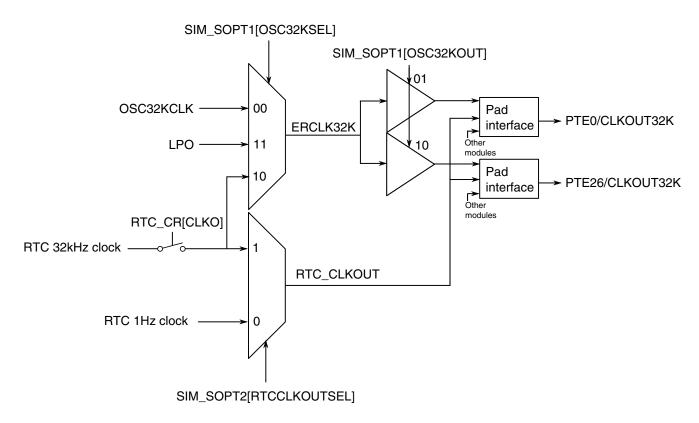


Figure 5-6. RTC_CLKOUT and CLKOUT32K generation

5.7.8 USB FS OTG Controller clocking

The USB FS OTG controller is a bus master attached to the crossbar switch. As such, it uses the system clock.

NOTE

For the USB FS OTG controller to operate, the minimum system clock frequency is 20 MHz.

The USB OTG controller also requires a 48 MHz clock. The clock source options are shown below.

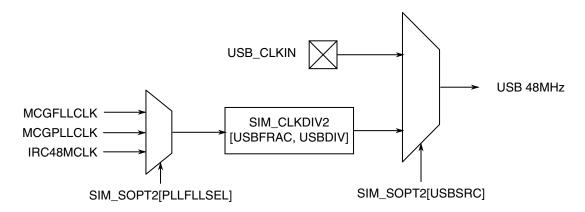


Figure 5-7. USB 48 MHz clock source

NOTE

The MCGFLLCLK does not meet the USB jitter specifications for certification. The IRC48MCLK is only usable as a USB clock source in USB Device operation with the USB Clock Recover function enabled.

5.7.9 UART clocking

UART0 and UART1 modules operate from the core/system clock, which provides higher performance level for these modules. All other UART modules operate from the bus clock.

5.7.10 LPUART0 clocking

The LPUART0 module has a selectable clock as shown in the following figure.

NOTE

The chosen clock must remain enabled if the LPUART0 is to continue operating in all required low-power modes.

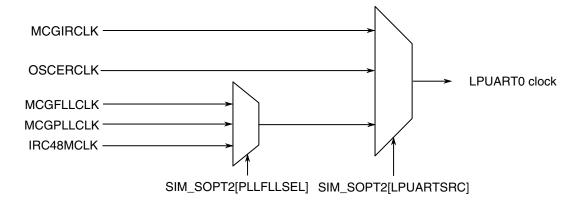


Figure 5-8. LPUART0 clock generation

5.7.11 I²S/SAI clocking

The audio master clock (MCLK) is used to generate the bit clock when the receiver or transmitter is configured for an internally generated bit clock. The audio master clock can also be output to or input from a pin. The transmitter and receiver have the same audio master clock inputs.

Each SAI peripheral can control the input clock selection, pin direction and divide ratio of one audio master clock.

The I²S/SAI transmitter and receiver support asynchronous bit clocks (BCLKs) that can be generated internally from the audio master clock or supplied externally. The module also supports the option for synchronous operation between the receiver and transmitter product.

The transmitter and receiver can independently select between the bus clock and the audio master clock to generate the bit clock.

The MCLK and BCLK source options appear in the following figure.

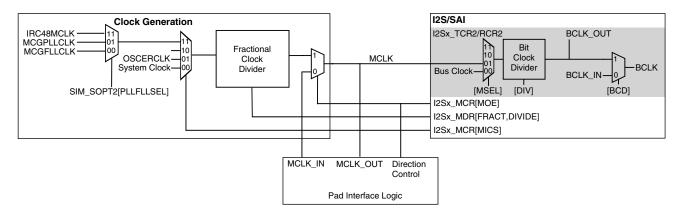


Figure 5-9. I²S/SAI clock generation

Module clocks

Chapter 6 Reset and Boot

6.1 Introduction

The following reset sources are supported in this MCU:

Table 6-1. Reset sources

Reset sources	Description
POR reset	Power-on reset (POR)
System resets	External pin reset (PIN) Low-voltage detect (LVD) Computer operating properly (COP) watchdog reset Low leakage wakeup (LLWU) reset Multipurpose clock generator loss of clock (LOC) reset Multipurpose clock generator loss of lock (LOL) reset Stop mode acknowledge error (SACKERR) Software reset (SW) Lockup reset (LOCKUP) EzPort reset MDM DAP system reset
Debug reset	JTAG reset nTRST reset

Each of the system reset sources has an associated bit in the system reset status (SRS) registers. See the Reset Control Module for register details.

The MCU exits reset in functional mode that is controlled by EZP_CS pin to select between the single chip (default) or serial flash programming (EzPort) modes. See Boot options for more details.

6.2 Reset

This section discusses basic reset mechanisms and sources. Some modules that cause resets can be configured to cause interrupts instead. Consult the individual peripheral chapters for more information.

6.2.1 Power-on reset (POR)

When power is initially applied to the MCU or when the supply voltage drops below the power-on reset re-arm voltage level (V_{POR}), the POR circuit causes a POR reset condition.

As the supply voltage rises, the LVD circuit holds the MCU in reset until the supply has risen above the LVD low threshold (V_{LVDL}). The POR and LVD bits in SRS0 register are set following a POR.

6.2.2 System reset sources

Resetting the MCU provides a way to start processing from a known set of initial conditions. System reset begins with the on-chip regulator in full regulation and system clocking generation from an internal reference. When the processor exits reset, it performs the following:

- Reads the start SP (SP_main) from vector-table offset 0
- Reads the start PC from vector-table offset 4
- LR is set to 0xFFFF_FFFF

The on-chip peripheral modules are disabled and the non-analog I/O pins are initially configured as disabled. The pins with analog functions assigned to them default to their analog function after reset.

During and following a reset, the JTAG pins have their associated input pins configured as:

- TDI in pull-up (PU)
- TCK in pull-down (PD)
- TMS in PU

and associated output pin configured as:

• TDO with no pull-down or pull-up

Note that the nTRST signal is initially configured as disabled, however once configured to its JTAG functionality its associated input pin is configured as:

nTRST in PU

6.2.2.1 External pin reset (PIN)

On this device, RESET is a dedicated pin. This pin is open drain and has an internal pullup device. Asserting RESET wakes the device from any mode. During a pin reset, the RCM's SRS0[PIN] bit is set.

6.2.2.1.1 RESET pin filter

The RESET pin filter supports filtering from both the 1 kHz LPO clock and the bus clock. RCM_RPFC[RSTFLTSS], RCM_RPFC[RSTFLTSRW], and RCM_RPFW[RSTFLTSEL] control this functionality; see the RCM chapter. The filters are asynchronously reset by Chip POR. The reset value for each filter assumes the RESET pin is negated.

For all stop modes where LPO clock is still active (Stop, VLPS, LLS, VLLS3, VLLS2, and VLLS1), the only filtering option is the LPO-based digital filter. The filtering logic either switches to bypass operation or has continued filtering operation depending on the filtering mode selected. When entering VLLS0, the RESET pin filter is disabled and bypassed.

The LPO filter has a fixed filter value of 3. Due to a synchronizer on the input data, there is also some associated latency (2 cycles). As a result, 5 cycles are required to complete a transition from low to high or high to low.

6.2.2.2 Low-voltage detect (LVD)

The chip includes a system for managing low voltage conditions to protect memory contents and control MCU system states during supply voltage variations. The system consists of a power-on reset (POR) circuit and an LVD circuit with a user-selectable trip voltage. The LVD system is always enabled in hsrun, normal run, wait, or stop mode. The LVD system is disabled when entering VLPx, LLS, or VLLSx modes.

The LVD can be configured to generate a reset upon detection of a low voltage condition by setting the PMC's LVDSC1[LVDRE] bit to 1. The low voltage detection threshold is determined by the PMC's LVDSC1[LVDV] field. After an LVD reset has occurred, the

Reset

LVD system holds the MCU in reset until the supply voltage has risen above the low voltage detection threshold. The RCM's SRS0[LVD] bit is set following either an LVD reset or POR.

6.2.2.3 Computer operating properly (COP) watchdog timer

The computer operating properly (COP) watchdog timer (WDOG) monitors the operation of the system by expecting periodic communication from the software. This communication is generally known as servicing (or refreshing) the COP watchdog. If this periodic refreshing does not occur, the watchdog issues a system reset. The COP reset causes the RCM's SRS0[WDOG] bit to set.

6.2.2.4 Low leakage wakeup (LLWU)

The LLWU module provides the means for a number of external pins, the \overline{RESET} pin, and a number of internal peripherals to wake the MCU from low leakage power modes. The LLWU module is functional only in low leakage power modes.

- In LLS mode, only the \overline{RESET} pin via the LLWU can generate a system reset.
- In VLLSx modes, all enabled inputs to the LLWU can generate a system reset.

After a system reset, the LLWU retains the flags indicating the input source of the last wakeup until the user clears them.

NOTE

Some flags are cleared in the LLWU and some flags are required to be cleared in the peripheral module. Refer to the individual peripheral chapters for more information.

6.2.2.5 Multipurpose clock generator loss-of-clock (LOC)

The MCG module supports an external reference clock.

If the C6[CME] bit in the MCG module is set, the clock monitor is enabled. If the external reference falls below f_{loc_low} or f_{loc_high} , as controlled by the C2[RANGE] field in the MCG module, the MCU resets. The RCM's SRS0[LOC] bit is set to indicate this reset source.

NOTE

To prevent unexpected loss of clock reset events, all clock monitors should be disabled before entering any low power modes, including VLPR and VLPW.

6.2.2.6 MCG loss-of-lock (LOL) reset

The MCG includes a PLL loss-of-lock detector. The detector is enabled when configured for PEE and lock has been achieved. If the MCG_C8[LOLRE] bit in the MCG module is set and the PLL lock status bit (MCG_S[LOLS0]) becomes set, the MCU resets. The RCM_SRS0[LOL] bit is set to indicate this reset source.

NOTE

This reset source does not cause a reset if the chip is in any stop mode.

6.2.2.7 Stop mode acknowledge error (SACKERR)

This reset is generated if the core attempts to enter stop mode, but not all modules acknowledge stop mode within 1025 cycles of the 1 kHz LPO clock.

A module might not acknowledge the entry to stop mode if an error condition occurs. The error can be caused by a failure of an external clock input to a module.

6.2.2.8 Software reset (SW)

The SYSRESETREQ bit in the NVIC application interrupt and reset control register can be set to force a software reset on the device. (See ARM's NVIC documentation for the full description of the register fields, especially the VECTKEY field requirements.) Setting SYSRESETREQ generates a software reset request. This reset forces a system reset of all major components except for the debug module. A software reset causes the RCM's SRS1[SW] bit to set.

6.2.2.9 Lockup reset (LOCKUP)

The LOCKUP gives immediate indication of seriously errant kernel software. This is the result of the core being locked because of an unrecoverable exception following the activation of the processor's built in system state protection hardware.

Reset

The LOCKUP condition causes a system reset and also causes the RCM's SRS1[LOCKUP] bit to set.

6.2.2.10 EzPort reset

The EzPort supports a system reset request via EzPort signaling. The EzPort generates a system reset request following execution of a Reset Chip (RESET) command via the EzPort interface. This method of reset allows the chip to boot from flash memory after it has been programmed by an external source. The EzPort is enabled or disabled by the EZP_CS pin.

An EzPort reset causes the RCM's SRS1[EZPT] bit to set.

6.2.2.11 MDM-AP system reset request

Set the system reset request bit in the MDM-AP control register to initiate a system reset. This is the primary method for resets via the JTAG/SWD interface. The system reset is held until this bit is cleared.

Set the core hold reset bit in the MDM-AP control register to hold the core in reset as the rest of the chip comes out of system reset.

6.2.3 MCU Resets

A variety of resets are generated by the MCU to reset different modules.

6.2.3.1 VBAT POR

The VBAT POR asserts on a VBAT POR reset source. It affects only the modules within the VBAT power domain: RTC and VBAT Register File. These modules are not affected by the other reset types.

6.2.3.2 POR Only

The POR Only reset asserts on the POR reset source only. It resets the PMC and System Register File.

The POR Only reset also causes all other reset types (except VBAT POR) to occur.

6.2.3.3 Chip POR not VLLS

The Chip POR not VLLS reset asserts on POR and LVD reset sources. It resets parts of the SMC and SIM. It also resets the LPTMR.

The Chip POR not VLLS reset also causes these resets to occur: Chip POR, Chip Reset not VLLS, and Chip Reset (including Early Chip Reset).

6.2.3.4 Chip POR

The Chip POR asserts on POR, LVD, and VLLS Wakeup reset sources. It resets the Reset Pin Filter registers and parts of the SIM and MCG.

The Chip POR also causes the Chip Reset (including Early Chip Reset) to occur.

6.2.3.5 Chip Reset not VLLS

The Chip Reset not VLLS reset asserts on all reset sources except a VLLS Wakeup that does not occur via the RESET_b pin. It resets parts of the SMC, LLWU, and other modules that remain powered during VLLS mode.

The Chip Reset not VLLS reset also causes the Chip Reset (including Early Chip Reset) to occur.

6.2.3.6 Early Chip Reset

The Early Chip Reset asserts on all reset sources. It resets only the flash memory module. It negates before flash memory initialization begins ("earlier" than when the Chip Reset negates).

6.2.3.7 Chip Reset

Chip Reset asserts on all reset sources and only negates after flash initialization has completed and the RESET_b pin has also negated. It resets the remaining modules (the modules not reset by other reset types).

Reset

6.2.4 Reset Pin

For all reset sources except a VLLS Wakeup that does not occur via the \overline{RESET} pin, the \overline{RESET} pin is driven low by the MCU for at least 128 bus clock cycles and until flash initialization has completed.

After flash initialization has completed, the \overline{RESET} pin is released, and the internal Chip Reset negates after the \overline{RESET} pin is pulled high. Keeping the \overline{RESET} pin asserted externally delays the negation of the internal Chip Reset.

6.2.5 Debug resets

The following sections detail the debug resets available on the device.

6.2.5.1 JTAG reset

The JTAG module generate a system reset when certain IR codes are selected. This functional reset is asserted when EzPort, EXTEST, HIGHZ and CLAMP instructions are active. The reset source from the JTAG module is released when any other IR code is selected. A JTAG reset causes the RCM's SRS1[JTAG] bit to set.

6.2.5.2 nTRST reset

The nTRST pin causes a reset of the JTAG logic when asserted. Asserting the nTRST pin allows the debugger to gain control of the TAP controller state machine (after exiting LLS or VLLSx) without resetting the state of the debug modules.

The nTRST pin does not cause a system reset.

6.2.5.3 Resetting the Debug subsystem

Use the CDBGRSTREQ bit within the SWJ-DP CTRL/STAT register to reset the debug modules. However, as explained below, using the CDBGRSTREQ bit does not reset all debug-related registers.

CDBGRSTREQ resets the debug-related registers within the following modules:

- SWJ-DP
- AHB-AP

- TPIU
- MDM-AP (MDM control and status registers)

CDBGRSTREQ does not reset the debug-related registers within the following modules:

- CM4 core (core debug registers: DHCSR, DCRSR, DCRDR, DEMCR)
- FPB
- DWT
- ITM
- NVIC
- Crossbar bus switch¹
- AHB-AP¹
- Private peripheral bus¹

6.3 Boot

This section describes the boot sequence, including sources and options.

6.3.1 Boot sources

This device only supports booting from internal flash. Any secondary boot must go through an initialization sequence in flash.

6.3.2 Boot options

The device's functional mode is controlled by the state of the EzPort chip select (EZP_CS) pin during reset.

The device can be in single chip (default) or serial flash programming mode (EzPort). While in single chip mode the device can be in run or various low power modes mentioned in Power mode transitions.

Table 6-2. Mode select decoding

EzPort chip select (EZP_CS)	Description		
0	Serial flash programming mode (EzPort)		
1	Single chip (default)		

^{1.} CDBGRSTREQ does not affect AHB resources so that debug resources on the private peripheral bus are available during System Reset.

6.3.3 FOPT boot options

The flash option register (FOPT) in the flash memory module allows the user to customize the operation of the MCU at boot time. The register contains read-only bits that are loaded from the NVM's option byte in the flash configuration field. The user can reprogram the option byte in flash to change the FOPT values that are used for subsequent resets. For more details on programming the option byte, refer to the flash memory chapter.

The MCU uses the FOPT register bits to configure the device at reset as shown in the following table.

NOTE

Reserved bits in the option byte should be left in their default erased state of logic 1. FOPT[7:0] = 0x00 is not a valid configuration. FOPT register is written to 0xFF if the contents of NVM's option byte in the flash configuration field is 0x00.

Table 6-3. Flash Option Register Bit Definitions

Bit Num	Field	Value	Definition		
7-6	Reserved	Reserve	ed for future expansion.		
5	FAST_INIT	Select i	nitialization speed on POR, VLLSx, and any system reset.		
		0	Slower initialization. The Flash initialization will be slower with the benefit of reduced average current during this time. The duration of the recovery will be controlled by the clock divider selection determined by the LPBOOT setting.		
		1	Fast Initialization. The Flash has faster recoveries at the expense of higher current during these times.		
4-3	Reserved	Reserved for future expansion.			
2	NMI_DIS	Enable/	disable control for the NMI function.		
		0	NMI interrupts are always blocked. The associated pin continues to default to NMI pin controls with internal pullup enabled.		
		1	NMI pin/interrupts reset default to enabled.		
1	EZPORT_DIS	Enable/	disable EzPort function.		
		0	EzPort operation is disabled. The device always boots to normal CPU execution and the state of EZP_CS signal during reset is ignored. This option avoids inadvertent resets into EzPort mode if the EZP_CS/NMI pin is used for its NMI function.		
		1	EzPort operation is enabled. The state of EZP_CS pin during reset determines if device enters EzPort mode.		

Table 6-3. Flash Option Register Bit Definitions (continued)

Bit Num	Field	Value	Definition
0	LPBOOT	selectio reset se	the reset value of OUTDIVx values in SIM_CLKDIV1 register. Larger divide value ns produce lower average power consumption during POR, VLLSx recoveries and equencing and after reset exit. The recovery times are also extended if the NIT option is not selected.
		0	Low-power boot: OUTDIVx values in SIM_CLKDIV1 register are auto-configured at reset exit for higher divide values that produce lower power consumption at reset exit. • Core and system clock divider (OUTDIV1) and bus clock divider (OUTDIV2) are 0x7 (divide by 8) • Flash clock divider (OUTDIV4) and FlexBus clock divider (OUTDIV3) are 0xF (divide by 16)
		1	Normal boot: OUTDIVx values in SIM_CLKDIV1 register are auto-configured at reset exit for higher frequency values that produce faster operating frequencies at reset exit. • Core and system clock divider (OUTDIV1) and bus clock divider (OUTDIV2)
			are 0x0 (divide by 1) • Flash clock divider (OUTDIV4) and FlexBus clock divider (OUTDIV3) are 0x1 (divide by 2)

6.3.4 Boot sequence

At power up, the on-chip regulator holds the system in a POR state until the input supply is above the POR threshold. The system continues to be held in this static state until the internally regulated supplies have reached a safe operating voltage as determined by the LVD. The Mode Controller reset logic then controls a sequence to exit reset.

- 1. A system reset is held on internal logic, the RESET pin is driven out low, and the MCG is enabled in its default clocking mode.
- 2. Required clocks are enabled (Core Clock, System Clock, Flash Clock, and any Bus Clocks that do not have clock gate control reset to disabled).
- 3. The system reset on internal logic continues to be held, but the Flash Controller is released from reset and begins initialization operation while the Reset Control logic continues to drive the RESET pin out low.
- 4. Early in reset sequencing the NVM option byte is read and stored to the Flash Memory module's FOPT register. If the LPBOOT is programmed for an alternate clock divider reset value, the system/core clock is switched to a slower clock speed. If the FAST_INIT bit is programmed clear, the Flash initialization switches to slower clock resulting longer recovery times.
- 5. When Flash Initialization completes, the \overline{RESET} pin is released. If \overline{RESET} continues to be asserted (an indication of a slow rise time on the \overline{RESET} pin or external drive in low), the system continues to be held in reset. Once the \overline{RESET} pin is detected

Boot

- high, the Core clock is enabled and the system is released from reset. EzPort mode is selected instead of the normal CPU execution if $\overline{EZP_CS}$ is low when the internal reset is deasserted. EzPort mode can be disabled by programming the FOPT[EZPORT_DIS] field in the Flash Memory module.
- 6. When the system exits reset, the processor sets up the stack, program counter (PC), and link register (LR). The processor reads the start SP (SP_main) from vector-table offset 0. The core reads the start PC from vector-table offset 4. LR is set to 0xFFFF_FFF. What happens next depends on the NMI input and the FOPT[NMI_DIS] field in the Flash Memory module:
 - If the NMI input is high or the NMI function is disabled in the NMI_DIS field, the CPU begins execution at the PC location.
 - If the NMI input is low and the NMI function is enabled in the NMI_DIS field, this results in an NMI interrupt. The processor executes an Exception Entry and reads the NMI interrupt handler address from vector-table offset 8. The CPU begins execution at the NMI interrupt handler.

Subsequent system resets follow this same reset flow.

Chapter 7 Power Management

7.1 Introduction

This chapter describes the various chip power modes and functionality of the individual modules in these modes.

7.2 Clocking modes

Information found here describes the various clocking modes supported on this device.

7.2.1 Partial Stop

Partial Stop is a clocking option that can be taken instead of entering Stop mode and is configured in the SMC Stop Control Register (SMC_STOPCTRL). The Stop mode is only partially entered, which leaves some additional functionality alive at the expense of higher power consumption. Partial Stop can be entered from either Run mode or VLP Run mode.

When configured for PSTOP2, only the core and system clocks are gated and the bus clock remains active. The bus masters and bus slaves clocked by the system clock enter Stop mode, but the bus slaves clocked by bus clock remain in Run (or VLP Run) mode. The clock generators in the MCG and the on-chip regulator in the PMC also remain in Run (or VLP Run) mode. Exit from PSTOP2 can be initiated by a reset, an asynchronous interrupt from a bus master or bus slave clocked by the system clock, or a synchronous interrupt from a bus slave clocked by the bus clock. If configured, a DMA request (using the asynchronous DMA wakeup) can also be used to exit Partial Stop for the duration of a DMA transfer before the device is transitioned back into PSTOP2.

Clocking modes

When configured for PSTOP1, both the system clock and bus clock are gated. All bus masters and bus slaves enter Stop mode, but the clock generators in the MCG and the on-chip regulator in the PMC remain in Run (or VLP Run) mode. Exit from PSTOP1 can be initiated by a reset or an asynchronous interrupt from a bus master or bus slave. If configured, an asynchronous DMA request can also be used to exit Partial Stop for the duration of a DMA transfer before the device is transitioned back into PSTOP1.

PSTOP1 is functionally similar to Stop mode, but offers faster wake-up at the expense of higher power consumption. Another benefit is that it keeps all of the MCG clocks enabled, which can be useful for some of the asynchronous peripherals that can remain functional in Stop modes.

7.2.2 DMA Wakeup

The DMA can be configured to wake the device on a DMA request whenever it is placed in Stop mode. The wake-up is configured per DMA channel and is supported in Compute Operation, PSTOP, STOP, and VLPS low power modes.

When a DMA wake-up is detected in PSTOP, STOP or VLPS then the device will initiate a normal exit from the low power mode. This can include restoring the on-chip regulator and internal power switches, enabling the clock generators in the MCG, enabling the system and bus clocks (but not the core clock) and negating the stop mode signal to the bus masters and bus slaves. The only difference is that the CPU will remain in the low power mode with the CPU clock disabled.

During Compute Operation, a DMA wake-up will initiate a normal exit from Compute Operation. This includes enabling the clocks and negating the stop mode signal to the bus masters and bus slaves. The core clock always remains enabled during Compute Operation.

Since the DMA wakeup will enable the clocks and negate the stop mode signals to all bus masters and slaves, software needs to ensure that bus masters and slaves that are not involved with the DMA wake-up and transfer remain in a known state. That can be accomplished by disabling the modules before entry into the low power mode or by setting the Doze enable bit in selected modules.

Once the DMA request that initiated the wake-up negates and the DMA completes the current transfer, the device will transition back to the original low-power mode. This includes requesting all non-CPU bus masters to enter Stop mode and then requesting bus slaves to enter Stop mode. In STOP and VLPS modes the MCG and PMC would then also enter their appropriate modes.

NOTE

If the requested DMA transfer cannot cause the DMA request to negate then the device will remain in a higher power state until the low power mode is fully exited.

An enabled DMA wake-up can cause an aborted entry into the low power mode, if the DMA request asserts during the stop mode entry sequence (or reentry if the request asserts during a DMA wake-up) and can cause the SMC to assert its Stop Abort flag. Once the DMA wake-up completes, entry into the low power mode will restart.

An interrupt that occurs during a DMA wake-up will cause an immediate exit from the low power mode (this is optional for Compute Operation) without impacting the DMA transfer.

A DMA wake-up can be generated by either a synchronous DMA request or an asynchronous DMA request. Not all peripherals can generate an asynchronous DMA request in stop modes, although in general if a peripheral can generate synchronous DMA requests and also supports asynchronous interrupts in stop modes, then it can generate an asynchronous DMA request.

7.2.3 Compute Operation

Compute Operation is an execution or compute-only mode of operation that keeps the CPU enabled with full access to the SRAM and Flash read port, but places all other bus masters and bus slaves into their stop mode. Compute Operation can be enabled in Run mode, HSRUN mode, or VLP Run mode.

NOTE

Do not enter any stop mode without first exiting Compute Operation.

Because Compute Operation reuses the stop mode logic (including the staged entry with bus masters disabled before bus slaves), any bus master or bus slave that can remain functional in stop mode also remains functional in Compute Operation, including generation of asynchronous interrupts and DMA requests. When enabling Compute Operation in Run mode, module functionality for bus masters and slaves is the equivalent of STOP mode. When enabling Compute Operation in VLP Run mode, module functionality for bus masters and slaves is the equivalent of VLPS mode. The MCG, PMC, SRAM and Flash read port are not affected by Compute Operation, although the Flash register interface is disabled.

Clocking modes

During Compute Operation, the AIPS peripheral and external memory (FlexBus) space is disabled and attempted accesses generate bus errors. The private peripheral bus (PPB) remains accessible during Compute Operation, including the MCM, System Control Space (SCS) (for NVIC and FPU), and SysTick. Although access to the GPIO registers is supported, the GPIO port data input registers do not return valid data since clocks are disabled to the Port Control and Interrupt modules. By writing to the GPIO port data output registers, it is possible to control those GPIO ports that are configured as output pins.

Compute Operation is controlled by the CPO register in the MCM, which is only accessible to the CPU. Setting or clearing the CPOREQ bit in the MCM initiates entry or exit into Compute Operation. Compute Operation can also be configured to exit automatically on detection of an interrupt, which is required in order to service most interrupts. Only the core system interrupts (exceptions, including NMI and SysTick) and any edge sensitive interrupts can be serviced without exiting Compute Operation.

When entering Compute Operation, the CPOACK status bit indicates when entry has completed. When exiting Compute Operation in Run mode, the CPOACK status bit negates immediately. When exiting Compute Operation in VLP Run mode, the exit is delayed to allow the PMC to handle the change in power consumption. This delay means the CPOACK bit is polled to determine when the AIPS peripheral space can be accessed without generating a bus error.

The DMA wakeup is also supported during Compute Operation and causes the CPOACK status bit to clear and the AIPS peripheral space to be accessible for the duration of the DMA wakeup. At the completion of the DMA wakeup, the device transitions back into Compute Operation.

7.2.4 Peripheral Doze

Several peripherals support a Peripheral Doze mode, where a register bit can be used to disable the peripheral for the duration of a low-power mode. The flash memory can also be placed in a low-power state during Peripheral Doze via a register bit in the SIM.

Peripheral Doze is defined to include all of the modes of operation listed below.

- The CPU is in Wait mode.
- The CPU is in Stop mode, including the entry sequence and for the duration of a DMA wakeup.
- The CPU is in Compute Operation, including the entry sequence and for the duration of a DMA wakeup.

Peripheral Doze can therefore be used to disable selected bus masters or slaves for the duration of WAIT or VLPW mode. It can also be used to disable selected bus slaves immediately on entry into any stop mode (or Compute Operation), instead of waiting for the bus masters to acknowledge the entry as part of the stop entry sequence. Finally, it can be used to disable selected bus masters or slaves that should remain inactive during a DMA wakeup.

If the flash memory is not being accessed during WAIT and PSTOP modes, then the Flash Doze mode can be used to reduce power consumption, at the expense of a slightly longer wake-up when executing code and vectors from flash. It can also be used to reduce power consumption during Compute Operation when executing code and vectors from SRAM.

7.2.5 Clock Gating

To conserve power, the clocks to most modules can be turned off using the SCGCx registers in the SIM module. These bits are cleared after any reset, which disables the clock to the corresponding module. Prior to initializing a module, set the corresponding bit in the SCGCx register to enable the clock. Before turning off the clock, make sure to disable the module. For more details, refer to the clock distribution and SIM chapters.

7.3 Power Modes Description

The power management controller (PMC) provides multiple power options to allow the user to optimize power consumption for the level of functionality needed.

Depending on the stop requirements of the user application, a variety of stop modes are available that provide state retention, partial power down or full power down of certain logic and/or memory. I/O states are held in all modes of operation. The following table compares the various power modes available.

For Run and VLPR mode there is a corresponding wait and stop mode. Wait modes are similar to ARM sleep modes. Stop modes (VLPS, STOP) are similar to ARM sleep deep mode. The very low power run (VLPR) operating mode can drastically reduce runtime power when the maximum bus frequency is not required to handle the application needs.

Stop mode entry is not supported directly from HSRUN and requires transition to Run prior to an attempt to enter a stop mode.

Power Modes Description

The three primary modes of operation are run, wait and stop. The WFI instruction invokes both wait and stop modes for the chip. The primary modes are augmented in a number of ways to provide lower power based on application needs.

Table 7-1. Chip power modes

Chip mode	Description	Core mode	Normal recovery method
Normal run	Default mode out of reset; on-chip voltage regulator is on.	Run	-
High Speed run	Allows maximum performance of chip. In this state, the MCU is able to operate at a faster frequency compared to normal run mode.	Run	-
Normal Wait - via WFI	Allows peripherals to function while the core is in sleep mode, reducing power. NVIC remains sensitive to interrupts; peripherals continue to be clocked.	Sleep	Interrupt
Normal Stop - via WFI	Places chip in static state. Lowest power mode that retains all registers while maintaining LVD protection. NVIC is disabled; AWIC is used to wake up from interrupt; peripheral clocks are stopped.	Sleep Deep	Interrupt
VLPR (Very Low Power Run)	On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency. Reduced frequency Flash access mode (1 MHz); LVD off; internal oscillator provides a low power 4 MHz source for the core, the bus and the peripheral clocks.	Run	-
VLPW (Very Low Power Wait) -via WFI	Same as VLPR but with the core in sleep mode to further reduce power; NVIC remains sensitive to interrupts (FCLK = ON). On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency.	Sleep	Interrupt
VLPS (Very Low Power Stop)-via WFI	Places chip in static state with LVD operation off. Lowest power mode with ADC and pin interrupts functional. Peripheral clocks are stopped, but LPTimer, RTC, CMP, DAC can be used. NVIC is disabled (FCLK = OFF); AWIC is used to wake up from interrupt. On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency. All SRAM is operating (content retained and I/O states held).	Sleep Deep	Interrupt
LLS3 (Low Leakage Stop3)	State retention power mode. Most peripherals are in state retention mode (with clocks stopped), but LLWU, LPTimer, RTC, CMP, DAC can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Interrupt ¹
	NOTE: The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit stop mode on an LLS recovery. All SRAM is operating (content retained and I/O states held).		
LLS2 (Low Leakage Stop2)	State retention power mode. Most peripherals are in state retention mode (with clocks stopped), but LLWU, LPTimer, RTC, CMP, DAC can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Interrupt ²
	NOTE: The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit stop mode on an LLS recovery. A portion of SRAM_U remains powered on (content retained and I/O states held).		

Table 7-1. Chip power modes (continued)

Chip mode	Description	Core mode	Normal recovery method
VLLS3 (Very Low Leakage Stop3)	Most peripherals are disabled (with clocks stopped), but LLWU, LPTimer, RTC, CMP, DAC can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Reset ³
	SRAM_U and SRAM_L remain powered on (content retained and I/O states held).		
VLLS2 (Very Low Leakage Stop2)	Most peripherals are disabled (with clocks stopped), but LLWU, LPTimer, RTC, CMP, DAC can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Reset ³
	SRAM_L is powered off. A portion of SRAM_U remains powered on (content retained and I/O states held).		
VLLS1 (Very Low Leakage Stop1)	Most peripherals are disabled (with clocks stopped), but LLWU, LPTimer, RTC, CMP, DAC can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Reset ³
	All of SRAM_U and SRAM_L are powered off. The 32-byte system register file and 32-byte VBAT register file remain powered for customer-critical data.		
VLLS0 (Very Low Leakage	Most peripherals are disabled (with clocks stopped), but LLWU and RTC can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Reset ³
Stop 0)	All of SRAM_U and SRAM_L are powered off. The 32-byte system register file and 32-byte VBAT register file remain powered for customer-critical data.		
	The POR detect circuit can be optionally powered off.		
BAT (backup battery only)	The chip is powered down except for the VBAT supply. The RTC and the 32-byte VBAT register file for customer-critical data remain powered.	Off	Power-up Sequence

- 1. Resumes normal run mode operation by executing the LLWU interrupt service routine.
- 2. Resumes normal run mode operation by executing the LLWU interrupt service routine.
- 3. Follows the reset flow with the LLWU interrupt flag set for the NVIC.

7.4 Entering and exiting power modes

The WFI instruction invokes wait and stop modes for the chip. The processor exits the low-power mode via an interrupt. The Nested Vectored Interrupt Controller (NVIC) describes interrupt operation and what peripherals can cause interrupts.

NOTE

The WFE instruction can have the side effect of entering a low-power mode, but that is not its intended usage. See ARM documentation for more on the WFE instruction.

Power mode transitions

Recovery from VLLSx is through the wake-up Reset event. The chip wake-ups from VLLSx by means of reset, an enabled pin or enabled module. See the table "LLWU inputs" in the LLWU configuration section for a list of the sources.

The wake-up flow from VLLSx is through reset. The wakeup bit in the SRS registers in the RCM is set indicating that the chip is recovering from a low power mode. Code execution begins; however, the I/O pins are held in their pre low power mode entry states, and the system oscillator and MCG registers are reset (even if EREFSTEN had been set before entering VLLSx). Software must clear this hold by writing a 1 to the ACKISO bit in the Regulator Status and Control Register in the PMC module.

NOTE

To avoid unwanted transitions on the pins, software must reinitialize the I/O pins to their pre-low-power mode entry states *before* releasing the hold.

If the oscillator was configured to continue running during VLLSx modes, it must be reconfigured before the ACKISO bit is cleared. The oscillator configuration within the MCG is cleared after VLLSx recovery and the oscillator will stop when ACKISO is cleared unless the register is re-configured.

7.5 Power mode transitions

The following figure shows the power mode transitions. Any reset always brings the chip back to the normal run state. In run, wait, and stop modes active power regulation is enabled. The VLPx modes offer a lower power operating mode than normal modes. VLPR and VLPW are limited in frequency. The LLS and VLLSx mode(s) are the lowest power stop modes based on amount of logic or memory that is required to be retained by the application.

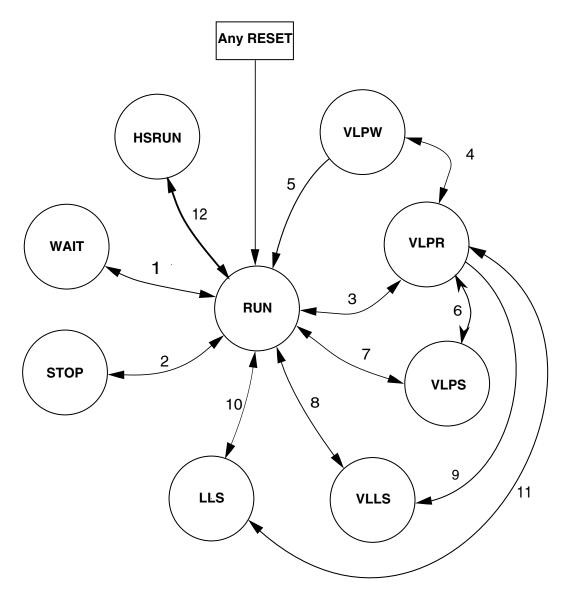


Figure 7-1. Power mode state transition diagram

7.6 Power modes shutdown sequencing

When entering stop or other low-power modes, the clocks are shut off in an orderly sequence to safely place the chip in the targeted low-power state. All low-power entry sequences are initiated by the core executing an WFI instruction. The ARM core's outputs, SLEEPDEEP and SLEEPING, trigger entry to the various low-power modes:

- System level wait and VLPW modes equate to: SLEEPING & SLEEPDEEP
- All other low power modes equate to: SLEEPING & SLEEPDEEP

When entering the non-wait modes, the chip performs the following sequence:

Flash Program Restrictions

- Shuts off Core Clock and System Clock to the ARM Cortex-M4 core immediately.
- Polls stop acknowledge indications from the non-core crossbar masters (DMA), supporting peripherals (SPI, PIT, RNG) and the Flash Controller for indications that System Clocks, Bus Clock and/or Flash Clock need to be left enabled to complete a previously initiated operation, effectively stalling entry to the targeted low power mode. When all acknowledges are detected, System Clock, Bus Clock and Flash Clock are turned off at the same time.
- MCG and Mode Controller shut off clock sources and/or the internal supplies driven from the on-chip regulator as defined for the targeted low power mode.

In wait modes, most of the system clocks are not affected by the low power mode entry. The Core Clock to the ARM Cortex-M4 core is shut off. Some modules support stop-in-wait functionality and have their clocks disabled under these configurations.

The debugger modules support a transition from stop, wait, VLPS, and VLPW back to a halted state when the debugger is enabled. This transition is initiated by setting the Debug Request bit in MDM-AP control register. As part of this transition, system clocking is reestablished and is equivalent to normal run/VLPR mode clocking configuration.

7.7 Flash Program Restrictions

The flash memory on this device should not be programmed or erased while operating in High Speed Run or VLPR power modes.

7.8 Module Operation in Low Power Modes

The following table illustrates the functionality of each module while the chip is in each of the low power modes. The standard behavior is shown with some exceptions for Compute Operation (CPO) and Partial Stop2 (PSTOP2).

(Debug modules are discussed separately; see Debug in Low Power Modes.) Number ratings (such as 2 MHz and 1 Mbit/s) represent the maximum frequencies or maximum data rates per mode. Also, these terms are used:

- FF = Full functionality. In VLPR and VLPW the system frequency is limited, but if a module does not have a limitation in its functionality, it is still listed as FF.
- Async operation = Fully functional with alternate clock source, provided the selected clock source remains enabled
- static = Module register states and associated memories are retained.
- powered = Memory is powered to retain contents.
- low power = Memory is powered to retain contents in a lower power state

- OFF = Modules are powered off; module is in reset state upon wakeup. For clocks, OFF means disabled.
- wakeup = Modules can serve as a wakeup source for the chip.

Table 7-2. Module operation in low power modes

Modules	VLPR	VLPW	VLPW Stop VLPS		LLSx	VLLSx
			Core modules			
NVIC	FF	FF	static	static	static	OFF
			System modules			
Mode Controller	Controller FF		FF	FF	FF	FF
LLWU ¹	static	static	static	static	FF	FF ²
Regulator	low power	low power	ON	low power	low power	low power in VLLS2/3, OFF in VLLS0/1
LVD	disabled	disabled	ON	disabled	disabled	disabled
Brown-out Detection	ON	ON	ON	ON	ON	ON in VLLS1/2/3, optionally disabled in VLLS0 ³
DMA	FF	FF	Async operation	Async operation	static	OFF
Async operation in CPO						
Watchdog	FF	FF	FF	FF	static	OFF
EWM	FF	static	static	static	static	OFF
	static in CPO		FF in PSTOP2			
			Clocks			
1kHz LPO	ON	ON	ON	ON	ON	ON in VLLS1/2/3, OFF in VLLS0
System oscillator (OSC)	OSCERCLK max of 16 MHz crystal	OSCERCLK max of 16 MHz crystal	OSCERCLK optional	OSCERCLK max of 16 MHz crystal	limited to low range/low power	limited to low range/low power in VLLS1/2/3, OFF in VLLS0
MCG	ACG 4 MHz IRC 4 MHz IRC		static - MCGIRCLK optional ; PLL optionally on but gated	static - MCGIRCLK optional (4 MHz IRC only).	static - no clock output	OFF
Core clock	4 MHz max	OFF	OFF	OFF	OFF	OFF
Platform clock	4 MHz max	4 MHz max	OFF	OFF	OFF	OFF
System clock	4 MHz max	4 MHz max	OFF	OFF	OFF	OFF
	OFF in CPO					

Table 7-2. Module operation in low power modes (continued)

Modules	VLPR	VLPW	Stop	VLPS	LLSx	VLLSx				
Bus clock	4 MHz max	4 MHz max	OFF	OFF	OFF	OFF				
	OFF in CPO		50 MHz max in PSTOP2 from RUN							
			4 MHz max in PSTOP2 from VLPR							
	Memory and memory interfaces									
Flash	1 MHz max access - no program/erase	low power	low power	low power	OFF	OFF				
	No register access in CPO									
System RAM (SRAM_U and SRAM_L) ⁴	low power	low power	low power	low power	low power in LLS3, partial in LLS2	low power in VLLS3, partial in VLLS2; otherwise OFF				
VBAT Register file ⁵	powered	powered	powered	powered	powered	powered				
System Register files	powered	powered	powered	powered	powered	powered				
FlexBus	FF, disabled in FF CPO		static	static	static	OFF				
EzPort	disabled	disabled	disabled	disabled	disabled	disabled				
		Com	munication inter	faces						
USB FS/LS	static, wakeup on resume	static, wakeup on resume	static, wakeup on resume	static, wakeup on resume	static	OFF				
USB Voltage Regulator	optional	optional	optional	optional	optional	optional				
UARTO, UART1	250 kbit/s static, wakeup on edge in CPO	250 kbit/s	static, wakeup on edge	static, wakeup on edge	static	OFF				
UART2			static, wakeup on edge FF in PSTOP2	static, wakeup on edge	static	OFF				
LPUART0	4 Mbps Async operation in CPO	4 Mbps	Async operation FF in PSTOP2	Async operation	static	OFF				
SPI	1 Mbit/s (slave) 2 Mbit/s (master) static in CPO	1 Mbit/s (slave) 2 Mbit/s (master)	static FF in PSTOP2	static	static	OFF				

Table 7-2. Module operation in low power modes (continued)

Modules	VLPR	VLPW	Stop	VLPS	LLSx	VLLSx
I ² C	200 kbit/s static, address match wakeup in CPO	200 kbit/s	static, address match wakeup FF in PSTOP2	static, address match wakeup	static	OFF
I ² S	FF Async operation in CPO	FF	Async operation with external clock ⁶ FF in PSTOP2	FF with external clock ⁶	static	OFF
CRC	FF	FF	Security static	static	static	OFF
	static in CPO			Statio	old lie	0
RNG	FF	FF	static	static	static	OFF
	static in CPO	static in CPO				
			Timers			
FTM	FF	FF	static	static	static	OFF
	static in CPO	static in CPO				
PIT	FF	FF	static	static	static	OFF
	static in CPO		FF in PSTOP2			
PDB	FF	FF	static	static	static	OFF
	static in CPO		FF in PSTOP2			
LPTMR	FF	FF	Async operation	Async operation	Async operation	Async
			FF in PSTOP2			operation ⁷
RTC - 32kHz	FF	FF	Async operation	Async operation	Async	Async
OSC ⁵	Async operation in CPO		FF in PSTOP2		operation ⁸	operation ⁸
			Analog			
16-bit ADC	FF ADACK and ALTCLK clocks only in CPO	FF	ADACK, ALTCLK, and ALTCLK2 clocks only	ADACK and ALTCLK clocks only	static	OFF
CMP ⁹	FF	FF	FF in PSTOP2	HC cr. l C	I C nomnore	I C compare in
CIVIP	HS or LS	ΓF	HS or LS compare	HS or LS compare	LS compare	LS compare in VLLS1/2/3, OFF
	compare in CPO		FF in PSTOP2			in VLLS0
6-bit DAC	FF	FF	static	static	static	static, OFF in
	static in CPO		FF in PSTOP2			VLLS0
VREF	FF	FF	FF	FF	static	OFF
12-bit DAC	FF	FF	static	static	static	static
	static in CPO		FF in PSTOP2			
		Hum	an-machine inter	faces		

Module Operation in Low Power Modes

Table 7-2. Module operation in low power modes (continued)

Modules	VLPR	VLPW	Stop	VLPS	LLSx	VLLSx
GPIO	FF GPIO write only in CPO	FF	static output, wakeup input FF in PSTOP2	static output, wakeup input	static, pins latched	OFF, pins latched

- Using the LLWU module, the external pins available for this chip do not require the associated peripheral function to be enabled. It only requires the function controlling the pin (GPIO or peripheral) to be configured as an input to allow a transition to occur to the LLWU.
- 2. Since LPO clock source is disabled, filters will be bypassed during VLLS0
- 3. The SMC_STOPCTRL[PORPO] bit in the SMC module controls this option.
- 4. A 32 KB portion of SRAM_U block is in low power when MCU is in low power modes LLS2 and VLLS2. The remaining System RAM is OFF in LLS2 and VLLS2.
- 5. These components remain powered in BAT power mode.
- 6. Use an externally generated bit clock or an externally generated audio master clock (including EXTAL).
- 7. System OSC and LPO clock sources are not available in VLLS0. Pulse counting is available in all modes.
- 8. RTC_CLKOUT is not available. CLKOUT32K can be configured as an alternate path of supplying 32 kHz.
- CMP in stop or VLPS supports high speed or low speed external pin to pin or external pin to DAC compares. CMP in LLSx or VLLSx only supports low speed external pin to pin or external pin to DAC compares. Windowed, sampled & filtered modes of operation are not available while in stop, VLPS, LLSx, or VLLSx modes.

Chapter 8 Security

8.1 Introduction

This device implements security based on the mode selected from the flash module. The following sections provide an overview of flash security and details the effects of security on non-flash modules.

8.2 Flash Security

The flash module provides security information to the MCU based on the state held by the FSEC[SEC] bits. The MCU, in turn, confirms the security request and limits access to flash resources. During reset, the flash module initializes the FSEC register using data read from the security byte of the flash configuration field.

NOTE

The security features apply only to external accesses via debug and EzPort. CPU accesses to the flash are not affected by the status of FSEC.

In the unsecured state all flash commands are available to the programming interfaces (JTAG and EzPort), as well as user code execution of Flash Controller commands. When the flash is secured (FSEC[SEC] = 00, 01, or 11), programmer interfaces are only allowed to launch mass erase operations and have no access to memory locations.

Further information regarding the flash security options and enabling/disabling flash security is available in the Flash Memory Module.

8.3 Security Interactions with other Modules

The flash security settings are used by the SoC to determine what resources are available. The following sections describe the interactions between modules and the flash security settings or the impact that the flash security has on non-flash modules.

8.3.1 Security interactions with FlexBus

When flash security is enabled, SIM_SOPT2[FBSL] enables/disables off-chip accesses through the FlexBus interface. The FBSL bitfield also has an option to allow opcode and operand accesses or only operand accesses.

8.3.2 Security Interactions with EzPort

When flash security is active the MCU can still boot in EzPort mode. The EzPort holds the flash logic in NVM special mode and thus limits flash operation when flash security is active. While in EzPort mode and security is active, flash bulk erase (BE) can still be executed. The write FCCOB registers (WRFCCOB) command is limited to the mass erase (Erase All Blocks) and verify all 1s (Read 1s All Blocks) commands. Read accesses to internal memories via the EzPort are blocked when security is enabled.

The mass erase can be used to disable flash security, but all of the flash contents are lost in the process. A mass erase via the EzPort is allowed even when some memory locations are protected.

When mass erase has been disabled, mass erase via the EzPort is blocked and cannot be defeated.

8.3.3 Security Interactions with Debug

When flash security is active the JTAG port cannot access the memory resources of the MCU. Boundary scan chain operations work, but debugging capabilities are disabled so that the debug port cannot read flash contents.

Although most debug functions are disabled, the debugger can write to the Flash Mass Erase in Progress bit in the MDM-AP Control register to trigger a mass erase (Erase All Blocks) command. A mass erase via the debugger is allowed even when some memory locations are protected.

When mass erase is disabled, mass erase via the debugger is blocked.

Security Interactions with other Modules

Chapter 9 Debug

9.1 Introduction

This device's debug is based on the ARM coresight architecture and is configured in each device to provide the maximum flexibility as allowed by the restrictions of the pinout and other available resources.

Four debug interfaces are supported:

- IEEE 1149.1 JTAG
- IEEE 1149.7 JTAG (cJTAG)
- Serial Wire Debug (SWD)
- ARM Real-Time Trace Interface(1-pin asynchronous mode only)

The basic Cortex-M4 debug architecture is very flexible. The following diagram shows the topology of the core debug architecture and its components.

Introduction

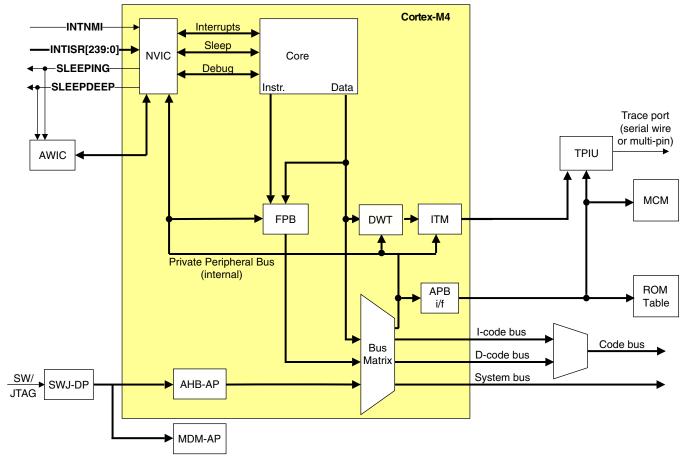


Figure 9-1. Cortex-M4 Debug Topology

The following table presents a brief description of each one of the debug components.

Table 9-1. Debug Components Description

Module	Description
SWJ-DP+ cJTAG	Modified Debug Port with support for SWD, JTAG, cJTAG
AHB-AP	AHB Master Interface from JTAG to debug module and SOC system memory maps
MDM-AP	Provides centralized control and status registers for an external debugger to control the device.
ROM Table	Identifies which debug IP is available.
Core Debug	Singlestep, Register Access, Run, Core Status
ITM	S/W Instrumentation Messaging + Simple Data Trace Messaging + Watchpoint Messaging
DWT (Data and Address Watchpoints)	4 data and address watchpoints

Table 9-1. Debug Components Description (continued)

Module	Description
FPB (Flash Patch and Breakpoints)	The FPB implements hardware breakpoints and patches code and data from code space to system space.
	The FPB unit contains two literal comparators for matching against literal loads from Code space, and remapping to a corresponding area in System space.
	The FPB also contains six instruction comparators for matching against instruction fetches from Code space, and remapping to a corresponding area in System space. Alternatively, the six instruction comparators can individually configure the comparators to return a Breakpoint Instruction (BKPT) to the processor core on a match, so providing hardware breakpoint capability.
TPIU (Trace Port Inteface Unit)	Asynchronous Mode (1-pin) = TRACE_SWO (available on JTAG_TDO)

9.1.1 References

For more information on ARM debug components, see these documents:

- ARMv7-M Architecture Reference Manual
- ARM Debug Interface v5.1
- ARM CoreSight Architecture Specification

9.2 The Debug Port

The configuration of the cJTAG module, JTAG controller, and debug port is illustrated in the following figure:

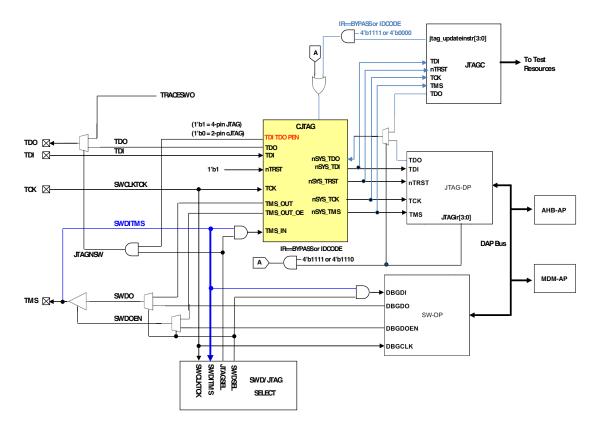


Figure 9-2. Modified Debug Port

The debug port comes out of reset in standard JTAG mode and is switched into either cJTAG or SWD mode by the following sequences. Once the mode has been changed, unused debug pins can be reassigned to any of their alternative muxed functions.

9.2.1 JTAG-to-SWD change sequence

- 1. Send more than 50 TCK cycles with TMS (SWDIO) =1
- 2. Send the 16-bit sequence on TMS (SWDIO) = 0111_1001_1110_0111 (MSB transmitted first)
- 3. Send more than 50 TCK cycles with TMS (SWDIO) =1

NOTE

See the ARM documentation for the CoreSight DAP Lite for restrictions.

9.2.2 JTAG-to-cJTAG change sequence

1. Reset the debug port

- 2. Set the control level to 2 via zero-bit scans
- 3. Execute the Store Format (STFMT) command (00011) to set the scan format register to 1149.7 scan format

9.3 Debug Port Pin Descriptions

The debug port pins default after POR to their JTAG functionality with the exception of JTAG_TRST_b and can be later reassigned to their alternate functionalities. In cJTAG and SWD modes JTAG_TDI and JTAG_TRST_b can be configured to alternate GPIO functions.

Pin Name	JTAG Debug Port		cJTAG E	cJTAG Debug Port		SWD Debug Port		
	Туре	Description	Туре	Description	Туре	Description		
JTAG_TMS/ SWD_DIO	I/O	JTAG Test Mode Selection	I/O	cJTAG Data	I/O	Serial Wire Data	Pull-up	
JTAG_TCLK/ SWD_CLK	1	JTAG Test Clock	I	cJTAG Clock	ı	Serial Wire Clock	Pull-down	
JTAG_TDI	I	JTAG Test Data Input	-	-	-	-	Pull-up	
JTAG_TDO/ TRACE_SWO	0	JTAG Test Data Output	0	Trace output over a single pin	0	Trace output over a single pin	N/C	
JTAG_TRST_ b	1	JTAG Reset	I	cJTAG Reset	-	-	Pull-up	

Table 9-2. Debug port pins

9.4 System TAP connection

The system JTAG controller is connected in parallel to the ARM TAP controller. The system JTAG controller IR codes overlay the ARM JTAG controller IR codes without conflict. Refer to the IR codes table for a list of the available IR codes. The output of the TAPs (TDO) are muxed based on the IR code which is selected. This design is fully JTAG compliant and appears to the JTAG chain as a single TAP. At power on reset, ARM's IDCODE (IR=4'b1110) is selected.

9.4.1 IR Codes

Table 9-3. JTAG Instructions

Instruction	Code[3:0]	Instruction Summary
IDCODE	0000	Selects device identification register for shift
SAMPLE/PRELOAD	0010	Selects boundary scan register for shifting, sampling, and preloading without disturbing functional operation
SAMPLE	0011	Selects boundary scan register for shifting and sampling without disturbing functional operation
EXTEST	0100	Selects boundary scan register while applying preloaded values to output pins and asserting functional reset
HIGHZ	1001	Selects bypass register while three-stating all output pins and asserting functional reset
CLAMP	1100	Selects bypass register while applying preloaded values to output pins and asserting functional reset
EZPORT	1101	Enables the EZPORT function for the SoC and asserts functional reset.
ARM_IDCODE	1110	ARM JTAG-DP Instruction
BYPASS	1111	Selects bypass register for data operations
Factory debug reserved	0101, 0110, 0111	Intended for factory debug only
ARM JTAG-DP Reserved	1000, 1010, 1011, 1110	These instructions will go the ARM JTAG-DP controller. Please look at ARM JTAG-DP documentation for more information on these instructions.
Reserved ¹	All other opcodes	Decoded to select bypass register

^{1.} The manufacturer reserves the right to change the decoding of reserved instruction codes in the future

9.5 JTAG status and control registers

Through the ARM Debug Access Port (DAP), the debugger has access to the status and control elements, implemented as registers on the DAP bus as shown in the following figure. These registers provide additional control and status for low power mode recovery and typical run-control scenarios. The status register bits also provide a means for the debugger to get updated status of the core without having to initiate a bus transaction across the crossbar switch, thus remaining less intrusive during a debug session.

It is important to note that these DAP control and status registers are not memory mapped within the system memory map and are only accessible via the Debug Access Port (DAP) using JTAG, cJTAG, or SWD. The MDM-AP is accessible as Debug Access Port 1 with the available registers shown in the table below.

Table 9-4. MDM-AP Register Summary

Address	Register	Description
---------	----------	-------------

Table 9-4. MDM-AP Register Summary (continued)

0x0100_0000	Status	See MDM-AP Status Register
0x0100_0004	Control	See MDM-AP Control Register
0x0100_00FC		Read-only identification register that always reads as 0x001C_0000

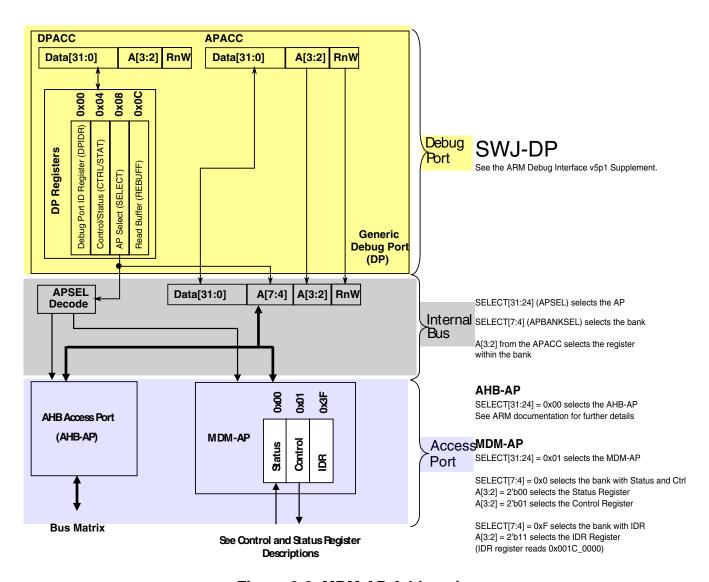


Figure 9-3. MDM AP Addressing

9.5.1 MDM-AP Control Register

Table 9-5. MDM-AP Control register assignments

Bit	Name	Secure ¹	Description
0	Flash Mass Erase in Progress	Υ	Set to cause mass erase. Cleared by hardware after mass erase operation completes.
			When mass erase is disabled (via MEEN and SEC settings), the erase request does not occur and the Flash Mass Erase in Progress bit continues to assert until the next system reset.
1	Debug Disable	N	Set to disable debug. Clear to allow debug operation. When set it overrides the C_DEBUGEN bit within the DHCSR and force disables Debug logic.
2	Debug Request	N	Set to force the Core to halt.
			If the Core is in a stop or wait mode, this bit can be used to wakeup the core and transition to a halted state.
3	System Reset Request	N	Set to force a system reset. The system remains held in reset until this bit is cleared.
4	Core Hold Reset	N	Configuration bit to control Core operation at the end of system reset sequencing.
			0 Normal operation - release the Core from reset along with the rest of the system at the end of system reset sequencing.
			1 Suspend operation - hold the Core in reset at the end of reset sequencing. Once the system enters this suspended state, clearing this control bit immediately releases the Core from reset and CPU operation begins.
5	VLLSx Debug Request (VLLDBGREQ)	N	Set to configure the system to be held in reset after the next recovery from a VLLSx mode.
			This bit holds the in reset when VLLSx modes are exited to allow the debugger time to re-initialize debug IP before the debug session continues.
			The Mode Controller captures this bit logic on entry to VLLSx modes. Upon exit from VLLSx modes, the Mode Controller will hold the in reset until VLLDBGACK is asserted.
			The VLLDBGREQ bit clears automatically due to the POR reset generated as part of the VLLSx recovery.
6	VLLSx Debug Acknowledge	N	Set to release a being held in reset following a VLLSx recovery
	(VLLDBGACK)		This bit is used by the debugger to release the system reset when it is being held on VLLSx mode exit. The debugger re-initializes all debug IP and then assert this control bit to allow the Mode Controller to release the from reset and allow CPU operation to begin.
			The VLLDBGACK bit is cleared by the debugger or can be left set because it clears automatically due to the POR reset generated as part of the next VLLSx recovery.
7	LLS, VLLSx Status Acknowledge	N	Set this bit to acknowledge the DAP LLS and VLLS Status bits have been read. This acknowledge automatically clears the status bits.
			This bit is used by the debugger to clear the sticky LLS and VLLSx mode entry status bits. This bit is asserted and cleared by the debugger.

Table 9-5. MDM-AP Control register assignments (continued)

Bit	Name	Secure ¹	Description
8	Timestamp Disable	N	Set this bit to disable the 48-bit global trace timestamp counter during debug halt mode when the core is halted.
			0 The timestamp counter continues to count assuming trace is enabled. (default)
			1 The timestamp counter freezes when the core has halted (debug halt mode).
9 – 31	Reserved for future use	N	

1. Command available in secure mode

9.5.2 MDM-AP Status Register

Table 9-6. MDM-AP Status register assignments

Bit	Name	Description
0	Flash Mass Erase Acknowledge	The Flash Mass Erase Acknowledge bit is cleared after any system reset. The bit is also cleared at launch of a mass erase command due to write of Flash Mass Erase in Progress bit in MDM AP Control Register. The Flash Mass Erase Acknowledge is set after Flash control logic has started the mass erase operation.
		When mass erase is disabled (via MEEN and SEC settings), an erase request due to seting of Flash Mass Erase in Progress bit is not acknowledged.
1	Flash Ready	Indicate Flash has been initialized and debugger can be configured even if system is continuing to be held in reset via the debugger.
2	System Security	Indicates the security state. When secure, the debugger does not have access to the system bus or any memory mapped peripherals. This bit indicates when the part is locked and no system bus access is possible.
3	System Reset	Indicates the system reset state.
		0 System is in reset
		1 System is not in reset
4	Reserved	
5	Mass Erase Enable	Indicates if the MCU can be mass erased or not
		0 Mass erase is disabled
		1 Mass erase is enabled
6	Backdoor Access Key Enable	Indicates if the MCU has the backdoor access key enabled.
		0 Disabled
		1 Enabled

Table 9-6. MDM-AP Status register assignments (continued)

Bit	Name	Description
7	LP Enabled	Decode of LPLLSM control bits to indicate that VLPS, LLS, or VLLSx are the selected power mode the next time the ARM Core enters Deep Sleep.
		0 Low Power Stop Mode is not enabled
		1 Low Power Stop Mode is enabled
		Usage intended for debug operation in which Run to VLPS is attempted. Per debug definition, the system actually enters the Stop state. A debugger should interpret deep sleep indication (with SLEEPDEEP and SLEEPING asserted), in conjuntion with this bit asserted as the debugger-VLPS status indication.
8	Very Low Power Mode	Indicates current power mode is VLPx. This bit is not 'sticky' and should always represent whether VLPx is enabled or not.
		This bit is used to throttle JTAG TCK frequency up/down.
9	LLS Mode Exit	This bit indicates an exit from LLS mode has occurred. The debugger will lose communication while the system is in LLS (including access to this register). Once communication is reestablished, this bit indicates that the system had been in LLS. Since the debug modules held their state during LLS, they do not need to be reconfigured.
		This bit is set during the LLS recovery sequence. The LLS Mode Exit bit is held until the debugger has had a chance to recognize that LLS was exited and is cleared by a write of 1 to the LLS, VLLSx Status Acknowledge bit in MDM AP Control register.
10	VLLSx Modes Exit	This bit indicates an exit from VLLSx mode has occurred. The debugger will lose communication while the system is in VLLSx (including access to this register). Once communication is reestablished, this bit indicates that the system had been in VLLSx. Since the debug modules lose their state during VLLSx modes, they need to be reconfigured.
		This bit is set during the VLLSx recovery sequence. The VLLSx Mode Exit bit is held until the debugger has had a chance to recognize that a VLLS mode was exited and is cleared by a write of 1 to the LLS, VLLSx Status Acknowledge bit in MDM AP Control register.
11 – 15	Reserved for future use	Always read 0.
16	Core Halted	Indicates the Core has entered debug halt mode
17	Core SLEEPDEEP	Indicates the Core has entered a low power mode
18	Core SLEEPING	SLEEPING==1 and SLEEPDEEP==0 indicates wait or VLPW mode.
		SLEEPING==1 and SLEEPDEEP==1 indicates stop or VLPS mode.
19 – 31	Reserved for future use	Always read 0.

9.6 Debug Resets

The debug system receives the following sources of reset:

• JTAG_TRST_b from an external signal. This signal is optional and may not be available in all packages.

- Debug reset (CDBGRSTREQ bit within the SWJ-DP CTRL/STAT register) in the TCLK domain that allows the debugger to reset the debug logic.
- TRST asserted via the cJTAG escape command.
- System POR reset

Conversely the debug system is capable of generating system reset using the following mechanism:

- A system reset in the DAP control register which allows the debugger to hold the system in reset.
- SYSRESETREQ bit in the NVIC application interrupt and reset control register
- A system reset in the DAP control register which allows the debugger to hold the Core in reset.

9.7 AHB-AP

AHB-AP provides the debugger access to all memory and registers in the system, including processor registers through the NVIC. System access is independent of the processor status. AHB-AP does not do back-to-back transactions on the bus, so all transactions are non-sequential. AHB-AP can perform unaligned and bit-band transactions. AHB-AP transactions bypass the FPB, so the FPB cannot remap AHB-AP transactions. SWJ/SW-DP-initiated transaction aborts drive an AHB-AP-supported sideband signal called HABORT. This signal is driven into the Bus Matrix, which resets the Bus Matrix state, so that AHB-AP can access the Private Peripheral Bus for last ditch debugging such as read/stop/reset the core. AHB-AP transactions are little endian.

For a short period at the start of a system reset event the system security status is being determined and debugger access to all AHB-AP transactions is blocked. The MDM-AP Status register is accessible and can be monitored to determine when this initial period is completed. After this initial period, if system reset is held via assertion of the RESET pin, the debugger has access via the bus matrix to the private peripheral bus to configure the debug IP even while system reset is asserted. While in system reset, access to other memory and register resources, accessed over the Crossbar Switch, is blocked.

9.8 ITM

The ITM is an application-driven trace source that supports printf style debugging to trace Operating System (OS) and application events, and emits diagnostic system information. The ITM emits trace information as packets. There are four sources that can

Core Trace Connectivity

generate packets. If multiple sources generate packets at the same time, the ITM arbitrates the order in which packets are output. The four sources in decreasing order of priority are:

- 1. Software trace -- Software can write directly to ITM stimulus registers. This emits packets.
- 2. Hardware trace -- The DWT generates these packets, and the ITM emits them.
- 3. Time stamping -- Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate the timestamp. The Cortex-M4 clock or the bitclock rate of the Serial Wire Viewer (SWV) output clocks the counter.
- 4. Global system timestamping. Timestamps can optionally be generated using a system-wide 48-bit count value.

9.9 Core Trace Connectivity

The ITM can route its data to the TPIU. (See the MCM (Miscellaneous Control Module) for controlling the routing to the TPIU.) This configuration enables the use of trace with low cost tools while maintaining the compatibility with trace probes.

9.10 TPIU

The TPIU acts as a bridge between the on-chip trace data from the Instrumentation Trace Macrocell (ITM) to a data stream, encapsulating IDs where required, that is then captured by a Trace Port Analyzer (TPA). The TPIU is specially designed for low-cost debug.

9.11 **DWT**

The DWT is a unit that performs the following debug functionality:

- It contains four comparators that you can configure as a hardware watchpoint, a PC sampler event trigger, or a data address sampler event trigger. The first comparator, DWT_COMP0, can also compare against the clock cycle counter, CYCCNT. The second comparator, DWT_COMP1, can also be used as a data comparator.
- The DWT contains counters for:
 - Clock cycles (CYCCNT)
 - Folded instructions
 - Load store unit (LSU) operations
 - Sleep cycles

- CPI (all instruction cycles except for the first cycle)
- Interrupt overhead

NOTE

An event is emitted each time a counter overflows.

• The DWT can be configured to emit PC samples at defined intervals, and to emit interrupt event information.

9.12 Debug in Low Power Modes

In low power modes in which the debug modules are kept static or powered off, the debugger cannot gather any debug data for the duration of the low power mode. In the case that the debugger is held static, the debug port returns to full functionality as soon as the low power mode exits and the system returns to a state with active debug. In the case that the debugger logic is powered off, the debugger is reset on recovery and must be reconfigured once the low power mode is exited.

Power mode entry logic monitors Debug Power Up and System Power Up signals from the debug port as indications that a debugger is active. These signals can be changed in RUN, VLPR, WAIT and VLPW. If the debug signal is active and the system attempts to enter stop or VLPS, FCLK continues to run to support core register access. In these modes in which FCLK is left active the debug modules have access to core registers but not to system memory resources accessed via the crossbar.

With debug enabled, transitions from Run directly to VLPS are not allowed and result in the system entering Stop mode instead. Status bits within the MDM-AP Status register can be evaluated to determine this pseudo-VLPS state. Note with the debug enabled, transitions from Run--> VLPR --> VLPS are still possible but also result in the system entering Stop mode instead.

In VLLS mode all debug modules are powered off and reset at wakeup. In LLS mode, the debug modules retain their state but no debug activity is possible.

NOTE

When using cJTAG and entering LLS mode, the cJTAG controller must be reset on exit from LLS mode.

Going into a VLLSx mode causes all the debug controls and settings to be reset. To give time to the debugger to sync up with the HW, the MDM-AP Control register can be configured hold the system in reset on recovery so that the debugger can regain control and reconfigure debug logic prior to the system exiting reset and resuming operation.

9.12.1 Debug Module State in Low Power Modes

The following table shows the state of the debug modules in low power modes. These terms are used:

- FF = Full functionality. In VLPR and VLPW the system frequency is limited, but if a module does not have a limitation in its functionality, it is still listed as FF.
- static = Module register states and associated memories are retained.
- OFF = Modules are powered off; module is in reset state upon wakeup.

Module **STOP VLPR VLPW VLPS LLS VLLS**x **Debug Port** FF FF FF OFF OFF static AHB-AP FF FF FF OFF **OFF** static FF ITM FF FF OFF **OFF** static FF FF FF OFF **OFF TPIU** static FF FF OFF **DWT** FF static OFF

Table 9-7. Debug Module State in Low Power Modes

9.13 Debug & Security

When security is enabled (FSEC[SEC] != 10), the debug port capabilities are limited in order to prevent exploitation of secure data. In the secure state the debugger still has access to the MDM-AP Status Register and can determine the current security state of the device. In the case of a secure device, the debugger also has the capability of performing a mass erase operation via writes to the MDM-AP Control Register. In the case of a secure device that has mass erase disabled (FSEC[MEEN] = 10), attempts to mass erase via the debug interface are blocked.

Chapter 10 Signal Multiplexing and Signal Descriptions

10.1 Introduction

To optimize functionality in small packages, pins have several functions available via signal multiplexing. This chapter illustrates which of this device's signals are multiplexed on which external pin.

The Port Control block controls which signal is present on the external pin. Reference that chapter to find which register controls the operation of a specific pin.

10.2 Signal Multiplexing Integration

This section summarizes how the module is integrated into the device. For a comprehensive description of the module itself, see the module's dedicated chapter.

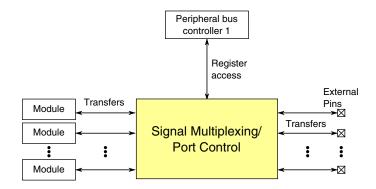


Figure 10-1. Signal multiplexing integration

Table 10-1. Reference links to related information

Topic	Related module	Reference
Full description	Port control	Port control
System memory map		System memory map

Table 10-1. Reference links to related information (continued)

Topic	Related module	Reference
Clocking		Clock Distribution
Register access	Peripheral bus controller	Peripheral bridge

10.2.1 Port control and interrupt module features

• 32-pin ports

NOTE

Not all pins are available on the device. See the following section for details.

• Each 32-pin port is assigned one interrupt.

Table 10-2. Ports summary

Feature	Port A	Port B	Port C	Port D	Port E
Pull select control	Yes	Yes	Yes	Yes	Yes
Pull select at reset	PTA1/PTA2/PTA3/ PTA4/PTA5=Pull up, Others=Pull down	Pull down	Pull down	Pull down	Pull down
Pull enable control	Yes	Yes	Yes	Yes	Yes
Pull enable at reset	PTA0/PTA1/PTA2/ PTA3/ PTA4=Enabled; Others=Disabled	Disabled	Disabled	Disabled	Disabled
Slew rate enable control	Yes	Yes	Yes	Yes	Yes
Slew rate enable at reset	Disabled	Disabled	Disabled	Disabled	Disabled
Passive filter enable control	PTA4=Yes; Others=No	No	No	No	No
Passive filter enable at reset	Disabled	Disabled	Disabled	Disabled	Disabled
Open drain enable control	Yes	Yes	Yes	Yes	Yes
Open drain enable at reset	Disabled	Disabled	Disabled	Disabled	Disabled
Drive strength enable control	No	PTB0/PTB1 only	PTC3/PTC4 only	PTD4/PTD5/PTD6/ PTD7 only	No
Drive strength enable at reset	Disabled	Disabled	Disabled	Disabled	Disabled

Table 10-2. Ports summary (continued)

Feature	Port A	Port B	Port C	Port D	Port E
Pin mux control	Yes	Yes	Yes	Yes	Yes
Pin mux at reset	PTA0/PTA1/PTA2/ PTA3/PTA4=ALT7; Others=ALT0	ALT0	ALT0	ALT0	ALT0
Lock bit	Yes	Yes	Yes	Yes	Yes
Interrupt and DMA request	Yes	Yes	Yes	Yes	Yes
Digital glitch filter	No	No	No	Yes	No

10.2.2 Clock gating

The clock to the port control module can be gated on and off using the SCGC5[PORTx] bits in the SIM module. These bits are cleared after any reset, which disables the clock to the corresponding module to conserve power. Prior to initializing the corresponding module, set SCGC5[PORTx] in the SIM module to enable the clock. Before turning off the clock, make sure to disable the module. For more details, refer to the clock distribution chapter.

10.2.3 Signal multiplexing constraints

- 1. A given peripheral function must be assigned to a maximum of one package pin. Do not program the same function to more than one pin.
- 2. To ensure the best signal timing for a given peripheral's interface, choose the pins in closest proximity to each other.

10.3 Pinout

10.3.1 K22F Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Pinout

121 BGA	100 LQFP	64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
E4	1	1	A1	PTE0/ CLKOUT32K	ADC1_SE4a	ADC1_SE4a	PTE0/ CLKOUT32K	SPI1_PCS1	UART1_TX			I2C1_SDA	RTC_ CLKOUT	
E3	2	2	B1	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX			I2C1_SCL	SPI1_SIN	
E2	3	-	_	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_ CTS_b					
F4	4	_	_	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_ RTS_b				SPI1_SOUT	
H7	5	-	-	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_PCS0	LPUARTO_ TX					
G4	6	-	-	PTE5	DISABLED		PTE5	SPI1_PCS2	LPUARTO_ RX			FTM3_CH0		
F3	7	-	-	PTE6	DISABLED		PTE6	SPI1_PCS3	LPUARTO_ CTS_b	I2S0_MCLK		FTM3_CH1	USB_SOF_ OUT	
E6	8	3	C5	VDD	VDD	VDD								
G7	9	4	C4	VSS	VSS	VSS								
L6	_	_	_	VSS	VSS	VSS								
F1	10	5	E1	USB0_DP	USB0_DP	USB0_DP								
F2	11	6	D1	USB0_DM	USB0_DM	USB0_DM								
G1	12	7	E2	VOUT33	VOUT33	VOUT33								
G2	13	8	D2	VREGIN	VREGIN	VREGIN								
H1	14	_	-	ADC0_DP1	ADC0_DP1	ADC0_DP1								
H2	15	_	-	ADC0_DM1	ADC0_DM1	ADC0_DM1								
J1	16	-	-	ADC1_DP1/ ADC0_DP2	ADC1_DP1/ ADC0_DP2	ADC1_DP1/ ADC0_DP2								
J2	17	-	-	ADC1_DM1/ ADC0_DM2	ADC1_DM1/ ADC0_DM2	ADC1_DM1/ ADC0_DM2								
K1	18	9	G1	ADC0_DP0/ ADC1_DP3	ADC0_DP0/ ADC1_DP3	ADC0_DP0/ ADC1_DP3								
K2	19	10	F1	ADC0_DM0/ ADC1_DM3	ADC0_DM0/ ADC1_DM3	ADC0_DM0/ ADC1_DM3								
L1	20	11	G2	ADC1_DP0/ ADC0_DP3	ADC1_DP0/ ADC0_DP3	ADC1_DP0/ ADC0_DP3								
L2	21	12	F2	ADC1_DM0/ ADC0_DM3	ADC1_DM0/ ADC0_DM3	ADC1_DM0/ ADC0_DM3								
F5	22	13	F4	VDDA	VDDA	VDDA								
G5	23	14	G4	VREFH	VREFH	VREFH								
G6	24	15	G3	VREFL	VREFL	VREFL								
F6	25	16	F3	VSSA	VSSA	VSSA								
J3	_	-	-	ADC1_SE16/ ADC0_SE22	ADC1_SE16/ ADC0_SE22	ADC1_SE16/ ADC0_SE22								
H3	_	_	_	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21								

Chapter 10 Signal Multiplexing and Signal Descriptions

121 BGA	100 LQFP	64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
L3	26	17	H1	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
K5	27	18	H2	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
K4	-	-	-	DAC1_OUT/ CMP0_IN4/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ ADC1_SE23								
L7	_	-	-	RTC_ WAKEUP_B	RTC_ WAKEUP_B	RTC_ WAKEUP_B								
L4	28	19	H3	XTAL32	XTAL32	XTAL32								
L5	29	20	H4	EXTAL32	EXTAL32	EXTAL32								
K6	30	21	H5	VBAT	VBAT	VBAT								
H5	31	-	-	PTE24	ADC0_SE17	ADC0_SE17	PTE24				I2CO_SCL	EWM_OUT_ b		
J5	32	-	_	PTE25	ADC0_SE18	ADC0_SE18	PTE25				I2C0_SDA	EWM_IN		
H6	33	_	-	PTE26/ CLKOUT32K	DISABLED		PTE26/ CLKOUT32K					RTC_ CLKOUT	USB_CLKIN	
J6	34	22	D3	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK		PTA0	UARTO_ CTS_b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
H8	35	23	D4	PTA1	JTAG_TDI/ EZP_DI		PTA1	UARTO_RX	FTM0_CH6				JTAG_TDI	EZP_DI
J7	36	24	E5	PTA2	JTAG_TDO/ TRACE_ SWO/ EZP_DO		PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_ SWO	EZP_DO
H9	37	25	D5	PTA3	JTAG_TMS/ SWD_DIO		PTA3	UARTO_ RTS_b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
J8	38	26	G5	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b		PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
K7	39	27	F5	PTA5	DISABLED		PTA5	USB_CLKIN	FTM0_CH2			I2S0_TX_ BCLK	JTAG_ TRST_b	
E5	40	-	-	VDD	VDD	VDD								
G3	41	-	-	VSS	VSS	VSS								
J9	-	-	-	PTA10	DISABLED		PTA10		FTM2_CH0			FTM2_QD_ PHA		
J4	_	_	_	PTA11	DISABLED		PTA11		FTM2_CH1			FTM2_QD_ PHB		
K8	42	28	H6	PTA12	DISABLED		PTA12		FTM1_CH0			I2S0_TXD0	FTM1_QD_ PHA	
L8	43	29	G6	PTA13/ LLWU_P4	DISABLED		PTA13/ LLWU_P4		FTM1_CH1			I2S0_TX_FS	FTM1_QD_ PHB	
K9	44	-	-	PTA14	DISABLED		PTA14	SPI0_PCS0	UARTO_TX			I2S0_RX_ BCLK		

Pinout

121 BGA	100 LQFP	64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
L9	45	_	_	PTA15	DISABLED		PTA15	SPI0_SCK	UARTO_RX			12S0_RXD0		
J10	46	-	_	PTA16	DISABLED		PTA16	SPI0_SOUT	UARTO_ CTS_b			I2S0_RX_FS		
H10	47	ı	-	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UARTO_ RTS_b			I2S0_MCLK		
L10	48	30	G7	VDD	VDD	VDD								
K10	49	31	H7	VSS	VSS	VSS								
L11	50	32	Н8	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_ CLKIN0				
K11	51	33	G8	PTA19	XTAL0	XTAL0	PTA19		FTM1_FLT0	FTM_ CLKIN1		LPTMR0_ ALT1		
J11	52	34	F8	RESET_b	RESET_b	RESET_b								
H11	_	-	_	PTA29	DISABLED		PTA29					FB_A24		
G11	53	35	F7	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8	ADC0_SE8/ ADC1_SE8	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_ PHA		
G10	54	36	F6	PTB1	ADC0_SE9/ ADC1_SE9	ADC0_SE9/ ADC1_SE9	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB		
G9	55	37	E7	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	UARTO_ RTS_b			FTM0_FLT3		
G8	56	38	E8	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	UARTO_ CTS_b			FTM0_FLT0		
F11	_	1	-	PTB6	ADC1_SE12	ADC1_SE12	PTB6				FB_AD23			
E11	_	-	_	PTB7	ADC1_SE13	ADC1_SE13	PTB7				FB_AD22			
D11	-	-	-	PTB8	DISABLED		PTB8		LPUARTO_ RTS_b		FB_AD21			
E10	57	1	_	PTB9	DISABLED		PTB9	SPI1_PCS1	LPUARTO_ CTS_b		FB_AD20			
D10	58	1	_	PTB10	ADC1_SE14	ADC1_SE14	PTB10	SPI1_PCS0	LPUARTO_ RX		FB_AD19	FTM0_FLT1		
C10	59	ı	_	PTB11	ADC1_SE15	ADC1_SE15	PTB11	SPI1_SCK	LPUARTO_ TX		FB_AD18	FTM0_FLT2		
-	60	_	_	VSS	VSS	VSS								
-	61	_	_	VDD	VDD	VDD								
B10	62	39	E6	PTB16	DISABLED		PTB16	SPI1_SOUT	UARTO_RX	FTM_ CLKIN0	FB_AD17	EWM_IN		
E9	63	40	D7	PTB17	DISABLED		PTB17	SPI1_SIN	UARTO_TX	FTM_ CLKIN1	FB_AD16	EWM_OUT_ b		
D9	64	41	D6	PTB18	DISABLED		PTB18		FTM2_CH0	I2S0_TX_ BCLK	FB_AD15	FTM2_QD_ PHA		
C9	65	42	C7	PTB19	DISABLED		PTB19		FTM2_CH1	12S0_TX_FS	FB_OE_b	FTM2_QD_ PHB		
F10	66	ı	_	PTB20	DISABLED		PTB20				FB_AD31	CMP0_OUT		
F9	67	-	_	PTB21	DISABLED		PTB21				FB_AD30	CMP1_OUT		
F8	68	_	_	PTB22	DISABLED		PTB22				FB_AD29			
E8	69	-	_	PTB23	DISABLED		PTB23		SPI0_PCS5		FB_AD28			

Chapter 10 Signal Multiplexing and Signal Descriptions

121 BGA	100 LQFP	64 LQFP	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
В9	70	43	D8	PTC0	ADC0_SE14	ADC0_SE14	PTC0	SPI0_PCS4	PDB0_ EXTRG	USB_SOF_ OUT	FB_AD14			
D8	71	44	C6	PTC1/ LLWU_P6	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6	SPI0_PCS3	UART1_ RTS_b	FTM0_CH0	FB_AD13	I2S0_TXD0	LPUARTO_ RTS_b	
C8	72	45	B7	PTC2	ADC0_SE4b/ CMP1_IN0	ADC0_SE4b/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_ CTS_b	FTM0_CH1	FB_AD12	I2S0_TX_FS	LPUARTO_ CTS_b	
B8	73	46	C8	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT	I2S0_TX_ BCLK	LPUARTO_ RX	
-	74	47	E3	VSS	VSS	VSS								
-	75	48	E4	VDD	VDD	VDD								
A8	76	49	B8	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3	FB_AD11	CMP1_OUT	LPUARTO_ TX	
D7	77	50	A8	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	12S0_RXD0	FB_AD10	CMP0_OUT	FTM0_CH2	
C7	78	51	A7	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_ EXTRG	I2S0_RX_ BCLK	FB_AD9	I2S0_MCLK		
B7	79	52	B6	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN	USB_SOF_ OUT	I2S0_RX_FS	FB_AD8			
A7	80	53	A6	PTC8	ADC1_SE4b/ CMP0_IN2	ADC1_SE4b/ CMP0_IN2	PTC8		FTM3_CH4	I2S0_MCLK	FB_AD7			
D6	81	54	B5	PTC9	ADC1_SE5b/ CMP0_IN3	ADC1_SE5b/ CMP0_IN3	PTC9		FTM3_CH5	I2S0_RX_ BCLK	FB_AD6	FTM2_FLT0		
C6	82	55	B4	PTC10	ADC1_SE6b	ADC1_SE6b	PTC10	I2C1_SCL	FTM3_CH6	12S0_RX_FS	FB_AD5			
C5	83	56	A5	PTC11/ LLWU_P11	ADC1_SE7b	ADC1_SE7b	PTC11/ LLWU_P11	I2C1_SDA	FTM3_CH7		FB_RW_b			
В6	84	-	_	PTC12	DISABLED		PTC12				FB_AD27	FTM3_FLT0		
A6	85	-	-	PTC13	DISABLED		PTC13				FB_AD26			
A5	86	-	-	PTC14	DISABLED		PTC14				FB_AD25			
B5	87	-	-	PTC15	DISABLED		PTC15				FB_AD24			
-	88	1	-	VSS	VSS	VSS								
_	89	_	_	VDD	VDD	VDD								
D5	90		-	PTC16	DISABLED		PTC16		LPUARTO_ RX		FB_CS5_b/ FB_TSIZ1/ FB_BE23_ 16_BLS15_ 8_b			
C4	91	1	-	PTC17	DISABLED		PTC17		LPUARTO_ TX		FB_CS4_b/ FB_TSIZ0/ FB_BE31_ 24_BLS7_0_ b			
B4	92	-	-	PTC18	DISABLED		PTC18		LPUARTO_ RTS_b		FB_TBST_b/ FB_CS2_b/ FB_BE15_8_ BLS23_16_b			

Pinout

121 BGA	100 LQFP	64 LQFP	64 Map Bga	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
A4	_	_	1	PTC19	DISABLED		PTC19		LPUARTO_ CTS_b		FB_CS3_b/ FB_BE7_0_ BLS31_24_b	FB_TA_b		
D4	93	57	C3	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_ RTS_b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b	LPUARTO_ RTS_b		
D3	94	58	A4	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM3_CH1	FB_CS0_b	LPUARTO_ CTS_b		
C3	95	59	C2	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX	FTM3_CH2	FB_AD4	LPUARTO_ RX	12C0_SCL	
B3	96	60	B3	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX	FTM3_CH3	FB_AD3	LPUARTO_ TX	I2C0_SDA	
A3	97	61	A3	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UARTO_ RTS_b	FTM0_CH4	FB_AD2	EWM_IN	SPI1_PCS0	
A2	98	62	C1	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UARTO_ CTS_b	FTM0_CH5	FB_AD1	EWM_OUT_	SPI1_SCK	
F7	_	_	_	VSS	VSS	VSS								
E7	_	-	_	VDD	VDD	VDD								
B2	99	63	B2	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UARTO_RX	FTM0_CH6	FB_AD0	FTM0_FLT0	SPI1_SOUT	
A1	100	64	A2	PTD7	DISABLED		PTD7		UARTO_TX	FTM0_CH7		FTM0_FLT1	SPI1_SIN	
A10	-	_	_	PTD8	DISABLED		PTD8	I2C0_SCL			LPUARTO_ RX	FB_A16		
A9	-	-	_	PTD9	DISABLED		PTD9	I2C0_SDA			LPUARTO_ TX	FB_A17		
B1	-	-	_	PTD10	DISABLED		PTD10				LPUARTO_ RTS_b	FB_A18		
C2	_	-	_	PTD11	DISABLED		PTD11				LPUARTO_ CTS_b	FB_A19		
C1	_	_	_	PTD12	DISABLED		PTD12		FTM3_FLT0			FB_A20		
D2	_	-	_	PTD13	DISABLED		PTD13					FB_A21		
D1	-	-	-	PTD14	DISABLED		PTD14					FB_A22		
E1	-	_	-	PTD15	DISABLED		PTD15					FB_A23		
A11	_	-	-	NC	NC	NC								
K3	-	-	_	NC	NC	NC								
H4	_	-	_	NC	NC	NC								
B11	-	-	-	NC	NC	NC								
C11	_	-	-	NC	NC	NC								

10.3.2 K22 Pinouts

The following figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

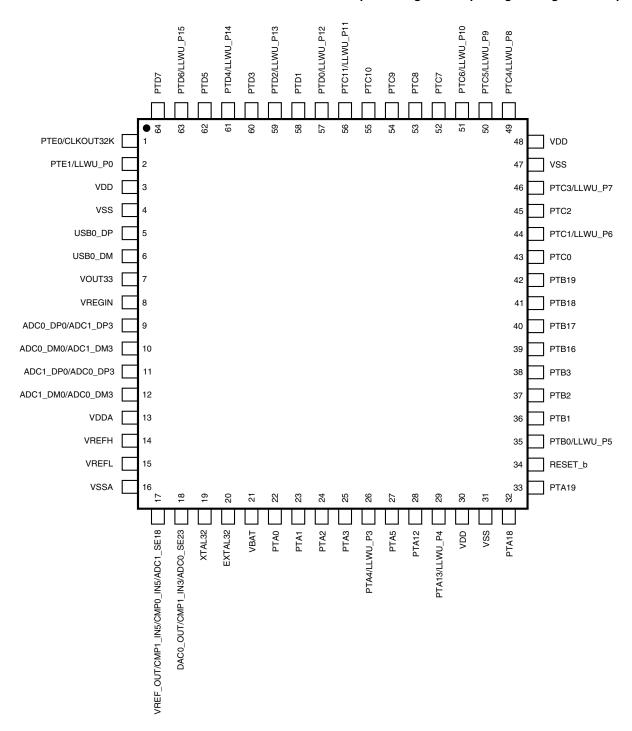


Figure 10-2. K22F 64 LQFP Pinout Diagram

	1	2	3	4	5	6	7	8	
Α	PTE0/ CLKOUT32K	PTD7	PTD4/ LLWU_P14	PTD1	PTC11/ LLWU_P11	PTC8	PTC6/ LLWU_P10	PTC5/ LLWU_P9	А
В	PTE1/ LLWU_P0	PTD6/ LLWU_P15	PTD3	PTC10	PTC9	PTC7	PTC2	PTC4/ LLWU_P8	В
С	PTD5	PTD2/ LLWU_P13	PTD0/ LLWU_P12	VSS	VDD	PTC1/ LLWU_P6	PTB19	PTC3/ LLWU_P7	С
D	USB0_DM	VREGIN	PTA0	PTA1	PTA3	PTB18	PTB17	PTC0	D
E	USB0_DP	VOUT33	VSS	VDD	PTA2	PTB16	PTB2	PTB3	Е
F	ADC0_DM0/ ADC1_DM3	ADC1_DM0/ ADC0_DM3	VSSA	VDDA	PTA5	PTB1	PTB0/ LLWU_P5	RESET_b	F
G	ADC0_DP0/ ADC1_DP3	ADC1_DP0/ ADC0_DP3	VREFL	VREFH	PTA4/ LLWU_P3	PTA13/ LLWU_P4	VDD	PTA19	G
Н	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	VTALOO	EXTAL32	VBAT	PTA12	VSS	PTA18	н
	1	2	3	4	5	6	7	8	

Figure 10-3. K22 64 MAPBGA Pinout Diagram

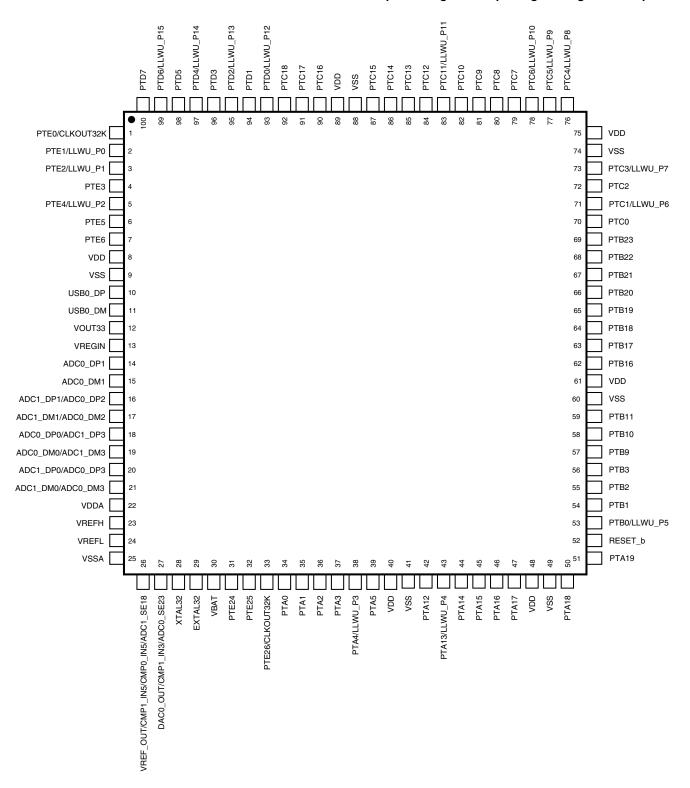


Figure 10-4. K22F 100 LQFP Pinout Diagram

	1	2	3	4	5	6	7	8	9	10	11	
Α	PTD7	PTD5	PTD4/ LLWU_P14	PTC19	PTC14	PTC13	PTC8	PTC4/ LLWU_P8	PTD9	PTD8	NC	А
В	PTD10	PTD6/ LLWU_P15	PTD3	PTC18	PTC15	PTC12	PTC7	PTC3/ LLWU_P7	PTC0	PTB16	NC	В
С	PTD12	PTD11	PTD2/ LLWU_P13	PTC17	PTC11/ LLWU_P11	PTC10	PTC6/ LLWU_P10	PTC2	PTB19	PTB11	NC	С
D	PTD14	PTD13	PTD1	PTD0/ LLWU_P12	PTC16	PTC9	PTC5/ LLWU_P9	PTC1/ LLWU_P6	PTB18	PTB10	PTB8	D
E	PTD15	PTE2/ LLWU_P1	PTE1/ LLWU_P0	PTE0/ CLKOUT32K	VDD	VDD	VDD	PTB23	PTB17	PTB9	PTB7	Е
F	USB0_DP	USB0_DM	PTE6	PTE3	VDDA	VSSA	VSS	PTB22	PTB21	PTB20	PTB6	F
G	VOUT33	VREGIN	VSS	PTE5	VREFH	VREFL	VSS	PTB3	PTB2	PTB1	PTB0/ LLWU_P5	G
Н	ADC0_DP1	ADC0_DM1	ADC0_SE16, CMP1_IN2/ ADC0_SE21	NC	PTE24	PTE26/ CLKOUT32K	PTE4/ LLWU_P2	PTA1	PTA3	PTA17	PTA29	н
J			ADC1_SE16 ADC0_SE22		PTE25	PTA0	PTA2	PTA4/ LLWU_P3	PTA10	PTA16	RESET_b	J
К		ADC0_DM0/ ADC1_DM3	NC	DAC1_OUT/ CMP0_IN4/ ADC1_SE23	CMP1_IN3/	VBAT	PTA5	PTA12	PTA14	VSS	PTA19	к
L	ADC1_DP0/ ADC0_DP3	ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	XTAL32	EXTAL32	VSS	RTC_ WAKEUP_B	PTA13/ LLWU_P4	PTA15	VDD	PTA18	L
	1	2	3	4	5	6	7	8	9	10	11	•

Figure 10-5. K22F 121 XFBGA Pinout Diagram

10.4 Module Signal Description Tables

The following sections correlate the chip-level signal name with the signal name used in the module's chapter. They also briefly describe the signal function and direction.

10.4.1 Core Modules

Table 10-3. JTAG Signal Descriptions

Chip signal name	Module signal name	Description	I/O
JTAG_TMS	JTAG_TMS/ SWD_DIO	JTAG Test Mode Selection	I/O
JTAG_TCLK	JTAG_TCLK/ SWD_CLK	JTAG Test Clock	I
JTAG_TDI	JTAG_TDI	JTAG Test Data Input	I
JTAG_TDO	JTAG_TDO/ TRACE_SWO	JTAG Test Data Output	0
JTAG_TRST	JTAG_TRST_b	JTAG Reset	1

Table 10-4. SWD Signal Descriptions

Chip signal name	Module signal name	Description	I/O
SWD_DIO	JTAG_TMS/ SWD_DIO	Serial Wire Data	I/O
SWD_CLK	JTAG_TCLK/ SWD_CLK	Serial Wire Clock	I

Table 10-5. TPIU Signal Descriptions

Chip signal name	Module signal name	Description	I/O
TRACE_SWO	JTAG_TDO/ TRACE_SWO	Trace output data from the ARM CoreSight debug block over a single pin	0

10.4.2 System Modules

Table 10-6. EWM Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EWM_IN	EWM_in	EWM input for safety status of external safety circuits. The polarity of EWM_in is programmable using the EWM_CTRL[ASSIN] bit. The default polarity is active-low.	I
EWM_OUT	EWM_out	EWM reset out signal	0

10.4.3 Clock Modules

Table 10-7. OSC Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EXTAL0	EXTAL	External clock/Oscillator input	I
XTAL0	XTAL	Oscillator output	0

Table 10-8. RTC OSC Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EXTAL32	EXTAL32	32.768 kHz oscillator input	I
XTAL32	XTAL32	32.768 kHz oscillator output	0

10.4.4 Memories and Memory Interfaces

Table 10-9. EzPort Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EZP_CLK	EZP_CK	EzPort Clock	Input
EZP_CS	EZP_CS	EzPort Chip Select	Input
EZP_DI	EZP_D	EzPort Serial Data In	Input
EZP_DO	EZP_Q	EzPort Serial Data Out	Output

Table 10-10. FlexBus Signal Descriptions

Chip signal name	Module signal name	Description	I/O
CLKOUT	FB_CLK	0	FlexBus Clock Output

Table 10-10. FlexBus Signal Descriptions (continued)

Chip signal name	Module signal name	Description	I/O
FB_AD[31:0] ¹	FB_D31-FB_D0	Data Bus—During the first cycle, this bus drives the upper address byte, addr[31:24].	I/O
		When FlexBus is used in a nonmultiplexed configuration, this is the data bus, FB_D. When FlexBus is used in a multiplexed configuration, this is the address and data bus, FB_AD.	
		The number of byte lanes carrying the data is determined by the port size associated with the matching chip-select.	
		When FlexBus is used in a multiplexed configuration, the full 32-bit address is driven on the first clock of a bus cycle (address phase). After the first clock, the data is driven on the bus (data phase). During the data phase, the address is driven on the pins not used for data. For example, in 16-bit mode, the lower address is driven on FB_AD15–FB_AD0, and in 8-bit mode, the lower address is driven on FB_AD23–FB_AD0.	
FB_CS[5:0] ²	FB_CS5-FB_CS0	General Purpose Chip-Selects—Indicate which external memory or peripheral is selected. A particular chip-select is asserted when the transfer address is within the external memory's or peripheral's address space, as defined in CSAR[BA] and CSMR[BAM].	0
FB_BE31_24_BLS7_ 0, FB_BE23_16_BLS15 _8, FB_BE15_8_BLS23_ 16, FB_BE7_0_BLS31_2 43	FB_BE_31_24 FB_BE_23_16 FB_BE_15_8 FB_BE_7_0	Byte Enables—Indicate that data is to be latched or driven onto a specific byte lane of the data bus. CSCR[BEM] determines if these signals are asserted on reads and writes or on writes only. For external SRAM or flash devices, the FB_BE outputs should be connected to individual byte strobe signals.	0
FB_OE	FB_OE	Output Enable—Sent to the external memory or peripheral to enable a read transfer. This signal is asserted during read accesses only when a chip-select matches the current address decode.	0
FB_R W	FB_R/W	Read/Write—Indicates whether the current bus operation is a read operation (FB_R/W high) or a write operation (FB_R/W low).	0
FB_TS/ FB_ALE	FB_TS	Transfer Start—Indicates that the chip has begun a bus transaction and that the address and attributes are valid.	0
		An inverted FB_TS is available as an address latch enable (FB_ALE), which indicates when the address is being driven on the FB_AD bus.	
		FB_TS/FB_ALE is asserted for one bus clock cycle.	
		The chip can extend this signal until the first positive clock edge after FB_CS asserts. See CSCR[EXTS] and Extended Transfer Start/Address Latch Enable.	

Module Signal Description Tables

Table 10-10. FlexBus Signal Descriptions (continued)

Chip signal name	Module signal name	Description	I/O
FB_TSIZ[1:0]	FB_TSIZ1-FB_TSIZ0	Transfer Size—Indicates (along with FB_TBST) the data transfer size of the current bus operation. The interface supports 8-, 16-, and 32-bit operand transfers and allows accesses to 8-, 16-, and 32-bit data ports.	0
		• 00b = 4 bytes	
		• 01b = 1 byte	
		• 10b = 2 bytes	
		• 11b = 16 bytes (line)	
		For misaligned transfers, FB_TSIZ1–FB_TSIZ0 indicate the size of each transfer. For example, if a 32-bit access through a 32-bit port device occurs at a misaligned offset of 1h, 8 bits are transferred first (FB_TSIZ1–FB_TSIZ0 = 01b), 16 bits are transferred next at offset 2h (FB_TSIZ1–FB_TSIZ0 = 10b), and the final 8 bits are transferred at offset 4h (FB_TSIZ1–FB_TSIZ0 = 01b).	
		For aligned transfers larger than the port size, FB_TSIZ1-FB_TSIZ0 behave as follows:	
		If bursting is used, FB_TSIZ1-FB_TSIZ0 are driven to the transfer size.	
		If bursting is inhibited, FB_TSIZ1–FB_TSIZ0 first show the entire transfer size and then show the port size.	
		For burst-inhibited transfers, FB_TSIZ1–FB_TSIZ0 change with each FB_TS assertion to reflect the next transfer size.	
		For transfers to port sizes smaller than the transfer size, FB_TSIZ1-FB_TSIZ0 indicate the size of the entire transfer on the first access and the size of the current port transfer on subsequent transfers. For example, for a 32-bit write to an 8-bit port, FB_TSIZ1-FB_TSIZ0 are 00b for the first transaction and 01b for the next three transactions. If bursting is used for a 32-bit write to an 8-bit port, FB_TSIZ1-FB_TSIZ0 are driven to 00b for the entire transfer.	

Table 10-10. FlexBus Signal Descriptions (continued)

Chip signal name	Module signal name	Description	I/O
FB_TA ⁴	FB_TA	Transfer Acknowledge—Indicates that the external data transfer is complete. When FB_TA is asserted during a read transfer, FlexBus latches the data and then terminates the transfer. When FB_TA is asserted during a write transfer, the transfer is terminated.	Ι
		If auto-acknowledge is disabled (CSCR[AA] = 0), the external memory or peripheral drives \overline{FB} _TA to terminate the transfer. If auto-acknowledge is enabled (CSCR[AA] = 1), \overline{FB} _TA is generated internally after a specified number of wait states, or the external memory or peripheral may assert external \overline{FB} _TA before the wait-state countdown to terminate the transfer early. The chip deasserts \overline{FB} _CS one cycle after the last \overline{FB} _TA is asserted. During read transfers, the external memory or peripheral must continue to drive data until \overline{FB} _TA is recognized. For write transfers, the chip continues driving data one clock cycle after \overline{FB} _CS is deasserted.	
		The number of wait states is determined by CSCR or the external FB_TA input. If the external FB_TA is used, the external memory or peripheral has complete control of the number of wait states.	
		Note: External memory or peripherals should assert FB_TA only while the FB_CS signal to the external memory or peripheral is asserted.	
		The CSPMCR register controls muxing of FB_TA with other signals. If auto-acknowledge is not used and CSPMCR does not allow FB_TA control, FlexBus may hang.	
FB_TBST	FB_TBST	Transfer Burst—Indicates that a burst transfer is in progress as driven by the chip. A burst transfer can be 2 to 16 beats depending on FB_TSIZ1–FB_TSIZ0 and the port size.	0
		Note: When a burst transfer is in progress (FB_TBST = 0b), the transfer size is 16 bytes (FB_TSIZ1-FB_TSIZ0 = 11b), and the address is misaligned within the 16-byte boundary, the external memory or peripheral must be able to wrap around the address.	

- 1. FB_AD[23:21] not available on 100-LQFP devices.
- 2. FB_CS3not available on 100-LQFP devices.
- 3. FB_BE7_0_BLS31_24not available on 100-LQFP devices.
- 4. FB_TAnotavailable on 100-LQFP devices.

10.4.5 Analog

Table 10-11. ADC 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
ADC0_DP[3:0]	DADP3-DADP0	Differential Analog Channel Inputs	I
ADC0_DM[3:0]	DADM3-DADM0	Differential Analog Channel Inputs	I
ADC0_SEn	AD <i>n</i>	Single-Ended Analog Channel Inputs	I

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Module Signal Description Tables

Table 10-11. ADC 0 Signal Descriptions (continued)

Chip signal name	Module signal name	Description	I/O
VREFH	V_{REFSH}	Voltage Reference Select High	I
VREFL	V _{REFSL}	Voltage Reference Select Low	I
VDDA	V_{DDA}	Analog Power Supply	I
VSSA	V _{SSA}	Analog Ground	I

Table 10-12. ADC 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
ADC1_DP3, ADC1_DP[1:0]	DADP3-DADP0	Differential Analog Channel Inputs	I
ADC1_DM3, ADC1_DM[1:0]	DADM3-DADM0	Differential Analog Channel Inputs	I
ADC1_SEn	AD <i>n</i>	Single-Ended Analog Channel Inputs	I
VREFH	V _{REFSH}	Voltage Reference Select High	I
VREFL	V _{REFSL}	Voltage Reference Select Low	I
VDDA	V_{DDA}	Analog Power Supply	I
VSSA	V _{SSA}	Analog Ground	1

Table 10-13. CMP 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
CMP0_IN[5:0]	IN[5:0]	Analog voltage inputs	I
CMP0_OUT	СМРО	Comparator output	0

Table 10-14. CMP 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
CMP1_IN[5:0]	IN[5:0]	Analog voltage inputs	I
CMP1_OUT	СМРО	Comparator output	0

Table 10-15. DAC 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
DAC0_OUT	_	DAC output	0

Table 10-16. DAC 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
DAC1_OUT	_	DAC output	0

Table 10-17. VREF Signal Descriptions

Chip signal name	Module signal name	Description	I/O
VREF_OUT	VREF_OUT	Internally-generated Voltage Reference output	0

10.4.6 Timer Modules

Table 10-18. FTM 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
FTM_CLKIN[1:0]	EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I
FTM0_CH[7:0]	CHn	FTM channel (n), where n can be 7-0	I/O
FTM0_FLT[3:0]	FAULTj	Fault input (j), where j can be 3-0	I

Table 10-19. FTM 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
FTM_CLKIN[1:0]	EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I
FTM1_CH[1:0]	CHn	FTM channel (n), where n can be 7-0	I/O
FTM1_FLT0	FAULTj	Fault input (j), where j can be 3-0	I
FTM1_QD_PHA	PHA	Quadrature decoder phase A input. Input pin associated with quadrature decoder phase A.	1
FTM1_QD_PHB	PHB	Quadrature decoder phase B input. Input pin associated with quadrature decoder phase B.	1

Table 10-20. FTM 2 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
FTM_CLKIN[1:0]	EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I
FTM2_CH[1:0]	CHn	FTM channel (n), where n can be 7-0	I/O
FTM2_FLT0	FAULTj	Fault input (j), where j can be 3-0	I

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Module Signal Description Tables

Table 10-20. FTM 2 Signal Descriptions (continued)

Chip signal name	Module signal name	Description	I/O
FTM2_QD_PHA	PHA	Quadrature decoder phase A input. Input pin associated with quadrature decoder phase A.	Ι
FTM2_QD_PHB	РНВ	Quadrature decoder phase B input. Input pin associated with quadrature decoder phase B.	I

Table 10-21. FTM 3 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
FTM_CLKIN[1:0]	EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	ļ
FTM3_CH[7:0]	CHn	FTM channel (n), where n can be 7-0	I/O
FTM3_FLT0	FAULTj	Fault input (j), where j can be 3-0	Ţ

Table 10-22. PDB 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
PDB0_EXTRG	EXTRG	External Trigger Input Source	I
		If the PDB is enabled and external trigger input source is selected, a positive edge on the EXTRG signal resets and starts the counter.	

Table 10-23. LPTMR 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
LPTMR0_ALT[:1]	LPTMR_ALT <i>n</i>	Pulse Counter Input pin	I

Table 10-24. RTC Signal Descriptions

Chip signal name	Module signal name	Description	I/O
VBAT	_	Backup battery supply for RTC and VBAT register file	I
RTC_CLKOUT	RTC_CLKOUT	1 Hz square-wave output	0

10.4.7 Communication Interfaces

Table 10-25. USB FS OTG Signal Descriptions

Chip signal name	Module signal name	Description	I/O
USB0_DM	usb_dm	USB D- analog data signal on the USB bus.	I/O
USB0_DP	usb_dp	USB D+ analog data signal on the USB bus.	I/O
USB_CLKIN	_	Alternate USB clock input	I
USB_SOF_OUT	_	USB start of frame signal. Can be used to make the USB start of frame available for external synchronization.	0

Table 10-26. USB VREG Signal Descriptions

Chip signal name	Module signal name	Description	I/O
VOUT33	reg33_out	Regulator output voltage	0
VREGIN	reg33_in	Unregulated power supply	I

Table 10-27. SPI 0 Signal Descriptions

Chip signal name	Module signal	Description	1/0
	name		
SPI0_PCS0	PCS0/SS	Peripheral Chip Select 0 (O)	I/O
SPI0_PCS[3:1]	PCS[1:3]	Peripheral Chip Selects 1–3	0
SPI0_PCS4	PCS4	Peripheral Chip Select 4	0
SPI0_PCS5	PCS5/ PCSS	Peripheral Chip Select 5 / Peripheral Chip Select Strobe	0
SPI0_SIN	SIN	Serial Data In	I
SPI0_SOUT	SOUT	Serial Data Out	0
SPI0_SCK	SCK	Serial Clock (O)	I/O

Table 10-28. SPI 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
SPI1_PCS0	PCS0/SS	Peripheral Chip Select 0 (O)	I/O
SPI1_PCS[3:1]	PCS[1:3]	Peripheral Chip Selects 1–3	0
SPI1_SIN	SIN	Serial Data In	I
SPI1_SOUT	SOUT	Serial Data Out	0
SPI1_SCK	SCK	Serial Clock (O)	I/O

Module Signal Description Tables

Table 10-29. I²C 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
I2C0_SCL	SCL	Bidirectional serial clock line of the I ² C system.	I/O
I2C0_SDA	SDA	Bidirectional serial data line of the I ² C system.	I/O

Table 10-30. I²C 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
I2C1_SCL	SCL	Bidirectional serial clock line of the I ² C system.	I/O
I2C1_SDA	SDA	Bidirectional serial data line of the I ² C system.	I/O

Table 10-31. LPUART Signal Descriptions

Chip signal name	Module signal name	Description	I/O
UART0_TX	TxD	Transmit Data	0
UART0_RX	RxD	Receive Data	I

Table 10-32. UART 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
UARTO_CTS	CTS	Clear to send	I
UARTO_RTS	RTS	Request to send	0
UART0_TX	TXD	Transmit data	0
UART0_RX	RXD	Receive data	I

Table 10-33. UART 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
UART1_CTS	CTS	Clear to send	I
UART1_RTS	RTS	Request to send	0
UART1_TX	TXD	Transmit data	0
UART1_RX	RXD	Receive data	I

Table 10-34. UART 2 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
UART2_CTS	CTS	Clear to send	I

Table 10-34. UART 2 Signal Descriptions (continued)

Chip signal name	Module signal name	Description	I/O
UART2_RTS	RTS	Request to send	0
UART2_TX	TXD	Transmit data	0
UART2_RX	RXD	Receive data	I

Table 10-35. I²S0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
I2S0_MCLK	SAI_MCLK	Audio Master Clock. The master clock is an input when externally generated and an output when internally generated.	I/O
I2S0_RX_BCLK	SAI_RX_BCLK	Receive Bit Clock. The bit clock is an input when externally generated and an output when internally generated.	I/O
I2S0_RX_FS	SAI_RX_SYNC	Receive Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated.	I/O
I2S0_RXD	SAI_RX_DATA	Receive Data. The receive data is sampled synchronously by the bit clock.	I
I2S0_TX_BCLK	SAI_TX_BCLK	Transmit Bit Clock. The bit clock is an input when externally generated and an output when internally generated.	I/O
I2S0_TX_FS	SAI_TX_SYNC	Transmit Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated.	I/O
I2S0_TXD	SAI_TX_DATA	Transmit Data. The transmit data is generated synchronously by the bit clock and is tristated whenever not transmitting a word.	0

10.4.8 Human-Machine Interfaces (HMI)

Table 10-36. GPIO Signal Descriptions

Chip signal name	Module signal name	Description	I/O
PTA[31:0] ¹	PORTA31-PORTA0	General-purpose input/output	I/O
PTB[31:0] ¹	PORTB31-PORTB0	General-purpose input/output	I/O
PTC[31:0] ¹	PORTC31-PORTC0	General-purpose input/output	I/O
PTD[31:0] ¹	PORTD31-PORTD0	General-purpose input/output	I/O
PTE[31:0] ¹	PORTE31-PORTE0	General-purpose input/output	I/O

^{1.} The available GPIO pins depends on the specific package. See the signal multiplexing section for which exact GPIO signals are available.

Module Signal Description Tables

Chapter 11 Port Control and Interrupts (PORT)

11.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

11.2 Overview

The Port Control and Interrupt (PORT) module provides support for port control, digital filtering, and external interrupt functions.

Most functions can be configured independently for each pin in the 32-bit port and affect the pin regardless of its pin muxing state.

There is one instance of the PORT module for each port. Not all pins within each port are implemented on a specific device.

11.2.1 Features

The PORT module has the following features:

- Pin interrupt
 - Interrupt flag and enable registers for each pin
 - Support for edge sensitive (rising, falling, both) or level sensitive (low, high) configured per pin
 - Support for interrupt or DMA request configured per pin
 - Asynchronous wake-up in low-power modes
 - Pin interrupt is functional in all digital pin muxing modes
- Digital input filter on selected pins

Overview

- Digital input filter for each pin, usable by any digital peripheral muxed onto the pin
- Individual enable or bypass control field per pin
- Selectable clock source for digital input filter with a five bit resolution on filter size
- Functional in all digital pin multiplexing modes
- Port control
 - Individual pull control fields with pullup, pulldown, and pull-disable support
 - Individual drive strength field supporting high and low drive strength
 - Individual slew rate field supporting fast and slow slew rates
 - Individual input passive filter field supporting enable and disable of the individual input passive filter
 - Individual open drain field supporting enable and disable of the individual open drain output
 - Individual mux control field supporting analog or pin disabled, GPIO, and up to six chip-specific digital functions
 - Pad configuration fields are functional in all digital pin muxing modes.

11.2.2 Modes of operation

11.2.2.1 Run mode

In Run mode, the PORT operates normally.

11.2.2.2 Wait mode

In Wait mode, PORT continues to operate normally and may be configured to exit the Low-Power mode if an enabled interrupt is detected. DMA requests are still generated during the Wait mode, but do not cause an exit from the Low-Power mode.

11.2.2.3 Stop mode

In Stop mode, the PORT can be configured to exit the Low-Power mode via an asynchronous wake-up signal if an enabled interrupt is detected.

In Stop mode, the digital input filters are bypassed unless they are configured to run from the 1-kHz LPO clock source.

11.2.2.4 **Debug mode**

In Debug mode, PORT operates normally.

11.3 External signal description

The table found here describes the PORT external signal.

Table 11-1. Signal properties

Name	Function	I/O	Reset	Pull
PORTx[31:0]	External interrupt	I/O	0	-

NOTE

Not all pins within each port are implemented on each device.

11.4 Detailed signal description

The table found here contains the detailed signal description for the PORT interface.

Table 11-2. PORT interface—detailed signal description

Signal	I/O		Description		
PORTx[31:0]	I/O	External interrupt.	External interrupt.		
		State meaning	Asserted—pin is logic 1.		
			Negated—pin is logic 0.		
		Timing	Assertion—may occur at any time and can assert asynchronously to the system clock.		
			Negation—may occur at any time and can assert asynchronously to the system clock.		

11.5 Memory map and register definition

Any read or write access to the PORT memory space that is outside the valid memory map results in a bus error. All register accesses complete with zero wait states.

PORT memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_9000	Pin Control Register n (PORTA_PCR0)	32	R/W	See section	11.5.1/250
4004_9004	Pin Control Register n (PORTA_PCR1)	32	R/W	See section	11.5.1/250
4004_9008	Pin Control Register n (PORTA_PCR2)	32	R/W	See section	11.5.1/250
4004_900C	Pin Control Register n (PORTA_PCR3)	32	R/W	See section	11.5.1/250
4004_9010	Pin Control Register n (PORTA_PCR4)	32	R/W	See section	11.5.1/250
4004_9014	Pin Control Register n (PORTA_PCR5)	32	R/W	See section	11.5.1/250
4004_9018	Pin Control Register n (PORTA_PCR6)	32	R/W	See section	11.5.1/250
4004_901C	Pin Control Register n (PORTA_PCR7)	32	R/W	See section	11.5.1/250
4004_9020	Pin Control Register n (PORTA_PCR8)	32	R/W	See section	11.5.1/250
4004_9024	Pin Control Register n (PORTA_PCR9)	32	R/W	See section	11.5.1/250
4004_9028	Pin Control Register n (PORTA_PCR10)	32	R/W	See section	11.5.1/250
4004_902C	Pin Control Register n (PORTA_PCR11)	32	R/W	See section	11.5.1/250
4004_9030	Pin Control Register n (PORTA_PCR12)	32	R/W	See section	11.5.1/250
4004_9034	Pin Control Register n (PORTA_PCR13)	32	R/W	See section	11.5.1/250
4004_9038	Pin Control Register n (PORTA_PCR14)	32	R/W	See section	11.5.1/250
4004_903C	Pin Control Register n (PORTA_PCR15)	32	R/W	See section	11.5.1/250
4004_9040	Pin Control Register n (PORTA_PCR16)	32	R/W	See section	11.5.1/250
4004_9044	Pin Control Register n (PORTA_PCR17)	32	R/W	See section	11.5.1/250
4004_9048	Pin Control Register n (PORTA_PCR18)	32	R/W	See section	11.5.1/250
4004_904C	Pin Control Register n (PORTA_PCR19)	32	R/W	See section	11.5.1/250
4004_9050	Pin Control Register n (PORTA_PCR20)	32	R/W	See section	11.5.1/250
4004_9054	Pin Control Register n (PORTA_PCR21)	32	R/W	See section	11.5.1/250
4004_9058	Pin Control Register n (PORTA_PCR22)	32	R/W	See section	11.5.1/250
4004_905C	Pin Control Register n (PORTA_PCR23)	32	R/W	See section	11.5.1/250
4004_9060	Pin Control Register n (PORTA_PCR24)	32	R/W	See section	11.5.1/250
4004_9064	Pin Control Register n (PORTA_PCR25)	32	R/W	See section	11.5.1/250
4004_9068	Pin Control Register n (PORTA_PCR26)	32	R/W	See section	11.5.1/250
4004_906C	Pin Control Register n (PORTA_PCR27)	32	R/W	See section	11.5.1/250
4004_9070	Pin Control Register n (PORTA_PCR28)	32	R/W	See section	11.5.1/250
4004_9074	Pin Control Register n (PORTA_PCR29)	32	R/W	See section	11.5.1/250
4004_9078	Pin Control Register n (PORTA_PCR30)	32	R/W	See section	11.5.1/250
4004_907C	Pin Control Register n (PORTA_PCR31)	32	R/W	See section	11.5.1/250
4004_9080	Global Pin Control Low Register (PORTA_GPCLR)	32	W (always reads 0)	0000_0000h	11.5.2/252
4004_9084	Global Pin Control High Register (PORTA_GPCHR)	32	W (always reads 0)	0000_0000h	11.5.3/253
4004_90A0	Interrupt Status Flag Register (PORTA_ISFR)	32	w1c	0000_0000h	11.5.4/254

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_90C0	Digital Filter Enable Register (PORTA_DFER)	32	R/W	0000_0000h	11.5.5/254
4004_90C4	Digital Filter Clock Register (PORTA_DFCR)	32	R/W	0000_0000h	11.5.6/255
4004_90C8	Digital Filter Width Register (PORTA_DFWR)	32	R/W	0000_0000h	11.5.7/255
4004_A000	Pin Control Register n (PORTB_PCR0)	32	R/W	See section	11.5.1/250
4004_A004	Pin Control Register n (PORTB_PCR1)	32	R/W	See section	11.5.1/250
4004_A008	Pin Control Register n (PORTB_PCR2)	32	R/W	See section	11.5.1/250
4004_A00C	Pin Control Register n (PORTB_PCR3)	32	R/W	See section	11.5.1/250
4004_A010	Pin Control Register n (PORTB_PCR4)	32	R/W	See section	11.5.1/250
4004_A014	Pin Control Register n (PORTB_PCR5)	32	R/W	See section	11.5.1/250
4004_A018	Pin Control Register n (PORTB_PCR6)	32	R/W	See section	11.5.1/250
4004_A01C	Pin Control Register n (PORTB_PCR7)	32	R/W	See section	11.5.1/250
4004_A020	Pin Control Register n (PORTB_PCR8)	32	R/W	See section	11.5.1/250
4004_A024	Pin Control Register n (PORTB_PCR9)	32	R/W	See section	11.5.1/250
4004_A028	Pin Control Register n (PORTB_PCR10)	32	R/W	See section	11.5.1/250
4004_A02C	Pin Control Register n (PORTB_PCR11)	32	R/W	See section	11.5.1/250
4004_A030	Pin Control Register n (PORTB_PCR12)	32	R/W	See section	11.5.1/250
4004_A034	Pin Control Register n (PORTB_PCR13)	32	R/W	See section	11.5.1/250
4004_A038	Pin Control Register n (PORTB_PCR14)	32	R/W	See section	11.5.1/250
4004_A03C	Pin Control Register n (PORTB_PCR15)	32	R/W	See section	11.5.1/250
4004_A040	Pin Control Register n (PORTB_PCR16)	32	R/W	See section	11.5.1/250
4004_A044	Pin Control Register n (PORTB_PCR17)	32	R/W	See section	11.5.1/250
4004_A048	Pin Control Register n (PORTB_PCR18)	32	R/W	See section	11.5.1/250
4004_A04C	Pin Control Register n (PORTB_PCR19)	32	R/W	See section	11.5.1/250
4004_A050	Pin Control Register n (PORTB_PCR20)	32	R/W	See section	11.5.1/250
4004_A054	Pin Control Register n (PORTB_PCR21)	32	R/W	See section	11.5.1/250
4004_A058	Pin Control Register n (PORTB_PCR22)	32	R/W	See section	11.5.1/250
4004_A05C	Pin Control Register n (PORTB_PCR23)	32	R/W	See section	11.5.1/250
4004_A060	Pin Control Register n (PORTB_PCR24)	32	R/W	See section	11.5.1/250
4004_A064	Pin Control Register n (PORTB_PCR25)	32	R/W	See section	11.5.1/250
4004_A068	Pin Control Register n (PORTB_PCR26)	32	R/W	See section	11.5.1/250
4004_A06C	Pin Control Register n (PORTB_PCR27)	32	R/W	See section	11.5.1/250
4004_A070	Pin Control Register n (PORTB_PCR28)	32	R/W	See section	11.5.1/250
4004_A074	Pin Control Register n (PORTB_PCR29)	32	R/W	See section	11.5.1/250
4004_A078	Pin Control Register n (PORTB_PCR30)	32	R/W	See section	11.5.1/250
4004_A07C	Pin Control Register n (PORTB_PCR31)	32	R/W	See section	11.5.1/250
4004_A080	Global Pin Control Low Register (PORTB_GPCLR)	32	W (always reads 0)	0000_0000h	11.5.2/252

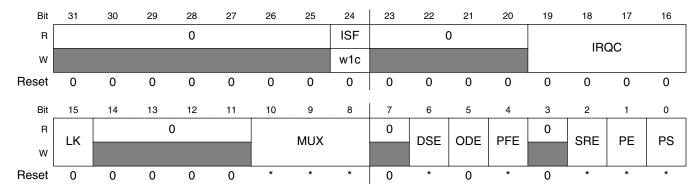
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_A084	Global Pin Control High Register (PORTB_GPCHR)	32	W (always reads 0)	0000_0000h	11.5.3/253
4004_A0A0	Interrupt Status Flag Register (PORTB_ISFR)	32	w1c	0000_0000h	11.5.4/254
4004_A0C0	Digital Filter Enable Register (PORTB_DFER)	32	R/W	0000_0000h	11.5.5/254
4004_A0C4	Digital Filter Clock Register (PORTB_DFCR)	32	R/W	0000_0000h	11.5.6/255
4004_A0C8	Digital Filter Width Register (PORTB_DFWR)	32	R/W	0000_0000h	11.5.7/255
4004_B000	Pin Control Register n (PORTC_PCR0)	32	R/W	See section	11.5.1/250
4004_B004	Pin Control Register n (PORTC_PCR1)	32	R/W	See section	11.5.1/250
4004_B008	Pin Control Register n (PORTC_PCR2)	32	R/W	See section	11.5.1/250
4004_B00C	Pin Control Register n (PORTC_PCR3)	32	R/W	See section	11.5.1/250
4004_B010	Pin Control Register n (PORTC_PCR4)	32	R/W	See section	11.5.1/250
4004_B014	Pin Control Register n (PORTC_PCR5)	32	R/W	See section	11.5.1/250
4004_B018	Pin Control Register n (PORTC_PCR6)	32	R/W	See section	11.5.1/250
4004_B01C	Pin Control Register n (PORTC_PCR7)	32	R/W	See section	11.5.1/250
4004_B020	Pin Control Register n (PORTC_PCR8)	32	R/W	See section	11.5.1/250
4004_B024	Pin Control Register n (PORTC_PCR9)	32	R/W	See section	11.5.1/250
4004_B028	Pin Control Register n (PORTC_PCR10)	32	R/W	See section	11.5.1/250
4004_B02C	Pin Control Register n (PORTC_PCR11)	32	R/W	See section	11.5.1/250
4004_B030	Pin Control Register n (PORTC_PCR12)	32	R/W	See section	11.5.1/250
4004_B034	Pin Control Register n (PORTC_PCR13)	32	R/W	See section	11.5.1/250
4004_B038	Pin Control Register n (PORTC_PCR14)	32	R/W	See section	11.5.1/250
4004_B03C	Pin Control Register n (PORTC_PCR15)	32	R/W	See section	11.5.1/250
4004_B040	Pin Control Register n (PORTC_PCR16)	32	R/W	See section	11.5.1/250
4004_B044	Pin Control Register n (PORTC_PCR17)	32	R/W	See section	11.5.1/250
4004_B048	Pin Control Register n (PORTC_PCR18)	32	R/W	See section	11.5.1/250
4004_B04C	Pin Control Register n (PORTC_PCR19)	32	R/W	See section	11.5.1/250
4004_B050	Pin Control Register n (PORTC_PCR20)	32	R/W	See section	11.5.1/250
4004_B054	Pin Control Register n (PORTC_PCR21)	32	R/W	See section	11.5.1/250
4004_B058	Pin Control Register n (PORTC_PCR22)	32	R/W	See section	11.5.1/250
4004_B05C	Pin Control Register n (PORTC_PCR23)	32	R/W	See section	11.5.1/250
4004_B060	Pin Control Register n (PORTC_PCR24)	32	R/W	See section	11.5.1/250
4004_B064	Pin Control Register n (PORTC_PCR25)	32	R/W	See section	11.5.1/250
4004_B068	Pin Control Register n (PORTC_PCR26)	32	R/W	See section	11.5.1/250
4004_B06C	Pin Control Register n (PORTC_PCR27)	32	R/W	See section	11.5.1/250
4004_B070	Pin Control Register n (PORTC_PCR28)	32	R/W	See section	11.5.1/250
4004_B074	Pin Control Register n (PORTC_PCR29)	32	R/W	See section	11.5.1/250
4004_B078	Pin Control Register n (PORTC_PCR30)	32	R/W	See section	11.5.1/250

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_B07C	Pin Control Register n (PORTC_PCR31)	32	R/W	See section	11.5.1/250
4004_B080	Global Pin Control Low Register (PORTC_GPCLR)	32	W (always reads 0)	0000_0000h	11.5.2/252
4004_B084	Global Pin Control High Register (PORTC_GPCHR)	32	W (always reads 0)	0000_0000h	11.5.3/253
4004_B0A0	Interrupt Status Flag Register (PORTC_ISFR)	32	w1c	0000_0000h	11.5.4/254
4004_B0C0	Digital Filter Enable Register (PORTC_DFER)	32	R/W	0000_0000h	11.5.5/254
4004_B0C4	Digital Filter Clock Register (PORTC_DFCR)	32	R/W	0000_0000h	11.5.6/255
4004_B0C8	Digital Filter Width Register (PORTC_DFWR)	32	R/W	0000_0000h	11.5.7/255
4004_C000	Pin Control Register n (PORTD_PCR0)	32	R/W	See section	11.5.1/250
4004_C004	Pin Control Register n (PORTD_PCR1)	32	R/W	See section	11.5.1/250
4004_C008	Pin Control Register n (PORTD_PCR2)	32	R/W	See section	11.5.1/250
4004_C00C	Pin Control Register n (PORTD_PCR3)	32	R/W	See section	11.5.1/250
4004_C010	Pin Control Register n (PORTD_PCR4)	32	R/W	See section	11.5.1/250
4004_C014	Pin Control Register n (PORTD_PCR5)	32	R/W	See section	11.5.1/250
4004_C018	Pin Control Register n (PORTD_PCR6)	32	R/W	See section	11.5.1/250
4004_C01C	Pin Control Register n (PORTD_PCR7)	32	R/W	See section	11.5.1/250
4004_C020	Pin Control Register n (PORTD_PCR8)	32	R/W	See section	11.5.1/250
4004_C024	Pin Control Register n (PORTD_PCR9)	32	R/W	See section	11.5.1/250
4004_C028	Pin Control Register n (PORTD_PCR10)	32	R/W	See section	11.5.1/250
4004_C02C	Pin Control Register n (PORTD_PCR11)	32	R/W	See section	11.5.1/250
4004_C030	Pin Control Register n (PORTD_PCR12)	32	R/W	See section	11.5.1/250
4004_C034	Pin Control Register n (PORTD_PCR13)	32	R/W	See section	11.5.1/250
4004_C038	Pin Control Register n (PORTD_PCR14)	32	R/W	See section	11.5.1/250
4004_C03C	Pin Control Register n (PORTD_PCR15)	32	R/W	See section	11.5.1/250
4004_C040	Pin Control Register n (PORTD_PCR16)	32	R/W	See section	11.5.1/250
4004_C044	Pin Control Register n (PORTD_PCR17)	32	R/W	See section	11.5.1/250
4004_C048	Pin Control Register n (PORTD_PCR18)	32	R/W	See section	11.5.1/250
4004_C04C	Pin Control Register n (PORTD_PCR19)	32	R/W	See section	11.5.1/250
4004_C050	Pin Control Register n (PORTD_PCR20)	32	R/W	See section	11.5.1/250
4004_C054	Pin Control Register n (PORTD_PCR21)	32	R/W	See section	11.5.1/250
4004_C058	Pin Control Register n (PORTD_PCR22)	32	R/W	See section	11.5.1/250
4004_C05C	Pin Control Register n (PORTD_PCR23)	32	R/W	See section	11.5.1/250
4004_C060	Pin Control Register n (PORTD_PCR24)	32	R/W	See section	11.5.1/250
4004_C064	Pin Control Register n (PORTD_PCR25)	32	R/W	See section	11.5.1/250
4004_C068	Pin Control Register n (PORTD_PCR26)	32	R/W	See section	11.5.1/250
4004_C06C	Pin Control Register n (PORTD_PCR27)	32	R/W	See section	11.5.1/250

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_C070	Pin Control Register n (PORTD_PCR28)	32	R/W	See section	11.5.1/250
4004_C074	Pin Control Register n (PORTD_PCR29)	32	R/W	See section	11.5.1/250
4004_C078	Pin Control Register n (PORTD_PCR30)	32	R/W	See section	11.5.1/250
4004_C07C	Pin Control Register n (PORTD_PCR31)	32	R/W	See section	11.5.1/250
4004_C080	Global Pin Control Low Register (PORTD_GPCLR)	32	W (always reads 0)	0000_0000h	11.5.2/252
4004_C084	Global Pin Control High Register (PORTD_GPCHR)	32	W (always reads 0)	0000_0000h	11.5.3/253
4004_C0A0	Interrupt Status Flag Register (PORTD_ISFR)	32	w1c	0000_0000h	11.5.4/254
4004_C0C0	Digital Filter Enable Register (PORTD_DFER)	32	R/W	0000_0000h	11.5.5/254
4004_C0C4	Digital Filter Clock Register (PORTD_DFCR)	32	R/W	0000_0000h	11.5.6/255
4004_C0C8	Digital Filter Width Register (PORTD_DFWR)	32	R/W	0000_0000h	11.5.7/255
4004_D000	Pin Control Register n (PORTE_PCR0)	32	R/W	See section	11.5.1/250
4004_D004	Pin Control Register n (PORTE_PCR1)	32	R/W	See section	11.5.1/250
4004_D008	Pin Control Register n (PORTE_PCR2)	32	R/W	See section	11.5.1/250
4004_D00C	Pin Control Register n (PORTE_PCR3)	32	R/W	See section	11.5.1/250
4004_D010	Pin Control Register n (PORTE_PCR4)	32	R/W	See section	11.5.1/250
4004_D014	Pin Control Register n (PORTE_PCR5)	32	R/W	See section	11.5.1/250
4004_D018	Pin Control Register n (PORTE_PCR6)	32	R/W	See section	11.5.1/250
4004_D01C	Pin Control Register n (PORTE_PCR7)	32	R/W	See section	11.5.1/250
4004_D020	Pin Control Register n (PORTE_PCR8)	32	R/W	See section	11.5.1/250
4004_D024	Pin Control Register n (PORTE_PCR9)	32	R/W	See section	11.5.1/250
4004_D028	Pin Control Register n (PORTE_PCR10)	32	R/W	See section	11.5.1/250
4004_D02C	Pin Control Register n (PORTE_PCR11)	32	R/W	See section	11.5.1/250
4004_D030	Pin Control Register n (PORTE_PCR12)	32	R/W	See section	11.5.1/250
4004_D034	Pin Control Register n (PORTE_PCR13)	32	R/W	See section	11.5.1/250
4004_D038	Pin Control Register n (PORTE_PCR14)	32	R/W	See section	11.5.1/250
4004_D03C	Pin Control Register n (PORTE_PCR15)	32	R/W	See section	11.5.1/250
4004_D040	Pin Control Register n (PORTE_PCR16)	32	R/W	See section	11.5.1/250
4004_D044	Pin Control Register n (PORTE_PCR17)	32	R/W	See section	11.5.1/250
4004_D048	Pin Control Register n (PORTE_PCR18)	32	R/W	See section	11.5.1/250
4004_D04C	Pin Control Register n (PORTE_PCR19)	32	R/W	See section	11.5.1/250
4004_D050	Pin Control Register n (PORTE_PCR20)	32	R/W	See section	11.5.1/250
4004_D054	Pin Control Register n (PORTE_PCR21)	32	R/W	See section	11.5.1/250
4004_D058	Pin Control Register n (PORTE_PCR22)	32	R/W	See section	11.5.1/250
4004_D05C	Pin Control Register n (PORTE_PCR23)	32	R/W	See section	11.5.1/250
4004_D060	Pin Control Register n (PORTE_PCR24)	32	R/W	See section	11.5.1/250

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_D064	Pin Control Register n (PORTE_PCR25)	32	R/W	See section	11.5.1/250
4004_D068	Pin Control Register n (PORTE_PCR26)	32	R/W	See section	11.5.1/250
4004_D06C	Pin Control Register n (PORTE_PCR27)	32	R/W	See section	11.5.1/250
4004_D070	Pin Control Register n (PORTE_PCR28)	32	R/W	See section	11.5.1/250
4004_D074	Pin Control Register n (PORTE_PCR29)	32	R/W	See section	11.5.1/250
4004_D078	Pin Control Register n (PORTE_PCR30)	32	R/W	See section	11.5.1/250
4004_D07C	Pin Control Register n (PORTE_PCR31)	32	R/W	See section	11.5.1/250
4004_D080	Global Pin Control Low Register (PORTE_GPCLR)	32	W (always reads 0)	0000_0000h	11.5.2/252
4004_D084	Global Pin Control High Register (PORTE_GPCHR)	32	W (always reads 0)	0000_0000h	11.5.3/253
4004_D0A0	Interrupt Status Flag Register (PORTE_ISFR)	32	w1c	0000_0000h	11.5.4/254
4004_D0C0	Digital Filter Enable Register (PORTE_DFER)	32	R/W	0000_0000h	11.5.5/254
4004_D0C4	Digital Filter Clock Register (PORTE_DFCR)	32	R/W	0000_0000h	11.5.6/255
4004_D0C8	Digital Filter Width Register (PORTE_DFWR)	32	R/W	0000_0000h	11.5.7/255

11.5.1 Pin Control Register n (PORTx_PCRn)


NOTE

See the Signal Multiplexing and Pin Assignment chapter for the reset value of this device.

See the GPIO Configuration section for details on the available functions for each pin.

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

Address: Base address + 0h offset + $(4d \times i)$, where i=0d to 31d

- * Notes:
- MUX field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- DSE field: Varies by port. See the Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- PFE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- · SRE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- · PE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- · PS field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.

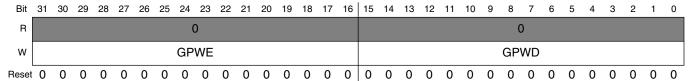
PORTx_PCRn field descriptions

Field	Description
31–25 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
24 ISF	Interrupt Status Flag The pin interrupt configuration is valid in all digital pin muxing modes.

PORTx_PCRn field descriptions (continued)

Field	Description
	O Configured interrupt is not detected. Configured interrupt is detected. If the pin is configured to generate a DMA request, then the corresponding flag will be cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.
23–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–16 IRQC	Interrupt Configuration The pin interrupt configuration is valid in all digital pin muxing modes. The corresponding pin is configured to generate interrupt/DMA request as follows:
	0000 Interrupt/DMA request disabled. 0001 DMA request on rising edge. 0010 DMA request on falling edge. 0011 DMA request on either edge. 1000 Interrupt when logic 0. 1001 Interrupt on rising-edge. 1010 Interrupt on falling-edge. 1011 Interrupt on either edge. 1100 Interrupt when logic 1. Others Reserved.
15 LK	Lock Register O Pin Control Register fields [15:0] are not locked. Pin Control Register fields [15:0] are locked and cannot be updated until the next system reset.
14–11 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
10-8 MUX	Pin Mux Control Not all pins support all pin muxing slots. Unimplemented pin muxing slots are reserved and may result in configuring the pin for a different pin muxing slot. The corresponding pin is configured in the following pin muxing slot as follows: 000 Pin disabled (analog). 001 Alternative 1 (GPIO). 010 Alternative 2 (chip-specific). 011 Alternative 3 (chip-specific). 100 Alternative 4 (chip-specific). 101 Alternative 5 (chip-specific). 102 Alternative 6 (chip-specific). 103 Alternative 7 (chip-specific).
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 DSE	Drive Strength Enable Drive strength configuration is valid in all digital pin muxing modes.

Memory map and register definition

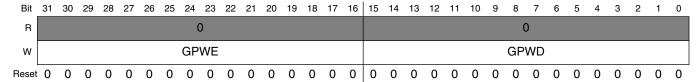

PORTx_PCRn field descriptions (continued)

Field	Description
	0 Low drive strength is configured on the corresponding pin, if pin is configured as a digital output.
	1 High drive strength is configured on the corresponding pin, if pin is configured as a digital output.
5 ODE	Open Drain Enable
	Open drain configuration is valid in all digital pin muxing modes.
	Open drain output is disabled on the corresponding pin.
	1 Open drain output is enabled on the corresponding pin, if the pin is configured as a digital output.
4 PFE	Passive Filter Enable
	Passive filter configuration is valid in all digital pin muxing modes.
	0 Passive input filter is disabled on the corresponding pin.
	1 Passive input filter is enabled on the corresponding pin, if the pin is configured as a digital input. Refer to the device data sheet for filter characteristics.
3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2 SRE	Slew Rate Enable
	Slew rate configuration is valid in all digital pin muxing modes.
	0 Fast slew rate is configured on the corresponding pin, if the pin is configured as a digital output.
	1 Slow slew rate is configured on the corresponding pin, if the pin is configured as a digital output.
1 PE	Pull Enable
	Pull configuration is valid in all digital pin muxing modes.
	0 Internal pullup or pulldown resistor is not enabled on the corresponding pin.
	1 Internal pullup or pulldown resistor is enabled on the corresponding pin, if the pin is configured as a digital input.
0 PS	Pull Select
	Pull configuration is valid in all digital pin muxing modes.
	0 Internal pulldown resistor is enabled on the corresponding pin, if the corresponding PE field is set.
	1 Internal pullup resistor is enabled on the corresponding pin, if the corresponding PE field is set.

11.5.2 Global Pin Control Low Register (PORTx_GPCLR)

Only 32-bit writes are supported to this register.

Address: Base address + 80h offset

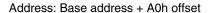

PORTx_GPCLR field descriptions

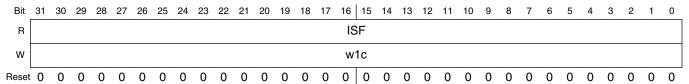
Field	Description
31–16 GPWE	Global Pin Write Enable
	Selects which Pin Control Registers (15 through 0) bits [15:0] update with the value in GPWD. If a selected Pin Control Register is locked then the write to that register is ignored.
	0 Corresponding Pin Control Register is not updated with the value in GPWD.
	1 Corresponding Pin Control Register is updated with the value in GPWD.
15–0 GPWD	Global Pin Write Data
	Write value that is written to all Pin Control Registers bits [15:0] that are selected by GPWE.

11.5.3 Global Pin Control High Register (PORTx_GPCHR)

Only 32-bit writes are supported to this register.

Address: Base address + 84h offset



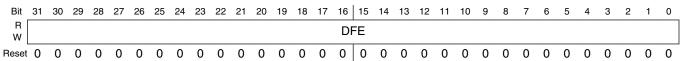

PORTx_GPCHR field descriptions

Field	Description
31–16 GPWE	Global Pin Write Enable
	Selects which Pin Control Registers (31 through 16) bits [15:0] update with the value in GPWD. If a selected Pin Control Register is locked then the write to that register is ignored.
	0 Corresponding Pin Control Register is not updated with the value in GPWD.
	1 Corresponding Pin Control Register is updated with the value in GPWD.
15–0 GPWD	Global Pin Write Data
	Write value that is written to all Pin Control Registers bits [15:0] that are selected by GPWE.

11.5.4 Interrupt Status Flag Register (PORTx_ISFR)

The pin interrupt configuration is valid in all digital pin muxing modes. The Interrupt Status Flag for each pin is also visible in the corresponding Pin Control Register, and each flag can be cleared in either location.

PORTx_ISFR field descriptions


Field	Description
31–0	Interrupt Status Flag
ISF	Each bit in the field indicates the detection of the configured interrupt of the same number as the field.
	0 Configured interrupt is not detected.
	1 Configured interrupt is detected. If the pin is configured to generate a DMA request, then the corresponding flag will be cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.

11.5.5 Digital Filter Enable Register (PORTx_DFER)

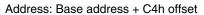
The corresponding bit is read only for pins that do not support a digital filter. Refer to the Chapter of Signal Multiplexing and Signal Descriptions for the pins that support digital filter.

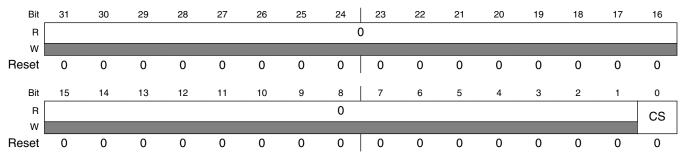
The digital filter configuration is valid in all digital pin muxing modes.

Address: Base address + C0h offset

PORTx_DFER field descriptions

Field	Description
31–0 DFE	Digital Filter Enable


PORTx_DFER field descriptions (continued)


Field	Description	
	The digital filter configuration is valid in all digital pin muxing modes. The output of each digital filter is reset to zero at system reset and whenever the digital filter is disabled. Each bit in the field enables the digital filter of the same number as the field.	
	 Digital filter is disabled on the corresponding pin and output of the digital filter is reset to zero. Digital filter is enabled on the corresponding pin, if the pin is configured as a digital input. 	

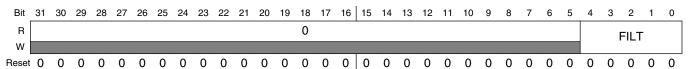
11.5.6 Digital Filter Clock Register (PORTx_DFCR)

This register is read only for ports that do not support a digital filter.

The digital filter configuration is valid in all digital pin muxing modes.

PORTx_DFCR field descriptions

Field	Description
31–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 CS	Clock Source The digital filter configuration is valid in all digital pin muxing modes. Configures the clock source for the digital input filters. Changing the filter clock source must be done only when all digital filters are disabled. 0 Digital filters are clocked by the bus clock. 1 Digital filters are clocked by the 1-kHz LPO clock.


11.5.7 Digital Filter Width Register (PORTx_DFWR)

This register is read only for ports that do not support a digital filter.

The digital filter configuration is valid in all digital pin muxing modes.

Functional description

Address: Base address + C8h offset

PORTx DFWR field descriptions

Field	Description
31–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4–0 FILT	Filter Length The digital filter configuration is valid in all digital pin muxing modes. Configures the maximum size of the glitches, in clock cycles, that the digital filter absorbs for the enabled digital filters. Glitches that are longer than this register setting will pass through the digital filter, and glitches that are equal to or less than this register setting are filtered. Changing the filter length must be done only after all filters are disabled.

11.6 Functional description

11.6.1 Pin control

Each port pin has a corresponding Pin Control register, PORT_PCRn, associated with it.

The upper half of the Pin Control register configures the pin's capability to either interrupt the CPU or request a DMA transfer, on a rising/falling edge or both edges as well as a logic level occurring on the port pin. It also includes a flag to indicate that an interrupt has occurred.

The lower half of the Pin Control register configures the following functions for each pin within the 32-bit port.

- Pullup or pulldown enable
- Drive strength and slew rate configuration
- Open drain enable
- Passive input filter enable
- Pin Muxing mode

The functions apply across all digital pin muxing modes and individual peripherals do not override the configuration in the Pin Control register. For example, if an I²C function is enabled on a pin, that does not override the pullup or open drain configuration for that pin.

When the Pin Muxing mode is configured for analog or is disabled, all the digital functions on that pin are disabled. This includes the pullup and pulldown enables, output buffer enable, input buffer enable, and passive filter enable.

A lock field also exists that allows the configuration for each pin to be locked until the next system reset. When locked, writes to the lower half of that pin control register are ignored, although a bus error is not generated on an attempted write to a locked register.

The configuration of each Pin Control register is retained when the PORT module is disabled.

Whenever a pin is configured in any digital pin muxing mode, the input buffer for that pin is enabled allowing the pin state to be read via the corresponding GPIO Port Data Input Register (GPIO_PDIR) or allowing a pin interrupt or DMA request to be generated. If a pin is ever floating when its input buffer is enabled, then this can cause an increase in power consumption and must be avoided. A pin can be floating due to an input pin that is not connected or an output pin that has tristated (output buffer is disabled).

Enabling the internal pull resistor (or implementing an external pull resistor) will ensure a pin does not float when its input buffer is enabled; note that the internal pull resistor is automatically disabled whenever the output buffer is enabled allowing the Pull Enable bit to remain set. Configuring the Pin Muxing mode to disabled or analog will disable the pin's input buffer and results in the lowest power consumption.

11.6.2 Global pin control

The two global pin control registers allow a single register write to update the lower half of the pin control register on up to 16 pins, all with the same value. Registers that are locked cannot be written using the global pin control registers.

The global pin control registers are designed to enable software to quickly configure multiple pins within the one port for the same peripheral function. However, the interrupt functions cannot be configured using the global pin control registers.

The global pin control registers are write-only registers, that always read as 0.

11.6.3 External interrupts

The external interrupt capability of the PORT module is available in all digital pin muxing modes provided the PORT module is enabled.

Each pin can be individually configured for any of the following external interrupt modes:

Functional description

- Interrupt disabled, default out of reset
- Active high level sensitive interrupt
- Active low level sensitive interrupt
- Rising edge sensitive interrupt
- Falling edge sensitive interrupt
- Rising and falling edge sensitive interrupt
- Rising edge sensitive DMA request
- Falling edge sensitive DMA request
- Rising and falling edge sensitive DMA request

The interrupt status flag is set when the configured edge or level is detected on the pin or at the output of the digital input filter, if the digital input digital filter is enabled. When not in Stop mode, the input is first synchronized to the bus clock to detect the configured level or edge transition.

The PORT module generates a single interrupt that asserts when the interrupt status flag is set for any enabled interrupt for that port. The interrupt negates after the interrupt status flags for all enabled interrupts have been cleared by writing a logic 1 to the ISF flag in either the PORT_ISFR or PORT_PCRn registers.

The PORT module generates a single DMA request that asserts when the interrupt status flag is set for any enabled DMA request in that port. The DMA request negates after the DMA transfer is completed, because that clears the interrupt status flags for all enabled DMA requests.

During Stop mode, the interrupt status flag for any enabled interrupt is asynchronously set if the required level or edge is detected. This also generates an asynchronous wake-up signal to exit the Low-Power mode.

11.6.4 Digital filter

The digital filter capabilities of the PORT module are available in all digital Pin Muxing modes if the PORT module is enabled.

The clock used for all digital filters within one port can be configured between the bus clock or the 1-kHz LPO clock. This selection must be changed only when all digital filters for that port are disabled. If the digital filters for a port are configured to use the bus clock, then the digital filters are bypassed for the duration of Stop mode. While the digital filters are bypassed, the output of each digital filter always equals the input pin, but the internal state of the digital filters remains static and does not update due to any change on the input pin.

The filter width in clock size is the same for all enabled digital filters within one port and must be changed only when all digital filters for that port are disabled.

The output of each digital filter is logic zero after system reset and whenever a digital filter is disabled. After a digital filter is enabled, the input is synchronized to the filter clock, either the bus clock or the 1-kHz LPO clock. If the synchronized input and the output of the digital filter remain different for a number of filter clock cycles equal to the filter width register configuration, then the output of the digital filter updates to equal the synchronized filter input.

The minimum latency through a digital filter equals two or three filter clock cycles plus the filter width configuration register.

Functional description

Chapter 12 System Integration Module (SIM)

12.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The System Integration Module (SIM) provides system control and chip configuration registers.

12.1.1 Features

Features of the SIM include:

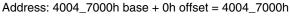
- System clocking configuration
 - System clock divide values
 - Architectural clock gating control
 - USB clock selection and divide values
- Flash and system RAM size configuration
- USB regulator configuration
- FlexTimer external clock, hardware trigger, and fault source selection
- UART0 and UART1 receive/transmit source selection/configuration

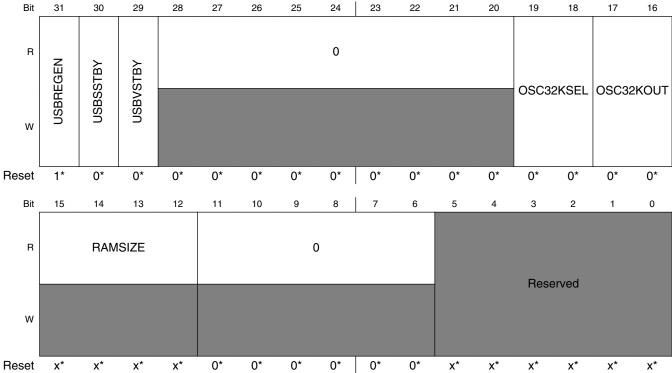
12.2 Memory map and register definition

The SIM module contains many fields for selecting the clock source and dividers for various module clocks. See the Clock Distribution chapter for more information, including block diagrams and clock definitions.

NOTE

The SIM_SOPT1 and SIM_SOPT1CFG registers are located at a different base address than the other SIM registers.


SIM memory map


Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_7000	System Options Register 1 (SIM_SOPT1)	32	R/W	See section	12.2.1/263
4004_7004	SOPT1 Configuration Register (SIM_SOPT1CFG)	32	R/W	0000_0000h	12.2.2/265
4004_8004	System Options Register 2 (SIM_SOPT2)	32	R/W	0000_1000h	12.2.3/266
4004_800C	System Options Register 4 (SIM_SOPT4)	32	R/W	0000_0000h	12.2.4/268
4004_8010	System Options Register 5 (SIM_SOPT5)	32	R/W	0000_0000h	12.2.5/271
4004_8018	System Options Register 7 (SIM_SOPT7)	32	R/W	0000_0000h	12.2.6/273
4004_801C	System Options Register 8 (SIM_SOPT8)	32	R/W	0000_0000h	12.2.7/275
4004_8024	System Device Identification Register (SIM_SDID)	32	R	See section	12.2.8/277
4004_8034	System Clock Gating Control Register 4 (SIM_SCGC4)	32	R/W	F010_0030h	12.2.9/279
4004_8038	System Clock Gating Control Register 5 (SIM_SCGC5)	32	R/W	0004_0182h	12.2.10/281
4004_803C	System Clock Gating Control Register 6 (SIM_SCGC6)	32	R/W	4000_0001h	12.2.11/283
4004_8040	System Clock Gating Control Register 7 (SIM_SCGC7)	32	R/W	0000_0002h	12.2.12/286
4004_8044	System Clock Divider Register 1 (SIM_CLKDIV1)	32	R/W	See section	12.2.13/287
4004_8048	System Clock Divider Register 2 (SIM_CLKDIV2)	32	R/W	0000_0000h	12.2.14/289
4004_804C	Flash Configuration Register 1 (SIM_FCFG1)	32	R	See section	12.2.15/290
4004_8050	Flash Configuration Register 2 (SIM_FCFG2)	32	R	See section	12.2.16/292
4004_8054	Unique Identification Register High (SIM_UIDH)	32	R	See section	12.2.17/293
4004_8058	Unique Identification Register Mid-High (SIM_UIDMH)	32	R	See section	12.2.18/293
4004_805C	Unique Identification Register Mid Low (SIM_UIDML)	32	R	See section	12.2.19/294
4004_8060	Unique Identification Register Low (SIM_UIDL)	32	R	See section	12.2.20/294

12.2.1 System Options Register 1 (SIM_SOPT1)

NOTE

The SOPT1 register is only reset on POR or LVD.

^{*} Notes:

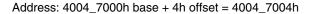
SIM_SOPT1 field descriptions

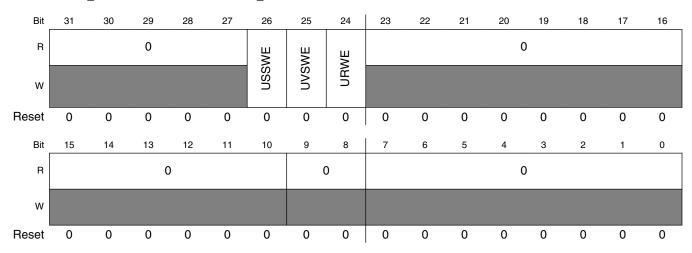
Field	Description
31 USBREGEN	USB voltage regulator enable
0001120211	Controls whether the USB voltage regulator is enabled.
	0 USB voltage regulator is disabled.
	1 USB voltage regulator is enabled.
30 USBSSTBY	USB voltage regulator in standby mode during Stop, VLPS, LLS and VLLS modes.
	Controls whether the USB voltage regulator is placed in standby mode during Stop, VLPS, LLS and VLLS modes.

[·] Reset value loaded during System Reset from Flash IFR.

[•] x = Undefined at reset.

Memory map and register definition


SIM_SOPT1 field descriptions (continued)


Field	Description
	0 USB voltage regulator not in standby during Stop, VLPS, LLS and VLLS modes.
	1 USB voltage regulator in standby during Stop, VLPS, LLS and VLLS modes.
29 USBVSTBY	USB voltage regulator in standby mode during VLPR and VLPW modes
COBVOIDI	Controls whether the USB voltage regulator is placed in standby mode during VLPR and VLPW modes.
	0 USB voltage regulator not in standby during VLPR and VLPW modes.
	1 USB voltage regulator in standby during VLPR and VLPW modes.
28–20	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
19–18 OSC32KSEL	32K oscillator clock select
0000211022	Selects the 32 kHz clock source (ERCLK32K) for LPTMR. This field is reset only on POR/LVD.
	00 System oscillator (OSC32KCLK)
	01 Reserved
	10 RTC 32.768kHz oscillator
	11 LPO 1 kHz
17–16 OSC32KOUT	32K Oscillator Clock Output
	Outputs the ERCLK32K on the selected pin in all modes of operation (including LLS/VLLS and System Reset), overriding the existing pin mux configuration for that pin. This field is reset only on POR/LVD.
	00 ERCLK32K is not output.
	01 ERCLK32K is output on PTE0.
	10 ERCLK32K is output on PTE26.
	11 Reserved.
15–12 RAMSIZE	RAM size
	This field specifies the amount of system RAM available on the device.
	0001 8 KB
	0011 16 KB
	0100 24 KB
	0101 32 KB
	0110 48 KB
	0111 64 KB
	1000 96 KB
	1001 128 KB
	1011 256 KB
11–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 Reserved	This field is reserved.

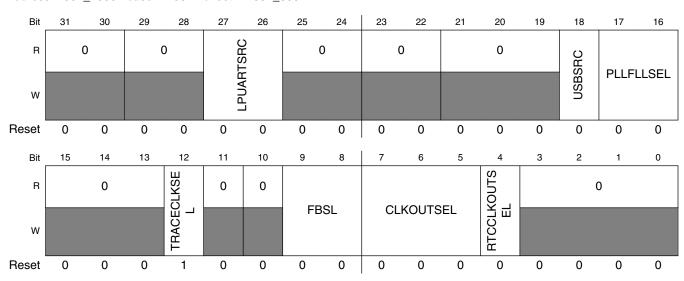
12.2.2 SOPT1 Configuration Register (SIM_SOPT1CFG)

NOTE

The SOPT1CFG register is reset on System Reset not VLLS.

SIM_SOPT1CFG field descriptions

Field	Description
31–27 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
26 USSWE	USB voltage regulator stop standby write enable Writing one to the USSWE bit allows the SOPT1 USBSSTBY bit to be written. This register bit clears after a write to USBSSTBY.
	0 SOPT1 USBSSTBY cannot be written.
	1 SOPT1 USBSSTBY can be written.
25 UVSWE	USB voltage regulator VLP standby write enable Writing one to the UVSWE bit allows the SOPT1 USBVSTBY bit to be written. This register bit clears after a write to USBVSTBY.
	0 SOPT1 USBVSTBY cannot be written.
	1 SOPT1 USBVSTBY can be written.
24 URWE	USB voltage regulator enable write enable Writing one to the URWE bit allows the SOPT1 USBREGEN bit to be written. This register bit clears after a write to USBREGEN.
	0 SOPT1 USBREGEN cannot be written. 1 SOPT1 USBREGEN can be written.


SIM_SOPT1CFG field descriptions (continued)

Field	Description
23–10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
9–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

12.2.3 System Options Register 2 (SIM_SOPT2)

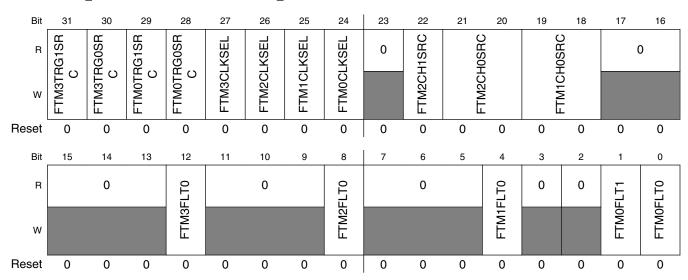
SOPT2 contains the controls for selecting many of the module clock source options on this device. See the Clock Distribution chapter for more information including clocking diagrams and definitions of device clocks.

Address: 4004_7000h base + 1004h offset = 4004_8004h

SIM_SOPT2 field descriptions

Field	Description
31–30 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
29–28 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
27–26 LPUARTSRC	LPUART clock source select Selects the clock source for the LPUART transmit and receive clock. OO Clock disabled

SIM_SOPT2 field descriptions (continued)


Eiglal	Decembrican
Field	Description
	01 MCGFLLCLK, or MCGPLLCLK, or IRC48M clock as selected by SOPT2[PLLFLLSEL].
	10 OSCERCLK clock
	11 MCGIRCLK clock
25–24	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
23–22	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
21–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18 USBSRC	USB clock source select
OODONO	Selects the clock source for the USB 48 MHz clock.
	0 External bypass clock (USB_CLKIN).
	1 MCGFLLCLK, or MCGPLLCLK, or IRC48M clock as selected by SOPT2[PLLFLLSEL], and then divided by the USB fractional divider as configured by SIM_CLKDIV2[USBFRAC, USBDIV].
17–16	PLL/FLL clock select
PLLFLLSEL	
	Selects the high frequency clock for various peripheral clocking options.
	00 MCGFLLCLK clock
	01 MCGPLLCLK clock
	10 Reserved
	11 IRC48 MHz clock
15–13	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
12	Debug trace clock select
TRACECLKSEL	Selects the core/system clock or MCG output clock (MCGOUTCLK) as the trace clock source.
	delicate the core system clock of wed output clock (wedge relate) as the trace clock source.
	0 MCGOUTCLK
	1 Core/system clock
_ 11	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
10	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
9–8 EBSI	FlexBus security level
FBSL	If flash security is enabled, then this field affects what CPU operations can access off-chip via the
	FlexBus interface. This field has no effect if flash security is not enabled.
	00 All off-chip accesses (instruction and data) via the FlexBus are disallowed.
	01 All off-chip accesses (instruction and data) via the FlexBus are disallowed.
	10 Off-chip instruction accesses are disallowed. Data accesses are allowed.
	11 Off-chip instruction accesses and data accesses are allowed.
7–5	CLKOUT select
CLKOUTSEL	Selects the clock to output on the CLKOUT pin.
	000 FlexBus CLKOUT

SIM_SOPT2 field descriptions (continued)

Field	Description
	001 Reserved
	010 Flash clock
	011 LPO clock (1 kHz)
	100 MCGIRCLK
	101 RTC 32.768kHz clock
	110 OSCERCLKO
	111 IRC 48 MHz clock
4	RTC clock out select
RTCCLKOUTSEL	Selects either the RTC 1 Hz clock or the 32.768kHz clock to be output on the RTC_CLKOUT pin. 0 RTC 1 Hz clock is output on the RTC_CLKOUT pin.
0.0	
3–0 Reserved	RTC 32.768kHz clock is output on the RTC_CLKOUT pin. This field is reserved. This read-only field is reserved and always has the value 0.

12.2.4 System Options Register 4 (SIM_SOPT4)

Address: 4004_7000h base + 100Ch offset = 4004_800Ch

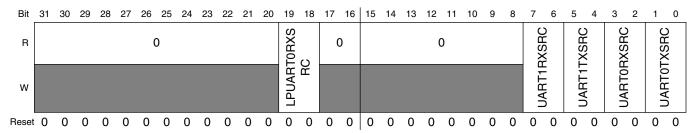
SIM_SOPT4 field descriptions

Field	Description
31 FTM3TRG1SRC	FlexTimer 3 Hardware Trigger 1 Source Select
	Selects the source of FTM3 hardware trigger 1.
	Reserved FTM2 channel match drives FTM3 hardware trigger 1

SIM_SOPT4 field descriptions (continued)

Field	Description
30	FlexTimer 3 Hardware Trigger 0 Source Select
FTM3TRG0SRC	Selects the source of FTM3 hardware trigger 0.
	0 Reserved
	1 FTM1 channel match drives FTM3 hardware trigger 0
29 FTM0TRG1SRC	FlexTimer 0 Hardware Trigger 1 Source Select
FIMULACIONC	Selects the source of FTM0 hardware trigger 1.
	0 PDB output trigger 1 drives FTM0 hardware trigger 1
	1 FTM2 channel match drives FTM0 hardware trigger 1
28 FTM0TRG0SRC	FlexTimer 0 Hardware Trigger 0 Source Select
THIOTHGOSHO	Selects the source of FTM0 hardware trigger 0.
	0 HSCMP0 output drives FTM0 hardware trigger 0
	1 FTM1 channel match drives FTM0 hardware trigger 0
27 FTM3CLKSEL	FlexTimer 3 External Clock Pin Select
	Selects the external pin used to drive the clock to the FTM3 module.
	NOTE: The selected pin must also be configured for the FTM3 module external clock function through the appropriate pin control register in the port control module.
	0 FTM3 external clock driven by FTM_CLK0 pin.
	1 FTM3 external clock driven by FTM_CLK1 pin.
26 FTM2CLKSEL	FlexTimer 2 External Clock Pin Select
	Selects the external pin used to drive the clock to the FTM2 module.
	NOTE: The selected pin must also be configured for the FTM2 module external clock function through the appropriate pin control register in the port control module.
	0 FTM2 external clock driven by FTM_CLK0 pin.
	1 FTM2 external clock driven by FTM_CLK1 pin.
25 FTM1CLKSEL	FTM1 External Clock Pin Select
THITTOLINGLE	Selects the external pin used to drive the clock to the FTM1 module.
	NOTE: The selected pin must also be configured for the FTM external clock function through the appropriate pin control register in the port control module.
	0 FTM_CLK0 pin
	1 FTM_CLK1 pin
24 FTM0CLKSEL	FlexTimer 0 External Clock Pin Select
	Selects the external pin used to drive the clock to the FTM0 module.
	NOTE: The selected pin must also be configured for the FTM external clock function through the appropriate pin control register in the port control module.
	0 FTM_CLK0 pin
	1 FTM_CLK1 pin
L	

SIM_SOPT4 field descriptions (continued)


Field	Description
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22 FTM2CH1SRC	FTM2 channel 1 input capture source select
FIMZOITISHO	0 FTM2_CH1 signal 1 Exclusive OR of FTM2_CH1, FTM2_CH0 and FTM1_CH1.
21–20 FTM2CH0SRC	FTM2 channel 0 input capture source select
	Selects the source for FTM2 channel 0 input capture.
	NOTE: When the FTM is not in input capture mode, clear this field.
	00 FTM2_CH0 signal
	01 CMP0 output 10 CMP1 output
	11 Reserved
19-18 FTM1CH0SRC	FTM1 channel 0 input capture source select
TIMITOTIOSITO	Selects the source for FTM1 channel 0 input capture.
	NOTE: When the FTM is not in input capture mode, clear this field.
	00 FTM1_CH0 signal
	01 CMP0 output
	10 CMP1 output 11 USB start of frame pulse
17–13	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
12 FTM3FLT0	FTM3 Fault 0 Select
	Selects the source of FTM3 fault 0.
	NOTE: The pin source for fault 0 must be configured for the FTM module fault function through the appropriate PORTx pin control register.
	0 FTM3_FLT0 pin
11.0	1 CMP0 out
11–9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
8 ETMOELTO	FTM2 Fault 0 Select
FTM2FLT0	Selects the source of FTM2 fault 0.
	NOTE: The pin source for fault 0 must be configured for the FTM module fault function through the appropriate PORTx pin control register.
	0 FTM2_FLT0 pin 1 CMP0 out
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 FTM1FLT0	FTM1 Fault 0 Select

SIM_SOPT4 field descriptions (continued)

Field	Description
	Selects the source of FTM1 fault 0.
	NOTE: The pin source for fault 0 must be configured for the FTM module fault function through the appropriate pin control register in the port control module.
	0 FTM1_FLT0 pin
	1 CMP0 out
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1 FTM0FLT1	FTM0 Fault 1 Select
	Selects the source of FTM0 fault 1.
	NOTE: The pin source for fault 1 must be configured for the FTM module fault function through the appropriate pin control register in the port control module.
	0 FTM0_FLT1 pin
	1 CMP1 out
0 FTM0FLT0	FTM0 Fault 0 Select
	Selects the source of FTM0 fault 0.
	NOTE: The pin source for fault 0 must be configured for the FTM module fault function through the appropriate pin control register in the port control module.
	0 FTM0_FLT0 pin
	1 CMP0 out

12.2.5 System Options Register 5 (SIM_SOPT5)

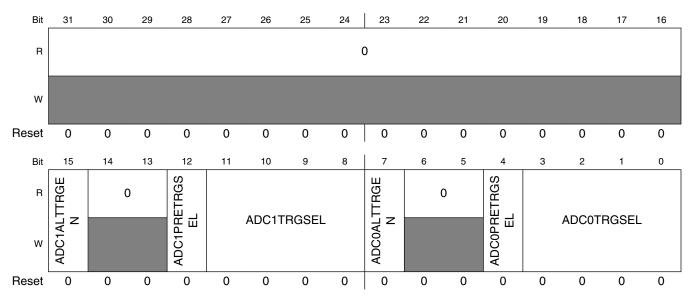
Address: 4004_7000h base + 1010h offset = 4004_8010h

SIM_SOPT5 field descriptions

Field	Description
31–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–18 LPUART0RXSRC	LPUART0 receive data source select

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

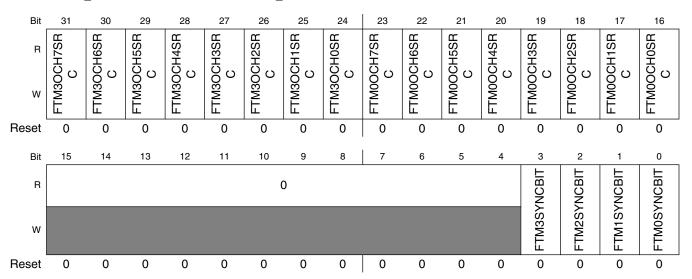

Memory map and register definition

SIM_SOPT5 field descriptions (continued)

Field	Description
	Selects the source for the LPUART0 receive data.
	00 LPUARTO_RX pin
	01 CMP0 output
	10 CMP1 output
	11 Reserved
17–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–6	UART 1 receive data source select
UART1RXSRC	Selects the source for the UART 1 receive data.
	00 UART1_RX pin
	01 CMP0
	10 CMP1
	11 Reserved
5–4 UART1TXSRC	UART 1 transmit data source select
UANTITAGNO	Selects the source for the UART 1 transmit data.
	00 UART1_TX pin
	01 UART1_TX pin modulated with FTM1 channel 0 output
	10 UART1_TX pin modulated with FTM2 channel 0 output
	11 Reserved
3–2 UARTORXSRC	UART 0 receive data source select
O'MITTOTIX CITIE	Selects the source for the UART 0 receive data.
	00 UARTO_RX pin
	01 CMP0
	10 CMP1
	11 Reserved
1-0 UARTOTXSRC	UART 0 transmit data source select
	Selects the source for the UART 0 transmit data.
	00 UARTO_TX pin
	01 UART0_TX pin modulated with FTM1 channel 0 output
	10 UART0_TX pin modulated with FTM2 channel 0 output
	11 Reserved

12.2.6 System Options Register 7 (SIM_SOPT7)

SIM_SOPT7 field descriptions


Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15	ADC1 alternate trigger enable
ADC1ALTTRGEN	Enable elternative conversion triggers for ADC1
	Enable alternative conversion triggers for ADC1.
	0 PDB trigger selected for ADC1
	Alternate trigger selected for ADC1 as defined by ADC1TRGSEL.
14–13	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
12	ADC1 pre-trigger select
ADC1PRETRGSEL	Selects the ADC1 pre-trigger source when alternative triggers are enabled through ADC1ALTTRGEN.
	0 Pre-trigger A selected for ADC1.
	1 Pre-trigger B selected for ADC1.
11–8	ADC1 trigger select
ADC1TRGSEL	Selects the ADC1 trigger source when alternative triggers are functional in stop and VLPS modes.
	0000 PDB external trigger pin input (PDB0_EXTRG)
	0001 High speed comparator 0 output
	0010 High speed comparator 1 output
	0011 Reserved
	0100 PIT trigger 0
	0101 PIT trigger 1

SIM_SOPT7 field descriptions (continued)

Field	Description
	0110 PIT trigger 2
	0111 PIT trigger 3
	1000 FTM0 trigger
	1001 FTM1 trigger
	1010 FTM2 trigger
	1011 FTM3 trigger
	1100 RTC alarm
	1101 RTC seconds
	1110 Low-power timer (LPTMR) trigger
	1111 Reserved
7	ADC0 alternate trigger enable
ADC0ALTTRGEN	Enable alternative conversion triggers for ADC0.
	0 PDB trigger selected for ADC0.
	1 Alternate trigger selected for ADC0.
6–5	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
4	ADC0 pretrigger select
ADC0PRETRGSEL	Selects the ADC0 pre-trigger source when alternative triggers are enabled through ADC0ALTTRGEN.
	0 Pre-trigger A
	1 Pre-trigger B
3–0	ADC0 trigger select
ADC0TRGSEL	Selects the ADC0 trigger source when alternative triggers are functional in stop and VLPS modes
	0000 PDB external trigger pin input (PDB0_EXTRG)
	0001 High speed comparator 0 output
	0010 High speed comparator 1 output
	0011 Reserved
	0100 PIT trigger 0
	0101 PIT trigger 1
	0110 PIT trigger 2
	0111 PIT trigger 3
	1000 FTM0 trigger
	1001 FTM1 trigger
	1010 FTM2 trigger
	1011 FTM3 trigger
	1100 RTC alarm
	1101 RTC seconds
	1110 Low-power timer (LPTMR) trigger
	1111 Reserved

12.2.7 System Options Register 8 (SIM_SOPT8)

Address: 4004_7000h base + 101Ch offset = 4004_801Ch

SIM_SOPT8 field descriptions

Field	Description
31	FTM3 channel 7 output source
FTM3OCH7SRC	0 FTM3_CH7 pin is output of FTM3 channel 7 output
	1 FTM3_CH7 pin is output of FTM3 channel 7 output modulated by FTM2 channel 1 output.
30 FTM3OCH6SRC	FTM3 channel 6 output source
	0 FTM3_CH6 pin is output of FTM3 channel 6 output
	1 FTM3_CH6 pin is output of FTM3 channel 6 output modulated by FTM2 channel 1 output.
29 FTM3OCH5SRC	FTM3 channel 5 output source
	0 FTM3_CH5 pin is output of FTM3 channel 5 output
	1 FTM3_CH5 pin is output of FTM3 channel 5 output modulated by FTM2 channel 1 output.
28 FTM3OCH4SRC	FTM3 channel 4 output source
	0 FTM3_CH4 pin is output of FTM3 channel 4 output
	1 FTM3_CH4 pin is output of FTM3 channel 4 output modulated by FTM2 channel 1 output.
27 FTM3OCH3SRC	FTM3 channel 3 output source
	0 FTM3_CH3 pin is output of FTM3 channel 3 output
	1 FTM3_CH3 pin is output of FTM3 channel 3 output modulated by FTM2 channel 1 output.
26 FTM3OCH2SRC	FTM3 channel 2 output source
	0 FTM3_CH2 pin is output of FTM3 channel 2 output
	1 FTM3_CH2 pin is output of FTM3 channel 2 output modulated by FTM2 channel 1 output.
25 FTM3OCH1SRC	FTM3 channel 1 output source

Memory map and register definition

SIM_SOPT8 field descriptions (continued)

Field	Description
1.0.0	0 FTM3_CH1 pin is output of FTM3 channel 1 output
	1 FTM3_CH1 pin is output of FTM3 channel 1 output modulated by FTM2 channel 1 output.
24 FTM3OCH0SRC	FTM3 channel 0 output source
FINISOCITOSAC	0 FTM3_CH0 pin is output of FTM3 channel 0 output
	1 FTM3_CH0 pin is output of FTM3 channel 0 output modulated by FTM2 channel 1 output.
23 FTM0OCH7SRC	FTM0 channel 7 output source
	0 FTM0_CH7 pin is output of FTM0 channel 7 output
	1 FTM0_CH7 pin is output of FTM0 channel 7 output, modulated by FTM1 channel 1 output
22 FTM0OCH6SRC	FTM0 channel 6 output source
	0 FTM0_CH6 pin is output of FTM0 channel 6 output
	1 FTM0_CH6 pin is output of FTM0 channel 6 output, modulated by FTM1 channel 1 output
21 FTM0OCH5SRC	FTM0 channel 5 output source 0 FTM0_CH5 pin is output of FTM0 channel 5 output
	0 FTM0_CH5 pin is output of FTM0 channel 5 output 1 FTM0_CH5 pin is output of FTM0 channel 5 output, modulated by FTM1 channel 1 output
20 FTM0OCH4SRC	FTM0 channel 4 output source
F I WOOCH4ShC	0 FTM0_CH4 pin is output of FTM0 channel 4 output
	1 FTM0_CH4 pin is output of FTM0 channel 4 output, modulated by FTM1 channel 1 output
19 FTM0OCH3SRC	FTM0 channel 3 output source
	0 FTM0_CH3 pin is output of FTM0 channel 3 output
	1 FTM0_CH3 pin is output of FTM0 channel 3 output, modulated by FTM1 channel 1 output
18 FTM0OCH2SRC	FTM0 channel 2 output source
	0 FTM0_CH2 pin is output of FTM0 channel 2 output
	1 FTM0_CH2 pin is output of FTM0 channel 2 output, modulated by FTM1 channel 1 output
17 FTM0OCH1SRC	FTM0 channel 1 output source
	0 FTM0_CH1 pin is output of FTM0 channel 1 output
	1 FTM0_CH1 pin is output of FTM0 channel 1 output, modulated by FTM1 channel 1 output
16 FTM0OCH0SRC	FTM0 channel 0 output source
	0 FTM0_CH0 pin is output of FTM0 channel 0 output
	1 FTM0_CH0 pin is output of FTM0 channel 0 output, modulated by FTM1 channel 1 output
15–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3 FTM3SYNCBIT	FTM3 Hardware Trigger 0 Software Synchronization
	No effect. Write 1 to assert the TRIGO input to ETM3, software must clear this bit to allow other trigger sources.
	1 Write 1 to assert the TRIG0 input to FTM3, software must clear this bit to allow other trigger sources to assert.
2 FTM2SYNCBIT	FTM2 Hardware Trigger 0 Software Synchronization

SIM_SOPT8 field descriptions (continued)

Field	Description
	0 No effect.
	1 Write 1 to assert the TRIG0 input to FTM2, software must clear this bit to allow other trigger sources to assert.
1 FTM1SYNCBIT	FTM1 Hardware Trigger 0 Software Synchronization
	0 No effect.
	1 Write 1 to assert the TRIG0 input to FTM1, software must clear this bit to allow other trigger sources to assert.
0 FTM0SYNCBIT	FTM0 Hardware Trigger 0 Software Synchronization
	0 No effect
	1 Write 1 to assert the TRIG0 input to FTM0, software must clear this bit to allow other trigger sources to assert.

12.2.8 System Device Identification Register (SIM_SDID)

Address: 4004_7000h base + 1024h offset = 4004_8024h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	F	AM	LYI	D	S	UBF	AM	ID	S	ERI	ESI	D		()			RE\	۷ID			Е	IEI)		F	AMI	D		PIN	IID	
w																																
Reset	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	0	0	0	0	х*	х*	х*	х*	1	1	1	0	1	х*	х*	х*	х*	х*	х*	x*

^{*} Notes:

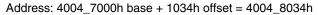
SIM_SDID field descriptions

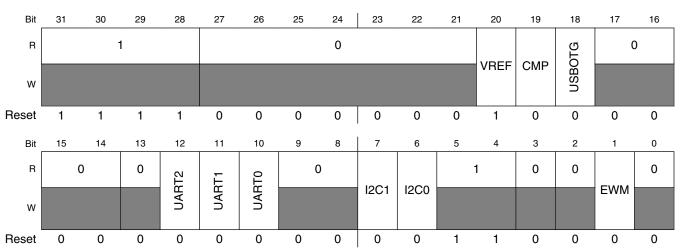
Field	Description
31–28 FAMILYID	Kinetis Family ID
	Specifies the Kinetis family of the device.
	0000 K0x Family
	0001 K1x Family
	0010 K2x Family
	0011 K3x Family
	0100 K4x Family
	0110 K6x Family
	0111 K7x Family
27–24 SUBFAMID	Kinetis Sub-Family ID
	Specifies the Kinetis sub-family of the device.
	0000 Kx0 Subfamily
	0001 Kx1 Subfamily (tamper detect)
	0010 Kx2 Subfamily

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

[•] x = Undefined at reset.


SIM_SDID field descriptions (continued)


Field	Description								
0011 K	x3 Subfamily (tamper detect)								
	x4 Subfamily								
0101 K	x5 Subfamily (tamper detect)								
0110 K	x6 Subfamily								
23–20 Kinetis Se SERIESID	eries ID								
Specifies	the Kinetis series of the device.								
0000 Ki	inetis K series								
	inetis L series								
	inetis W series								
	inetis V series								
	is reservedonly field is reserved and always has the value 0.								
15–12 Device re	vision number								
	the silicon implementation number for the device.								
11–7 Device Di	e ID								
	the silicon feature set identication number for the device.								
6–4 Kinetis far FAMID	Kinetis family identification								
This field	This field is maintained for compatibility only, but has been superceded by the SERIESID, FAMILYID and SUBFAMID fields in this register.								
000 K1	x Family (without tamper)								
001 K2	x Family (without tamper)								
010 K3	x Family or K1x/K6x Family (with tamper)								
	x Family or K2x Family (with tamper)								
	x Family (without tamper)								
	x Family								
	served								
	served								
PINID	identification the pincount of the device.								
	eserved								
	eserved								
	2-pin								
	eserved								
	3-pin 4-pin								
	9-pin								
	ס-פורו 1-pin or 121-pin								
	00-pin								
	21-pin								
	- 1 p 14-pin								
	ustom pinout (WLCSP)								

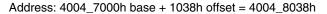
SIM_SDID field descriptions (continued)

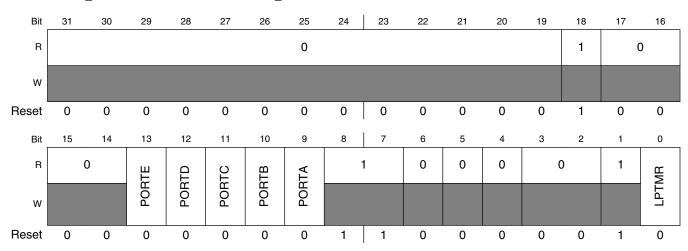
Field	Description
	1100 169-pin
	1101 Reserved
	1110 256-pin
	1111 Reserved

12.2.9 System Clock Gating Control Register 4 (SIM_SCGC4)

SIM_SCGC4 field descriptions

Field	Description
31–28 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
27–21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20 VREF	VREF Clock Gate Control This bit controls the clock gate to the VREF module. 0 Clock disabled 1 Clock enabled
19 CMP	Comparator Clock Gate Control This bit controls the clock gate to the comparator module. Clock disabled Clock enabled
18 USBOTG	USB Clock Gate Control This bit controls the clock gate to the USB module.


SIM_SCGC4 field descriptions (continued)


Field	Description
1 1014	0 Clock disabled
	1 Clock enabled
17–14	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12	UART2 Clock Gate Control
UART2	This bit controls the clock gate to the UART2 module.
	0 Clock disabled
	1 Clock enabled
11	UART1 Clock Gate Control
UART1	This bit controls the clock gate to the UART1 module.
	0 Clock disabled
	1 Clock enabled
10	UART0 Clock Gate Control
UART0	This bit controls the clock gate to the UART0 module.
	0 Clock disabled
	1 Clock enabled
9–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7	I2C1 Clock Gate Control
I2C1	This bit controls the clock gate to the I ² C1 module.
	0 Clock disabled
	1 Clock enabled
6	I2C0 Clock Gate Control
I2C0	This bit controls the clock gate to the I ² C0 module.
	0 Clock disabled
	1 Clock enabled
5–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1	EWM Clock Gate Control
EWM	This bit controls the clock gate to the EWM module.
	0 Clock disabled
	1 Clock enabled

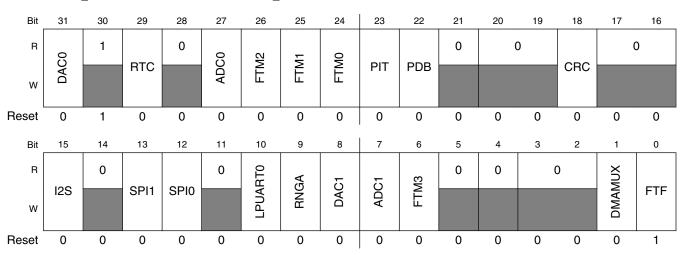
SIM_SCGC4 field descriptions (continued)

Field	Description
0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

12.2.10 System Clock Gating Control Register 5 (SIM_SCGC5)

SIM_SCGC5 field descriptions

Description
This field is reserved. This read-only field is reserved and always has the value 0.
This field is reserved. This read-only field is reserved and always has the value 1.
This field is reserved. This read-only field is reserved and always has the value 0.
Port E Clock Gate Control This bit controls the clock gate to the Port E module.
0 Clock disabled1 Clock enabled
Port D Clock Gate Control This bit controls the clock gate to the Port D module.
0 Clock disabled 1 Clock enabled
Port C Clock Gate Control This bit controls the clock gate to the Port C module.


Memory map and register definition

SIM_SCGC5 field descriptions (continued)

Field	Description
	0 Clock disabled 1 Clock enabled
10 PORTB	Port B Clock Gate Control
	This bit controls the clock gate to the Port B module.
	0 Clock disabled 1 Clock enabled
9	Port A Clock Gate Control
PORTA	This bit controls the clock gate to the Port A module.
	0 Clock disabled 1 Clock enabled
8–7 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
0 LPTMR	Low Power Timer Access Control
	This bit controls software access to the Low Power Timer module.
	0 Access disabled 1 Access enabled
	1 Access enabled

12.2.11 System Clock Gating Control Register 6 (SIM_SCGC6)

Address: 4004_7000h base + 103Ch offset = 4004_803Ch

SIM_SCGC6 field descriptions

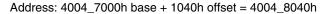
Field	Description
31 DAC0	DAC0 Clock Gate Control This bit controls the clock gate to the DAC0 module.
	O Clock disabled Clock enabled
30 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
29 RTC	RTC Access Control This bit controls software access and interrupts to the RTC module. 0 Access and interrupts disabled
	1 Access and interrupts disabled
28 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
27 ADC0	ADC0 Clock Gate Control This bit controls the clock gate to the ADC0 module. 0 Clock disabled 1 Clock enabled
26 FTM2	FTM2 Clock Gate Control This bit controls the clock gate to the FTM2 module.
	0 Clock disabled 1 Clock enabled

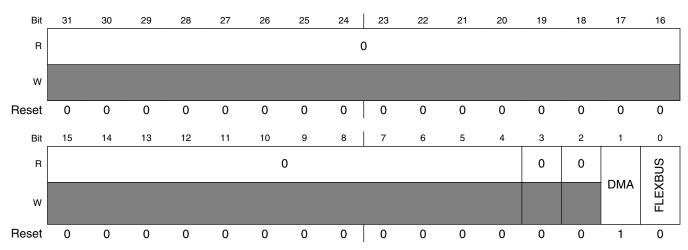
Memory map and register definition

SIM_SCGC6 field descriptions (continued)

Field	Description
25 FTM1	FTM1 Clock Gate Control
	This bit controls the clock gate to the FTM1 module.
	0 Clock disabled
	1 Clock enabled
24	FTM0 Clock Gate Control
FTM0	This bit controls the clock gate to the FTM0 module.
	0 Clock disabled
	1 Clock enabled
23 PIT	PIT Clock Gate Control
FII	This bit controls the clock gate to the PIT module.
	0 Clock disabled
	1 Clock enabled
22 PDB	PDB Clock Gate Control
FDB	This bit controls the clock gate to the PDB module.
	0 Clock disabled
	1 Clock enabled
21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18 CRC	CRC Clock Gate Control
	This bit controls the clock gate to the CRC module.
	0 Clock disabled
	1 Clock enabled
17–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15	I2S Clock Gate Control
I2S	This bit controls the clock gate to the I ² S module.
	0 Clock disabled
	1 Clock enabled
14 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
13	SPI1 Clock Gate Control
SPI1	This bit controls the clock gate to the SPI1 module.
	0 Clock disabled
	1 Clock enabled

SIM_SCGC6 field descriptions (continued)


Field	Description
12	SPI0 Clock Gate Control
SPI0	This bit controls the clock gate to the SPI0 module.
	0 Clock disabled
	1 Clock enabled
11 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
10	LPUART0 Clock Gate Control
LPUART0	This bit controls the clock gate to the LPUART0 module.
	0 Clock disabled
	1 Clock enabled
9 RNGA	RNGA Clock Gate Control
HNGA	This bit controls the clock gate to the RNGA module.
8	DAC1 Clock Gate Control
DAC1	This bit controls the clock gate to the DAC1 module.
	0 Clock disabled
	1 Clock enabled
7 ADC1	ADC1 Clock Gate Control
ADCT	This bit controls the clock gate to the ADC1 module.
	0 Clock disabled
	1 Clock enabled
6 FTM3	FTM3 Clock Gate Control
1 11110	This bit controls the clock gate to the FTM3 module.
	0 Clock disabled
	1 Clock enabled
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1	DMA Mux Clock Gate Control
DMAMUX	This bit controls the clock gate to the DMA Mux module.
	0 Clock disabled
	1 Clock enabled
0 FTF	Flash Memory Clock Gate Control
	This bit controls the clock gate to the flash memory. Flash reads are still supported while the flash memory is clock gated, but entry into low power modes and HSRUN mode is blocked.


Memory map and register definition

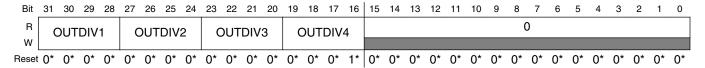
SIM_SCGC6 field descriptions (continued)

Field	Description
	0 Clock disabled
	1 Clock enabled

12.2.12 System Clock Gating Control Register 7 (SIM_SCGC7)

SIM_SCGC7 field descriptions

Field	Description
31–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 DMA	DMA Clock Gate Control This bit controls the clock gate to the DMA module.
	0 Clock disabled1 Clock enabled
0 FLEXBUS	FlexBus Clock Gate Control This bit controls the clock gate to the FlexBus module.
	0 Clock disabled 1 Clock enabled


12.2.13 System Clock Divider Register 1 (SIM_CLKDIV1)

When updating CLKDIV1, update all fields using the one write command. Attempting to write an invalid clock ratio to the CLKDIV1 register will cause the write to be ignored. The maximum divide ratio that can be programmed between core/system clock and the other divided clocks is divide by 8. When OUTDIV1 equals 0000 (divide by 1), the other dividers cannot be set higher than 0111 (divide by 8).

NOTE

The CLKDIV1 register cannot be written to when the device is in VLPR mode.

Address: 4004_7000h base + 1044h offset = 4004_8044h

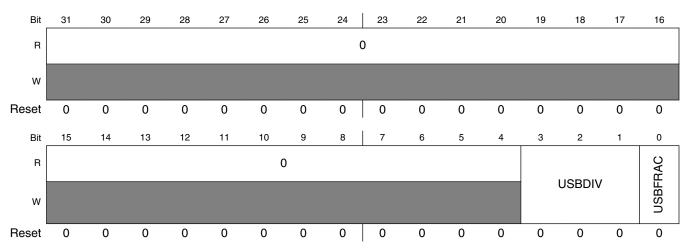
^{*} Notes:

SIM_CLKDIV1 field descriptions

Field	Description
31–28 OUTDIV1	Clock 1 output divider value
	This field sets the divide value for the core/system clock from MCGOUTCLK. At the end of reset, it is loaded with either 0000 or 0111 depending on FTF_FOPT[LPBOOT].
	0000 Divide-by-1.
	0001 Divide-by-2.
	0010 Divide-by-3.
	0011 Divide-by-4.
	0100 Divide-by-5.
	0101 Divide-by-6.
	0110 Divide-by-7.
	0111 Divide-by-8.
	1000 Divide-by-9.
	1001 Divide-by-10.
	1010 Divide-by-11.
	1011 Divide-by-12.
	1100 Divide-by-13.
	1101 Divide-by-14.
	1110 Divide-by-15.
	1111 Divide-by-16.
27–24	Clock 2 output divider value
OUTDIV2	

Reset value loaded during Syetem Reset from FTF_FOPT[LPBOOT].

SIM_CLKDIV1 field descriptions (continued)


Field	Description
	This field sets the divide value for the bus clock from MCGOUTCLK. At the end of reset, it is loaded with
	either 0000 or 0111 depending on FTF_FOPT[LPBOOT]. The bus clock frequency must be an integer
	divide of the core/system clock frequency.
	0000 Divide-by-1.
	0001 Divide-by-2.
	0010 Divide-by-3.
	0011 Divide-by-4.
	0100 Divide-by-5.
	0101 Divide-by-6.
	0110 Divide-by-7.
	0111 Divide-by-8.
	1000 Divide-by-9.
	1001 Divide-by-10.
	1010 Divide-by-11.
	1011 Divide-by-12.
	1100 Divide-by-13.
	1101 Divide-by-14.
	1110 Divide-by-15.
	1111 Divide-by-16.
23–20	Clock 3 output divider value
OUTDIV3	Clock o culput divider value
	This field sets the divide value for the FlexBus clock (external pin FB_CLK) from MCGOUTCLK. At the
	end of reset, it is loaded with either 0001 or 1111 depending on FTF_FOPT[LPBOOT]. The FlexBus clock
	frequency must be an integer divide of the system clock frequency.
	0000 Divide-by-1.
	0001 Divide-by-2.
	0010 Divide-by-3.
	0011 Divide-by-4.
	0100 Divide-by-5.
	0101 Divide-by-6.
	0110 Divide-by-7.
	0111 Divide-by-8.
	1000 Divide-by-9.
	1001 Divide-by-10.
	1010 Divide-by-11.
	1011 Divide-by-12.
	1100 Divide-by-13.
	1101 Divide-by-14.
	1110 Divide-by-15.
	1111 Divide-by-16.
19–16	Clock 4 output divider value
OUTDIV4	This field sets the divide value for the flash clock from MCGOUTCLK. At the end of reset, it is loaded with
	either 0001 or 1111 depending on FTF_FOPT[LPBOOT]. The flash clock frequency must be an integer
	divide of the system clock frequency.
	0000 Divide-by-1.

SIM_CLKDIV1 field descriptions (continued)

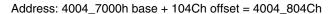
Field	Description
	0001 Divide-by-2.
	0010 Divide-by-3.
	0011 Divide-by-4.
	0100 Divide-by-5.
	0101 Divide-by-6.
	0110 Divide-by-7.
	0111 Divide-by-8.
	1000 Divide-by-9.
	1001 Divide-by-10.
	1010 Divide-by-11.
	1011 Divide-by-12.
	1100 Divide-by-13.
	1101 Divide-by-14.
	1110 Divide-by-15.
	1111 Divide-by-16.
15–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

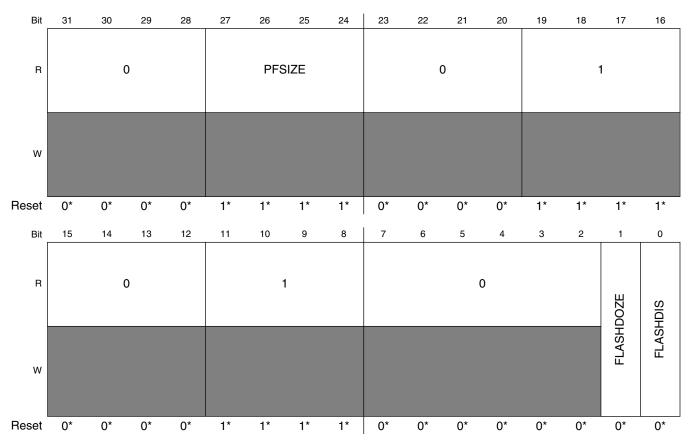
12.2.14 System Clock Divider Register 2 (SIM_CLKDIV2)

Address: 4004_7000h base + 1048h offset = 4004_8048h

SIM_CLKDIV2 field descriptions

Field	Description
31–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–1 USBDIV	USB clock divider divisor This field sets the divide value for the fractional clock divider when the MCGFLLCLK, or MCGPLLCLK, or IRC48M clock is the USB clock source (SOPT2[USBSRC] = 1).


Table continues on the next page...


Memory map and register definition

SIM_CLKDIV2 field descriptions (continued)

Field	Description				
	Divider output clock = Divider input clock × [(USBFRAC+1) / (USBDIV+1)]				
0 USBFRAC	USB clock divider fraction This field sets the fraction multiply value for the fractional clock divider when the MCGFLLCLK, or MCGPLLCLK, or IRC48M clock is the USB clock source (SOPT2[USBSRC] = 1).				
	Divider output clock = Divider input clock × [(USBFRAC+1) / (USBDIV+1)]				

12.2.15 Flash Configuration Register 1 (SIM_FCFG1)

^{*} Notes:

• Reset value loaded during System Reset from Flash IFR.

SIM_FCFG1 field descriptions

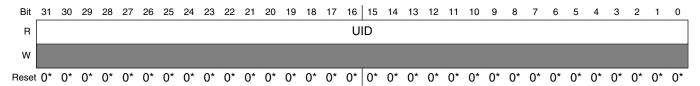
Field	Description			
31–28 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
27–24	Program flash size			
PFSIZE	This field specifies the amount of program flash memory available on the device . Undefined values are reserved.			
	0011 32 KB of program flash memory			
	0101 64 KB of program flash memory			
	0111 128 KB of program flash memory			
	1001 256 KB of program flash memory			
	1011 512 KB of program flash memory			
	1101 1024 KB of program flash memory			
	1111 512 KB of program flash memory			
23–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
19–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.			
15–12 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
11–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.			
7–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
1 FLASHDOZE	Flash Doze When set, Flash memory is disabled for the duration of Wait mode. An attempt by the DMA or other bus master to access the Flash when the Flash is disabled will result in a bus error. This bit should be clear during VLP modes. The Flash will be automatically enabled again at the end of Wait mode so interrupt vectors do not need to be relocated out of Flash memory. The wakeup time from Wait mode is extended			
	when this bit is set. 0 Flash remains enabled during Wait mode			
	1 Flash is disabled for the duration of Wait mode			
0 FLASHDIS	Flash Disable			
	Flash accesses are disabled (and generate a bus error) and the Flash memory is placed in a low power state. This bit should not be changed during VLP modes. Relocate the interrupt vectors out of Flash memory before disabling the Flash.			
	0 Flash is enabled			
	1 Flash is disabled			

12.2.16 Flash Configuration Register 2 (SIM_FCFG2)

Address: 4004_7000h base + 1050h offset = 4004_8050h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	0			MA	AXADD	R0			1			MA	AXADD	R1		
w																
Reset	0*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								(0							
w																
Reset	0*	0*	0*	0*	0*	0*	0*	0*	0*	0*	0*	0*	0*	0*	0*	0*

^{*} Notes:

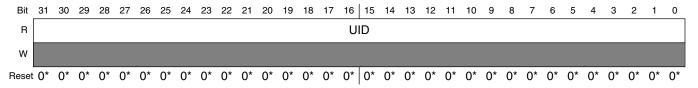

SIM_FCFG2 field descriptions

Field	Description
31 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
30–24 MAXADDR0	Max address block 0 This field concatenated with 13 trailing zeros indicates the first invalid address of each program flash block.
	For example, if MAXADDR0 = 0x20 the first invalid address of flash block 0 is 0x0004_0000. This would be the MAXADDR0 value for a device with 256 KB program flash in flash block 0.
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
22–16 MAXADDR1	Max address block 1 This field equals zero if there is only one program flash block, otherwise it equals the value of the MAXADDR0 field.
	For example, with MAXADDR0 = MAXADDR1 = 0x20 the first invalid address of flash block 1 is 0x4_0000 + 0x4_0000. This would be the MAXADDR1 value for a device with 512 KB program flash memory across two flash blocks and no FlexNVM.
15–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

[•] Reset value loaded during System Reset from Flash IFR.

12.2.17 Unique Identification Register High (SIM_UIDH)

Address: 4004_7000h base + 1054h offset = 4004_8054h

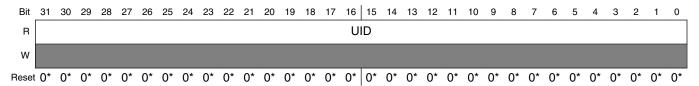

- * Notes:
- Reset value loaded during System Reset from Flash IFR.

SIM_UIDH field descriptions

Field	Description
31–0 UID	Unique Identification
	Unique identification for the device.

12.2.18 Unique Identification Register Mid-High (SIM_UIDMH)

Address: 4004_7000h base + 1058h offset = 4004_8058h

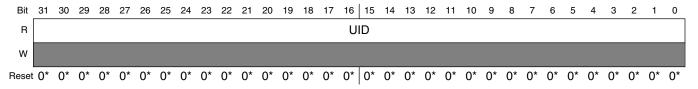

- * Notes
- · Reset value loaded during System Reset from Flash IFR.

SIM_UIDMH field descriptions

Field	Description
31–0 UID	Unique Identification
	Unique identification for the device.

12.2.19 Unique Identification Register Mid Low (SIM_UIDML)

Address: 4004_7000h base + 105Ch offset = 4004_805Ch


^{*} Notes:

SIM_UIDML field descriptions

Field	Description
31–0 UID	Unique Identification
	Unique identification for the device.

12.2.20 Unique Identification Register Low (SIM_UIDL)

Address: 4004_7000h base + 1060h offset = 4004_8060h

^{*} Notes

SIM_UIDL field descriptions

Field	Description
31–0 UID	Unique Identification
	Unique identification for the device.

12.3 Functional description

For more information about the functions of SIM, see the Introduction section.

[·] Reset value loaded during System Reset from Flash IFR.

[·] Reset value loaded during System Reset from Flash IFR.

Chapter 13 Kinetis Flashloader

13.1 Chip-Specific Information

This device has various peripherals (UART, I2C, SPI, USB) supported by the Kinetis Flashloader. The next table shows the pads used by the Kinetis Flashloader.

Port Signal USB0 DP USB0 DP USB0_DM USB0_DM PTE0 UART1_TX PTE1 UART1_RX PTC10 I2C1_SCL I2C1_SDA PTC11 PTD4 SPI1_SS_b PTD6 SPI1_MISO PTD7 SPI1_MOSI PTD5 SPI1_SCK

Table 13-1. Kinetis Flashloader Peripheral Pinmux

13.2 Introduction

The Kinetis devices *that do not have an on-chip ROM* are shipped with the pre-programmed Kinetis Flashloader in the on-chip flash memory, for one-time, in-system factory programming. The Kinetis Flashloader's main task is to load a customer firmware image into the flash memory. The image on the flash has 2 programs: flashloader_loader and flashloader. After a device reset, the flashloader_loader program starts its execution first. The flashloader_loader program copies the contents of flashloader image from the flash to the on-chip RAM; the device then switches execution to the flashloader program to execute from RAM.

Introduction

For the device, the Kinetis Flashloader can interface with USB, UART, I2C, and SPI peripherals in slave mode and respond to the commands sent by a master (or host) communicating on one of those ports. The host/master can be a firmware-download application running on a PC or an embedded host communicating with the Kinetis Flashloader. Regardless of the host/master (PC or embedded host), the Kinetis Flashloader always uses a command protocol to communicate with that host/master. Commands are provided to write to memory (flash or RAM), erase flash, and get/set flashloader options and property values. The host application can query the set of available commands.

This chapter describes Kinetis Flashloader features, functionality, command structure and which peripherals are supported.

Features supported by the Kinetis Flashloader:

- Supports USB, UART, I2C, and SPI peripheral interfaces
- Automatic detection of the active peripheral
- UART peripheral implements autobaud
- Common packet-based protocol for all peripherals
- Packet error detection and retransmission
- Fully supports flash security, including ability to mass erase or unlock security via the backdoor key
- Protection of RAM used by the flashloader while it is running
- Provides command to read properties of the device, such as flash and RAM size

Table 13-2. Commands supported by the Kinetis Flashloader

Command	Description	When flash security is enabled, then this command is
Execute	Run user application code that never returns control to the flashloader	Not supported
FillMemory	Fill a range of bytes in flash with a word pattern	
FlashEraseAll	Erase the entire flash array	
FlashEraseRegion	Erase a range of sectors in flash	
FlashProgramOnce	Writes data provided in a command packet to a specified range of bytes in the program once field	
FlashReadOnce	Returns the contents of the program once field by given index and byte count	
FlashReadResource	Returns the contents of the IFR field or Flash firmware ID, by given offset, byte count and option	
WriteMemory	Write data to memory	
ReadMemory	Read data from memory	

Table continues on the next page...

Table 13-2. Commands supported by the Kinetis Flashloader (continued)

Command	Description	When flash security is enabled, then this command is		
FlashSecurityDisable	Attempt to unlock flash security using the backdoor key	Supported		
GetProperty	Get the current value of a property			
Reset	Reset the chip			
SetProperty	Attempt to modify a writable property	Supported		

13.3 Functional Description

The following sub-sections describe the Kinetis Flashloader functionality.

13.3.1 Memory Maps

While executing, the Kinetis Flashloader uses RAM memory.

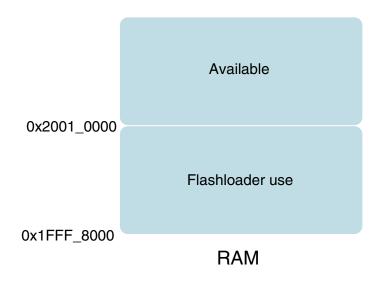


Figure 13-1. Kinetis Flashloader RAM Memory Map

13.3.2 Kinetis Flashloader

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

13.3.3 Start-up Process

As the Kinetis Flashloader begins executing, flashloader operations begin:

- 1. The flashloader's .data and .bss sections are initialized.
- 2. All supported peripherals are initialized.
- 3. The flashloader waits for communication to begin on a peripheral.
 - There is no timeout for the active peripheral detection process.
 - If communication is detected, then all inactive peripherals are shut down, and the command phase is entered.

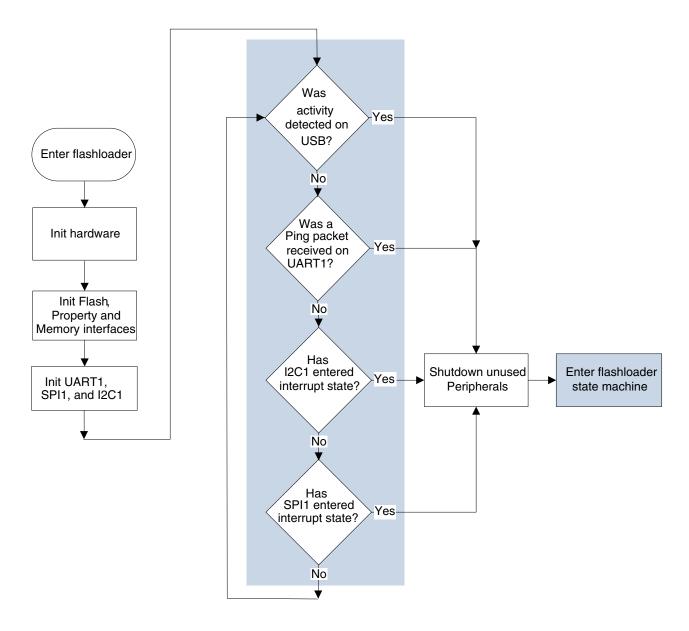


Figure 13-2. Kinetis Flashloader Start-up Flowchart

13.3.4 Clock Configuration

The Kinetis Flashloader uses the clock configuration of the chip out of reset. The flashloader does not modify any clocks.

13.3.5 Flashloader Protocol

This section explains the general protocol for the packet transfers between the host and the Kinetis Flashloader. The description includes the transfer of packets for different transactions, such as commands with no data phase and commands with incoming or outgoing data phase. The next section describes various packet types used in a transaction.

Each command sent from the host is replied to with a response command.

Commands may include an optional data phase:

- If the data phase is **incoming** (from host to flashloader), then it (the data phase) is part of the **original command**.
- If the data phase is **outgoing** (from flashloader to host), then it (the data phase) is part of the **response command**.

13.3.5.1 Command with no data phase

The protocol for a command with no data phase contains:

- Command packet (from host)
- Generic response command packet (to host)

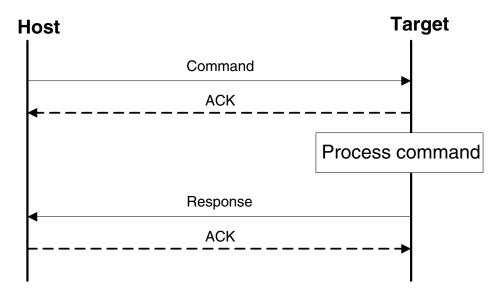


Figure 13-3. Command with No Data Phase

13.3.5.2 Command with incoming data phase

The protocol for a command with an incoming data phase contains:

• Command packet (from host)

- Generic response command packet (to host)
- Incoming data packets (from host)
- Generic response command packet (to host)

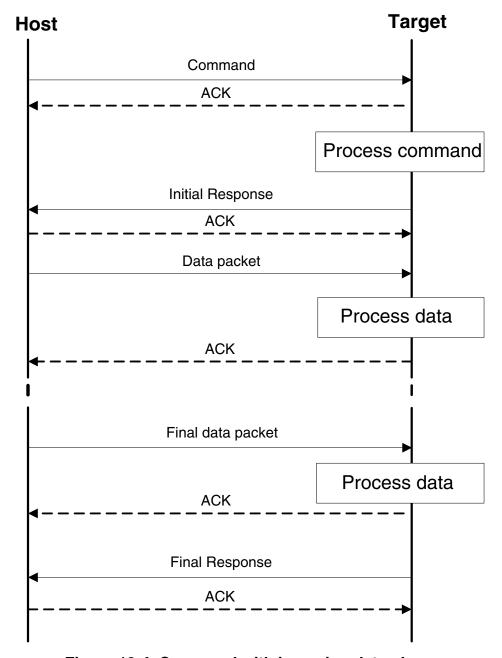


Figure 13-4. Command with incoming data phase

NOTE

• The host may not send any further packets while it (the host) is waiting for the response to a command.

Functional Description

- If the Generic Response packet prior to the start of the data phase does not have a status of kStatus_Success, then the data phase is aborted.
- Data phases may be aborted by the receiving side by sending the final Generic Response early with a status of kStatus_AbortDataPhase. The host may abort the data phase early by sending a zero-length data packet.
- The final Generic Response packet *sent after the data phase* includes the status for the entire operation.

13.3.5.3 Command with outgoing data phase

The protocol for a command with an outgoing data phase contains:

- Command packet (from host)
- ReadMemory Response command packet (to host) (kCommandFlag_HasDataPhase set)
- Outgoing data packets (to host)
- Generic response command packet (to host)

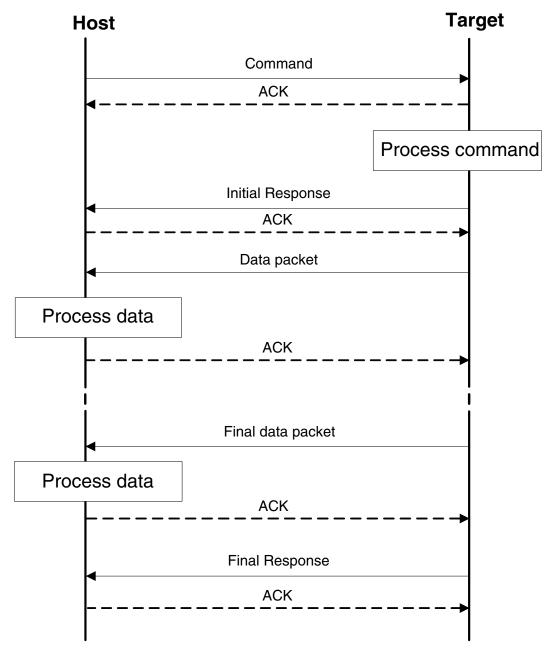


Figure 13-5. Command with outgoing data phase

NOTE

- For the outgoing data phase sequence above, the data phase is really considered part of the response command.
- The host may not send any further packets while it (the host) is waiting for the response to a command.
- If the ReadMemory Response command packet prior to the start of the data phase does not contain the kCommandFlag_HasDataPhase flag, then the data phase is aborted.

Functional Description

- Data phases may be aborted by the host sending the final Generic Response early with a status of kStatus_AbortDataPhase. The sending side may abort the data phase early by sending a zero-length data packet.
- The final Generic Response packet *sent after the data phase* includes the status for the entire operation.

13.3.6 Flashloader Packet Types

The Kinetis Flashloader device works in slave mode. All data communication is initiated by a host, which is either a PC or an embedded host. The Kinetis Flashloader device is the target, which receives a command or data packet. All data communication between host and target is packetized.

NOTE

The term "target" refers to the "Kinetis Flashloader device."

There are 6 types of packets used in device:

- Ping packet
- Ping Response packet
- Framing packet
- Command packet
- Data packet
- Response packet

All fields in the packets are in little-endian byte order.

13.3.6.1 Ping packet

The Ping packet is the first packet sent from a host to the target (Kinetis Flashloader), to establish a connection on a selected peripheral. For a UART peripheral, the Ping packet is used to determine the baudrate. A Ping packet must be sent before any other communications. In response to a Ping packet, the target sends a Ping Response packet.

Table 13-3. Ping Packet Format

Byte #	Value	Name
0	0x5A	start byte
1	0xA6	ping

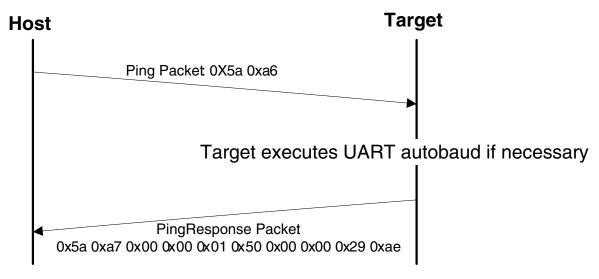


Figure 13-6. Ping Packet Protocol Sequence

13.3.6.2 Ping Response Packet

The target (Kinetis Flashloader) sends a Ping Response packet back to the host after receiving a Ping packet. If communication is over a UART peripheral, the target uses the incoming Ping packet to determine the baud rate before replying with the Ping Response packet. Once the Ping Response packet is received by the host, the connection is established, and the host starts sending commands to the target (Kinetis Flashloader).

Byte #	Value	Parameter
0	0x5A	start byte
1	0xA7	Ping response code
2		Protocol bugfix
3		Protocol minor
4		Protocol major
5		Protocol name = 'P' (0x50)
6		Options low
7		Options high
8		CRC16 low
9		CRC16 high

Table 13-4. Ping Response Packet Format

The Serial Protocol Version number returned is 1.1.0.

13.3.6.3 Framing Packet

The framing packet is used for flow control and error detection, and it (the framing packet) wraps command and data packets as well.

The framing packet described in this section is used for serial peripherals including UART, I2C and SPI. The USB HID peripheral does not use framing packets. Instead, the packetization inherent in the USB protocol itself is used. Please refer to the USB peripheral section for details.

Byte #	Value	Parameter	
0	0x5A	start byte	
1		packetType	
2		length_low	Length is a 16-bit field that specifies the entire
3		length_high	command or data packet size in bytes.
4	crc16_low		This is a 16-bit field. The CRC16 value covers entire
5		crc16_high	framing packet, including the start byte and command or data packets, but does not include the CRC bytes. See the CRC16 algorithm after this table.
6n		Command or Data packet payload	

Table 13-5. Framing Packet Format

CRC16 algorithm:

```
uint16_t crc16_update(const uint8_t * src, uint32_t lengthInBytes)
{
    uint32_t crc = 0;
    uint32_t j;
    for (j=0; j < lengthInBytes; ++j)
    {
        uint32_t i;
        uint32_t byte = src[j];
        crc ^= byte << 8;
        for (i = 0; i < 8; ++i)
        {
            uint32_t temp = crc << 1;
            if (crc & 0x8000)
            {
                temp ^= 0x1021;
            }
}</pre>
```

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

A special framing packet that contains only a start byte and a packet type is used for synchronization between the host and target.

Table 13-6. Special Framing Packet Format

Byte #	Value	Parameter
0	0x5A	start byte
1	0xAn	packetType

The Packet Type field specifies the type of the packet from one of the defined types (below):

Table 13-7. packetType Field

packetType	cketType Name Description							
0xA1	kFramingPacketType_Ack	The previous packet was received successfully; the sending of more packets is allowed.						
0xA2	kFramingPacketType_Nak	The previous packet was corrupted and must be re-sent.						
0xA3	kFramingPacketType_AckAbort	Data phase is being aborted.						
0xA4	kFramingPacketType_Command	The framing packet contains a command packet payload.						
0xA5	kFramingPacketType_Data	The framing packet contains a data packet payload.						
0xA6	kFramingPacketType_Ping	Sent to verify the other side is alive. Also used for UART autobaud.						
0xA7	kFramingPacketType_PingResponse	A response to Ping; contains the framing protocol version number and options.						

13.3.6.4 Command packet

The command packet carries a 32-bit command header and a list of 32-bit parameters.

Table 13-8. Command Packet Format

	Command Packet Format (32 bytes)
Command Header (4 bytes)	28 bytes for Parameters (Max 7 parameters)

Table continues on the next page...

Functional Description

Table 13-8. Command Packet Format (continued)

	Command Packet Format (32 bytes)														
Tag	Flags	Rsvd	Param Count			Param3 (32-bit)	Param4 (32-bit)	Param5 (32-bit)	Param6 (32-bit)	Param7 (32-bit)					
byte 0	byte 1	byte 2	byte 3												

Table 13-9. Command Header Format

Byte #	Command Header Field	
0	Command or Response tag	The command header is 4 bytes long, with
1	Flags	these fields.
2	Reserved. Should be 0x00.	
3	ParameterCount	

The header is followed by 32-bit parameters up to the value of the ParameterCount field specified in the header. Because a command packet is 32 bytes long, only 7 parameters can fit into the command packet.

Command packets are also used by the target to send responses back to the host. As mentioned earlier, command packets and data packets are embedded into framing packets for all of the transfers.

Table 13-10. Command Tags

Command Tag	Name					
0x01	FlashEraseAll	The command tag specifies one of the				
0x02	FlashEraseRegion	commands supported by the Kinetis Flashloader. The valid command tags for the				
0x03	ReadMemory	Kinetis Flashloader are listed here.				
0x04	WriteMemory					
0x06	FlashSecurityDisable					
0x07	GetProperty					
0x09	Execute					
0x0B	Reset					
0x0C	SetProperty					
0x0D	FlashEraseAllUnsecure					

Table 13-1	1. R	Response	Tags
-------------------	------	----------	------

Response Tag	Name	
0xA0	GenericResponse	The response tag specifies one of the responses
0xA7	GetPropertyResponse (used for sending responses to GetProperty command only)	the Kinetis Flashloader (target) returns to the host. The valid response tags are listed here.
0xA3	ReadMemoryResponse (used for sending responses to ReadMemory command only)	

Flags: Each command packet contains a Flag byte. Only bit 0 of the flag byte is used. If bit 0 of the flag byte is set to 1, then data packets will follow in the command sequence. The number of bytes that will be transferred in the data phase is determined by a command-specific parameter in the parameters array.

ParameterCount: The number of parameters included in the command packet.

Parameters: The parameters are word-length (32 bits). With the default maximum packet size of 32 bytes, a command packet can contain up to 7 parameters.

13.3.6.5 Data packet

The data packet carries just the data, either host sending data to target, or target sending data to host. The data transfer direction is determined by the last command sent from the host. The data packet is also wrapped within a framing packet, to ensure the correct packet data is received.

Table 13-12. Data Packet Format

												a Pa		+ =-	rma	at (3	2 by	/tes)											\Box
														\neg																

The contents of a data packet are simply the data itself. There are no other fields, so that the most data per packet can be transferred. Framing packets are responsible for ensuring that the correct packet data is received.

13.3.6.6 Response packet

The responses are carried using the same command packet format wrapped with framing packet data. There are 3 types of responses:

GenericResponse

Functional Description

- GetPropertyResponse
- ReadMemoryResponse

GenericResponse: After the Kinetis Flashloader has processed a command, the flashloader will send a generic response with status and command tag information to the host. The generic response is the last packet in the command protocol sequence. The generic response packet contains the framing packet data and the command packet data (with generic response tag = 0xA0) and a list of parameters (defined in the next section). The parameter count field in the header is always set to 2, for status code and command tag parameters.

Byte # Parameter Descripton

O - 3 Status code The Status codes are errors encountered during the execution of a command by the target (Kinetis Flashloader). If a command succeeds, then a kStatus_Success code is returned. Table 13-47, Kinetis Flashloader Status Error Codes, lists the status codes returned to the host by the Kinetis Flashloader.

4 - 7 Command tag

The Command tag parameter identifies the response to the command sent by the host.

Table 13-13. GenericResponse Parameters

GetPropertyResponse: The GetPropertyResponse packet is sent by the target in response to the host query that uses the GetProperty command. The GetPropertyResponse packet contains the framing packet data and the command packet data, with the command/response tag set to a GetPropertyResponse tag value (0xA7).

The parameter count field in the header is set to greater than 1, to always include the status code and one or many property values.

Byte #	Value	Parameter
0 - 3		Status code
4 - 7		Property value
		Can be up to maximum 6 property values, limited to the size of the 32-bit command packet and property type.

Table 13-14. GetPropertyResponse Parameters

The ReadMemoryResponse packet is sent by the target in response to the host sending a ReadMemory command. The ReadMemoryResponse packet contains the framing packet data and the command packet data, with the command/response tag set to a ReadMemoryResponse tag value (0xA3), the flags field set to kCommandFlag_HasDataPhase (1).

The parameter count set to 2 for the status code and the data byte count parameters shown below.

Table 13-15. ReadMemoryResponse Parameters

Γ	Byte #	Parameter	Descripton
	0 - 3	Status code	The status of the associated Read Memory command.
	4 - 7	Data byte count	The number of bytes sent in the data phase.

13.3.7 Flashloader Command API

All Kinetis Flashloader command APIs follow the command packet format that is wrapped by the framing packet, as explained in previous sections.

- For a list of commands supported by the Flashloader, see Table 13-2, Commands supported.
- For a list of status codes returned by the Kinetis Flashloader, see Table 13-47, Kinetis Flashloader Status Error Codes.

NOTE

All the examples in this section depict byte traffic on serial peripherals that use framing packets. USB HID transactions use the USB HID report packets instead of the serial framing packets shown in this section. Please refer to the HID reports section for details of the USB HID packet structure.

13.3.7.1 GetProperty command

The GetProperty command is used to query the flashloader about various properties and settings. Each supported property has a unique 32-bit tag associated with it. The tag occupies the first parameter of the command packet. The target returns a GetPropertyResponse packet with the property values for the property identified with the tag in the GetProperty command.

Properties are the defined units of data that can be accessed with the GetProperty or SetProperty commands. Properties may be read-only or read-write. All read-write properties are 32-bit integers, so they can easily be carried in a command parameter.

For a list of properties and their associated 32-bit property tags supported by the Kinetis Flashloader, see Table 13-43.

The 32-bit property tag is the only parameter required for GetProperty command.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Table 13-16. Parameters for GetProperty Command

Byte #	Command
0 - 3	Property tag

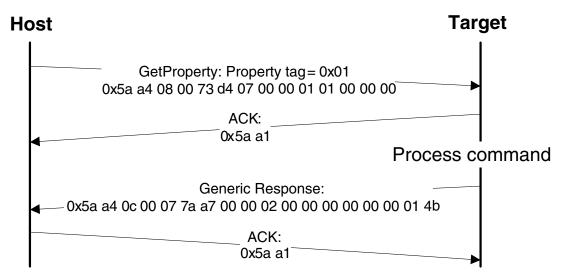


Figure 13-7. Protocol Sequence for GetProperty Command

Table 13-17. GetProperty Command Packet Format (Example)

GetProperty	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x08 0x00
	crc16	0x73 0xD4
Command packet	commandTag	0x07 – GetProperty
	flags	0x00
	reserved	0x00
	parameterCount	0x01
	propertyTag	0x0000001 - CurrentVersion

The GetProperty command has no data phase.

Response: In response to a GetProperty command, the target will send a GetPropertyResponse packet with the response tag set to 0xA7. The parameter count indicates the number of parameters sent for the property values, with the first parameter showing status code 0, followed by the property value(s). The next table shows an example of a GetPropertyResponse packet.

Table 13-18. GetProperty Response Packet Format (Example)

GetPropertyResponse	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x0c 0x00 (12 bytes)
	crc16	0x07 0x7a
Command packet	responseTag	0xA7
	flags	0x00
	reserved	0x00
	parameterCount	0x02
	status	0x00000000
	propertyValue	0x0000014b - CurrentVersion

13.3.7.2 SetProperty command

The SetProperty command is used to change or alter the values of the properties or options in the Kinetis Flashloader. However, the SetProperty command can only change the value of properties that are writable—see Table 13-43, Properties used by Get/ SetProperty Commands. If you try to set a value for a read-only property, then the Kinetis Flashloader will return an error.

The property tag and the new value to set are the 2 parameters required for the SetProperty command.

Table 13-19. Parameters for SetProperty Command

Byte #	Command
0 - 3	Property tag
4 - 7	Property value

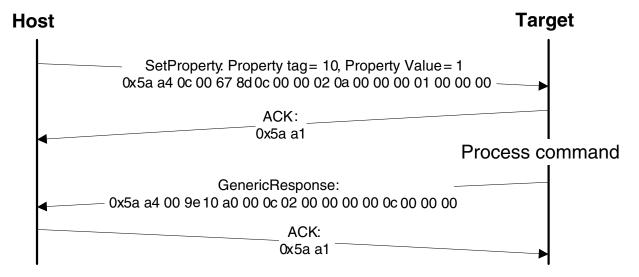


Figure 13-8. Protocol Sequence for SetProperty Command

Table 13-20. SetProperty Command Packet Format (Example)

SetProperty	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x0C 0x00
	crc16	0x67 0x8D
Command packet	commandTag	0x0C - SetProperty with property tag 10
	flags	0x00
	reserved	0x00
	parameterCount	0x02
	propertyTag	0x000000A - VerifyWrites
	propertyValue	0x0000001

The SetProperty command has no data phase.

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with one of following status codes:

Table 13-21. SetProperty Response Status Codes

Status Code
kStatus_Success
kStatus_ReadOnly
kStatus_UnknownProperty
kStatus_InvalidArgument

13.3.7.3 FlashEraseAll command

The FlashEraseAll command performs an erase of the entire flash memory. If any flash regions are protected, then the FlashEraseAll command will fail and return an error status code. Executing the FlashEraseAll command will release flash security if it (flash security) was enabled, by setting the FTFA_FSEC register. However, the FSEC field of the flash configuration field is erased, so unless it is reprogrammed, the flash security will be re-enabled after the next system reset. The Command tag for FlashEraseAll command is 0x01 set in the commandTag field of the command packet.

The FlashEraseAll command requires no parameters.

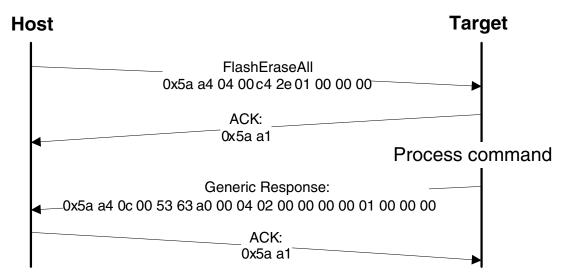


Figure 13-9. Protocol Sequence for FlashEraseAll Command

FlashEraseAll	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x04 0x00
	crc16	0xC4 0x2E
Command packet	commandTag	0x01 - FlashEraseAll
	flags	0x00
	reserved	0x00
	parameterCount	0x00

Table 13-22. FlashEraseAll Command Packet Format (Example)

The FlashEraseAll command has no data phase.

Functional Description

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with status code either set to kStatus_Success for successful execution of the command, or set to an appropriate error status code.

13.3.7.4 FlashEraseRegion command

The FlashEraseRegion command performs an erase of one or more sectors of the flash memory.

The start address and number of bytes are the 2 parameters required for the FlashEraseRegion command. The start and byte count parameters must be, or the FlashEraseRegion command will fail and return kStatus_FlashAlignmentError(101). If the region specified does not fit in the flash memory space, the FlashEraseRegion command will fail and return kStatus_FlashAddressError(102). If any part of the region specified is protected, the FlashEraseRegion command will fail and return kStatus_MemoryRangeInvalid(10200).

Table 13-23. Parameters for FlashEraseRegion Command

Byte #	Parameter
0 - 3	Start address
4 - 7	Byte count

The FlashEraseRegion command has no data phase.

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with one of following error status codes.

Table 13-24. FlashEraseRegion Response Status Codes

Status Code
Status_Success (0)
Status_MemoryRangeInvalid (10200)
Status_FlashAlignmentError (101)
Status_FlashAddressError (102)
Status_FlashAccessError (103)
Status_FlashProtectionViolation (104)
Status_FlashCommandFailure (105)

13.3.7.5 FillMemory command

The FillMemory command fills a range of bytes in memory with a word pattern. It follows the same rules as the WriteMemory command. The difference between FillMemory and Writememory is that a word data pattern is included in FillMemory command parameter, and there is no data phase for this command, while WriteMemory does have a data phase.

Byte #	Command
0 - 3	Start address of memory to fill
4 - 7	Number of bytes to write with the pattern
8 - 11	Pattern word

Table 13-25. Parameters for FillMemory Command

- To fill with a byte pattern (8-bit), the byte must be replicated 4 times in the pattern word.
- To fill with a short pattern (16-bit), the short value must be replicated 2 times in the pattern word.

For example, to fill a byte value with 0xFE, the word pattern would be 0xFEFEFEFE; to fill a short value 0x5AFE, the word pattern would be 0x5AFE5AFE.

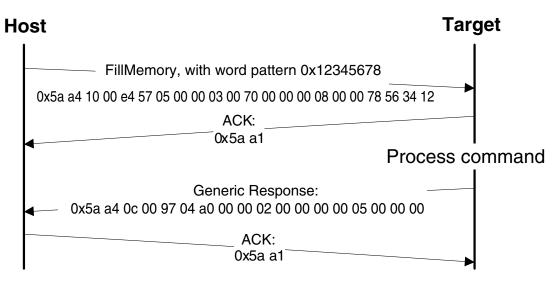


Figure 13-10. Protocol Sequence for FillMemory Command

Table 13-26. FillMemory Command Packet Format (Example)

FillMemory	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x10 0x00
	crc16	0xE4 0x57
Command packet	commandTag	0x05 – FillMemory
	flags	0x00
	reserved	0x00
	parameterCount	0x03
	startAddress	0x00007000
	byteCount	0x00000800
	patternWord	0x12345678

The FillMemory command has no data phase.

Response: upon successful execution of the command, the target (Kinetis Flashloader) will return a GenericResponse packet with a status code set to kStatus_Success, or to an appropriate error status code.

13.3.7.6 FlashProgramOnce command

The FlashProgramOnce command writes data (that is provided in a command packet) to a specified range of bytes in the program once field. Special care must be taken when writing to the program once field.

- The program once field only supports programming once, so any attempted to reprogram a program once field will get an error response.
- Writing to the program once field requires the byte count to be 4-byte aligned or 8-byte aligned.

The FlashProgramOnce command uses 3 parameters: index 2, byteCount, data.

Table 13-27. Parameters for FlashProgramOnce Command

Byte #	Command
0 - 3	Index of program once field
4 - 7	Byte count
8 - 11	Data
12 - 16	Data

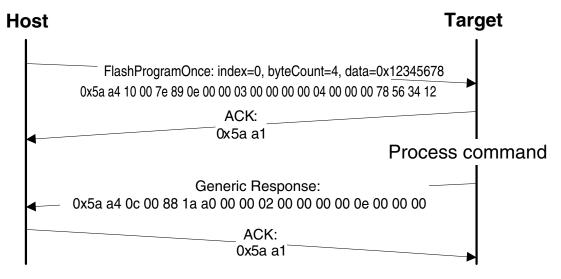


Figure 13-11. Protocol Sequence for FlashProgramOnce Command

FlashProgramOnce	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x10 0x00
	crc16	0x7E4 0x89
Command packet	commandTag	0x0E - FlashProgramOnce
	flags	0
	reserved	0
	parameterCount	3
	index	0x0000_0000
	byteCount	0x0000_0004
	data	0x1234_5678

Table 13-28. FlashProgramOnce Command Packet Format (Example)

Response: upon successful execution of the command, the target (Kinetis Flashloader) will return a GenericResponse packet with a status code set to kStatus_Success, or to an appropriate error status code.

13.3.7.7 FlashReadOnce command

The FlashReadOnce command returns the contents of the program once field by given index and byte count. The FlashReadOnce command uses 2 parameters: index and byteCount.

Table 13-29. Parameters for FlashReadOnce Command

Byte #	Parameter	Description
0 - 3	index	Index of the program once field (to read from)
4 - 7	byteCount	Number of bytes to read and return to the caller

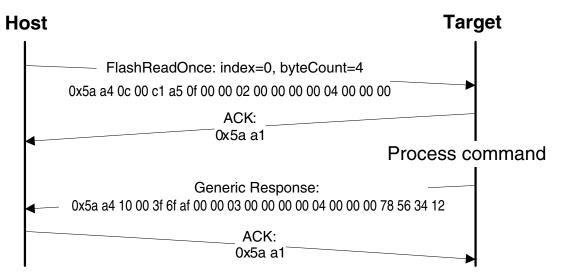


Figure 13-12. Protocol Sequence for FlashReadOnce Command

Table 13-30. FlashReadOnce Command Packet Format (Example)

FlashReadOnce	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4
	length	0x0C 0x00
	crc	0xC1 0xA5
Command packet	commandTag	0x0F - FlashReadOnce
	flags	0x00
	reserved	0x00
	parameterCount	0x02
	index	0x0000_0000
	byteCount	0x0000_0004

Table 13-31. FlashReadOnce Response Format (Example)

FlashReadOnce Response	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4
	length	0x10 0x00
	crc	0x3F 0x6F
Command packet	commandTag	0xAF
	flags	0x00
	reserved	0x00
	parameterCount	0x03
	status	0x0000_0000
	byteCount	0x0000_0004
	data	0x1234_5678

Response: upon successful execution of the command, the target (Kinetis Flashloader) will return a FlashReadOnceResponse packet with a status code set to kStatus_Success, a byte count and corresponding data read from Program Once Field upon successful execution of the command, or will return with a status code set to an appropriate error status code and a byte count set to 0.

13.3.7.8 FlashReadResource command

The FlashReadResource command returns the contents of the IFR field or Flash firmware ID, by given offset, byte count, and option. The FlashReadResource command uses 3 parameters: start address, byteCount, option.

Table 13-32. Parameters for FlashReadResource Command

Byte #	Parameter	Command
0 - 3	start address	Start address of specific non-volatile memory to be read
4 - 7	byteCount	Byte count to be read
8 - 11	option	0: IFR
		1: Flash firmware ID

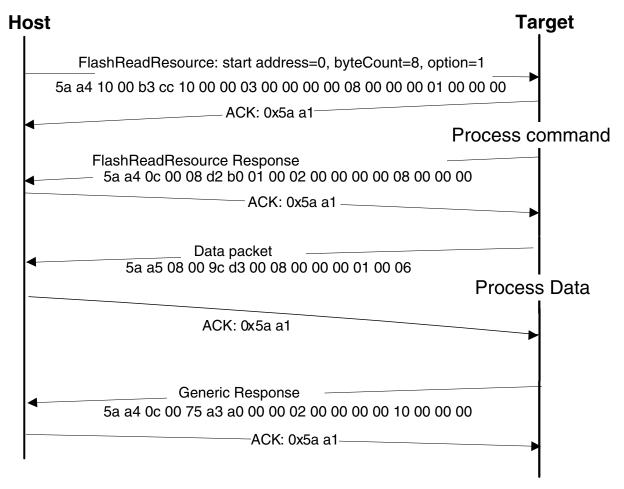


Figure 13-13. Protocol Sequence for FlashReadResource Command

Table 13-33. FlashReadResource Command Packet Format (Example)

FlashReadResource	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4
	length	0x10 0x00
	crc	0xB3 0xCC
Command packet	commandTag	0x10 - FlashReadResource
	flags	0x00
	reserved	0x00
	parameterCount	0x03
	startAddress	0x0000_0000
	byteCount	0x0000_0008
	option	0x0000_0001

Table 13-34. FlashReadResource Response Format (Example)

FlashReadResource Response	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4
	length	0x0C 0x00
	crc	0xD2 0xB0
Command packet	commandTag	0xB0
	flags	0x01
	reserved	0x00
	parameterCount	0x02
	status	0x0000_0000
	byteCount	0x0000_0008

Data phase: The FlashReadResource command has a data phase. Because the target (Kinetis Bootloader) works in slave mode, the host must pull data packets until the number of bytes of data *specified in the byteCount parameter of FlashReadResource command* are received by the host.

13.3.7.9 WriteMemory command

The WriteMemory command writes data provided in the data phase to a specified range of bytes in memory (flash or RAM). However, if flash protection is enabled, then writes to protected sectors will fail.

Special care must be taken when writing to flash.

- First, any flash sector written to must have been previously erased with a FlashEraseAll or FlashEraseRegion command.
- Writing to flash requires the start address to be .
- The byte count will be rounded up to a multiple of, and the trailing bytes will be filled with the flash erase pattern (0xff).
- If the VerifyWrites property is set to true, then writes to flash will also perform a flash verify program operation.

When writing to RAM, the start address need not be aligned, and the data will not be padded.

The start address and number of bytes are the 2 parameters required for WriteMemory command.

Table 13-35. Parameters for WriteMemory Command

Byte #	Command
0 - 3	Start address
4 - 7	Byte count

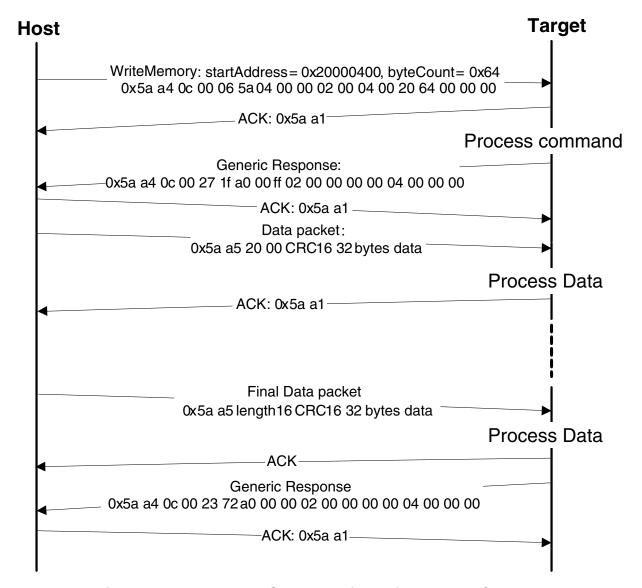


Figure 13-14. Protocol Sequence for WriteMemory Command

Table 13-36. WriteMemory Command Packet Format (Example)

WriteMemory	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x0C 0x00
	crc16	0x06 0x5A
Command packet	commandTag	0x04 - writeMemory
	flags	0x00
	reserved	0x00
	parameterCount	0x02
	startAddress	0x20000400
	byteCount	0x0000064

Data Phase: The WriteMemory command has a data phase; the host will send data packets until the number of bytes of data specified in the byteCount parameter of the WriteMemory command are received by the target.

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with a status code set to kStatus_Success upon successful execution of the command, or to an appropriate error status code.

13.3.7.10 Read memory command

The ReadMemory command returns the contents of memory at the given address, for a specified number of bytes. This command can read any region of memory accessible by the CPU and not protected by security.

The start address and number of bytes are the 2 parameters required for ReadMemory command.

Table 13-37. Parameters for read memory command

Byte	Parameter	Description
0-3	Start address	Start address of memory to read from
4-7	Byte count	Number of bytes to read and return to caller

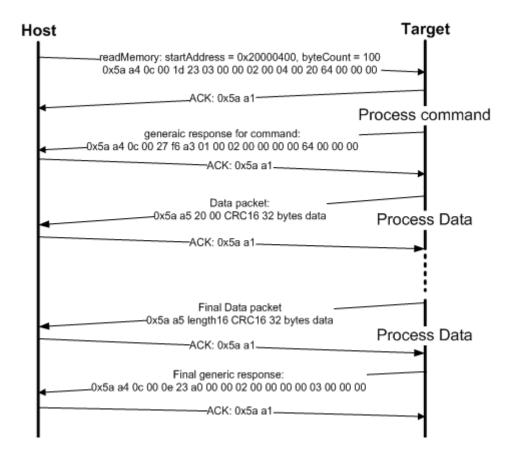


Figure 13-15. Command sequence for read memory

ReadMemory	Parameter	Value
Framing packet	Start byte	0x5A0xA4,
	packetType	kFramingPacketType_Command
	length	0x0C 0x00
	crc16	0x1D 0x23
Command packet	commandTag	0x03 - readMemory
	flags	0x00
	reserved	0x00
	parameterCount	0x02
	startAddress	0x20000400
	byteCount	0x0000064

Data Phase: The ReadMemory command has a data phase. Since the target (Kinetis Flashloader) works in slave mode, the host need pull data packets until the number of bytes of data specified in the byteCount parameter of ReadMemory command are received by host.

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with a status code either set to kStatus_Success upon successful execution of the command, or set to an appropriate error status code.

13.3.7.11 FlashSecurityDisable command

The FlashSecurityDisable command performs the flash security disable operation, by comparing the 8-byte backdoor key (provided in the command) against the backdoor key stored in the flash configuration field (at address 0x400 in the flash).

The backdoor low and high words are the only parameters required for FlashSecurityDisable command.

Table 13-39. Parameters for FlashSecurityDisable Command

Byte #	Command	
0 - 3	Backdoor key low word	
4 - 7	Backdoor key high word	

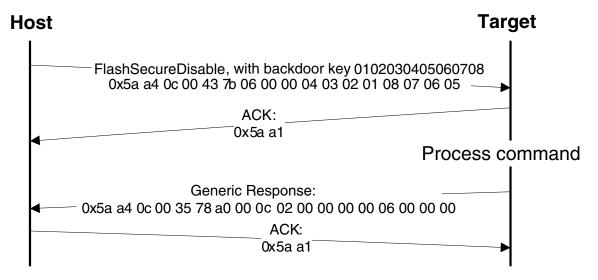


Figure 13-16. Protocol Sequence for FlashSecurityDisable Command

Table 13-40. FlashSecurityDisable Command Packet Format (Example)

FlashSecurityDisable	Parameter	Value	
Framing packet	start byte	0x5A	
	packetType	0xA4, kFramingPacketType_Command	
	length	0x0C 0x00	
	crc16	0x43 0x7B	

Table 13-40. FlashSecurityDisable Command Packet Format (Example) (continued)

FlashSecurityDisable	Parameter	Value
Command packet	commandTag	0x06 - FlashSecurityDisable
	flags	0x00
	reserved	0x00
	parameterCount	0x02
	Backdoorkey_low	0x04 0x03 0x02 0x01
	Backdoorkey_high	0x08 0x07 0x06 0x05

The FlashSecurityDisable command has no data phase.

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with a status code either set to kStatus_Success upon successful execution of the command, or set to an appropriate error status code.

13.3.7.12 Execute command

The execute command results in the flashloader setting the program counter to the code at the provided jump address, R0 to the provided argument, and a Stack pointer to the provided stack pointer address. Prior to the jump, the system is returned to the reset state. See the Flashloader Exit state section.

The Jump address, function argument pointer and stack pointer are the parameters required for the Execute command.

Table 13-41. Parameters for Execute Command

Byte #	Command	
0 - 3	Jump address	
4 - 7	Argument word	
8 - 11	Stack pointer address	

The Execute command has no data phase.

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with status code either set to kStatus_Success for successful execution of the command, or set to an appropriate error status code.

13.3.7.13 Reset command

The Reset command will result in flashloader resetting the chip.

The Reset command requires no parameters.

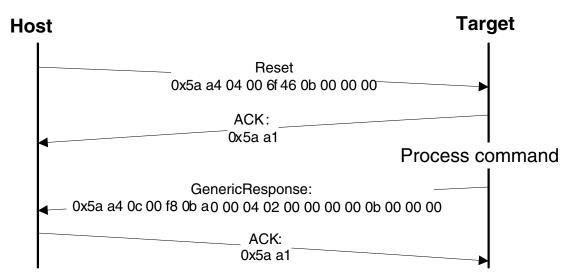


Figure 13-17. Protocol Sequence for Reset Command

Reset	Parameter	Value
Framing packet	start byte	0x5A
	packetType	0xA4, kFramingPacketType_Command
	length	0x04 0x00
	crc16	0x6F 0x46
Command packet	commandTag	0x0B - reset
	flags	0x00
	reserved	0x00
	parameterCount	0x00

Table 13-42. Reset Command Packet Format (Example)

The Reset command has no data phase.

Response: The target (Kinetis Flashloader) will return a GenericResponse packet with a status code either set to kStatus_Success upon successful execution of the command, or set to an appropriate error status code.

13.3.8 Flashloader Exit state

The Kinetis Flashloader tries to reconfigure the system back to the reset state in the following situations:

- After completion of an Execute command, but before jumping to the specified entry point.
- After a peripheral detection timeout, but before jumping to the application entry point.

In general, all peripherals are reset. However, the application must consider the following exceptions:

- I2C and SPI are restored by writing the control registers to reset values.
- LPUART is not restored.
- Peripheral pin mux is not reset to default, see the pin mux table (Table 13-1, Kinetis Flashloader Peripheral Pinmux).
- Upon exit from the flashloader, the flashloader leaves global interrupts disabled and restores the VTOR register to its default value (0x0).

NOTE

PORT clock gate, pin mux and peripheral registers are not reset to default values on Flashloader exit.

- Affected PORT clock gates: PORTA, PORTB, PORTC, PORTD and PORTE(SIM_SCGC5_PORTA, SIM_SCGC5_PORTB, SIM_SCGC5_PORTC, SIM_SCGC5_PORTD and SIM_SCGC5_PORTE are enabled)
- Affected pin mux:
 - UART1(PTE0, PTE1)
 - I2C1(PTC10, PTC11)
 - SPI1(PTD4, PTD5, PTD6, PTD7)
- Affected peripheral registers:
 - UART and UART clock source (SIM_SOPT2_PLLFLLSEL = 3)
 - SPI
 - I2C

You must re-configure the corresponding register to the expected value, instead of relying on the default value.

13.4 Peripherals Supported

This section describes the peripherals (UART, I2C, SPI, USB) supported by the Kinetis Flashloader.

13.4.1 I2C Peripheral

The Kinetis Flashloader supports loading data into flash via the I2C peripheral, where the I2C peripheral serves as the I2C slave. A 7-bit slave address is used during the transfer.

The Kinetis Flashloader uses 0x10 as the I2C slave address, and supports 400 kbps as the I2C baud rate.

Because the I2C peripheral in serves as an I2C slave device, each transfer should be started by the host, and each outgoing packet should be fetched by the host.

- An incoming packet is sent by the host with a selected I2C slave address and the direction bit is set as write.
- An outgoing packet is read by the host with a selected I2C slave address and the direction bit is set as read.
- 0x00 will be sent as the response to host if the target is busy with processing or preparing data.

The following flow charts demonstrate the communication flow of how the host reads ping packet, ACK and response from the target.

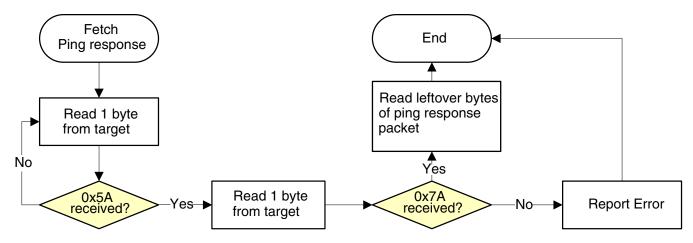


Figure 13-18. Host reads ping response from target via I2C

Peripherals Supported

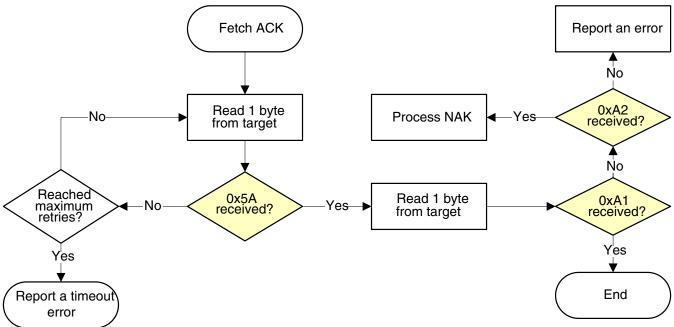


Figure 13-19. Host reads ACK packet from target via I2C

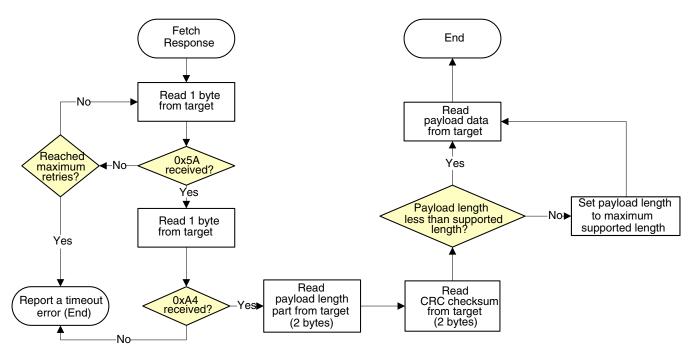


Figure 13-20. Host reads response from target via I2C

13.4.2 SPI Peripheral

The Kinetis Flashloader supports loading data into flash via the SPI peripheral, where the SPI peripheral serves as a SPI slave.

The Kinetis Flashloader supports 400 kbps as the SPI baud rate.

Because the SPI peripheral serves as a SPI slave device, each transfer should be started by the host, and each outgoing packet should be fetched by the host.

The transfer on SPI is slightly different from I2C:

- Host will receive 1 byte after it sends out any byte.
- Received bytes should be ignored when host is sending out bytes to target
- Host starts reading bytes by sending 0x00s to target
- The byte 0x00 will be sent as response to host if target is under the following conditions:
 - Processing incoming packet
 - Preparing outgoing data
 - · Received invalid data

The following flowcharts demonstrate how the host reads a ping response, an ACK and a command response from target via SPI.

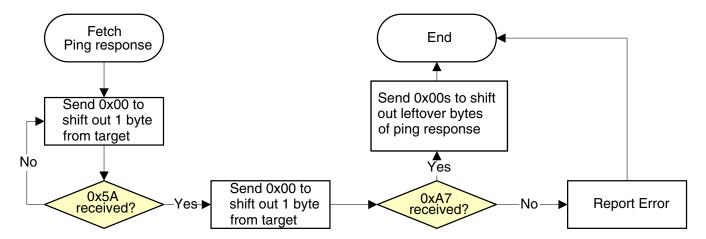


Figure 13-21. Host reads ping packet from target via SPI

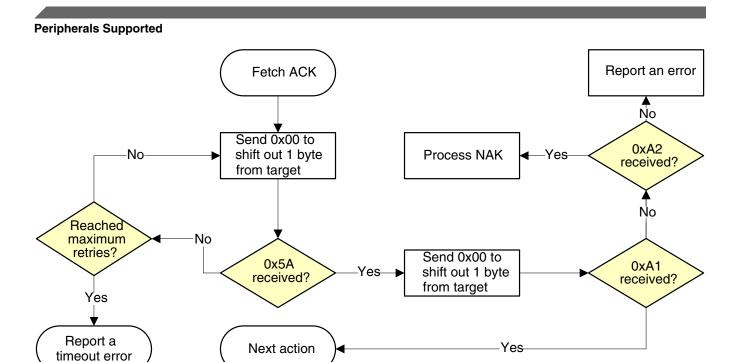


Figure 13-22. Host reads ACK from target via SPI

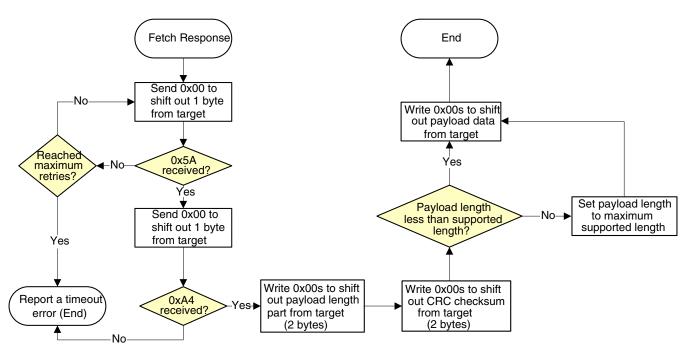


Figure 13-23. Host reads response from target via SPI

13.4.3 UART Peripheral

The Kinetis Flashloader integrates an autobaud detection algorithm for the UART peripheral, thereby providing flexible baud rate choices.

Autobaud feature: If UART1 is used to connect to the flashloader, then the UART1_RX pin must be kept high and not left floating during the detection phase in order to comply with the autobaud detection algorithm. After the flashloader detects the ping packet (0x5A 0xA6) on UART1_RX, the flashloader firmware executes the autobaud sequence. If the baudrate is successfully detected, then the flashloader will send a ping packet response [(0x5A 0xA7), protocol version (4 bytes), protocol version options (2 bytes) and crc16 (2 bytes)] at the detected baudrate. The Kinetis Flashloader then enters a loop, waiting for flashloader commands via the UART peripheral.

NOTE

The data bytes of ping packet must be sent continuously (with no delay between bytes) in a fixed UART transmission mode (8-bit data, no parity bit and 1 stop bit). If the bytes of the ping packet are sent one-by-one with some delay between them, the autobaud detection algorithm may calculate an incorrect baud rate. In this case, the autobaud detection state machine should be reset.

Supported baud rates: The baud rate is closely related to the MCU core and system clock frequencies. Typical baud rates supported are 9600, 19200, 38400, and 57600.

Packet transfer: After autobaud detection succeeds, flashloader communications can take place over the UART peripheral. The following flow charts show:

- How the host detects an ACK from the target
- How the host detects a ping response from the target
- How the host detects a command response from the target

Peripherals Supported

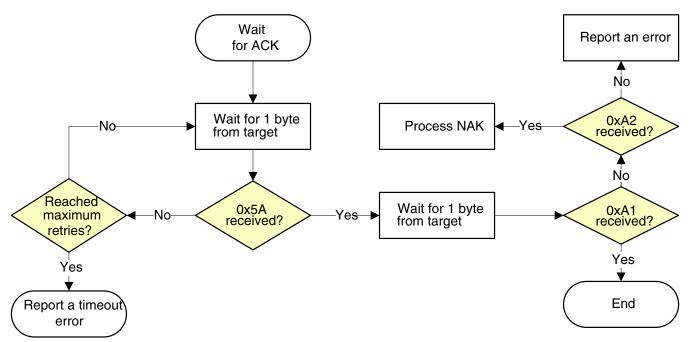


Figure 13-24. Host reads an ACK from target via UART

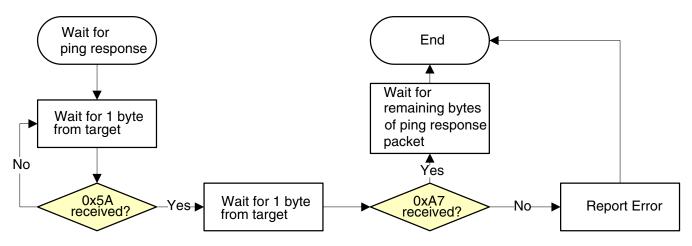


Figure 13-25. Host reads a ping response from target via UART

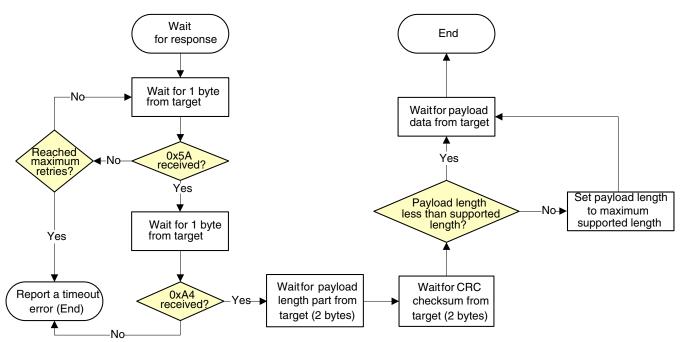


Figure 13-26. Host reads a command response from target via UART

13.4.4 USB peripheral

The Kinetis Flashloader supports loading data into flash via the USB peripheral. The target is implemented as a USB HID class.

USB HID does not use framing packets; instead the packetization inherent in the USB protocol itself is used. The ability for the device to NAK Out transfers (until they can be received) provides the required flow control; the built-in CRC of each USB packet provides the required error detection.

13.4.4.1 Clock configuration

The flashloader supports the crystal-less USB feature. If the USB peripheral is enabled, then the flashloader enables the 48-MHz HIRC (by setting SIM_SOPT2[USBSRC] to 1). The flashloader also enables the USB clock recovery feature (by setting USB_CLK_RECOVER_CTRL bit 7 (CLOCK_RECOVER_EN) to 1 and USB_CLK_RECOVER_IRC_EN bit 1 (IRC_EN) to 1).

13.4.4.2 Device descriptor

The Kinetis flashloader configures the default USB VID/PID/Strings as below:

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Peripherals Supported

Default VID/PID:

- VID = 0x15A2
- PID = 0x0073

Default Strings:

- Manufacturer [1] = "Freescale Semiconductor Inc."
- Product [2] = "Kinetis Bootloader"

13.4.4.3 Endpoints

The HID peripheral uses 3 endpoints:

- Control (0)
- Interrupt IN (1)
- Interrupt OUT (2)

The Interrupt OUT endpoint is optional for HID class devices, but the Kinetis Flashloader uses it as a pipe, where the firmware can NAK send requests from the USB host.

13.4.4.4 HID reports

There are 4 HID reports defined and used by the flashloader USB HID peripheral. The report ID determines the direction and type of packet sent in the report; otherwise, the contents of all reports are the same.

Report ID	Packet Type	Direction
1	Command	OUT
2	Data	OUT
3	Command	IN
4	Data	IN

For all reports, these properties apply:

Usage Min	1
Usage Max	1
Logical Min	0
Logical Max	255
Report Size	8
Report Count	34

Each report has a maximum size of 34 bytes. This is derived from the minimum flashloader packet size of 32 bytes, plus a 2-byte report header that indicates the length (in bytes) of the packet sent in the report.

NOTE

In the future, the maximum report size may be increased, to support transfers of larger packets. Alternatively, additional reports may be added with larger maximum sizes.

The actual data sent in all of the reports looks like:

0	Report ID
1	Packet Length LSB
2	Packet Length MSB
3	Packet[0]
4	Packet[1]
5	Packet[2]
N+3-1	Packet[N-1]

This data includes the Report ID, which is required if more than one report is defined in the HID report descriptor. The actual data sent and received has a maximum length of 35 bytes. The Packet Length header is written in little-endian format, and it is set to the size (in bytes) of the packet sent in the report. This size does not include the Report ID or the Packet Length header itself. During a data phase, a packet size of 0 indicates a data phase abort request from the receiver.

13.5 Get/SetProperty Command Properties

Table 13-43. Properties used by Get/SetProperty Commands, sorted by Value

Property	Writable	Tag Value	Size	Descripion
CurrentVersion	No	01h	4	Current flashloader version.
AvailablePeripherals	No	02h	4	The set of peripherals supported on this chip.
FlashStartAddress	No	03h	4	Start address of program flash.
FlashSizeInBytes	No	04h	4	Size in bytes of program flash.
FlashSectorSize	No	05h	4	The size in bytes of one sector of program flash.
				This is the minimum erase size.
FlashBlockCount	No	06h	4	Number of blocks in the flash array.

Table 13-43. Properties used by Get/SetProperty Commands, sorted by Value (continued)

Property	Writable	Tag Value	Size	Descripion
AvailableCommands	No	07h	4	The set of commands supported by the flashloader.
VerifyWrites	Yes	0Ah	4	Controls whether the flashloader will verify writes to flash. VerifyWrites feature is enabled by default.
				0 - No verification is done.
				1 - Enable verification.
MaxPacketSize	No	0Bh	4	Maximum supported packet size for the currently active peripheral interface.
ReservedRegions	No	0Ch	16	List of memory regions reserved by the flashloader. Returned as value pairs (<start-address-of-region>, <end-address-of-region>). • If HasDataPhase flag is not set, then the Response packet parameter count indicates the number of pairs. • If HasDataPhase flag is set, then the second parameter</end-address-of-region></start-address-of-region>
ValidateRegions	Yes	0Dh	4	is the number of bytes in the data phase. Controls whether the flashloader will validate attempts to write to memory regions (i.e., check if they are reserved before attempting to write). ValidateRegions feature is enabled by default.
				0 - No validation is done
				1 - Enable validation
RAMStartAddress	No	0Eh	4	Start address of RAM
RAMSizeInBytes	No	0Fh	4	Size in bytes of RAM
SystemDeviceId	No	10h	4	Value of the Kinetis System Device Identification register.
FlashSecurityState	No	11h	4	Indicates whether Flash security is enabled
				0 - Flash security is disabled
				1 - Flash security is enabled
UniqueDeviceId	No	12h	16	Unique device identification, value of Kinetis Unique Identification registers
FacSupport	No	13h	4	FAC (Flash Access Control) support flag
				0 - FAC not supported
				1 - FAC supported
FlashAcessSegmentSiz e	No	14h	4	The size in bytes of 1 segment size
FlashAcessSegmentCo unt	No	15h	4	FAC segment count

13.5.1 Property Definitions

Get/Set property definitions are provided in this section.

13.5.1.1 CurrentVersion Property

The value of this property is a 4-byte structure containing the current version of the flashloader.

Table 13-44. Bit ranges for the version components:

Bits	[31:24]	[23:16]	[15:8]	[7:0]	
Field	Name = 'K' (0x4B)	Major version	Minor version	Bugfix version	

The Kinetis Codebase Version number returned for the flashloader is 1.1.0.

13.5.1.2 AvailablePeripherals Property

The value of this property is a bitfield that lists the peripherals supported by the flashloader and the hardware on which it is running.

Table 13-45. Peripheral bits:

Bit	[31:7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Peripheral	Reserved	Reserved	Reserved	USB HID	Reserved	SPI Slave	I2C Slave	UART

If the peripheral is available, then the corresponding bit will be set in the property value. All reserved bits must be set to 0.

13.5.1.3 AvailableCommands Property

This property value is a bitfield with set bits indicating the commands enabled in the flashloader. Only commands that can be sent from the host to the target are listed in the bitfield. Response commands such as GenericResponse are excluded.

The bit number that identifies whether a command is present is the command's tag value minus 1. 1 is subtracted from the command tag because the lowest command tag value is 0x01. To get the bit mask for a given command, use this expression:

 $mask = 1 \ll (tag - 1)$

Table 13-46. Command bits:

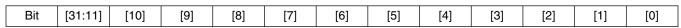


Table 13-46. Command bits: (continued)

13.6 Kinetis Flashloader Status Error Codes

This section describes the status error codes that the Kinetis Flashloader returns to the host.

Table 13-47. Kinetis Flashloader Status Error Codes, sorted by Value

Error Code	Value	Description
kStatus_ Success	0	Operation succeeded without error.
kStatus_ Fail	1	Operation failed with a generic error.
kStatus_ ReadOnly	2	Requested value cannot be changed because it is read-only.
kStatus_ OutOfRange	3	Requested value is out of range.
kStatus_ InvalidArgument	4	The requested command's argument is undefined.
kStatus_Timeout	5	A timeout occurred.
kStatus_ FlashSizeError	100	Not used.
kStatus_ FlashAlignmentError	101	Address or length does not meet required alignment.
kStatus_ FlashAddressError	102	Address or length is outside addressable memory.
kStatus_ FlashAccessError	103	The FTFA_FSTAT[ACCERR] bit is set.
kStatus_FlashProtectionViolation	104	The FTFA_FSTAT[FPVIOL] bit is set.
kStatus_ FlashCommandFailure	105	The FTFA_FSTAT[MGSTAT0] bit is set.
kStatus_ FlashUnknownProperty	106	Unknown Flash property.
kStatus_ I2C_SlaveTxUnderrun	200	I2C Slave TX Underrun error.
kStatus_ I2C_SlaveRxOverrun	201	I2C Slave RX Overrun error.
kStatus_ I2C_AribtrationLost	202	I2C Arbitration Lost error.
kStatus_ SPI_SlaveTxUnderrun	300	SPI Slave TX Underrun error.
kStatus_ SPI_SlaveRxOverrun	301	SPI Slave RX Overrun error.
kStatus_SPI_Timeout	302	SPI tranfser timed out.
kStatus_SPI_Busy	303	SPI instance is already busy performing a transfer.
kStatus_SPI_NoTransferInProgress	304	Attempt to abort a transfer when no transfer was in progress.
kStatus_ UnknownCommand	10000	The requested command value is undefined.
kStatus_ SecurityViolation	10001	Command is disallowed because flash security is enabled.

Table 13-47. Kinetis Flashloader Status Error Codes, sorted by Value (continued)

Error Code	Value	Description
kStatus_ AbortDataPhase	10002	Abort the data phase early.
kStatusMemoryRangeInvalid	10200	Memory range conflicts with a protected region.
kStatus_UnknownProperty	10300	The requested property value is undefined.
kStatus_ReadOnlyProperty	10301	The requested property value cannot be written.
kStatus_InvalidPropertyValue	10302	The specified property value is invalid.

Kinetis Flashloader Status Error Codes

Chapter 14 Reset Control Module (RCM)

14.1 Introduction

Information found here describes the registers of the Reset Control Module (RCM). The RCM implements many of the reset functions for the chip. See the chip's reset chapter for more information.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the RCM.

14.2 Reset memory map and register descriptions

The RCM Memory Map/Register Definition can be found here.

The Reset Control Module (RCM) registers provide reset status information and reset filter control.

NOTE

The RCM registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

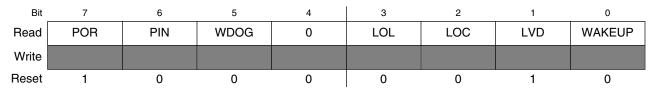
RCM memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_F000	System Reset Status Register 0 (RCM_SRS0)	8	R	82h	14.2.1/346
4007_F001	System Reset Status Register 1 (RCM_SRS1)	8	R	00h	14.2.2/347
4007_F004	Reset Pin Filter Control register (RCM_RPFC)	8	R/W	00h	14.2.3/349
4007_F005	Reset Pin Filter Width register (RCM_RPFW)	8	R/W	00h	14.2.4/350

RCM memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_F007	Mode Register (RCM_MR)	8	R	00h	14.2.5/351
4007_F008	Sticky System Reset Status Register 0 (RCM_SSRS0)	8	R/W	82h	14.2.6/352
4007_F009	Sticky System Reset Status Register 1 (RCM_SSRS1)	8	R/W	00h	14.2.7/353

14.2.1 System Reset Status Register 0 (RCM_SRS0)


This register includes read-only status flags to indicate the source of the most recent reset. The reset state of these bits depends on what caused the MCU to reset.

NOTE

The reset value of this register depends on the reset source:

- POR (including LVD) 0x82
- LVD (without POR) 0x02
- VLLS mode wakeup due to RESET pin assertion 0x41
- VLLS mode wakeup due to other wakeup sources 0x01
- Other reset a bit is set if its corresponding reset source caused the reset

Address: 4007_F000h base + 0h offset = 4007_F000h

RCM_SRS0 field descriptions

Field	Description
7	Power-On Reset
POR	
	Indicates a reset has been caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold.
	0 Reset not caused by POR
	1 Reset caused by POR
6	External Reset Pin
PIN	Indicates a reset has been caused by an active-low level on the external RESET pin.
	0 Reset not caused by external reset pin
	1 Reset caused by external reset pin

RCM_SRS0 field descriptions (continued)

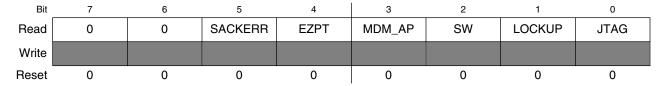
Field	Description
5 WDOG	Watchdog Indicates a reset has been caused by the watchdog timer timing out. This reset source can be blocked by disabling the watchdog.
	 Reset not caused by watchdog timeout Reset caused by watchdog timeout
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 LOL	Loss-of-Lock Reset
	Indicates a reset has been caused by a loss of lock in the MCG PLL. See the MCG description for information on the loss-of-clock event.
	0 Reset not caused by a loss of lock in the PLL
	1 Reset caused by a loss of lock in the PLL
2 LOC	Loss-of-Clock Reset
	Indicates a reset has been caused by a loss of external clock. The MCG clock monitor must be enabled for a loss of clock to be detected. Refer to the detailed MCG description for information on enabling the clock monitor.
	Reset not caused by a loss of external clock.
	1 Reset caused by a loss of external clock.
1	Low-Voltage Detect Reset
LVD	If PMC_LVDSC1[LVDRE] is set and the supply drops below the LVD trip voltage, an LVD reset occurs. This field is also set by POR.
	0 Reset not caused by LVD trip or POR
	1 Reset caused by LVD trip or POR
0 WAKEUP	Low Leakage Wakeup Reset
	Indicates a reset has been caused by an enabled LLWU module wakeup source while the chip was in a low leakage mode. In LLS mode, the RESET pin is the only wakeup source that can cause this reset. Any enabled wakeup source in a VLLSx mode causes a reset. This bit is cleared by any reset except WAKEUP.
	0 Reset not caused by LLWU module wakeup source
	1 Reset caused by LLWU module wakeup source

14.2.2 System Reset Status Register 1 (RCM_SRS1)

This register includes read-only status flags to indicate the source of the most recent reset. The reset state of these bits depends on what caused the MCU to reset.

NOTE

The reset value of this register depends on the reset source:


• POR (including LVD) — 0x00

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Reset memory map and register descriptions

- LVD (without POR) 0x00
- VLLS mode wakeup 0x00
- Other reset a bit is set if its corresponding reset source caused the reset

Address: 4007_F000h base + 1h offset = 4007_F001h

RCM_SRS1 field descriptions

Field	Description
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 SACKERR	Stop Mode Acknowledge Error Reset
	Indicates that after an attempt to enter Stop mode, a reset has been caused by a failure of one or more peripherals to acknowledge within approximately one second to enter stop mode.
	 Reset not caused by peripheral failure to acknowledge attempt to enter stop mode Reset caused by peripheral failure to acknowledge attempt to enter stop mode
4 EZPT	EzPort Reset
	Indicates a reset has been caused by EzPort receiving the RESET command while the device is in EzPort mode.
	0 Reset not caused by EzPort receiving the RESET command while the device is in EzPort mode 1 Reset caused by EzPort receiving the RESET command while the device is in EzPort mode
3	MDM-AP System Reset Request
MDM_AP	Indicates a reset has been caused by the host debugger system setting of the System Reset Request bit in the MDM-AP Control Register.
	 Reset not caused by host debugger system setting of the System Reset Request bit Reset caused by host debugger system setting of the System Reset Request bit
2	Software
SW	Indicates a reset has been caused by software setting of SYSRESETREQ bit in Application Interrupt and Reset Control Register in the ARM core.
	0 Reset not caused by software setting of SYSRESETREQ bit
	Reset caused by software setting of SYSRESETREQ bit
1 LOCKUP	Core Lockup
	Indicates a reset has been caused by the ARM core indication of a LOCKUP event.
	0 Reset not caused by core LOCKUP event
	1 Reset caused by core LOCKUP event

RCM_SRS1 field descriptions (continued)

Field	Description	
0 JTAG	JTAG Generated Reset	
	Indicates a reset has been caused by JTAG selection of certain IR codes: EZPORT, EXTEST, HIGHZ, and CLAMP.	
	0 Reset not caused by JTAG	
	1 Reset caused by JTAG	

14.2.3 Reset Pin Filter Control register (RCM_RPFC)

NOTE

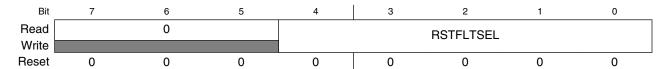
The reset values of bits 2-0 are for Chip POR only. They are unaffected by other reset types.

NOTE

The bus clock filter is reset when disabled or when entering stop mode. The LPO filter is reset when disabled .

Address: 4007_F000h base + 4h offset = 4007_F004h

RCM_RPFC field descriptions


Field	Description				
7–3	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				
2 RSTFLTSS	Reset Pin Filter Select in Stop Mode				
	Selects how the reset pin filter is enabled in Stop and VLPS modes , and also during LLS and VLLS modes. On exit from VLLS mode, this bit should be reconfigured before clearing PMC_REGSC[ACKISO].				
	0 All filtering disabled				
	1 LPO clock filter enabled				
1–0	Reset Pin Filter Select in Run and Wait Modes				
RSTFLTSRW	Selects how the reset pin filter is enabled in run and wait modes.				
	00 All filtering disabled				
	01 Bus clock filter enabled for normal operation				
	10 LPO clock filter enabled for normal operation				
	11 Reserved				

14.2.4 Reset Pin Filter Width register (RCM_RPFW)

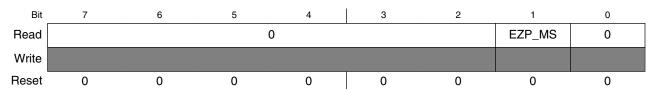
NOTE

The reset values of the bits in the RSTFLTSEL field are for Chip POR only. They are unaffected by other reset types.

Address: 4007_F000h base + 5h offset = 4007_F005h

RCM_RPFW field descriptions

Field		Description					
7–5	This fie	ld is reserved.					
Reserved	This rea	This read-only field is reserved and always has the value 0.					
4–0 RSTFLTSEL		Pin Filter Bus Clock Select					
	Selects	the reset pin bus clock filter width.					
	00000	Bus clock filter count is 1					
	00001	Bus clock filter count is 2					
	00010	Bus clock filter count is 3					
	00011	Bus clock filter count is 4					
	00100	Bus clock filter count is 5					
	00101	Bus clock filter count is 6					
	00110	Bus clock filter count is 7					
	00111	Bus clock filter count is 8					
	01000	Bus clock filter count is 9					
	01001	Bus clock filter count is 10					
	01010	Bus clock filter count is 11					
	01011	Bus clock filter count is 12					
	01100	Bus clock filter count is 13					
	01101	Bus clock filter count is 14					
	01110	Bus clock filter count is 15					
	01111	Bus clock filter count is 16					
	10000	Bus clock filter count is 17					
	10001	Bus clock filter count is 18					
	10010	Bus clock filter count is 19					
	10011	Bus clock filter count is 20					
	10100	Bus clock filter count is 21					
	10101	Bus clock filter count is 22					
	10110	Bus clock filter count is 23					
	10111	Bus clock filter count is 24					
	11000	Bus clock filter count is 25					

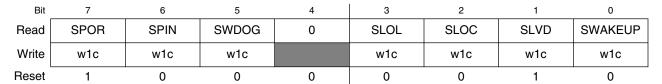

RCM_RPFW field descriptions (continued)

Field	Description			
	11001	Bus clock filter count is 26		
	11010	Bus clock filter count is 27		
	11011	Bus clock filter count is 28		
	11100	Bus clock filter count is 29		
	11101	Bus clock filter count is 30		
	11110	Bus clock filter count is 31		
	11111	Bus clock filter count is 32		

14.2.5 Mode Register (RCM_MR)

This register includes read-only status flags to indicate the state of the mode pins during the last Chip Reset.

Address: 4007_F000h base + 7h offset = 4007_F007h


RCM_MR field descriptions

Field	Description
7–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 EZP_MS	EZP_MS_B pin state Reflects the state of the EZP_MS pin during the last Chip Reset 0 Pin deasserted (logic 1) 1 Pin asserted (logic 0)
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

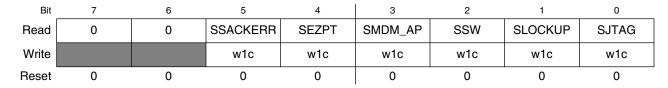
14.2.6 Sticky System Reset Status Register 0 (RCM_SSRS0)

This register includes status flags to indicate all reset sources since the last POR, LVD or VLLS Wakeup that have not been cleared by software. Software can clear the status flags by writing a logic one to a flag.

Address: 4007_F000h base + 8h offset = 4007_F008h

RCM_SSRS0 field descriptions

Field	Description
7 SPOR	Sticky Power-On Reset
or orr	Indicates a reset has been caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold.
	0 Reset not caused by POR
	1 Reset caused by POR
6 SPIN	Sticky External Reset Pin
Oi iiv	Indicates a reset has been caused by an active-low level on the external RESET pin.
	0 Reset not caused by external reset pin
	1 Reset caused by external reset pin
5 SWDOG	Sticky Watchdog
	Indicates a reset has been caused by the watchdog timer timing out. This reset source can be blocked by disabling the watchdog.
	Reset not caused by watchdog timeout
	1 Reset caused by watchdog timeout
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3	Sticky Loss-of-Lock Reset
SLOL	Indicates a reset has been caused by a loss of lock in the MCG PLL. See the MCG description for information on the loss-of-clock event.
	0 Reset not caused by a loss of lock in the PLL
	1 Reset caused by a loss of lock in the PLL
2 SLOC	Sticky Loss-of-Clock Reset


RCM_SSRS0 field descriptions (continued)

Field	Description			
	Indicates a reset has been caused by a loss of external clock. The MCG clock monitor must be enabled for a loss of clock to be detected. Refer to the detailed MCG description for information on enabling the clock monitor.			
	0 Reset not caused by a loss of external clock.			
	1 Reset caused by a loss of external clock.			
1 SLVD	Sticky Low-Voltage Detect Reset			
	If PMC_LVDSC1[LVDRE] is set and the supply drops below the LVD trip voltage, an LVD reset occurs. This field is also set by POR.			
	0 Reset not caused by LVD trip or POR			
	1 Reset caused by LVD trip or POR			
0 SWAKEUP	Sticky Low Leakage Wakeup Reset			
	Indicates a reset has been caused by an enabled LLWU modulewakeup source while the chip was in a low leakage mode. In LLS mode, the RESET pin is the only wakeup source that can cause this reset. Any enabled wakeup source in a VLLSx mode causes a reset.			
	0 Reset not caused by LLWU module wakeup source			
	1 Reset caused by LLWU module wakeup source			

14.2.7 Sticky System Reset Status Register 1 (RCM_SSRS1)

This register includes status flags to indicate all reset sources since the last POR, LVD or VLLS Wakeup that have not been cleared by software. Software can clear the status flags by writing a logic one to a flag.

Address: 4007_F000h base + 9h offset = 4007_F009h

RCM_SSRS1 field descriptions

Field	Description
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 SSACKERR	Sticky Stop Mode Acknowledge Error Reset

Reset memory map and register descriptions

RCM_SSRS1 field descriptions (continued)

Field	Description
	Indicates that after an attempt to enter Stop mode, a reset has been caused by a failure of one or more peripherals to acknowledge within approximately one second to enter stop mode.
	 Reset not caused by peripheral failure to acknowledge attempt to enter stop mode Reset caused by peripheral failure to acknowledge attempt to enter stop mode
4 SEZPT	Sticky EzPort Reset
	Indicates a reset has been caused by EzPort receiving the RESET command while the device is in EzPort mode.
	0 Reset not caused by EzPort receiving the RESET command while the device is in EzPort mode 1 Reset caused by EzPort receiving the RESET command while the device is in EzPort mode
3	Sticky MDM-AP System Reset Request
SMDM_AP	Indicates a reset has been caused by the host debugger system setting of the System Reset Request bit in the MDM-AP Control Register.
	 Reset not caused by host debugger system setting of the System Reset Request bit Reset caused by host debugger system setting of the System Reset Request bit
2 SSW	Sticky Software
33**	Indicates a reset has been caused by software setting of SYSRESETREQ bit in Application Interrupt and Reset Control Register in the ARM core.
	0 Reset not caused by software setting of SYSRESETREQ bit
	1 Reset caused by software setting of SYSRESETREQ bit
1 SLOCKUP	Sticky Core Lockup
	Indicates a reset has been caused by the ARM core indication of a LOCKUP event.
	0 Reset not caused by core LOCKUP event
	1 Reset caused by core LOCKUP event
0 SJTAG	Sticky JTAG Generated Reset
	Indicates a reset has been caused by JTAG selection of certain IR codes: EZPORT, EXTEST, HIGHZ, and CLAMP.
	0 Reset not caused by JTAG
	1 Reset caused by JTAG

Chapter 15 System Mode Controller (SMC)

15.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The System Mode Controller (SMC) is responsible for sequencing the system into and out of all low-power Stop and Run modes.

Specifically, it monitors events to trigger transitions between power modes while controlling the power, clocks, and memories of the system to achieve the power consumption and functionality of that mode.

This chapter describes all the available low-power modes, the sequence followed to enter/exit each mode, and the functionality available while in each of the modes.

The SMC is able to function during even the deepest low power modes.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the SMC.

15.2 Modes of operation

The ARM CPU has three primary modes of operation:

- Run
- Sleep
- Deep Sleep

The WFI or WFE instruction is used to invoke Sleep and Deep Sleep modes. Run, Wait, and Stop are the common terms used for the primary operating modes of Freescale microcontrollers.

Modes of operation

The following table shows the translation between the ARM CPU modes and the Freescale MCU power modes.

ARM CPU mode	MCU mode		
Sleep	Wait		
Deep Sleep	Stop		

Accordingly, the ARM CPU documentation refers to sleep and deep sleep, while the Freescale MCU documentation normally uses wait and stop.

In addition, Freescale MCUs also augment Stop, Wait, and Run modes in a number of ways. The power management controller (PMC) contains a run and a stop mode regulator. Run regulation is used in normal run, wait and stop modes. Stop mode regulation is used during all very low power and low leakage modes. During stop mode regulation, the bus frequencies are limited in the very low power modes.

The SMC provides the user with multiple power options. The Very Low Power Run (VLPR) mode can drastically reduce run time power when maximum bus frequency is not required to handle the application needs. From Normal Run mode, the Run Mode (RUNM) field can be modified to change the MCU into VLPR mode when limited frequency is sufficient for the application. From VLPR mode, a corresponding wait (VLPW) and stop (VLPS) mode can be entered.

Depending on the needs of the user application, a variety of stop modes are available that allow the state retention, partial power down or full power down of certain logic and/or memory. I/O states are held in all modes of operation. Several registers are used to configure the various modes of operation for the device.

The following table describes the power modes available for the device.

Table 15-1. Power modes

Mode	Description			
RUN	The MCU can be run at full speed and the internal supply is fully regulated, that is, in run regulation. This mode is also referred to as Normal Run mode.			
HSRUN	e MCU can be run at a faster frequency compared with RUN mode and the internal supply is fully gulated. See the Power Management chapter for details about the maximum allowable quencies.			
WAIT	The core clock is gated off. The system clock continues to operate. Bus clocks, if enabled, continue to operate. Run regulation is maintained.			
STOP	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid.			
VLPR	The core, system, bus, and flash clock maximum frequencies are restricted in this mode. See the Power Management chapter for details about the maximum allowable frequencies.			

Table 15-1. Power modes (continued)

Mode	Description
VLPW	The core clock is gated off. The system, bus, and flash clocks continue to operate, although their maximum frequency is restricted. See the Power Management chapter for details on the maximum allowable frequencies.
VLPS	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid.
LLS3	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by reducing the voltage to internal logic. All system RAM contents, internal logic and I/O states are retained.
LLS2	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by reducing voltage to internal logic and powering down the system RAM2 partition. The system RAM1 partition, internal logic and I/O states are retained. ¹
VLLS3	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic. All system RAM contents are retained and I/O states are held. Internal logic states are not retained.
VLLS2	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and the system RAM2 partition. The system RAM1 partition contents are retained in this mode. Internal logic states are not retained. ²
VLLS1	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and all system RAM. I/O states are held. Internal logic states are not retained.
VLLS0	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and all system RAM. I/O states are held. Internal logic states are not retained. The 1kHz LPO clock is disabled and the power on reset (POR) circuit can be optionally enabled using STOPCTRL[PORPO].

- 1. See the devices' chip configuration details for the size and location of the system RAM partitions.
- 2. See the devices' chip configuration details for the size and location of the system RAM partitions.

15.3 Memory map and register descriptions

Information about the registers related to the system mode controller can be found here.

Different SMC registers reset on different reset types. Each register's description provides details. For more information about the types of reset on this chip, refer to the Reset section details.

NOTE

The SMC registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

NOTE

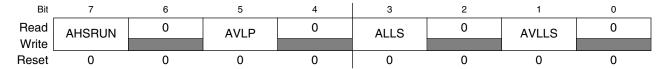
Before executing the WFI instruction, the last register written to must be read back. This ensures that all register writes associated with setting up the low power mode being entered have completed before the MCU enters the low power mode. Failure to do this may result in the low power mode not being entered correctly.

SMC memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_E000	Power Mode Protection register (SMC_PMPROT)	8	R/W	00h	15.3.1/358
4007_E001	Power Mode Control register (SMC_PMCTRL)	8	R/W	00h	15.3.2/359
4007_E002	Stop Control Register (SMC_STOPCTRL)	8	R/W	03h	15.3.3/361
4007_E003	Power Mode Status register (SMC_PMSTAT)	8	R	01h	15.3.4/362

15.3.1 Power Mode Protection register (SMC_PMPROT)

This register provides protection for entry into any low-power run or stop mode. The enabling of the low-power run or stop mode occurs by configuring the Power Mode Control register (PMCTRL).


The PMPROT register can be written only once after any system reset.

If the MCU is configured for a disallowed or reserved power mode, the MCU remains in its current power mode. For example, if the MCU is in normal RUN mode and AVLP is 0, an attempt to enter VLPR mode using PMCTRL[RUNM] is blocked and PMCTRL[RUNM] remains 00b, indicating the MCU is still in Normal Run mode.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Reset section details for more information.

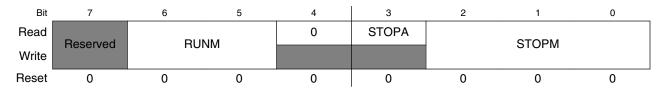
Address: 4007_E000h base + 0h offset = 4007_E000h

SMC_PMPROT field descriptions

Field	Description
7 AHSRUN	Allow High Speed Run mode Provided the appropriate control bits are set up in PMCTRL, this write-once field allows the MCU to enter High Speed Run mode (HSRUN). 0 HSRUN is not allowed 1 HSRUN is allowed
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 AVLP	Allow Very-Low-Power Modes Provided the appropriate control bits are set up in PMCTRL, this write-once field allows the MCU to enter any very-low-power mode (VLPR, VLPW, and VLPS). 0 VLPR, VLPW, and VLPS are not allowed. 1 VLPR, VLPW, and VLPS are allowed.
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 ALLS	Allow Low-Leakage Stop Mode Provided the appropriate control bits are set up in PMCTRL, this write-once field allows the MCU to enter any low-leakage stop mode (LLS). O Any LLSx mode is not allowed Any LLSx mode is allowed
2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 AVLLS	Allow Very-Low-Leakage Stop Mode Provided the appropriate control bits are set up in PMCTRL, this write once bit allows the MCU to enter any very-low-leakage stop mode (VLLSx). O Any VLLSx mode is not allowed Any VLLSx mode is allowed
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

15.3.2 Power Mode Control register (SMC_PMCTRL)

The PMCTRL register controls entry into low-power Run and Stop modes, provided that the selected power mode is allowed via an appropriate setting of the protection (PMPROT) register.


NOTE

This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types

Memory map and register descriptions

that do not trigger Chip POR not VLLS. See the Reset section details for more information.

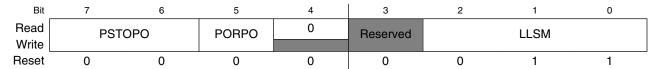
Address: 4007_E000h base + 1h offset = 4007_E001h

SMC_PMCTRL field descriptions

Field	Description
7 Reserved	This field is reserved. This bit is reserved for future expansion and should always be written zero.
6–5	Run Mode Control
RUNM	When written, causes entry into the selected run mode. Writes to this field are blocked if the protection level has not been enabled using the PMPROT register.
	NOTE: RUNM may be set to VLPR only when PMSTAT=RUN. After being written to VLPR, RUNM should not be written back to RUN until PMSTAT=VLPR.
	NOTE: RUNM may be set to HSRUN only when PMSTAT=RUN. After being programmed to HSRUN, RUNM should not be programmed back to RUN until PMSTAT=HSRUN. Also, stop mode entry should not be attempted while RUNM=HSRUN or PMSTAT=HSRUN.
	00 Normal Run mode (RUN)
	01 Reserved
	10 Very-Low-Power Run mode (VLPR)
	11 High Speed Run mode (HSRUN)
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3	Stop Aborted
STOPA	When set, this read-only status bit indicates an interrupt occured during the previous stop mode entry sequence, preventing the system from entering that mode. This field is cleared by reset or by hardware at the beginning of any stop mode entry sequence and is set if the sequence was aborted.
	0 The previous stop mode entry was successsful.
	1 The previous stop mode entry was aborted.
2-0 STOPM	Stop Mode Control
OTOT W	When written, controls entry into the selected stop mode when Sleep-Now or Sleep-On-Exit mode is entered with SLEEPDEEP=1. Writes to this field are blocked if the protection level has not been enabled using the PMPROT register. After any system reset, this field is cleared by hardware on any successful write to the PMPROT register.
	NOTE: When set to VLLSxor LLSx, the LLSM in the STOPCTRL register is used to further select the particular VLLSor LLS submode which will be entered.
	NOTE: When set to STOP, the PSTOPO bits in the STOPCTRL register can be used to select a Partial Stop mode if desired.
	000 Normal Stop (STOP)

SMC_PMCTRL field descriptions (continued)

Field	Description	
	001 Reserved	
	010 Very-Low-Power Stop (VLPS)	
	011 Low-Leakage Stop (LLSx)	
	100 Very-Low-Leakage Stop (VLLSx)	
	101 Reserved	
	110 Reseved	
	111 Reserved	


15.3.3 Stop Control Register (SMC_STOPCTRL)

The STOPCTRL register provides various control bits allowing the user to fine tune power consumption during the stop mode selected by the STOPM field.

NOTE

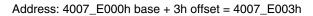
This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types that do not trigger Chip POR not VLLS. See the Reset section details for more information.

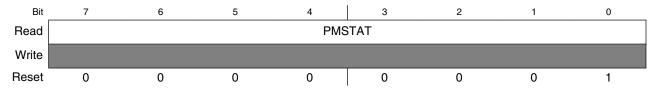
Address: 4007_E000h base + 2h offset = 4007_E002h

SMC_STOPCTRL field descriptions

Field	Description
7–6	Partial Stop Option
PSTOPO	These bits control whether a Partial Stop mode is entered when STOPM=STOP. When entering a Partial Stop mode from RUN mode, the PMC, MCG and flash remain fully powered, allowing the device to wakeup almost instantaneously at the expense of higher power consumption. In PSTOP2, only system clocks are gated allowing peripherals running on bus clock to remain fully functional. In PSTOP1, both system and bus clocks are gated.
	00 STOP - Normal Stop mode
	01 PSTOP1 - Partial Stop with both system and bus clocks disabled
	10 PSTOP2 - Partial Stop with system clock disabled and bus clock enabled
	11 Reserved
5 PORPO	POR Power Option
	This bit controls whether the POR detect circuit is enabled in VLLS0 mode.

SMC_STOPCTRL field descriptions (continued)


Field	Description
	0 POR detect circuit is enabled in VLLS0
	1 POR detect circuit is disabled in VLLS0
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	This field is reserved.
Reserved	This bit is reserved for future expansion and should always be written zero.
2–0	LLS or VLLS Mode Control
LLSM	This field controls which LLS or VLLS sub-mode to enter if STOPM = LLSx or VLLSx.
	000 VLLS0 if PMCTRL[STOPM]=VLLSx, reserved if PMCTRL[STOPM]=LLSx
	VLLS1 if PMCTRL[STOPM]=VLLSx, reserved if PMCTRL[STOPM]=LLSx
	010 VLLS2 if PMCTRL[STOPM]=VLLSx, LLS2 if PMCTRL[STOPM]=LLSx
	011 VLLS3 if PMCTRL[STOPM]=VLLSx, LLS3 if PMCTRL[STOPM]=LLSx
	100 Reserved
	101 Reserved
	110 Reserved
	111 Reserved


15.3.4 Power Mode Status register (SMC_PMSTAT)

PMSTAT is a read-only, one-hot register which indicates the current power mode of the system.

NOTE

This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types that do not trigger Chip POR not VLLS. See the Reset section details for more information.

SMC_PMSTAT field descriptions

Field	Description
7–0 PMSTAT	Power Mode Status
	NOTE: When debug is enabled, the PMSTAT will not update to STOP or VLPS

SMC_PMSTAT field descriptions (continued)

Field	Description			
	NOTE: Wh	en a PSTOP mode is enabled, the PMSTAT will not update to STOP or VLPS		
	0000_0001	Current power mode is RUN.		
	0000_0010	Current power mode is STOP.		
	0000_0100	Current power mode is VLPR.		
	0000_1000	Current power mode is VLPW.		
	0001_0000	Current power mode is VLPS.		
	0010_0000	Current power mode is LLS.		
	0100_0000	Current power mode is VLLS.		
	1000_0000	Current power mode is HSRUN		

15.4 Functional description

15.4.1 Power mode transitions

The following figure shows the power mode state transitions available on the chip. Any reset always brings the MCU back to the normal RUN state.

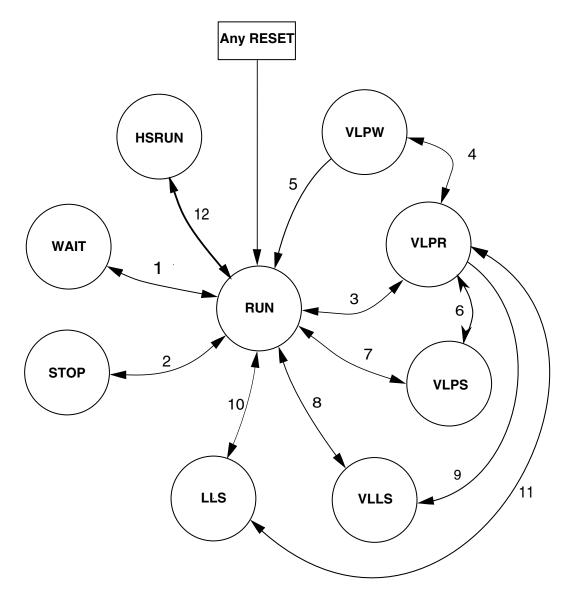


Figure 15-5. Power mode state diagram

The following table defines triggers for the various state transitions shown in the previous figure.

Table 15-7. Power mode transition triggers

Transition #	From	То	Trigger conditions
1	RUN	WAIT	Sleep-now or sleep-on-exit modes entered with SLEEPDEEP clear, controlled in System Control Register in ARM core. See note. ¹
	WAIT	RUN	Interrupt or Reset

Table 15-7. Power mode transition triggers (continued)

Transition #	From	То	Trigger conditions
2	RUN	STOP	PMCTRL[RUNM]=00, PMCTRL[STOPM]=000 ²
			Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.
			See note. ¹
	STOP	RUN	Interrupt or Reset
3	RUN	VLPR	The core, system, bus and flash clock frequencies and MCG clocking mode are restricted in this mode. See the Power Management chapter for the maximum allowable frequencies and MCG modes supported.
			Set PMPROT[AVLP]=1, PMCTRL[RUNM]=10.
	VLPR	RUN	Set PMCTRL[RUNM]=00 or
			Reset.
4	VLPR	VLPW	Sleep-now or sleep-on-exit modes entered with SLEEPDEEP clear, which is controlled in System Control Register in ARM core.
			See note. ¹
	VLPW	VLPR	Interrupt
5	VLPW	RUN	Reset
6	VLPR	VLPS	PMCTRL[STOPM]=000 ³ or 010,
			Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.
			See note. ¹
	VLPS	VLPR	Interrupt
			NOTE: If VLPS was entered directly from RUN (transition #7), hardware forces exit back to RUN and does not allow a transition to VLPR.
7	RUN	VLPS	PMPROT[AVLP]=1, PMCTRL[STOPM]=010,
			Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.
			See note. ¹
	VLPS	RUN	Interrupt and VLPS mode was entered directly from RUN or
			Reset
STOPCTRL[VLLSM]=x (VLLSx), 9 modes entered with SLEEPDEEP		PMPROT[AVLLS]=1, PMCTRL[STOPM]=100, STOPCTRL[VLLSM]=x (VLLSx), Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.	
	VLLSx	RUN	Wakeup from enabled LLWU input source or RESET pin
9	VLPR	VLLSx	PMPROT[AVLLS]=1, PMCTRL[STOPM]=100, STOPCTRL[VLLSM]=x (VLLSx), Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.

Table 15-7. Power mode transition triggers (continued)

Transition #	From	То	Trigger conditions	
10	RUN	LLS	PMPROT[ALLS]=1, PMCTRL[STOPM]=011, Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.	
	LLS	RUN	Wakeup from enabled LLWU input source and LLS mode was entered directly from RUN or	
			RESET pin.	
11	VLPR	LLS	PMPROT[ALLS]=1, PMCTRL[STOPM]=011, Sleep-now of sleep-on-exit modes entered with SLEEPDEEP set, which controlled in System Control Register in ARM core.	
	LLS	VLPR	Wakeup from enabled LLWU input source and LLS mode was entered directly from VLPR	
			NOTE: If LLS was entered directly from RUN, hardware will not allow this transition and will force exit back to RUN	
12	RUN	HSRUN	Set PMPROT[AHSRUN]=1, PMCTRL[RUNM]=11.	
	HSRUN	RUN	Set PMCTRL[RUNM]=00 or	
			Reset	

- 1. If debug is enabled, the core clock remains to support debug.
- 2. If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=01 or 10, then only a Partial Stop mode is entered instead of STOP
- 3. If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=00, then VLPS mode is entered instead of STOP. If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=01 or 10, then only a Partial Stop mode is entered instead of VLPS

15.4.2 Power mode entry/exit sequencing

When entering or exiting low-power modes, the system must conform to an orderly sequence to manage transitions safely.

The SMC manages the system's entry into and exit from all power modes. This diagram illustrates the connections of the SMC with other system components in the chip that are necessary to sequence the system through all power modes.

Figure 15-6. Low-power system components and connections

15.4.2.1 Stop mode entry sequence

Entry into a low-power stop mode (Stop, VLPS, LLS, VLLSx) is initiated by CPU execution of the WFI instruction. After the instruction is executed, the following sequence occurs:

- 1. The CPU clock is gated off immediately.
- 2. Requests are made to all non-CPU bus masters to enter Stop mode.

- 3. After all masters have acknowledged they are ready to enter Stop mode, requests are made to all bus slaves to enter Stop mode.
- 4. After all slaves have acknowledged they are ready to enter Stop mode, all system and bus clocks are gated off.
- 5. Clock generators are disabled in the MCG.
- 6. The on-chip regulator in the PMC and internal power switches are configured to meet the power consumption goals for the targeted low-power mode.

15.4.2.2 Stop mode exit sequence

Exit from a low-power stop mode is initiated either by a reset or an interrupt event. The following sequence then executes to restore the system to a run mode (RUN or VLPR):

- 1. The on-chip regulator in the PMC and internal power switches are restored.
- 2. Clock generators are enabled in the MCG.
- 3. System and bus clocks are enabled to all masters and slaves.
- 4. The CPU clock is enabled and the CPU begins servicing the reset or interrupt that initiated the exit from the low-power stop mode.

15.4.2.3 Aborted stop mode entry

If an interrupt occurs during a stop entry sequence, the SMC can abort the transition early and return to RUN mode without completely entering the stop mode. An aborted entry is possible only if the interrupt occurs before the PMC begins the transition to stop mode regulation. After this point, the interrupt is ignored until the PMC has completed its transition to stop mode regulation. When an aborted stop mode entry sequence occurs, SMC_PMCTRL[STOPA] is set to 1.

15.4.2.4 Transition to wait modes

For wait modes (WAIT and VLPW), the CPU clock is gated off while all other clocking continues, as in RUN and VLPR mode operation. Some modules that support stop-in-wait functionality have their clocks disabled in these configurations.

15.4.2.5 Transition from stop modes to Debug mode

The debugger module supports a transition from STOP, WAIT, VLPS, and VLPW back to a Halted state when the debugger has been enabled. As part of this transition, system clocking is re-established and is equivalent to the normal RUN and VLPR mode clocking configuration.

15.4.3 Run modes

The run modes supported by this device can be found here.

- Run (RUN)
- Very Low-Power Run (VLPR)
- High Speed Run (HSRUN)

15.4.3.1 RUN mode

This is the normal operating mode for the device.

This mode is selected after any reset. When the ARM processor exits reset, it sets up the stack, program counter (PC), and link register (LR):

- The processor reads the start SP (SP_main) from vector-table offset 0x000
- The processor reads the start PC from vector-table offset 0x004
- LR is set to 0xFFFF_FFFF.

To reduce power in this mode, disable the clocks to unused modules using their corresponding clock gating control bits in the SIM's registers.

15.4.3.2 Very-Low Power Run (VLPR) mode

In VLPR mode, the on-chip voltage regulator is put into a stop mode regulation state. In this state, the regulator is designed to supply enough current to the MCU over a reduced frequency. To further reduce power in this mode, disable the clocks to unused modules using their corresponding clock gating control bits in the SIM's registers.

Before entering this mode, the following conditions must be met:

- The MCG must be configured in a mode which is supported during VLPR. See the Power Management details for information about these MCG modes.
- All clock monitors in the MCG must be disabled.

- The maximum frequencies of the system, bus, flash, and core are restricted. See the Power Management details about which frequencies are supported.
- Mode protection must be set to allow VLP modes, that is, PMPROT[AVLP] is 1.
- PMCTRL[RUNM] is set to 10b to enter VLPR.
- Flash programming/erasing is not allowed.

NOTE

Do not increase the clock frequency while in VLPR mode, because the regulator is slow in responding and cannot manage fast load transitions. In addition, do not modify the clock source in the MCG module or any clock divider registers. Module clock enables in the SIM can be set, but not cleared.

To reenter Normal Run mode, clear PMCTRL[RUNM]. PMSTAT is a read-only status register that can be used to determine when the system has completed an exit to RUN mode. When PMSTAT=RUN, the system is in run regulation and the MCU can run at full speed in any clock mode. If a higher execution frequency is desired, poll PMSTAT until it is set to RUN when returning from VLPR mode.

Any reset always causes an exit from VLPR and returns the device to RUN mode after the MCU exits its reset flow.

15.4.3.3 High Speed Run (HSRUN) mode

In HSRUN mode, the on-chip voltage regulator remains in a run regulation state, but with a slightly elevated voltage output. In this state, the MCU is able to operate at a faster frequency compared to normal RUN mode. See Power Management chapter for maximum allowable frequencies.

While in this mode, the following restrictions must be adhered to:

- The maximum allowable change in frequency of the system, bus, flash or core clocks is restricted to x2.
- Before exiting HSRUN mode, clock frequencies should be reduced back down to those acceptable in RUN mode.
- Stop mode entry is not supported from HSRUN.
- Modifications to clock gating control bits are prohibited.
- Flash programming/erasing is not allowed.

Functional description

To enter HSRUN mode, set RUNM=HSRUN. Before increasing clock frequencies, the PMSTAT register should be polled to determine when the system has completed entry into HSRUN mode. To reenter normal RUN mode, clear RUNM. Any reset will also clear RUNM and cause the system to exit to normal RUN mode after the MCU exits its reset flow.

15.4.4 Wait modes

This device contains two different wait modes which are listed here.

- Wait
- Very-Low Power Wait (VLPW)

15.4.4.1 WAIT mode

WAIT mode is entered when the ARM core enters the Sleep-Now or Sleep-On-Exit modes while SLEEDEEP is cleared. The ARM CPU enters a low-power state in which it is not clocked, but peripherals continue to be clocked provided they are enabled. Clock gating to the peripheral is enabled via the SIM module.

When an interrupt request occurs, the CPU exits WAIT mode and resumes processing in RUN mode, beginning with the stacking operations leading to the interrupt service routine.

A system reset will cause an exit from WAIT mode, returning the device to normal RUN mode.

15.4.4.2 Very-Low-Power Wait (VLPW) mode

VLPW is entered by the entering the Sleep-Now or Sleep-On-Exit mode while SLEEPDEEP is cleared and the MCU is in VLPR mode.

In VLPW, the on-chip voltage regulator remains in its stop regulation state. In this state, the regulator is designed to supply enough current to the MCU over a reduced frequency. To further reduce power in this mode, disable the clocks to unused modules by clearing the peripherals' corresponding clock gating control bits in the SIM.

VLPR mode restrictions also apply to VLPW.

When an interrupt from VLPW occurs, the device returns to VLPR mode to execute the interrupt service routine.

A system reset will cause an exit from VLPW mode, returning the device to normal RUN mode.

15.4.5 Stop modes

This device contains a variety of stop modes to meet your application needs.

The stop modes range from:

• a stopped CPU, with all I/O, logic, and memory states retained, and certain asynchronous mode peripherals operating

to:

• a powered down CPU, with only I/O and a small register file retained, very few asynchronous mode peripherals operating, while the remainder of the MCU is powered down.

The choice of stop mode depends upon the user's application, and how power usage and state retention versus functional needs and recovery time may be traded off.

NOTE

All clock monitors must be disabled before entering these low-power modes: Stop, VLPS, VLPR, VLPW, LLS, and VLLSx.

The various stop modes are selected by setting the appropriate fields in PMPROT and PMCTRL. The selected stop mode is entered during the sleep-now or sleep-on-exit entry with the SLEEPDEEP bit set in the System Control Register in the ARM core.

The available stop modes are:

- Normal Stop (STOP)
- Very-Low Power Stop (VLPS)
- Low-Leakage Stop (LLS)
- Very-Low-Leakage Stop (VLLSx)

15.4.5.1 STOP mode

STOP mode is entered via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core.

The MCG module can be configured to leave the reference clocks running.

Functional description

A module capable of providing an asynchronous interrupt to the device takes the device out of STOP mode and returns the device to normal RUN mode. Refer to the device's Power Management chapter for peripheral, I/O, and memory operation in STOP mode. When an interrupt request occurs, the CPU exits STOP mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine.

A system reset will cause an exit from STOP mode, returning the device to normal RUN mode via an MCU reset.

15.4.5.2 Very-Low-Power Stop (VLPS) mode

The two ways in which VLPS mode can be entered are listed here.

- Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core while the MCU is in VLPR mode and PMCTRL[STOPM] = 010 or 000.
- Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core while the MCU is in normal RUN mode and PMCTRL[STOPM] = 010. When VLPS is entered directly from RUN mode, exit to VLPR is disabled by hardware and the system will always exit back to RUN.

In VLPS, the on-chip voltage regulator remains in its stop regulation state as in VLPR.

A module capable of providing an asynchronous interrupt to the device takes the device out of VLPS and returns the device to VLPR mode.

A system reset will also cause a VLPS exit, returning the device to normal RUN mode.

15.4.5.3 Low-Leakage Stop (LLSx) modes

This device contains two Low-Leakage Stop modes: LLS3 and LLS2. LLS or LLSx is often used in this document to refer to both modes. All LLS modes can be entered from normal RUN or VLPR modes.

The MCU enters LLS mode if:

- In Sleep-Now or Sleep-On-Exit mode, SLEEPDEEP is set in the System Control Register in the ARM core, and
- The device is configured as shown in Table 15-7.

In LLS, the on-chip voltage regulator is in stop regulation. Most of the peripherals are put in a state-retention mode that does not allow them to operate while in LLS.

Before entering LLS mode, the user should configure the Low-Leakage Wake-up (LLWU) module to enable the desired wake-up sources. The available wake-up sources in LLS are detailed in the chip configuration details for this device.

After wakeup from LLS, the device returns to the run mode from which LLS was entered (either normal RUN or VLPR) with a pending LLWU module interrupt. In the LLWU interrupt service routine (ISR), the user can poll the LLWU module wake-up flags to determine the source of the wakeup.

NOTE

The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit Stop mode on an LLS recovery.

An asserted RESET pin will cause an exit from LLS mode, returning the device to normal RUN mode. When LLS is exiting via the RESET pin, RCM_SRS0[PIN] and RCM_SRS0[WAKEUP] are set.

15.4.5.4 Very-Low-Leakage Stop (VLLSx) modes

This device contains these very low leakage modes:

- VLLS3
- VLLS2
- VLLS1
- VLLS0

VLLSx is often used in this document to refer to all of these modes.

All VLLSx modes can be entered from normal RUN or VLPR modes.

The MCU enters the configured VLLS mode if:

- In Sleep-Now or Sleep-On-Exit mode, the SLEEPDEEP bit is set in the System Control Register in the ARM core, and
- The device is configured as shown in Table 15-7.

In VLLS, the on-chip voltage regulator is in its stop-regulation state while most digital logic is powered off.

Before entering VLLS mode, the user should configure the Low-Leakage Wake-up (LLWU) module to enable the desired wakeup sources. The available wake-up sources in VLLS are detailed in the chip configuration details for this device.

Functional description

After wakeup from VLLS, the device returns to normal RUN mode with a pending LLWU interrupt. In the LLWU interrupt service routine (ISR), the user can poll the LLWU module wake-up flags to determine the source of the wake-up.

When entering VLLS, each I/O pin is latched as configured before executing VLLS. Because all digital logic in the MCU is powered off, all port and peripheral data is lost during VLLS. This information must be restored before PMC_REGSC[ACKISO] is set.

An asserted RESET pin will cause an exit from any VLLS mode, returning the device to normal RUN mode. When exiting VLLS via the RESET pin, RCM_SRS0[PIN] and RCM_SRS0[WAKEUP] are set.

15.4.6 Debug in low power modes

When the MCU is secure, the device disables/limits debugger operation. When the MCU is unsecure, the ARM debugger can assert two power-up request signals:

- System power up, via SYSPWR in the Debug Port Control/Stat register
- Debug power up, via CDBGPWRUPREQ in the Debug Port Control/Stat register

When asserted while in RUN, WAIT, VLPR, or VLPW, the mode controller drives a corresponding acknowledge for each signal, that is, both CDBGPWRUPACK and CSYSPWRUPACK. When both requests are asserted, the mode controller handles attempts to enter STOP and VLPS by entering an emulated stop state. In this emulated stop state:

- the regulator is in run regulation,
- the MCG-generated clock source is enabled,
- all system clocks, except the core clock, are disabled,
- the debug module has access to core registers, and
- access to the on-chip peripherals is blocked.

No debug is available while the MCU is in LLS or VLLS modes. LLS is a state-retention mode and all debug operation can continue after waking from LLS, even in cases where system wakeup is due to a system reset event.

Entering into a VLLS mode causes all of the debug controls and settings to be powered off. To give time to the debugger to sync with the MCU, the MDM AP Control Register includes a Very-Low-Leakage Debug Request (VLLDBGREQ) bit that is set to configure the Reset Controller logic to hold the system in reset after the next recovery from a VLLS mode. This bit allows the debugger time to reinitialize the debug module before the debug session continues.

The MDM AP Control Register also includes a Very Low Leakage Debug Acknowledge (VLLDBGACK) bit that is set to release the ARM core being held in reset following a VLLS recovery. The debugger reinitializes all debug IP, and then asserts the VLLDBGACK control bit to allow the RCM to release the ARM core from reset and allow CPU operation to begin.

The VLLDBGACK bit is cleared by the debugger (or can be left set as is) or clears automatically due to the reset generated as part of the next VLLS recovery.

Functional description

Chapter 16 Power Management Controller (PMC)

16.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The power management controller (PMC) contains the internal voltage regulator, power on reset (POR), and low voltage detect system.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the PMC.

16.2 Features

A list of included PMC features can be found here.

- Internal voltage regulator
- Active POR providing brown-out detect
- Low-voltage detect supporting two low-voltage trip points with four warning levels per trip point

16.3 Low-voltage detect (LVD) system

This device includes a system to guard against low-voltage conditions. This protects memory contents and controls MCU system states during supply voltage variations.

The system is comprised of a power-on reset (POR) circuit and a LVD circuit with a user-selectable trip voltage: high (V_{LVDH}) or low (V_{LVDL}). The trip voltage is selected by LVDSC1[LVDV]. The LVD is disabled upon entering VLPx, LLS, and VLLSx modes.

Low-voltage detect (LVD) system

Two flags are available to indicate the status of the low-voltage detect system:

- The Low Voltage Detect Flag in the Low Voltage Status and Control 1 Register (LVDSC1[LVDF]) operates in a level sensitive manner. LVDSC1[LVDF] is set when the supply voltage falls below the selected trip point (VLVD). LVDSC1[LVDF] is cleared by writing 1 to LVDSC1[LVDACK], but only if the internal supply has returned above the trip point; otherwise, LVDSC1[LVDF] remains set.
- The Low Voltage Warning Flag (LVWF) in the Low Voltage Status and Control 2 Register (LVDSC2[LVWF]) operates in a level sensitive manner. LVDSC2[LVWF] is set when the supply voltage falls below the selected monitor trip point (VLVW). LVDSC2[LVWF] is cleared by writing one to LVDSC2[LVWACK], but only if the internal supply has returned above the trip point; otherwise, LVDSC2[LVWF] remains set.

16.3.1 LVD reset operation

By setting LVDSC1[LVDRE], the LVD generates a reset upon detection of a low-voltage condition. The low-voltage detection threshold is determined by LVDSC1[LVDV]. After an LVD reset occurs, the LVD system holds the MCU in reset until the supply voltage rises above this threshold. The LVD field in the SRS register of the RCM module (RCM_SRS0[LVD]) is set following an LVD or power-on reset.

16.3.2 LVD interrupt operation

By configuring the LVD circuit for interrupt operation (LVDSC1[LVDIE] set and LVDSC1[LVDRE] clear), LVDSC1[LVDF] is set and an LVD interrupt request occurs upon detection of a low voltage condition. LVDSC1[LVDF] is cleared by writing 1 to LVDSC1[LVDACK].

16.3.3 Low-voltage warning (LVW) interrupt operation

The LVD system contains a Low-Voltage Warning Flag (LVWF) in the Low Voltage Detect Status and Control 2 Register to indicate that the supply voltage is approaching, but is above, the LVD voltage. The LVW also has an interrupt, which is enabled by setting LVDSC2[LVWIE]. If enabled, an LVW interrupt request occurs when LVDSC2[LVWF] is set. LVDSC2[LVWF] is cleared by writing 1 to LVDSC2[LVWACK].

LVDSC2[LVWV] selects one of the four trip voltages:

• Highest: V_{LVW4}

• Two mid-levels: V_{LVW3} and V_{LVW2}

• Lowest: V_{LVW1}

16.4 I/O retention

When in LLS mode, the I/O pins are held in their input or output state.

Upon wakeup, the PMC is re-enabled, goes through a power up sequence to full regulation, and releases the logic from state retention mode. The I/O are released immediately after a wake-up or reset event. In the case of LLS exit via a RESET pin, the I/O default to their reset state.

When in VLLS modes, the I/O states are held on a wake-up event (with the exception of wake-up by reset event) until the wake-up has been acknowledged via a write to REGSC[ACKISO]. In the case of VLLS exit via a RESET pin, the I/O are released and default to their reset state. In this case, no write to REGSC[ACKISO] is needed.

16.5 Memory map and register descriptions

Details about the PMC registers can be found here.

NOTE

Different portions of PMC registers are reset only by particular reset types. Each register's description provides details. For more information about the types of reset on this chip, refer to the Reset section details.

The PMC registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

PMC memory map

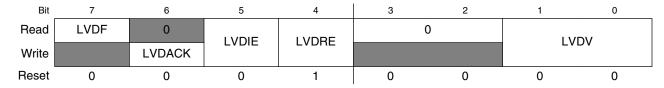
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_D000	Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)	8	R/W	10h	16.5.1/380

PMC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_D001	Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)	8	R/W	00h	16.5.2/381
4007_D002	Regulator Status And Control register (PMC_REGSC)	8	R/W	04h	16.5.3/382

16.5.1 Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)

This register contains status and control bits to support the low voltage detect function. This register should be written during the reset initialization program to set the desired controls even if the desired settings are the same as the reset settings.


While the device is in the very low power or low leakage modes, the LVD system is disabled regardless of LVDSC1 settings. To protect systems that must have LVD always on, configure the Power Mode Protection (PMPROT) register of the SMC module (SMC_PMPROT) to disallow any very low power or low leakage modes from being enabled.

See the device's data sheet for the exact LVD trip voltages.

NOTE

The LVDV bits are reset solely on a POR Only event. The register's other bits are reset on Chip Reset Not VLLS. For more information about these reset types, refer to the Reset section details.

Address: 4007_D000h base + 0h offset = 4007_D000h

PMC LVDSC1 field descriptions

Field	Description
7 LVDF	Low-Voltage Detect Flag This read-only status field indicates a low-voltage detect event.
	Low-voltage event not detected Low-voltage event detected

PMC_LVDSC1 field descriptions (continued)

Field	Description
6 LVDACK	Low-Voltage Detect Acknowledge
	This write-only field is used to acknowledge low voltage detection errors. Write 1 to clear LVDF. Reads always return 0.
5 LVDIE	Low-Voltage Detect Interrupt Enable
	Enables hardware interrupt requests for LVDF.
	0 Hardware interrupt disabled (use polling)
	1 Request a hardware interrupt when LVDF = 1
4 LVDRE	Low-Voltage Detect Reset Enable
	This write-once bit enables LVDF events to generate a hardware reset. Additional writes are ignored.
	0 LVDF does not generate hardware resets
	1 Force an MCU reset when LVDF = 1
3–2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1–0 LVDV	Low-Voltage Detect Voltage Select
	Selects the LVD trip point voltage (V _{LVD}).
	00 Low trip point selected (V _{LVD} = V _{LVDL})
	01 High trip point selected (V _{LVD} = V _{LVDH})
	10 Reserved
	11 Reserved

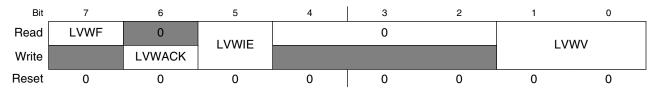
16.5.2 Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)

This register contains status and control bits to support the low voltage warning function.

While the device is in the very low power or low leakage modes, the LVD system is disabled regardless of LVDSC2 settings.

See the device's data sheet for the exact LVD trip voltages.

NOTE


The LVW trip voltages depend on LVWV and LVDV.

NOTE

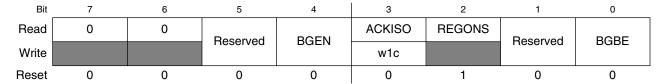
LVWV is reset solely on a POR Only event. The other fields of the register are reset on Chip Reset Not VLLS. For more information about these reset types, refer to the Reset section details.

Memory map and register descriptions

Address: 4007_D000h base + 1h offset = 4007_D001h

PMC_LVDSC2 field descriptions

Field	Description						
7 LVWF	Low-Voltage Warning Flag This read only status field indicates a low voltage warning event LVWE is not when V transitions						
	This read-only status field indicates a low-voltage warning event. LVWF is set when V_{Supply} transitions below the trip point, or after reset and V_{Supply} is already below V_{LVW} . LVWF may be 1 after power-on retherefore, to use LVW interrupt function, before enabling LVWIE, LVWF must be cleared by writing LVWACK first.						
	0 Low-voltage warning event not detected						
	1 Low-voltage warning event detected						
6 LVWACK	Low-Voltage Warning Acknowledge						
	This write-only field is used to acknowledge low voltage warning errors. Write 1 to clear LVWF. Reads always return 0.						
5 LVWIE	Low-Voltage Warning Interrupt Enable						
	Enables hardware interrupt requests for LVWF.						
	0 Hardware interrupt disabled (use polling)						
	1 Request a hardware interrupt when LVWF = 1						
4–2	This field is reserved.						
Reserved	This read-only field is reserved and always has the value 0.						
1–0 LVWV	Low-Voltage Warning Voltage Select						
	Selects the LVW trip point voltage (V _{LVW}). The actual voltage for the warning depends on LVDSC1[LVDV].						
	00 Low trip point selected (V _{LVW} = V _{LVW1})						
	01 Mid 1 trip point selected (V _{LVW} = V _{LVW2})						
	10 Mid 2 trip point selected (V _{LVW} = V _{LVW3})						
	11 High trip point selected (V _{LVW} = V _{LVW4})						


16.5.3 Regulator Status And Control register (PMC_REGSC)

The PMC contains an internal voltage regulator. The voltage regulator design uses a bandgap reference that is also available through a buffer as input to certain internal peripherals, such as the CMP and ADC. The internal regulator provides a status bit (REGONS) indicating the regulator is in run regulation.

NOTE

This register is reset on Chip Reset Not VLLS and by reset types that trigger Chip Reset not VLLS. See the Reset section details for more information.

Address: 4007_D000h base + 2h offset = 4007_D002h

PMC_REGSC field descriptions

Field	Description					
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
5 Reserved	This field is reserved.					
4 BGEN	Bandgap Enable In VLPx Operation BGEN controls whether the bandgap is enabled in lower power modes of operation (VLPx, LLS, and VLLSx). When on-chip peripherals require the bandgap voltage reference in low power modes of operation, set BGEN to continue to enable the bandgap operation.					
	NOTE: When the bandgap voltage reference is not needed in low power modes, clear BGEN to avoid excess power consumption. 0 Bandgap voltage reference is disabled in VLPx , LLS , and VLLSx modes.					
	Bandgap voltage reference is enabled in VLPx , LLS , and VLLSx modes.					
3 ACKISO	Acknowledge Isolation Reading this field indicates whether certain peripherals and the I/O pads are in a latched state as a result of having been in a VLLS mode. Writing 1 to this field when it is set releases the I/O pads and certain peripherals to their normal run mode state.					
	NOTE: After recovering from a VLLS mode, user should restore chip configuration before clearing ACKISO. In particular, pin configuration for enabled LLWU wakeup pins should be restored to avoid any LLWU flag from being falsely set when ACKISO is cleared. O Peripherals and I/O pads are in normal run state.					
	Certain peripherals and I/O pads are in an isolated and latched state.					
2 REGONS	Regulator In Run Regulation Status					
	This read-only field provides the current status of the internal voltage regulator.					
	0 Regulator is in stop regulation or in transition to/from it					
	1 Regulator is in run regulation					
1 Reserved	This field is reserved. NOTE: This reserved bit must remain cleared (set to 0).					
	The rest of the matter and course (course of).					

Memory map and register descriptions

PMC_REGSC field descriptions (continued)

Field	Description					
0 BGBE	Bandgap Buffer Enable					
BGBE	Enables the bandgap buffer.					
	0 Bandgap buffer not enabled					
	1 Bandgap buffer enabled					

Chapter 17 Low-Leakage Wakeup Unit (LLWU)

17.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The LLWU module allows the user to select up to 16 external pins and up to 8 internal modules as interrupt wake-up sources from low-leakage power modes.

The input sources are described in the device's chip configuration details. Each of the available wake-up sources can be individually enabled.

The RESET pin is an additional source for triggering an exit from low-leakage power modes, and causes the MCU to exit both LLS and VLLS through a reset flow.

The LLWU module also includes two optional digital pin filters for the external wakeup pins.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the LLWU.

17.1.1 Features

The LLWU module features include:

- Support for up to 16 external input pins and up to 8 internal modules with individual enable bits for MCU interrupt from low leakage modes
- Input sources may be external pins or from internal peripherals capable of running in LLS or VLLS. See the chip configuration information for wakeup input sources for this device.
- External pin wake-up inputs, each of which is programmable as falling-edge, rising-edge, or any change

Introduction

- Wake-up inputs that are activated after MCU enters a low-leakage power mode
- Optional digital filters provided to qualify an external pin detect. Note that when the LPO clock is disabled, the filters are disabled and bypassed.

17.1.2 Modes of operation

The LLWU module becomes functional on entry into a low-leakage power mode. After recovery from LLS, the LLWU is immediately disabled. After recovery from VLLS, the LLWU continues to detect wake-up events until the user has acknowledged the wake-up via a write to PMC_REGSC[ACKISO].

17.1.2.1 LLS mode

Wake-up events due to external pin inputs (LLWU_Px) and internal module interrupt inputs (LLWU_MxIF) result in an interrupt flow when exiting LLS.

NOTE

The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit Stop mode on an LLS recovery.

17.1.2.2 VLLS modes

All wakeup and reset events result in VLLS exit via a reset flow.

17.1.2.3 Non-low leakage modes

The LLWU is not active in all non-low leakage modes where detection and control logic are in a static state. The LLWU registers are accessible in non-low leakage modes and are available for configuring and reading status when bus transactions are possible.

When the wake-up pin filters are enabled, filter operation begins immediately. If a low leakage mode is entered within five LPO clock cycles of an active edge, the edge event will be detected by the LLWU.

17.1.2.4 Debug mode

When the chip is in Debug mode and then enters LLS or a VLLSx mode, no debug logic works in the fully-functional low-leakage mode. Upon an exit from the LLS or VLLSx mode, the LLWU becomes inactive.

17.1.3 Block diagram

The following figure is the block diagram for the LLWU module.

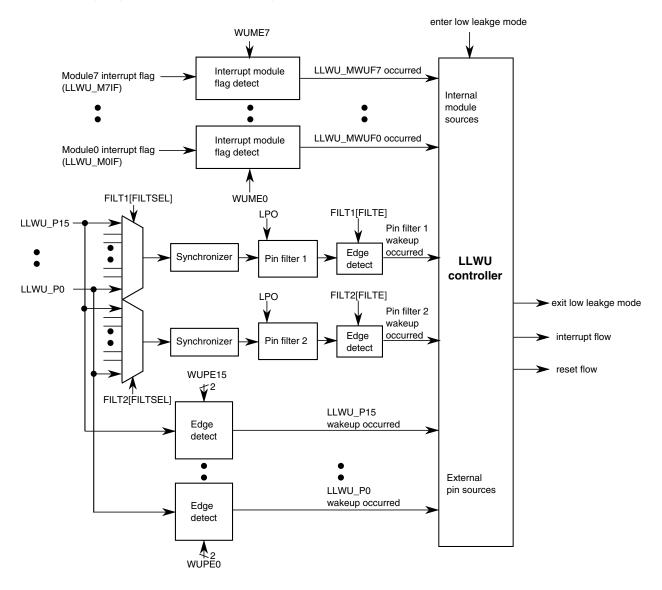


Figure 17-1. LLWU block diagram

17.2 LLWU signal descriptions

The signal properties of LLWU are shown in the table found here.

The external wakeup input pins can be enabled to detect either rising-edge, falling-edge, or on any change.

Table 17-1. LLWU signal descriptions

Signal	Description	I/O
LLWU_Pn	Wakeup inputs (n = 0-15)	I

17.3 Memory map/register definition

The LLWU includes the following registers:

- Wake-up source enable registers
 - Enable external pin input sources
 - Enable internal peripheral interrupt sources
- Wake-up flag registers
 - Indication of wakeup source that caused exit from a low-leakage power mode includes external pin or internal module interrupt
- Wake-up pin filter enable registers

NOTE

The LLWU registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

All LLWU registers are reset by Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. Each register's displayed reset value represents this subset of reset types. LLWU registers are unaffected by reset types that do not trigger Chip Reset not VLLS. For more information about the types of reset on this chip, refer to the Introduction details.

LLWU memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_C000	LLWU Pin Enable 1 register (LLWU_PE1)	8	R/W	00h	17.3.1/389
4007_C001	LLWU Pin Enable 2 register (LLWU_PE2)	8	R/W	00h	17.3.2/390
4007_C002	LLWU Pin Enable 3 register (LLWU_PE3)	8	R/W	00h	17.3.3/391
4007_C003	LLWU Pin Enable 4 register (LLWU_PE4)	ster (LLWU_PE4) 8 R/W 00h			
4007_C004	LLWU Module Enable register (LLWU_ME)	/U Module Enable register (LLWU_ME) 8 R/W 00h			
4007_C005	LLWU Flag 1 register (LLWU_F1)	8	R/W	00h	17.3.6/395
4007_C006	LLWU Flag 2 register (LLWU_F2)	8	R/W	00h	17.3.7/397
4007_C007	LLWU Flag 3 register (LLWU_F3) 8 R 00h		00h	17.3.8/398	
4007_C008	LLWU Pin Filter 1 register (LLWU_FILT1)	8	R/W	00h	17.3.9/400
4007_C009	LLWU Pin Filter 2 register (LLWU_FILT2)	8	R/W	00h	17.3.10/401


17.3.1 LLWU Pin Enable 1 register (LLWU_PE1)

LLWU_PE1 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P3-LLWU_P0.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 0h offset = 4007_C000h

LLWU_PE1 field descriptions

Field	Description					
7–6 WUPE3	Wakeup Pin Enable For LLWU_P3					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					
5–4 WUPE2	Wakeup Pin Enable For LLWU_P2					
	Enables and configures the edge detection for the wakeup pin.					

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

LLWU_PE1 field descriptions (continued)

Field	Description					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					
3–2 WUPE1	Wakeup Pin Enable For LLWU_P1					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					
1–0 WUPE0	Wakeup Pin Enable For LLWU_P0					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					

17.3.2 LLWU Pin Enable 2 register (LLWU_PE2)

LLWU_PE2 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P7-LLWU_P4.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 1h offset = 4007_C001h

LLWU_PE2 field descriptions

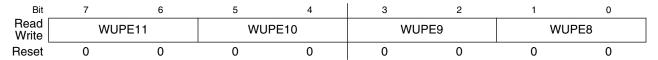
Field	Description					
7–6 WUPE7	akeup Pin Enable For LLWU_P7					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

LLWU_PE2 field descriptions (continued)

Field	Description						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
5–4 WUPE6	Wakeup Pin Enable For LLWU_P6						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
3–2 WUPE5	Wakeup Pin Enable For LLWU_P5						
7701 20	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
1–0 WUPE4	Wakeup Pin Enable For LLWU_P4						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						


17.3.3 LLWU Pin Enable 3 register (LLWU_PE3)

LLWU_PE3 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P11-LLWU_P8.

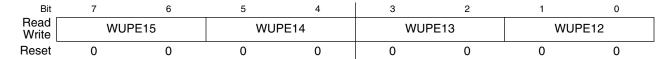
NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 2h offset = 4007_C002h

LLWU_PE3 field descriptions

Field	Description						
7–6 WUPE11	Wakeup Pin Enable For LLWU_P11						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
5–4 WUPE10	Wakeup Pin Enable For LLWU_P10						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
3–2 WUPE9	Wakeup Pin Enable For LLWU_P9						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
1–0 WUPE8	Wakeup Pin Enable For LLWU_P8						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						


17.3.4 LLWU Pin Enable 4 register (LLWU_PE4)

LLWU_PE4 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P15–LLWU_P12.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 3h offset = 4007_C003h

LLWU_PE4 field descriptions

Field	Description					
7–6 WUPE15	Wakeup Pin Enable For LLWU_P15					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					
5–4 WUPE14	Wakeup Pin Enable For LLWU_P14					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					
3–2 WUPE13	Wakeup Pin Enable For LLWU_P13					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					
1–0 WUPE12	Wakeup Pin Enable For LLWU_P12					
	Enables and configures the edge detection for the wakeup pin.					
	00 External input pin disabled as wakeup input					
	01 External input pin enabled with rising edge detection					
	10 External input pin enabled with falling edge detection					
	11 External input pin enabled with any change detection					

17.3.5 LLWU Module Enable register (LLWU_ME)

LLWU_ME contains the bits to enable the internal module flag as a wakeup input source for inputs MWUF7–MWUF0.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Memory map/register definition

types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 4h offset = 4007_C004h

Bit	7	6	5	4	3	2	1	0
Read Write	WUME7	WUME6	WUME5	WUME4	WUME3	WUME2	WUME1	WUME0
Reset	0	0	0	0	0	0	0	0

LLWU_ME field descriptions

Field	Description
7	Wakeup Module Enable For Module 7
WUME7	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source
6 WUME6	Wakeup Module Enable For Module 6
	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source
5 WUME5	Wakeup Module Enable For Module 5
VVOIVIES	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source
4 WUME4	Wakeup Module Enable For Module 4
VVOIVIL4	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source
3 WUME3	Wakeup Module Enable For Module 3
	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source
2 WUME2	Wakeup Module Enable For Module 2
VVOIVIE2	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source
1 WUME1	Wakeup Module Enable for Module 1
TTOWIE I	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source

LLWU_ME field descriptions (continued)

Field	Description
0 WUME0	Wakeup Module Enable For Module 0
	Enables an internal module as a wakeup source input.
	0 Internal module flag not used as wakeup source
	1 Internal module flag used as wakeup source

17.3.6 LLWU Flag 1 register (LLWU_F1)

LLWU_F1 contains the wakeup flags indicating which wakeup source caused the MCU to exit LLS or VLLS mode. For LLS, this is the source causing the CPU interrupt flow. For VLLS, this is the source causing the MCU reset flow.

The external wakeup flags are read-only and clearing a flag is accomplished by a write of a 1 to the corresponding WUFx bit. The wakeup flag (WUFx), if set, will remain set if the associated WUPEx bit is cleared.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 5h offset = 4007_C005h

Bit	7	6	5	4	3	2	1	0
Read	WUF7	WUF6	WUF5	WUF4	WUF3	WUF2	WUF1	WUF0
Write	w1c							
Reset	0	0	0	0	0	0	0	0

LLWU F1 field descriptions

Field	Description
7 WUF7	Wakeup Flag For LLWU_P7
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF7.
	LLWU_P7 input was not a wakeup source LLWU_P7 input was a wakeup source
6 WUF6	Wakeup Flag For LLWU_P6
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF6.

Memory map/register definition

LLWU_F1 field descriptions (continued)

Field	Description
	0 LLWU_P6 input was not a wakeup source
	1 LLWU_P6 input was a wakeup source
5 WUF5	Wakeup Flag For LLWU_P5
77013	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF5.
	0 LLWU_P5 input was not a wakeup source
	1 LLWU_P5 input was a wakeup source
4 WUF4	Wakeup Flag For LLWU_P4
	Indicates that an enabled external wake-up pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF4.
	0 LLWU_P4 input was not a wakeup source
	1 LLWU_P4 input was a wakeup source
3 WUF3	Wakeup Flag For LLWU_P3
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF3.
	0 LLWU_P3 input was not a wake-up source
	1 LLWU_P3 input was a wake-up source
2 WUF2	Wakeup Flag For LLWU_P2
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF2.
	0 LLWU_P2 input was not a wakeup source
	1 LLWU_P2 input was a wakeup source
1 WUF1	Wakeup Flag For LLWU_P1
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF1.
	0 LLWU_P1 input was not a wakeup source
	1 LLWU_P1 input was a wakeup source
0 WUF0	Wakeup Flag For LLWU_P0
	Indicates that an enabled external wake-up pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF0.
	0 LLWU_P0 input was not a wakeup source
	1 LLWU_P0 input was a wakeup source

17.3.7 LLWU Flag 2 register (LLWU_F2)

LLWU_F2 contains the wakeup flags indicating which wakeup source caused the MCU to exit LLS or VLLS mode. For LLS, this is the source causing the CPU interrupt flow. For VLLS, this is the source causing the MCU reset flow.

The external wakeup flags are read-only and clearing a flag is accomplished by a write of a 1 to the corresponding WUFx bit. The wakeup flag (WUFx), if set, will remain set if the associated WUPEx bit is cleared.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 6h offset = 4007_C006h

Bit	7	6	5	4	3	2	1	0
Read	WUF15	WUF14	WUF13	WUF12	WUF11	WUF10	WUF9	WUF8
Write	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0

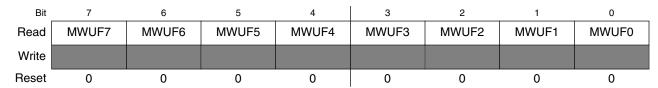
LLWU_F2 field descriptions

Field	Description		
7 WUF15	Wakeup Flag For LLWU_P15		
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF15.		
	0 LLWU_P15 input was not a wakeup source		
	1 LLWU_P15 input was a wakeup source		
6 WUF14	Wakeup Flag For LLWU_P14		
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF14.		
	0 LLWU_P14 input was not a wakeup source		
	1 LLWU_P14 input was a wakeup source		
5 WUF13	Wakeup Flag For LLWU_P13		
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF13.		
	0 LLWU_P13 input was not a wakeup source		
	1 LLWU_P13 input was a wakeup source		

LLWU_F2 field descriptions (continued)

Field	Description
4 WUF12	Wakeup Flag For LLWU_P12 Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To
	clear the flag, write a 1 to WUF12.
	LLWU_P12 input was not a wakeup source LLWU_P12 input was a wakeup source
3 WUF11	Wakeup Flag For LLWU_P11
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF11.
	0 LLWU_P11 input was not a wakeup source
	1 LLWU_P11 input was a wakeup source
2 WUF10	Wakeup Flag For LLWU_P10
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF10.
	0 LLWU_P10 input was not a wakeup source
	1 LLWU_P10 input was a wakeup source
1 WUF9	Wakeup Flag For LLWU_P9
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF9.
	0 LLWU_P9 input was not a wakeup source
	1 LLWU_P9 input was a wakeup source
0 WUF8	Wakeup Flag For LLWU_P8
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF8.
	0 LLWU_P8 input was not a wakeup source
	1 LLWU_P8 input was a wakeup source

17.3.8 LLWU Flag 3 register (LLWU_F3)


LLWU_F3 contains the wakeup flags indicating which internal wakeup source caused the MCU to exit LLS or VLLS mode. For LLS, this is the source causing the CPU interrupt flow. For VLLS, this is the source causing the MCU reset flow.

For internal peripherals that are capable of running in a low-leakage power mode, such as a real time clock module or CMP module, the flag from the associated peripheral is accessible as the MWUFx bit. The flag will need to be cleared in the peripheral instead of writing a 1 to the MWUFx bit.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 7h offset = 4007_C007h

LLWU_F3 field descriptions

Field	Description
7 MWUF7	Wakeup flag For module 7
IVIVOF7	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear
	the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 7 input was not a wakeup source
	1 Module 7 input was a wakeup source
6 MWUF6	Wakeup flag For module 6
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 6 input was not a wakeup source
	1 Module 6 input was a wakeup source
5 MWUF5	Wakeup flag For module 5
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 5 input was not a wakeup source
	1 Module 5 input was a wakeup source
4 MWUF4	Wakeup flag For module 4
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 4 input was not a wakeup source
	1 Module 4 input was a wakeup source
3 MWUF3	Wakeup flag For module 3
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear
	the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 3 input was not a wakeup source
	1 Module 3 input was a wakeup source
2 MWUF2	Wakeup flag For module 2

LLWU_F3 field descriptions (continued)

Field	Description
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 2 input was not a wakeup source
	1 Module 2 input was a wakeup source
1 MWUF1	Wakeup flag For module 1
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 1 input was not a wakeup source
	1 Module 1 input was a wakeup source
0 MWUF0	Wakeup flag For module 0
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 0 input was not a wakeup source
	1 Module 0 input was a wakeup source

17.3.9 LLWU Pin Filter 1 register (LLWU_FILT1)

LLWU_FILT1 is a control and status register that is used to enable/disable the digital filter 1 features for an external pin.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

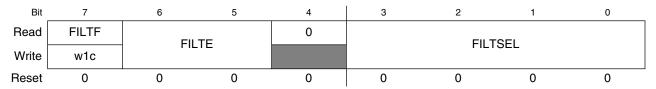
Address: 4007_C000h base + 8h offset = 4007_C008h

LLWU FILT1 field descriptions

Field	Description
7 FILTF	Filter Detect Flag
	Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage power mode. To clear the flag write a one to FILTF.

LLWU_FILT1 field descriptions (continued)

Field	Description
	0 Pin Filter 1 was not a wakeup source
	1 Pin Filter 1 was a wakeup source
6–5 FILTE	Digital Filter On External Pin
	Controls the digital filter options for the external pin detect.
	00 Filter disabled
	01 Filter posedge detect enabled
	10 Filter negedge detect enabled
	11 Filter any edge detect enabled
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3–0 FILTSEL	Filter Pin Select
	Selects 1 out of the 16 wakeup pins to be muxed into the filter.
	0000 Select LLWU_P0 for filter
	1111 Select LLWU_P15 for filter


17.3.10 LLWU Pin Filter 2 register (LLWU_FILT2)

LLWU_FILT2 is a control and status register that is used to enable/disable the digital filter 2 features for an external pin.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 9h offset = 4007_C009h

LLWU_FILT2 field descriptions

Field	Description
7	Filter Detect Flag
	Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage power mode. To clear the flag write a one to FILTF.

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

LLWU_FILT2 field descriptions (continued)

Field	Description
	0 Pin Filter 2 was not a wakeup source
	1 Pin Filter 2 was a wakeup source
6–5 FILTE	Digital Filter On External Pin
FILTE	Controls the digital filter options for the external pin detect.
	00 Filter disabled
	01 Filter posedge detect enabled
	10 Filter negedge detect enabled
	11 Filter any edge detect enabled
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3–0 FILTSEL	Filter Pin Select
	Selects 1 out of the 16 wakeup pins to be muxed into the filter.
	0000 Select LLWU_P0 for filter
	1111 Select LLWU_P15 for filter

17.4 Functional description

Thie low-leakage wakeup unit (LLWU) module allows internal peripherals and external input pins as a source of wakeup from low-leakage modes.

It is operational only in LLS and VLLSx modes.

The LLWU module contains pin enables for each external pin and internal module. For each external pin, the user can disable or select the edge type for the wakeup with the following options:

- Falling-edge
- Rising-edge
- Either-edge

When an external pin is enabled as a wakeup source, the pin must be configured as an input pin.

The LLWU implements optional 3-cycle glitch filters, based on the LPO clock. A detected external pin is required to remain asserted until the enabled glitch filter times out. Additional latency of up to 2 cycles is due to synchronization, which results in a total of up to 5 cycles of delay before the detect circuit alerts the system to the wakeup or reset event when the filter function is enabled. Two wakeup detect filters are available for selected external pins. Glitch filtering is not provided on the internal modules.

For internal module interrupts, the WUMEx bit enables the associated module interrupt as a wakeup source.

17.4.1 LLS mode

Wakeup events triggered from either an external pin input or an internal module interrupt, result in a CPU interrupt flow to begin user code execution.

17.4.2 VLLS modes

For any wakeup from VLLS, recovery is always via a reset flow and RCM_SRS[WAKEUP] is set indicating the low-leakage mode was active. State retention data is lost and I/O will be restored after PMC_REGSC[ACKISO] has been written.

A VLLS exit event due to RESET pin assertion causes an exit via a system reset. State retention data is lost and the I/O states immediately return to their reset state. The RCM_SRS[WAKEUP] and RCM_SRS[PIN] bits are set and the system executes a reset flow before CPU operation begins with a reset vector fetch.

17.4.3 Initialization

For an enabled peripheral wakeup input, the peripheral flag must be cleared by software before entering LLS or VLLSx mode to avoid an immediate exit from the mode.

Flags associated with external input pins, filtered and unfiltered, must also be cleared by software prior to entry to LLS or VLLSx mode.

After enabling an external pin filter or changing the source pin, wait at least five LPO clock cycles before entering LLS or VLLSx mode to allow the filter to initialize.

NOTE

After recovering from a VLLS mode, user must restore chip configuration before clearing PMC_REGSC[ACKISO]. In particular, pin configuration for enabled LLWU wake-up pins must be restored to avoid any LLWU flag from being falsely set when PMC_REGSC[ACKISO] is cleared.

The signal selected as a wake-up source pin must be a digital pin, as selected in the pin mux control.

Functional description

Chapter 18 Miscellaneous Control Module (MCM)

18.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Miscellaneous Control Module (MCM) provides a myriad of miscellaneous control functions.

18.1.1 Features

The MCM includes the following features:

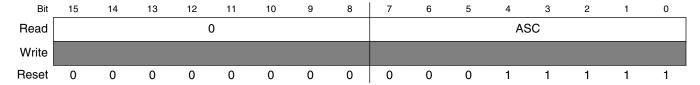
• Program-visible information on the platform configuration and revision

18.2 Memory map/register descriptions

The memory map and register descriptions below describe the registers using byte addresses.

MCM memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
E008_0008	Crossbar Switch (AXBS) Slave Configuration (MCM_PLASC)	16	R	001Fh	18.2.1/406
E008_000A	Crossbar Switch (AXBS) Master Configuration (MCM_PLAMC)	16	R	0017h	18.2.2/406
E008_000C	Crossbar Switch (AXBS) Control Register (MCM_PLACR)	32	R/W	0000_0000h	18.2.3/407

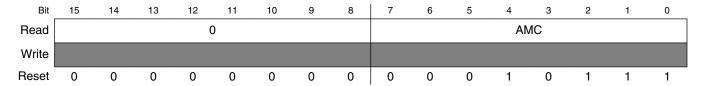

MCM memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
E008_0010	Interrupt Status and Control Register (MCM_ISCR)	32	R	0002_0000h	18.2.4/408
E008_0040	Compute Operation Control Register (MCM_CPO)	32	R/W	0000_0000h	18.2.5/411

18.2.1 Crossbar Switch (AXBS) Slave Configuration (MCM_PLASC)

PLASC is a 16-bit read-only register identifying the presence/absence of bus slave connections to the device's crossbar switch.

Address: E008_0000h base + 8h offset = E008_0008h

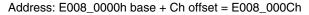

MCM_PLASC field descriptions

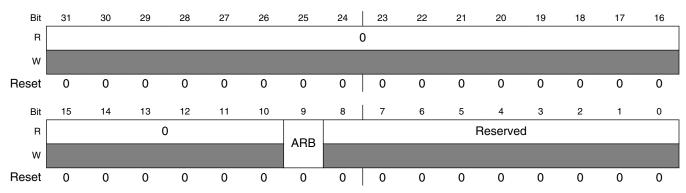
Field	Description
This field is reserved. Reserved This read-only field is reserved and always has the value 0.	
7–0 ASC	Each bit in the ASC field indicates whether there is a corresponding connection to the crossbar switch's slave input port.
	 A bus slave connection to AXBS input port <i>n</i> is absent A bus slave connection to AXBS input port <i>n</i> is present

18.2.2 Crossbar Switch (AXBS) Master Configuration (MCM_PLAMC)

PLAMC is a 16-bit read-only register identifying the presence/absence of bus master connections to the device's crossbar switch.

Address: E008_0000h base + Ah offset = E008_000Ah

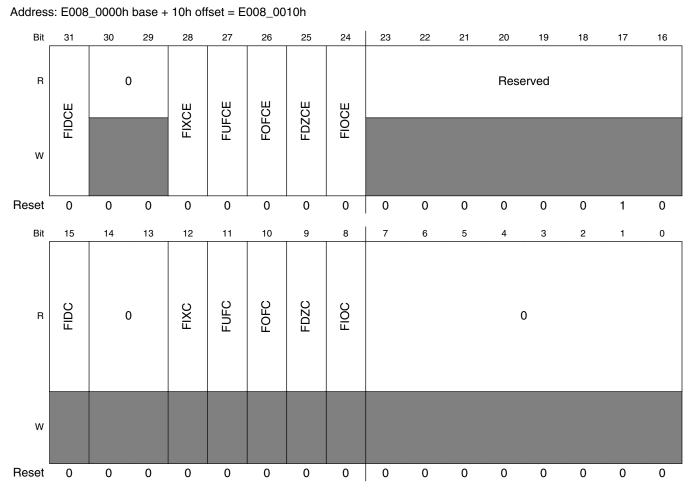



MCM_PLAMC field descriptions

Field	Description	
15–8 Reserved	his field is reserved. his read-only field is reserved and always has the value 0.	
7–0 AMC	Each bit in the AMC field indicates whether there is a corresponding connection to the AXBS master input port.	
 A bus master connection to AXBS input port <i>n</i> is absent A bus master connection to AXBS input port <i>n</i> is present 		

18.2.3 Crossbar Switch (AXBS) Control Register (MCM_PLACR)

The PLACR register selects the arbitration policy for the crossbar masters.


MCM_PLACR field descriptions

Field	Description
31–10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
9 ARB	Arbitration select 0 Fixed-priority arbitration for the crossbar masters 1 Round-robin arbitration for the crossbar masters
8–0 Reserved	This field is reserved.

18.2.4 Interrupt Status and Control Register (MCM_ISCR)

The MCM_ISCR register includes the enable and status bits associated with the core's floating-point exceptions. The individual event indicators are first qualified with their exception enables and then logically summed to form an interrupt request sent to the core's NVIC.

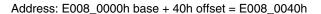
Bits 15-8 are read-only indicator flags based on the processor's FPSCR register. Attempted writes to these bits are ignored. Once set, the flags remain asserted until software clears the corresponding FPSCR bit.

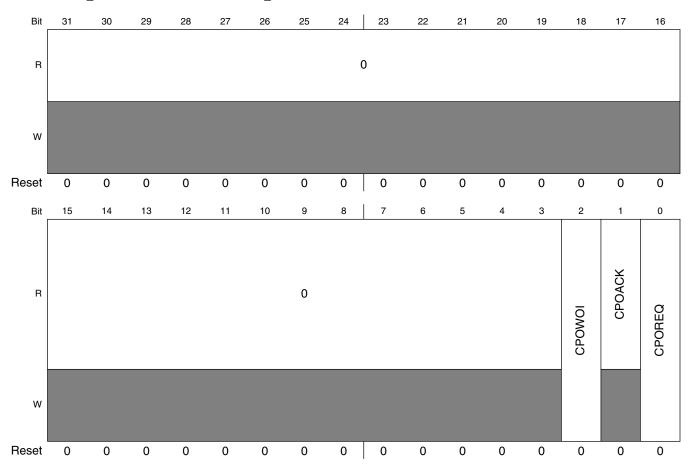
MCM_ISCR field descriptions

Field	Description
	FPU input denormal interrupt enable
FIDCE	
	0 Disable interrupt
	1 Enable interrupt

MCM_ISCR field descriptions (continued)

Field	Description
30–29 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
28 FIXCE	FPU inexact interrupt enable
	0 Disable interrupt1 Enable interrupt
27 FUFCE	FPU underflow interrupt enable
TOTOL	0 Disable interrupt1 Enable interrupt
26	FPU overflow interrupt enable
FOFCE	0 Disable interrupt
25	1 Enable interrupt
FDZCE	FPU divide-by-zero interrupt enable
	0 Disable interrupt1 Enable interrupt
24	FPU invalid operation interrupt enable
FIOCE	0 Disable interrupt
	1 Enable interrupt
23–16 Reserved	This field is reserved.
15	FPU input denormal interrupt status
FIDC	This read-only bit is a copy of the core's FPSCR[IDC] bit and signals input denormalized number has been detected in the processor's FPU. Once set, this bit remains set until software clears the FPSCR[IDC] bit.
	0 No interrupt 1 Interrupt occurred
14–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12	FPU inexact interrupt status
FIXC	This read-only bit is a copy of the core's FPSCR[IXC] bit and signals an inexact number has been detected in the processor's FPU. Once set, this bit remains set until software clears the FPSCR[IXC] bit.
	0 No interrupt
11	Interrupt occurred FPU underflow interrupt status
FUFC	
	This read-only bit is a copy of the core's FPSCR[UFC] bit and signals an underflow has been detected in the processor's FPU. Once set, this bit remains set until software clears the FPSCR[UFC] bit.
	0 No interrupt
	1 Interrupt occurred
10 FOFC	FPU overflow interrupt status


Memory map/register descriptions


MCM_ISCR field descriptions (continued)

Field	Description		
	This read-only bit is a copy of the core's FPSCR[OFC] bit and signals an overflow has been detected in the processor's FPU. Once set, this bit remains set until software clears the FPSCR[OFC] bit.		
	0 No interrupt		
	1 Interrupt occurred		
9 FDZC	FPU divide-by-zero interrupt status		
-	This read-only bit is a copy of the core's FPSCR[DZC] bit and signals a divide by zero has been detected in the processor's FPU. Once set, this bit remains set until software clears the FPSCR[DZC] bit.		
	0 No interrupt		
	1 Interrupt occurred		
8 FIOC	FPU invalid operation interrupt status		
	This read-only bit is a copy of the core's FPSCR[IOC] bit and signals an illegal operation has been detected in the processor's FPU. Once set, this bit remains set until software clears the FPSCR[IOC] bit.		
	0 No interrupt		
	1 Interrupt occurred		
7–0	This field is reserved.		
Reserved	This read-only field is reserved and always has the value 0.		

18.2.5 Compute Operation Control Register (MCM_CPO)

This register controls the Compute Operation.

MCM_CPO field descriptions

Field	Description			
31–3	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
2 CPOWOI	Compute Operation wakeup on interrupt			
	0 No effect.			
	1 When set, the CPOREQ is cleared on any interrupt or exception vector fetch.			
1	Compute Operation acknowledge			
CPOACK	O Compute operation entry has not completed or compute operation exit has completed.			
	1 Compute operation entry has completed or compute operation exit has not completed.			
0 CPOREQ	Compute Operation request			
	This bit is auto-cleared by vector fetching if CPOWOI = 1.			

MCM_CPO field descriptions (continued)

Field		Description	
	0	Request is cleared.	
	1	Request Compute Operation.	

18.3 Functional description

This section describes the functional description of MCM module.

18.3.1 Interrupts

The MCM's interrupt is generated if any of the following is true:

- FPU input denormal interrupt is enabled (FIDCE) and an input is denormalized (FIDC)
- FPU inexact interrupt is enabled (FIXCE) and a number is inexact (FIXC)
- FPU underflow interrupt is enabled (FUFCE) and an underflow occurs (FUFC)
- FPU overflow interrupt is enabled (FOFCE) and an overflow occurs (FOFC)
- FPU divide-by-zero interrupt is enabled (FDZCE) and a divide-by-zero occurs (FDZC)
- FPU invalid operation interrupt is enabled (FDZCE) and an invalid occurs (FDZC)

18.3.1.1 Determining source of the interrupt

To determine the exact source of the interrupt qualify the interrupt status flags with the corresponding interrupt enable bits.

- 1. Form MCM_ISCR[31:16] && MCM_ISCR[15:0]
- 2. Search the result for asserted flags, which indicate the exact interrupt sources

Chapter 19 Crossbar Switch Lite (AXBS-Lite)

19.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The information found here provides information on the layout, configuration, and programming of the crossbar switch.

The crossbar switch connects bus masters and bus slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave.

19.1.1 Features

The crossbar switch includes these features:

- Symmetric crossbar bus switch implementation
 - Allows concurrent accesses from different masters to different slaves
- 32-bit data bus
- Operation at a 1-to-1 clock frequency with the bus masters
- Programmable configuration for fixed-priority or round-robin slave port arbitration

19.2 Memory Map / Register Definition

This crossbar switch is designed for minimal gate count. It, therefore, has no memory-mapped configuration registers.

19.3 Functional Description

19.3.1 General operation

When a master accesses the crossbar switch, the access is immediately taken. If the targeted slave port of the access is available, then the access is immediately presented on the slave port. Single-clock or zero-wait-state accesses are possible through the crossbar. If the targeted slave port of the access is busy or parked on a different master port, the requesting master simply sees wait states inserted until the targeted slave port can service the master's request. The latency in servicing the request depends on each master's priority level and the responding slave's access time.

Because the crossbar switch appears to be just another slave to the master device, the master device has no knowledge of whether it actually owns the slave port it is targeting. While the master does not have control of the slave port it is targeting, it simply waits.

A master is given control of the targeted slave port only after a previous access to a different slave port completes, regardless of its priority on the newly targeted slave port. This prevents deadlock from occurring when:

- A higher priority master has:
 - An outstanding request to one slave port that has a long response time and
 - A pending access to a different slave port, and
- A lower priority master is also making a request to the same slave port as the pending access of the higher priority master.

After the master has control of the slave port it is targeting, the master remains in control of the slave port until it relinquishes the slave port by running an IDLE cycle or by targeting a different slave port for its next access.

The master can also lose control of the slave port if another higher-priority master makes a request to the slave port.

The crossbar terminates all master IDLE transfers, as opposed to allowing the termination to come from one of the slave buses. Additionally, when no master is requesting access to a slave port, the crossbar drives IDLE transfers onto the slave bus, even though a default master may be granted access to the slave port.

When a slave bus is being idled by the crossbar, it remains parked with the last master to use the slave port. This is done to save the initial clock of arbitration delay that otherwise would be seen if the master had to arbitrate to gain control of the slave port.

19.3.2 Arbitration

The crossbar switch supports two arbitration algorithms:

- Fixed priority
- Round-robin

The selection of the global slave port arbitration is controlled by MCM_PLACR[ARB]. For fixed priority, set MCM_PLACR[ARB] to 0. For round robin, set MCM_PLACR[ARB] to 1. This arbitration setting applies to all slave ports.

19.3.2.1 Fixed-priority operation

When operating in fixed-priority mode, each master is assigned a unique priority level with the highest numbered master having the highest priority (for example, in a system with 5 masters, master 1 has lower priority than master 3). If two masters request access to the same slave port, the master with the highest priority gains control over the slave port.

NOTE

In this arbitration mode, a higher-priority master can monopolize a slave port, preventing accesses from any lowerpriority master to the port.

When a master makes a request to a slave port, the slave port checks whether the new requesting master's priority level is higher than that of the master that currently has control over the slave port, unless the slave port is in a parked state. The slave port performs an arbitration check at every clock edge to ensure that the proper master, if any, has control of the slave port.

The following table describes possible scenarios based on the requesting master port:

Table 19-1. How the Crossbar Switch grants control of a slave port to a master

When	Then the Crossbar Switch grants control to the requesting master
Both of the following are true: The current master is not running a transfer. The new requesting master's priority level is higher than that of the current master.	At the next clock edge
Both of the following are true: The current master is running an undefined length burst transfer. The requesting master's priority level is higher than that of the current master.	At the next arbitration point for the undefined length burst transfer NOTE: Arbitration points for an undefined length burst are defined in the MGPCR for each master.
The requesting master's priority level is lower than the current master.	At the conclusion of one of the following cycles: • An IDLE cycle • A non-IDLE cycle to a location other than the current slave port

19.3.2.2 Round-robin priority operation

When operating in round-robin mode, each master is assigned a relative priority based on the master port number. This relative priority is compared to the master port number (ID) of the last master to perform a transfer on the slave bus. The highest priority requesting master becomes owner of the slave bus at the next transfer boundary. Priority is based on how far ahead the ID of the requesting master is to the ID of the last master.

After granted access to a slave port, a master may perform as many transfers as desired to that port until another master makes a request to the same slave port. The next master in line is granted access to the slave port at the next transfer boundary, or possibly on the next clock cycle if the current master has no pending access request.

As an example of arbitration in round-robin mode, assume the crossbar is implemented with master ports 0, 1, 4, and 5. If the last master of the slave port was master 1, and master 0, 4, and 5 make simultaneous requests, they are serviced in the order: 4 then 5 then 0.

The round-robin arbitration mode generally provides a more fair allocation of the available slave-port bandwidth (compared to fixed priority) as the fixed master priority does not affect the master selection.

19.4 Initialization/application information

No initialization is required for the crossbar switch.

See the AXBS section of the configuration chapter for the reset state of the arbitration scheme.

Initialization/application information

Chapter 20 Peripheral Bridge (AIPS-Lite)

20.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The peripheral bridge converts the crossbar switch interface to an interface that can access most of the slave peripherals on this chip.

The peripheral bridge occupies 64 MB of the address space, which is divided into peripheral slots of 4 KB. (It might be possible that all the peripheral slots are not used. See the memory map chapter for details on slot assignments.) The bridge includes separate clock enable inputs for each of the slots to accommodate slower peripherals.

20.1.1 Features

Key features of the peripheral bridge are:

• Supports peripheral slots with 8-, 16-, and 32-bit datapath width

20.1.2 General operation

The slave devices connected to the peripheral bridge are modules which contain a programming model of control and status registers. The system masters read and write these registers through the peripheral bridge. The peripheral bridge performs a bus protocol conversion of the master transactions and generates the following as inputs to the peripherals:

- Module enables
- Module addresses

Functional description

- Transfer attributes
- Byte enables
- Write data

The peripheral bridge selects and captures read data from the peripheral interface and returns it to the crossbar switch.

The register maps of the peripherals are located on 4-KB boundaries. Each peripheral is allocated one or more 4-KB block(s) of the memory map. Two global external module enables are available for the remaining address space to allow for customization and expansion of addressed peripheral devices.

The AIPS-Lite module uses the data width of accessed peripheral to perform proper data byte lane routing; no bus decomposition (bus sizing) is performed.

20.2 Functional description

The peripheral bridge functions as a bus protocol translator between the crossbar switch and the slave peripheral bus.

The peripheral bridge manages all transactions destined for the attached slave devices and generates select signals for modules on the peripheral bus by decoding accesses within the attached address space.

20.2.1 Access support

Aligned and misaligned 32-bit, 16-bit, and byte accesses are supported for 32-bit peripherals. Misaligned accesses are supported to allow memory to be placed on the slave peripheral bus. Peripheral registers must not be misaligned, although no explicit checking is performed by the peripheral bridge. All accesses are performed with a single transfer.

All accesses to the peripheral slots must be sized less than or equal to the designated peripheral slot size. If an access is attempted that is larger than the targeted port, an error response is generated.

Chapter 21 Direct Memory Access Multiplexer (DMAMUX)

21.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

21.1.1 Overview

The Direct Memory Access Multiplexer (DMAMUX) routes DMA sources, called slots, to any of the 16 DMA channels. This process is illustrated in the following figure.

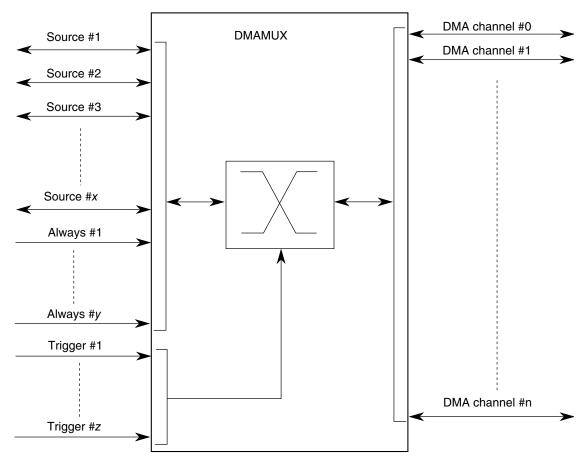


Figure 21-1. DMAMUX block diagram

21.1.2 Features

The DMAMUX module provides these features:

- Up to 59 peripheral slots and up to four always-on slots can be routed to 16 channels.
- 16 independently selectable DMA channel routers.
 - The first four channels additionally provide a trigger functionality.
- Each channel router can be assigned to one of the possible peripheral DMA slots or to one of the always-on slots.

21.1.3 Modes of operation

The following operating modes are available:

Disabled mode

In this mode, the DMA channel is disabled. Because disabling and enabling of DMA channels is done primarily via the DMA configuration registers, this mode is used mainly as the reset state for a DMA channel in the DMA channel MUX. It may also be used to temporarily suspend a DMA channel while reconfiguration of the system takes place, for example, changing the period of a DMA trigger.

Normal mode

In this mode, a DMA source is routed directly to the specified DMA channel. The operation of the DMAMUX in this mode is completely transparent to the system.

Periodic Trigger mode

In this mode, a DMA source may only request a DMA transfer, such as when a transmit buffer becomes empty or a receive buffer becomes full, periodically. Configuration of the period is done in the registers of the periodic interrupt timer (PIT). This mode is available only for channels 0–3.

21.2 External signal description

The DMAMUX has no external pins.

21.3 Memory map/register definition

This section provides a detailed description of all memory-mapped registers in the DMAMUX.

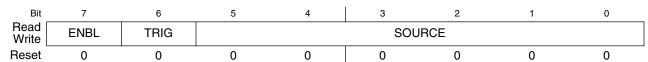
DMAMUX memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_1000	Channel Configuration register (DMAMUX_CHCFG0)	8	R/W	00h	21.3.1/424
4002_1001	Channel Configuration register (DMAMUX_CHCFG1)	8	R/W	00h	21.3.1/424
4002_1002	Channel Configuration register (DMAMUX_CHCFG2)	8	R/W	00h	21.3.1/424
4002_1003	Channel Configuration register (DMAMUX_CHCFG3)	8	R/W	00h	21.3.1/424
4002_1004	Channel Configuration register (DMAMUX_CHCFG4)	8	R/W	00h	21.3.1/424
4002_1005	Channel Configuration register (DMAMUX_CHCFG5)	8	R/W	00h	21.3.1/424
4002_1006	Channel Configuration register (DMAMUX_CHCFG6)	8	R/W	00h	21.3.1/424
4002_1007	Channel Configuration register (DMAMUX_CHCFG7)	8	R/W	00h	21.3.1/424
4002_1008	Channel Configuration register (DMAMUX_CHCFG8)	8	R/W	00h	21.3.1/424

DMAMUX memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_1009	Channel Configuration register (DMAMUX_CHCFG9)	8	R/W	00h	21.3.1/424
4002_100A	Channel Configuration register (DMAMUX_CHCFG10)	8	R/W	00h	21.3.1/424
4002_100B	Channel Configuration register (DMAMUX_CHCFG11)	8	R/W	00h	21.3.1/424
4002_100C	Channel Configuration register (DMAMUX_CHCFG12)	8	R/W	00h	21.3.1/424
4002_100D	Channel Configuration register (DMAMUX_CHCFG13)	8	R/W	00h	21.3.1/424
4002_100E	Channel Configuration register (DMAMUX_CHCFG14)	8	R/W	00h	21.3.1/424
4002_100F	Channel Configuration register (DMAMUX_CHCFG15)	8	R/W	00h	21.3.1/424

21.3.1 Channel Configuration register (DMAMUX_CHCFGn)


Each of the DMA channels can be independently enabled/disabled and associated with one of the DMA slots (peripheral slots or always-on slots) in the system.

NOTE

Setting multiple CHCFG registers with the same source value will result in unpredictable behavior. This is true, even if a channel is disabled (ENBL==0).

Before changing the trigger or source settings, a DMA channel must be disabled via CHCFGn[ENBL].

Address: 4002_1000h base + 0h offset + $(1d \times i)$, where i=0d to 15d

DMAMUX_CHCFGn field descriptions

Field	Description		
7 ENBL	DMA Channel Enable Enables the DMA channel.		
	 DMA channel is disabled. This mode is primarily used during configuration of the DMAMux. The DMA has separate channel enables/disables, which should be used to disable or reconfigure a DMA channel. DMA channel is enabled 		
6 TRIG	DMA Channel Trigger Enable		
	Enables the periodic trigger capability for the triggered DMA channel.		

DMAMUX_CHCFG*n* field descriptions (continued)

Field	Description
	O Triggering is disabled. If triggering is disabled and ENBL is set, the DMA Channel will simply route the specified source to the DMA channel. (Normal mode)
	1 Triggering is enabled. If triggering is enabled and ENBL is set, the DMAMUX is in Periodic Trigger mode.
5–0 SOURCE	DMA Channel Source (Slot)
	Specifies which DMA source, if any, is routed to a particular DMA channel. See the chip-specific DMAMUX information for details about the peripherals and their slot numbers.

21.4 Functional description

The primary purpose of the DMAMUX is to provide flexibility in the system's use of the available DMA channels.

As such, configuration of the DMAMUX is intended to be a static procedure done during execution of the system boot code. However, if the procedure outlined in Enabling and configuring sources is followed, the configuration of the DMAMUX may be changed during the normal operation of the system.

Functionally, the DMAMUX channels may be divided into two classes:

- Channels that implement the normal routing functionality plus periodic triggering capability
- Channels that implement only the normal routing functionality

21.4.1 DMA channels with periodic triggering capability

Besides the normal routing functionality, the first 4channels of the DMAMUX provide a special periodic triggering capability that can be used to provide an automatic mechanism to transmit bytes, frames, or packets at fixed intervals without the need for processor intervention. The trigger is generated by the periodic interrupt timer (PIT); as such, the configuration of the periodic triggering interval is done via configuration registers in the PIT. See the section on periodic interrupt timer for more information on this topic.

Note

Because of the dynamic nature of the system (due to DMA channel priorities, bus arbitration, interrupt service routine lengths, etc.), the number of clock cycles between a trigger and the actual DMA transfer cannot be guaranteed.

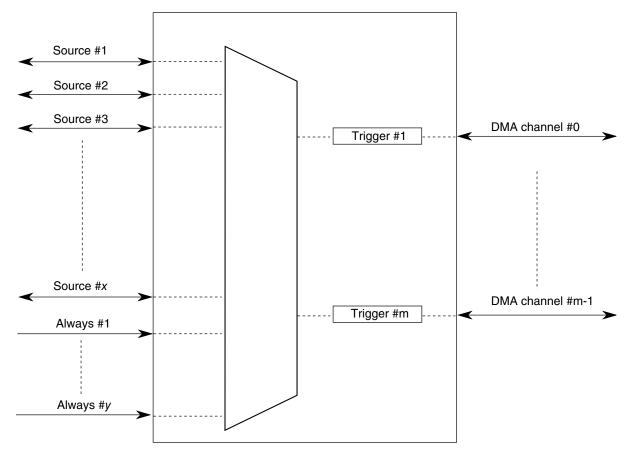


Figure 21-19. DMAMUX triggered channels

The DMA channel triggering capability allows the system to schedule regular DMA transfers, usually on the transmit side of certain peripherals, without the intervention of the processor. This trigger works by gating the request from the peripheral to the DMA until a trigger event has been seen. This is illustrated in the following figure.

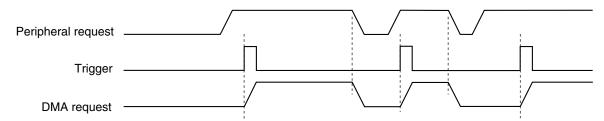


Figure 21-20. DMAMUX channel triggering: normal operation

After the DMA request has been serviced, the peripheral will negate its request, effectively resetting the gating mechanism until the peripheral reasserts its request and the next trigger event is seen. This means that if a trigger is seen, but the peripheral is not requesting a transfer, then that trigger will be ignored. This situation is illustrated in the following figure.

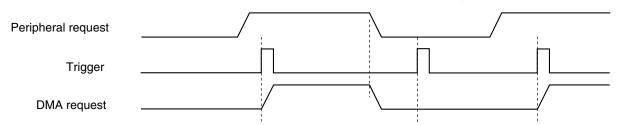


Figure 21-21. DMAMUX channel triggering: ignored trigger

This triggering capability may be used with any peripheral that supports DMA transfers, and is most useful for two types of situations:

• Periodically polling external devices on a particular bus

As an example, the transmit side of an SPI is assigned to a DMA channel with a trigger, as described above. After it has been set up, the SPI will request DMA transfers, presumably from memory, as long as its transmit buffer is empty. By using a trigger on this channel, the SPI transfers can be automatically performed every 5 μ s (as an example). On the receive side of the SPI, the SPI and DMA can be configured to transfer receive data into memory, effectively implementing a method to periodically read data from external devices and transfer the results into memory without processor intervention.

• Using the GPIO ports to drive or sample waveforms

By configuring the DMA to transfer data to one or more GPIO ports, it is possible to create complex waveforms using tabular data stored in on-chip memory. Conversely, using the DMA to periodically transfer data from one or more GPIO ports, it is possible to sample complex waveforms and store the results in tabular form in on-chip memory.

A more detailed description of the capability of each trigger, including resolution, range of values, and so on, may be found in the periodic interrupt timer section.

21.4.2 DMA channels with no triggering capability

The other channels of the DMAMUX provide the normal routing functionality as described in Modes of operation.

21.4.3 Always-enabled DMA sources

In addition to the peripherals that can be used as DMA sources, there are four additional DMA sources that are always enabled. Unlike the peripheral DMA sources, where the peripheral controls the flow of data during DMA transfers, the sources that are always enabled provide no such "throttling" of the data transfers. These sources are most useful in the following cases:

- Performing DMA transfers to/from GPIO—Moving data from/to one or more GPIO pins, either unthrottled (that is, as fast as possible), or periodically (using the DMA triggering capability).
- Performing DMA transfers from memory to memory—Moving data from memory to memory, typically as fast as possible, sometimes with software activation.
- Performing DMA transfers from memory to the external bus, or vice-versa—Similar to memory to memory transfers, this is typically done as quickly as possible.
- Any DMA transfer that requires software activation—Any DMA transfer that should be explicitly started by software.

In cases where software should initiate the start of a DMA transfer, an always-enabled DMA source can be used to provide maximum flexibility. When activating a DMA channel via software, subsequent executions of the minor loop require that a new start event be sent. This can either be a new software activation, or a transfer request from the DMA channel MUX. The options for doing this are:

• Transfer all data in a single minor loop.

By configuring the DMA to transfer all of the data in a single minor loop (that is, major loop counter = 1), no reactivation of the channel is necessary. The disadvantage to this option is the reduced granularity in determining the load that the DMA transfer will impose on the system. For this option, the DMA channel must be disabled in the DMA channel MUX.

• Use explicit software reactivation.

In this option, the DMA is configured to transfer the data using both minor and major loops, but the processor is required to reactivate the channel by writing to the DMA registers *after every minor loop*. For this option, the DMA channel must be disabled in the DMA channel MUX.

• Use an always-enabled DMA source.

In this option, the DMA is configured to transfer the data using both minor and major loops, and the DMA channel MUX does the channel reactivation. For this option, the DMA channel should be enabled and pointing to an "always enabled" source. Note that the reactivation of the channel can be continuous (DMA triggering is disabled) or can use the DMA triggering capability. In this manner, it is possible to execute periodic transfers of packets of data from one source to another, without processor intervention.

21.5 Initialization/application information

This section provides instructions for initializing the DMA channel MUX.

21.5.1 Reset

The reset state of each individual bit is shown in Memory map/register definition. In summary, after reset, all channels are disabled and must be explicitly enabled before use.

21.5.2 Enabling and configuring sources

To enable a source with periodic triggering:

- 1. Determine with which DMA channel the source will be associated. Note that only the first 4 DMA channels have periodic triggering capability.
- 2. Clear the CHCFG[ENBL] and CHCFG[TRIG] fields of the DMA channel.
- 3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be enabled at this point.
- 4. Configure the corresponding timer.
- 5. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that the CHCFG[ENBL] and CHCFG[TRIG] fields are set.

NOTE

The following is an example. See the chip configuration details for the number of this device's DMA channels that have triggering capability.

To configure source #5 transmit for use with DMA channel 1, with periodic triggering capability:

1. Write 0x00 to CHCFG1 (base address + 0x01).

Initialization/application information

- 2. Configure channel 1 in the DMA, including enabling the channel.
- 3. Configure a timer for the desired trigger interval.
- 4. Write 0xC5 to CHCFG1 (base address + 0x01).

The following code example illustrates steps 1 and 4 above:

```
void DMAMUX_Init(uint8_t DMA_CH, uint8_t DMAMUX_SOURCE)
{
    DMAMUX_0.CHCFG[DMA_CH].B.SOURCE = DMAMUX_SOURCE;
    DMAMUX_0.CHCFG[DMA_CH].B.ENBL = 1;
    DMAMUX_0.CHCFG[DMA_CH].B.TRIG = 1;
}
```

To enable a source, without periodic triggering:

- 1. Determine with which DMA channel the source will be associated. Note that only the first 4 DMA channels have periodic triggering capability.
- 2. Clear the CHCFG[ENBL] and CHCFG[TRIG] fields of the DMA channel.
- 3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be enabled at this point.
- 4. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that CHCFG[ENBL] is set while CHCFG[TRIG] is cleared.

NOTE

The following is an example. See the chip configuration details for the number of this device's DMA channels that have triggering capability.

To configure source #5 transmit for use with DMA channel 1, with no periodic triggering capability:

- 1. Write 0x00 to CHCFG1 (base address + 0x01).
- 2. Configure channel 1 in the DMA, including enabling the channel.
- 3. Write 0x85 to CHCFG1 (base address + 0x01).

The following code example illustrates steps 1 and 3 above:

```
In File registers.h:
#define DMAMUX BASE ADDR
                             0x40021000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCFG0 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0000);
volatile unsigned char *CHCFG1 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0001);
volatile unsigned char *CHCFG2 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0002);
volatile unsigned char *CHCFG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCFG4 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0004);
volatile unsigned char *CHCFG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCFG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCFG7 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0007);
volatile unsigned char *CHCFG8 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0008);
volatile unsigned char *CHCFG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCFG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCFG11= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000B);
volatile unsigned char *CHCFG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCFG13= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000D);
```

To disable a source:

A particular DMA source may be disabled by not writing the corresponding source value into any of the CHCFG registers. Additionally, some module-specific configuration may be necessary. See the appropriate section for more details.

To switch the source of a DMA channel:

- 1. Disable the DMA channel in the DMA and reconfigure the channel for the new source.
- 2. Clear the CHCFG[ENBL] and CHCFG[TRIG] bits of the DMA channel.
- 3. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that the CHCFG[ENBL] and CHCFG[TRIG] fields are set.

To switch DMA channel 8 from source #5 transmit to source #7 transmit:

- 1. In the DMA configuration registers, disable DMA channel 8 and reconfigure it to handle the transfers to peripheral slot 7. This example assumes channel 8 doesn't have triggering capability.
- 2. Write 0x00 to CHCFG8 (base address + 0x08).
- 3. Write 0x87 to CHCFG8 (base address + 0x08). (In this example, setting CHCFG[TRIG] would have no effect due to the assumption that channel 8 does not support the periodic triggering functionality.)

The following code example illustrates steps 2 and 3 above:

```
In File registers.h:
#define DMAMUX BASE ADDR
                             0x40021000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCFG0 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0000);
volatile unsigned char *CHCFG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCFG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCFG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCFG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCFG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCFG6 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0006);
volatile unsigned char *CHCFG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCFG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCFG9 = (volatile unsigned char *)
                                                            (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCFG10= (volatile unsigned char *)
                                                            (DMAMUX BASE ADDR+0x000A);
volatile unsigned char *CHCFG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCFG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCFG13= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000D);
volatile unsigned char *CHCFG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCFG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);
```

Initialization/application information

```
In File main.c:
#include "registers.h"
:
:
*CHCFG8 = 0x00;
*CHCFG8 = 0x87;
```

Chapter 22 Enhanced Direct Memory Access (eDMA)

22.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data transfers with minimal intervention from a host processor. The hardware microarchitecture includes:

- A DMA engine that performs:
 - Source- and destination-address calculations
 - Data-movement operations
- Local memory containing transfer control descriptors for each of the 16 channels

22.1.1 eDMA system block diagram

Figure 22-1 illustrates the components of the eDMA system, including the eDMA module ("engine").

Introduction



Figure 22-1. eDMA system block diagram

22.1.2 Block parts

The eDMA module is partitioned into two major modules: the eDMA engine and the transfer-control descriptor local memory.

The eDMA engine is further partitioned into four submodules:

Table 22-1. eDMA engine submodules

Submodule	Function
Address path	This block implements registered versions of two channel transfer control descriptors, channel x and channel y, and manages all master bus-address calculations. All the channels provide the same functionality. This structure allows data transfers associated with one channel to be preempted after the completion of a read/write sequence if a higher priority channel activation is asserted while the first channel is active. After a channel is activated, it runs until the minor loop is completed, unless preempted by a higher priority channel. This provides a mechanism (enabled by DCHPRIn[ECP]) where a large data move operation can be preempted to minimize the time another channel is blocked from execution.
	When any channel is selected to execute, the contents of its TCD are read from local memory and loaded into the address path channel x registers for a normal start and into channel y registers for a preemption start. After the minor loop completes execution, the address path hardware writes the new values for the TCDn_{SADDR, DADDR, CITER} back to local memory. If the major iteration count is exhausted, additional processing is performed, including the final address pointer updates, reloading the TCDn_CITER field, and a possible fetch of the next TCDn from memory as part of a scatter/gather operation.
Data path	This block implements the bus master read/write datapath. It includes 16 bytes of register storage and the necessary multiplex logic to support any required data alignment. The internal read data bus is the primary input, and the internal write data bus is the primary output.
	The address and data path modules directly support the 2-stage pipelined internal bus. The address path module represents the 1st stage of the bus pipeline (address phase), while the data path module implements the 2nd stage of the pipeline (data phase).
Program model/channel arbitration	This block implements the first section of the eDMA programming model as well as the channel arbitration logic. The programming model registers are connected to the internal peripheral bus. The eDMA peripheral request inputs and interrupt request outputs are also connected to this block (via control logic).
Control	This block provides all the control functions for the eDMA engine. For data transfers where the source and destination sizes are equal, the eDMA engine performs a series of source read/destination write operations until the number of bytes specified in the minor loop byte count has moved. For descriptors where the sizes are not equal, multiple accesses of the smaller size data are required for each reference of the larger size. As an example, if the source size references 16-bit data and the destination is 32-bit data, two reads are performed, then one 32-bit write.

The transfer-control descriptor local memory is further partitioned into:

Table 22-2. Transfer control descriptor memory

Submodule	Description
	This logic implements the required dual-ported controller, managing accesses from the eDMA engine as well as references from the internal peripheral bus. As noted earlier, in the event of simultaneous accesses, the eDMA engine is given priority and the peripheral transaction is stalled.
Memory array	TCD storage for each channel's transfer profile.

22.1.3 Features

The eDMA is a highly programmable data-transfer engine optimized to minimize any required intervention from the host processor. It is intended for use in applications where the data size to be transferred is statically known and not defined within the transferred data itself. The eDMA module features:

- All data movement via dual-address transfers: read from source, write to destination
 - Programmable source and destination addresses and transfer size
 - Support for enhanced addressing modes
- 16-channel implementation that performs complex data transfers with minimal intervention from a host processor
 - Internal data buffer, used as temporary storage to support 16- and 32-byte transfers
 - Connections to the crossbar switch for bus mastering the data movement
- Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations
 - 32-byte TCD stored in local memory for each channel
 - An inner data transfer loop defined by a minor byte transfer count
 - An outer data transfer loop defined by a major iteration count
- Channel activation via one of three methods:
 - Explicit software initiation
 - Initiation via a channel-to-channel linking mechanism for continuous transfers
 - Peripheral-paced hardware requests, one per channel
- Fixed-priority and round-robin channel arbitration
- Channel completion reported via optional interrupt requests
 - One interrupt per channel, optionally asserted at completion of major iteration count
 - Optional error terminations per channel and logically summed together to form one error interrupt to the interrupt controller
- Optional support for scatter/gather DMA processing
- Support for complex data structures

- Support to cancel transfers via software error detection and error correction
- Error detection and error correction

In the discussion of this module, *n* is used to reference the channel number.

22.2 Modes of operation

The eDMA operates in the following modes:

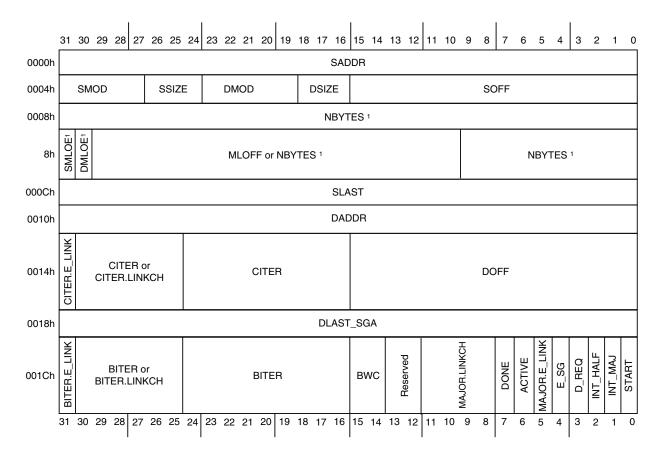
Table 22-3. Modes of operation

Mode	Description
Normal	In Normal mode, the eDMA transfers data between a source and a destination. The source and destination can be a memory block or an I/O block capable of operation with the eDMA.
	A service request initiates a transfer of a specific number of bytes (NBYTES) as specified in the transfer control descriptor (TCD). The minor loop is the sequence of read-write operations that transfers these NBYTES per service request. Each service request executes one iteration of the major loop, which transfers NBYTES of data.
Debug	DMA operation is configurable in Debug mode via the control register:
	 If CR[EDBG] is cleared, the DMA continues to operate. If CR[EDBG] is set, the eDMA stops transferring data. If Debug mode is entered while a channel is active, the eDMA continues operation until the channel retires.
Wait	Before entering Wait mode, the DMA attempts to complete its current transfer. After the transfer completes, the device enters Wait mode.

22.3 Memory map/register definition

The eDMA's programming model is partitioned into two regions:

- The first region defines a number of registers providing control functions
- The second region corresponds to the local transfer control descriptor (TCD) memory


22.3.1 TCD memory

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel 1, ... channel 15. Each TCD*n* definition is presented as 11 registers of 16 or 32 bits.

22.3.2 TCD initialization

Prior to activating a channel, you must initialize its TCD with the appropriate transfer profile.

22.3.3 TCD structure

¹ The fields implemented in Word 2 depend on whether DMA_CR[EMLM] is 0 or 1.

22.3.4 Reserved memory and bit fields

- Reading reserved bits in a register returns the value of zero.
- Writes to reserved bits in a register are ignored.
- Reading or writing a reserved memory location generates a bus error.

DMA memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_8000	Control Register (DMA_CR)	32	R/W	0000_0000h	22.3.1/450
4000_8004	Error Status Register (DMA_ES)	32	R	0000_0000h	22.3.2/453
4000_800C	Enable Request Register (DMA_ERQ)	32	R/W	0000_0000h	22.3.3/455
4000_8014	Enable Error Interrupt Register (DMA_EEI)	32	R/W	0000_0000h	22.3.4/457
4000_8018	Clear Enable Error Interrupt Register (DMA_CEEI)	8	W (always reads 0)	00h	22.3.5/459
4000_8019	Set Enable Error Interrupt Register (DMA_SEEI)	8	W (always reads 0)	00h	22.3.6/460
4000_801A	Clear Enable Request Register (DMA_CERQ)	8	W (always reads 0)	00h	22.3.7/461
4000_801B	Set Enable Request Register (DMA_SERQ)	8	W (always reads 0)	00h	22.3.8/462
4000_801C	Clear DONE Status Bit Register (DMA_CDNE)	8	W (always reads 0)	00h	22.3.9/463
4000_801D	Set START Bit Register (DMA_SSRT)	8	W (always reads 0)	00h	22.3.10/464
4000_801E	Clear Error Register (DMA_CERR)	8	W (always reads 0)	00h	22.3.11/465
4000_801F	Clear Interrupt Request Register (DMA_CINT)	8	W (always reads 0)	00h	22.3.12/466
4000_8024	Interrupt Request Register (DMA_INT)	32	R/W	0000_0000h	22.3.13/467
4000_802C	Error Register (DMA_ERR)	32	R/W	0000_0000h	22.3.14/469
4000_8034	Hardware Request Status Register (DMA_HRS)	32	R	0000_0000h	22.3.15/472
4000_8044	Enable Asynchronous Request in Stop Register (DMA_EARS)	32	R/W	0000_0000h	22.3.16/475
4000_8100	Channel n Priority Register (DMA_DCHPRI3)	8	R/W	See section	22.3.17/477
4000_8101	Channel n Priority Register (DMA_DCHPRI2)	8	R/W	See section	22.3.17/477
4000_8102	Channel n Priority Register (DMA_DCHPRI1)	8	R/W	See section	22.3.17/477

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_8103	Channel n Priority Register (DMA_DCHPRI0)	8	R/W	See section	22.3.17/477
4000_8104	Channel n Priority Register (DMA_DCHPRI7)	8	R/W	See section	22.3.17/477
4000_8105	Channel n Priority Register (DMA_DCHPRI6)	8	R/W	See section	22.3.17/477
4000_8106	Channel n Priority Register (DMA_DCHPRI5)	8	R/W	See section	22.3.17/477
4000_8107	Channel n Priority Register (DMA_DCHPRI4)	8	R/W	See section	22.3.17/477
4000_8108	Channel n Priority Register (DMA_DCHPRI11)	8	R/W	See section	22.3.17/477
4000_8109	Channel n Priority Register (DMA_DCHPRI10)	8	R/W	See section	22.3.17/477
4000_810A	Channel n Priority Register (DMA_DCHPRI9)	8	R/W	See section	22.3.17/477
4000_810B	Channel n Priority Register (DMA_DCHPRI8)	8	R/W	See section	22.3.17/477
4000_810C	Channel n Priority Register (DMA_DCHPRI15)	8	R/W	See section	22.3.17/477
4000_810D	Channel n Priority Register (DMA_DCHPRI14)	8	R/W	See section	22.3.17/477
4000_810E	Channel n Priority Register (DMA_DCHPRI13)	8	R/W	See section	22.3.17/477
4000_810F	Channel n Priority Register (DMA_DCHPRI12)	8	R/W	See section	22.3.17/477
4000_9000	TCD Source Address (DMA_TCD0_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9004	TCD Signed Source Address Offset (DMA_TCD0_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9006	TCD Transfer Attributes (DMA_TCD0_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9008	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD0_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9008	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD0_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9008	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD0_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_900C	TCD Last Source Address Adjustment (DMA_TCD0_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9010	TCD Destination Address (DMA_TCD0_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9014	TCD Signed Destination Address Offset (DMA_TCD0_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9016	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD0_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9016	DMA_TCD0_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9018	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD0_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_901C	TCD Control and Status (DMA_TCD0_CSR)	16	R/W	Undefined	22.3.30/488
4000_901E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD0_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_901E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD0_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9020	TCD Source Address (DMA_TCD1_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9024	TCD Signed Source Address Offset (DMA_TCD1_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9026	TCD Transfer Attributes (DMA_TCD1_ATTR)	16	R/W	Undefined	22.3.20/479

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_9028	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD1_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9028	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD1_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9028	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD1_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_902C	TCD Last Source Address Adjustment (DMA_TCD1_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9030	TCD Destination Address (DMA_TCD1_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9034	TCD Signed Destination Address Offset (DMA_TCD1_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9036	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD1_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9036	DMA_TCD1_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9038	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD1_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_903C	TCD Control and Status (DMA_TCD1_CSR)	16	R/W	Undefined	22.3.30/488
4000_903E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD1_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_903E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD1_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9040	TCD Source Address (DMA_TCD2_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9044	TCD Signed Source Address Offset (DMA_TCD2_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9046	TCD Transfer Attributes (DMA_TCD2_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9048	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD2_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9048	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD2_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9048	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD2_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_904C	TCD Last Source Address Adjustment (DMA_TCD2_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9050	TCD Destination Address (DMA_TCD2_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9054	TCD Signed Destination Address Offset (DMA_TCD2_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9056	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD2_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9056	DMA_TCD2_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9058	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD2_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_905C	TCD Control and Status (DMA_TCD2_CSR)	16	R/W	Undefined	22.3.30/488

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_905E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD2_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_905E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD2_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9060	TCD Source Address (DMA_TCD3_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9064	TCD Signed Source Address Offset (DMA_TCD3_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9066	TCD Transfer Attributes (DMA_TCD3_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9068	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD3_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9068	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD3_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9068	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD3_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_906C	TCD Last Source Address Adjustment (DMA_TCD3_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9070	TCD Destination Address (DMA_TCD3_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9074	TCD Signed Destination Address Offset (DMA_TCD3_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9076	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD3_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9076	DMA_TCD3_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9078	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD3_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_907C	TCD Control and Status (DMA_TCD3_CSR)	16	R/W	Undefined	22.3.30/488
4000_907E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD3_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_907E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD3_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9080	TCD Source Address (DMA_TCD4_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9084	TCD Signed Source Address Offset (DMA_TCD4_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9086	TCD Transfer Attributes (DMA_TCD4_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9088	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD4_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9088	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD4_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9088	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD4_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_908C	TCD Last Source Address Adjustment (DMA_TCD4_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9090	TCD Destination Address (DMA_TCD4_DADDR)	32	R/W	Undefined	22.3.25/484

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_9094	TCD Signed Destination Address Offset (DMA_TCD4_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9096	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD4_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9096	DMA_TCD4_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9098	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD4_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_909C	TCD Control and Status (DMA_TCD4_CSR)	16	R/W	Undefined	22.3.30/488
4000_909E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD4_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_909E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD4_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_90A0	TCD Source Address (DMA_TCD5_SADDR)	32	R/W	Undefined	22.3.18/478
4000_90A4	TCD Signed Source Address Offset (DMA_TCD5_SOFF)	16	R/W	Undefined	22.3.19/478
4000_90A6	TCD Transfer Attributes (DMA_TCD5_ATTR)	16	R/W	Undefined	22.3.20/479
4000_90A8	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD5_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_90A8	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD5_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_90A8	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD5_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_90AC	TCD Last Source Address Adjustment (DMA_TCD5_SLAST)	32	R/W	Undefined	22.3.24/483
4000_90B0	TCD Destination Address (DMA_TCD5_DADDR)	32	R/W	Undefined	22.3.25/484
4000_90B4	TCD Signed Destination Address Offset (DMA_TCD5_DOFF)	16	R/W	Undefined	22.3.26/484
4000_90B6	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD5_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_90B6	DMA_TCD5_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_90B8	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD5_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_90BC	TCD Control and Status (DMA_TCD5_CSR)	16	R/W	Undefined	22.3.30/488
4000_90BE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD5_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_90BE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD5_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_90C0	TCD Source Address (DMA_TCD6_SADDR)	32	R/W	Undefined	22.3.18/478
4000_90C4	TCD Signed Source Address Offset (DMA_TCD6_SOFF)	16	R/W	Undefined	22.3.19/478
4000_90C6	TCD Transfer Attributes (DMA_TCD6_ATTR)	16	R/W	Undefined	22.3.20/479
4000_90C8	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD6_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_90C8	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD6_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_90C8	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD6_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_90CC	TCD Last Source Address Adjustment (DMA_TCD6_SLAST)	32	R/W	Undefined	22.3.24/483
4000_90D0	TCD Destination Address (DMA_TCD6_DADDR)	32	R/W	Undefined	22.3.25/484
4000_90D4	TCD Signed Destination Address Offset (DMA_TCD6_DOFF)	16	R/W	Undefined	22.3.26/484
4000_90D6	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD6_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_90D6	DMA_TCD6_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_90D8	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD6_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_90DC	TCD Control and Status (DMA_TCD6_CSR)	16	R/W	Undefined	22.3.30/488
4000_90DE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD6_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_90DE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD6_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_90E0	TCD Source Address (DMA_TCD7_SADDR)	32	R/W	Undefined	22.3.18/478
4000_90E4	TCD Signed Source Address Offset (DMA_TCD7_SOFF)	16	R/W	Undefined	22.3.19/478
4000_90E6	TCD Transfer Attributes (DMA_TCD7_ATTR)	16	R/W	Undefined	22.3.20/479
4000_90E8	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD7_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_90E8	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD7_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_90E8	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD7_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_90EC	TCD Last Source Address Adjustment (DMA_TCD7_SLAST)	32	R/W	Undefined	22.3.24/483
4000_90F0	TCD Destination Address (DMA_TCD7_DADDR)	32	R/W	Undefined	22.3.25/484
4000_90F4	TCD Signed Destination Address Offset (DMA_TCD7_DOFF)	16	R/W	Undefined	22.3.26/484
4000_90F6	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD7_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_90F6	DMA_TCD7_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_90F8	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD7_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_90FC	TCD Control and Status (DMA_TCD7_CSR)	16	R/W	Undefined	22.3.30/488
4000_90FE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD7_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_90FE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD7_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9100	TCD Source Address (DMA_TCD8_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9104	TCD Signed Source Address Offset (DMA_TCD8_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9106	TCD Transfer Attributes (DMA_TCD8_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9108	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD8_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9108	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD8_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9108	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD8_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_910C	TCD Last Source Address Adjustment (DMA_TCD8_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9110	TCD Destination Address (DMA_TCD8_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9114	TCD Signed Destination Address Offset (DMA_TCD8_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9116	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD8_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9116	DMA_TCD8_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9118	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD8_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_911C	TCD Control and Status (DMA_TCD8_CSR)	16	R/W	Undefined	22.3.30/488
4000_911E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD8_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_911E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD8_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9120	TCD Source Address (DMA_TCD9_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9124	TCD Signed Source Address Offset (DMA_TCD9_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9126	TCD Transfer Attributes (DMA_TCD9_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9128	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD9_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9128	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD9_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9128	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD9_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_912C	TCD Last Source Address Adjustment (DMA_TCD9_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9130	TCD Destination Address (DMA_TCD9_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9134	TCD Signed Destination Address Offset (DMA_TCD9_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9136	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD9_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_9136	DMA_TCD9_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9138	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD9_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_913C	TCD Control and Status (DMA_TCD9_CSR)	16	R/W	Undefined	22.3.30/488
4000_913E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD9_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_913E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD9_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9140	TCD Source Address (DMA_TCD10_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9144	TCD Signed Source Address Offset (DMA_TCD10_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9146	TCD Transfer Attributes (DMA_TCD10_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9148	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD10_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9148	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD10_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9148	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD10_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_914C	TCD Last Source Address Adjustment (DMA_TCD10_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9150	TCD Destination Address (DMA_TCD10_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9154	TCD Signed Destination Address Offset (DMA_TCD10_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9156	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD10_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9156	DMA_TCD10_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9158	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD10_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_915C	TCD Control and Status (DMA_TCD10_CSR)	16	R/W	Undefined	22.3.30/488
4000_915E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD10_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_915E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD10_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9160	TCD Source Address (DMA_TCD11_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9164	TCD Signed Source Address Offset (DMA_TCD11_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9166	TCD Transfer Attributes (DMA_TCD11_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9168	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD11_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9168	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD11_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_9168	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD11_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_916C	TCD Last Source Address Adjustment (DMA_TCD11_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9170	TCD Destination Address (DMA_TCD11_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9174	TCD Signed Destination Address Offset (DMA_TCD11_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9176	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD11_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9176	DMA_TCD11_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9178	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD11_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_917C	TCD Control and Status (DMA_TCD11_CSR)	16	R/W	Undefined	22.3.30/488
4000_917E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD11_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_917E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD11_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_9180	TCD Source Address (DMA_TCD12_SADDR)	32	R/W	Undefined	22.3.18/478
4000_9184	TCD Signed Source Address Offset (DMA_TCD12_SOFF)	16	R/W	Undefined	22.3.19/478
4000_9186	TCD Transfer Attributes (DMA_TCD12_ATTR)	16	R/W	Undefined	22.3.20/479
4000_9188	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD12_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_9188	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD12_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_9188	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD12_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_918C	TCD Last Source Address Adjustment (DMA_TCD12_SLAST)	32	R/W	Undefined	22.3.24/483
4000_9190	TCD Destination Address (DMA_TCD12_DADDR)	32	R/W	Undefined	22.3.25/484
4000_9194	TCD Signed Destination Address Offset (DMA_TCD12_DOFF)	16	R/W	Undefined	22.3.26/484
4000_9196	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD12_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_9196	DMA_TCD12_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_9198	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD12_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_919C	TCD Control and Status (DMA_TCD12_CSR)	16	R/W	Undefined	22.3.30/488
4000_919E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD12_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490

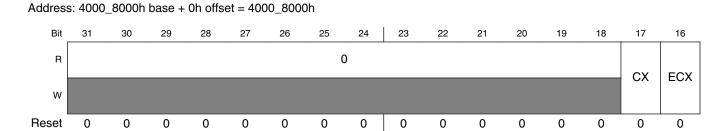
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_919E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD12_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_91A0	TCD Source Address (DMA_TCD13_SADDR)	32	R/W	Undefined	22.3.18/478
4000_91A4	TCD Signed Source Address Offset (DMA_TCD13_SOFF)	16	R/W	Undefined	22.3.19/478
4000_91A6	TCD Transfer Attributes (DMA_TCD13_ATTR)	16	R/W	Undefined	22.3.20/479
4000_91A8	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD13_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_91A8	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD13_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_91A8	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD13_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_91AC	TCD Last Source Address Adjustment (DMA_TCD13_SLAST)	32	R/W	Undefined	22.3.24/483
4000_91B0	TCD Destination Address (DMA_TCD13_DADDR)	32	R/W	Undefined	22.3.25/484
4000_91B4	TCD Signed Destination Address Offset (DMA_TCD13_DOFF)	16	R/W	Undefined	22.3.26/484
4000_91B6	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD13_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_91B6	DMA_TCD13_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_91B8	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD13_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_91BC	TCD Control and Status (DMA_TCD13_CSR)	16	R/W	Undefined	22.3.30/488
4000_91BE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD13_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_91BE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD13_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_91C0	TCD Source Address (DMA_TCD14_SADDR)	32	R/W	Undefined	22.3.18/478
4000_91C4	TCD Signed Source Address Offset (DMA_TCD14_SOFF)	16	R/W	Undefined	22.3.19/478
4000_91C6	TCD Transfer Attributes (DMA_TCD14_ATTR)	16	R/W	Undefined	22.3.20/479
4000_91C8	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD14_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_91C8	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD14_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_91C8	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD14_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_91CC	TCD Last Source Address Adjustment (DMA_TCD14_SLAST)	32	R/W	Undefined	22.3.24/483
4000_91D0	TCD Destination Address (DMA_TCD14_DADDR)	32	R/W	Undefined	22.3.25/484
4000_91D4	TCD Signed Destination Address Offset (DMA_TCD14_DOFF)	16	R/W	Undefined	22.3.26/484

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_91D6	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD14_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_91D6	DMA_TCD14_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_91D8	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD14_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_91DC	TCD Control and Status (DMA_TCD14_CSR)	16	R/W	Undefined	22.3.30/488
4000_91DE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD14_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_91DE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD14_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491
4000_91E0	TCD Source Address (DMA_TCD15_SADDR)	32	R/W	Undefined	22.3.18/478
4000_91E4	TCD Signed Source Address Offset (DMA_TCD15_SOFF)	16	R/W	Undefined	22.3.19/478
4000_91E6	TCD Transfer Attributes (DMA_TCD15_ATTR)	16	R/W	Undefined	22.3.20/479
4000_91E8	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD15_NBYTES_MLNO)	32	R/W	Undefined	22.3.21/480
4000_91E8	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD15_NBYTES_MLOFFNO)	32	R/W	Undefined	22.3.22/481
4000_91E8	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD15_NBYTES_MLOFFYES)	32	R/W	Undefined	22.3.23/482
4000_91EC	TCD Last Source Address Adjustment (DMA_TCD15_SLAST)	32	R/W	Undefined	22.3.24/483
4000_91F0	TCD Destination Address (DMA_TCD15_DADDR)	32	R/W	Undefined	22.3.25/484
4000_91F4	TCD Signed Destination Address Offset (DMA_TCD15_DOFF)	16	R/W	Undefined	22.3.26/484
4000_91F6	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD15_CITER_ELINKYES)	16	R/W	Undefined	22.3.27/485
4000_91F6	DMA_TCD15_CITER_ELINKNO	16	R/W	Undefined	22.3.28/486
4000_91F8	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD15_DLASTSGA)	32	R/W	Undefined	22.3.29/487
4000_91FC	TCD Control and Status (DMA_TCD15_CSR)	16	R/W	Undefined	22.3.30/488
4000_91FE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD15_BITER_ELINKYES)	16	R/W	Undefined	22.3.31/490
4000_91FE	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD15_BITER_ELINKNO)	16	R/W	Undefined	22.3.32/491

22.3.1 Control Register (DMA_CR)

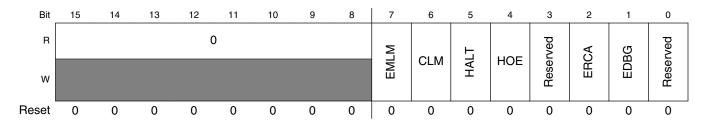
The CR defines the basic operating configuration of the DMA.

Arbitration can be configured to use either a fixed-priority or a round-robin scheme. For fixed-priority arbitration, the highest priority channel requesting service is selected to execute. The channel priority registers assign the priorities; see the DCHPRIn registers. For round-robin arbitration, the channel priorities are ignored and channels are cycled through (from high to low channel number) without regard to priority.


NOTE

For correct operation, writes to the CR register must be performed only when the DMA channels are inactive; that is, when TCDn_CSR[ACTIVE] bits are cleared.

Minor loop offsets are address offset values added to the final source address (TCDn_SADDR) or destination address (TCDn_DADDR) upon minor loop completion. When minor loop offsets are enabled, the minor loop offset (MLOFF) is added to the final source address (TCDn_SADDR), to the final destination address (TCDn_DADDR), or to both prior to the addresses being written back into the TCD. If the major loop is complete, the minor loop offset is ignored and the major loop address offsets (TCDn_SLAST and TCDn_DLAST_SGA) are used to compute the next TCDn_SADDR and TCDn_DADDR values.


When minor loop mapping is enabled (EMLM is 1), TCDn word2 is redefined. A portion of TCDn word2 is used to specify multiple fields: a source enable bit (SMLOE) to specify the minor loop offset should be applied to the source address (TCDn_SADDR) upon minor loop completion, a destination enable bit (DMLOE) to specify the minor loop offset should be applied to the destination address (TCDn_DADDR) upon minor loop completion, and the sign extended minor loop offset value (MLOFF). The same offset value (MLOFF) is used for both source and destination minor loop offsets. When either minor loop offset is enabled (SMLOE set or DMLOE set), the NBYTES field is reduced to 10 bits. When both minor loop offsets are disabled (SMLOE cleared and DMLOE cleared), the NBYTES field is a 30-bit vector.

When minor loop mapping is disabled (EMLM is 0), all 32 bits of TCDn word2 are assigned to the NBYTES field.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

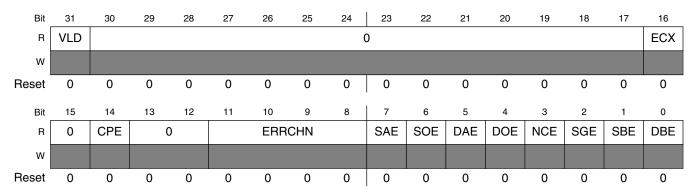
Memory map/register definition

DMA_CR field descriptions

Field	Description
31–18 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
17 CX	Cancel Transfer O Normal operation Cancel the remaining data transfer. Stop the executing channel and force the minor loop to finish. The cancel takes effect after the last write of the current read/write sequence. The CX bit clears itself after the cancel has been honored. This cancel retires the channel normally as if the minor loop was completed.
16 ECX	Error Cancel Transfer Normal operation Cancel the remaining data transfer in the same fashion as the CX bit. Stop the executing channel and force the minor loop to finish. The cancel takes effect after the last write of the current read/write sequence. The ECX bit clears itself after the cancel is honored. In addition to cancelling the transfer, ECX treats the cancel as an error condition, thus updating the Error Status register (DMAx_ES) and generating an optional error interrupt.
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 EMLM	 Enable Minor Loop Mapping Disabled. TCDn.word2 is defined as a 32-bit NBYTES field. Enabled. TCDn.word2 is redefined to include individual enable fields, an offset field, and the NBYTES field. The individual enable fields allow the minor loop offset to be applied to the source address, the destination address, or both. The NBYTES field is reduced when either offset is enabled.
6 CLM	Continuous Link Mode O A minor loop channel link made to itself goes through channel arbitration before being activated again. A minor loop channel link made to itself does not go through channel arbitration before being activated again. Upon minor loop completion, the channel activates again if that channel has a minor loop channel link enabled and the link channel is itself. This effectively applies the minor loop offsets and restarts the next minor loop.
5 HALT	Halt DMA Operations O Normal operation Stall the start of any new channels. Executing channels are allowed to complete. Channel execution resumes when this bit is cleared.
4 HOE	Halt On Error Normal operation Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.

DMA_CR field descriptions (continued)

Field	Description
3 Reserved	This field is reserved.
2 ERCA	Enable Round Robin Channel Arbitration
	0 Fixed priority arbitration is used for channel selection .
	1 Round robin arbitration is used for channel selection .
1 EDBG	Enable Debug
	0 When in debug mode, the DMA continues to operate.
	1 When in debug mode, the DMA stalls the start of a new channel. Executing channels are allowed to complete. Channel execution resumes when the system exits debug mode or the EDBG bit is cleared.
0 Reserved	This field is reserved.


22.3.2 Error Status Register (DMA_ES)

The ES provides information concerning the last recorded channel error. Channel errors can be caused by:

- A configuration error, that is:
 - An illegal setting in the transfer-control descriptor, or
 - An illegal priority register setting in fixed-arbitration
- An error termination to a bus master read or write cycle

See the Error Reporting and Handling section for more details.

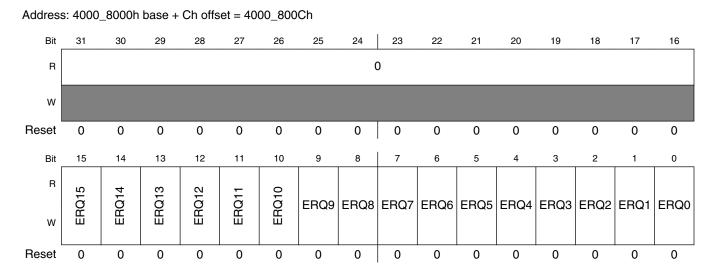
Address: 4000_8000h base + 4h offset = 4000_8004h

DMA_ES field descriptions

Field	Description
31 VLD	Logical OR of all ERR status bits

DMA_ES field descriptions (continued)

Field	Description
	0 No ERR bits are set.
	1 At least one ERR bit is set indicating a valid error exists that has not been cleared.
30–17 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
16 ECX	Transfer Canceled
LOX	0 No canceled transfers
	1 The last recorded entry was a canceled transfer by the error cancel transfer input
15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
14 CPE	Channel Priority Error
	No channel priority error The last recorded error was a configuration error in the channel priorities. Channel priorities are not
	1 The last recorded error was a configuration error in the channel priorities. Channel priorities are not unique.
13–12 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
11–8	Error Channel Number or Canceled Channel Number
ERRCHN	The channel number of the last recorded error, excluding CPE errors, or last recorded error canceled transfer.
7	Source Address Error
SAE	No source address configuration error.
	1 The last recorded error was a configuration error detected in the TCDn_SADDR field. TCDn_SADDR is inconsistent with TCDn_ATTR[SSIZE].
6	Source Offset Error
SOE	No source offset configuration error
	1 The last recorded error was a configuration error detected in the TCDn_SOFF field. TCDn_SOFF is inconsistent with TCDn_ATTR[SSIZE].
5	Destination Address Error
DAE	0 No destination address configuration error
	1 The last recorded error was a configuration error detected in the TCDn_DADDR field. TCDn_DADDR is inconsistent with TCDn_ATTR[DSIZE].
4 DOE	Destination Offset Error
BOL	0 No destination offset configuration error
	1 The last recorded error was a configuration error detected in the TCDn_DOFF field. TCDn_DOFF is inconsistent with TCDn_ATTR[DSIZE].
3 NCE	NBYTES/CITER Configuration Error
	0 No NBYTES/CITER configuration error
	1 The last recorded error was a configuration error detected in the TCDn_NBYTES or TCDn_CITER fields.
	 TCDn_NBYTES is not a multiple of TCDn_ATTR[SSIZE] and TCDn_ATTR[DSIZE], or TCDn_CITER[CITER] is equal to zero, or TCDn_CITER[ELINK] is not equal to TCDn_BITER[ELINK]


DMA_ES field descriptions (continued)

Field	Description
2	Scatter/Gather Configuration Error
SGE	0 No scatter/gather configuration error
	1 The last recorded error was a configuration error detected in the TCDn_DLASTSGA field. This field is checked at the beginning of a scatter/gather operation after major loop completion if TCDn_CSR[ESG] is enabled. TCDn_DLASTSGA is not on a 32 byte boundary.
1	Source Bus Error
SBE	 0 No source bus error 1 The last recorded error was a bus error on a source read
0 DBE	Destination Bus Error
	0 No destination bus error
	1 The last recorded error was a bus error on a destination write

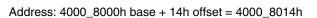
22.3.3 Enable Request Register (DMA_ERQ)

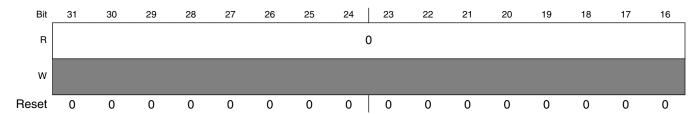
The ERQ register provides a bit map for the 16 channels to enable the request signal for each channel. The state of any given channel enable is directly affected by writes to this register; it is also affected by writes to the SERQ and CERQ registers. These registers are provided so the request enable for a single channel can easily be modified without needing to perform a read-modify-write sequence to the ERQ.

DMA request input signals and this enable request flag must be asserted before a channel's hardware service request is accepted. The state of the DMA enable request flag does not affect a channel service request made explicitly through software or a linked channel request.

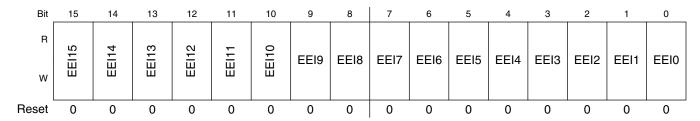
DMA_ERQ field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15 ERQ15	Enable DMA Request 15
Litaro	 The DMA request signal for the corresponding channel is disabled The DMA request signal for the corresponding channel is enabled
14	Enable DMA Request 14
ERQ14	
	0 The DMA request signal for the corresponding channel is disabled
10	1 The DMA request signal for the corresponding channel is enabled
13 ERQ13	Enable DMA Request 13
	0 The DMA request signal for the corresponding channel is disabled
10	1 The DMA request signal for the corresponding channel is enabled
12 ERQ12	Enable DMA Request 12
	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
11 ERQ11	Enable DMA Request 11
2.10.1	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
10 ERQ10	Enable DMA Request 10
LITQTO	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
9 ERQ9	Enable DMA Request 9
Lites	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
8	Enable DMA Request 8
ERQ8	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
7	Enable DMA Request 7
ERQ7	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
6 ERQ6	Enable DMA Request 6
Engo	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
5 EBO5	Enable DMA Request 5
ERQ5	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
4	Enable DMA Request 4
ERQ4	


DMA_ERQ field descriptions (continued)


Field	Description
	The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
3	Enable DMA Request 3
ERQ3	The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
2 ERQ2	Enable DMA Request 2
	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
1	Enable DMA Request 1
ERQ1	The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled
0 ERQ0	Enable DMA Request 0
	0 The DMA request signal for the corresponding channel is disabled
	1 The DMA request signal for the corresponding channel is enabled

22.3.4 Enable Error Interrupt Register (DMA_EEI)

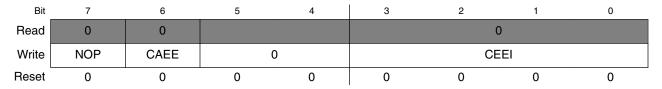

The EEI register provides a bit map for the 16 channels to enable the error interrupt signal for each channel. The state of any given channel's error interrupt enable is directly affected by writes to this register; it is also affected by writes to the SEEI and CEEI. These registers are provided so that the error interrupt enable for a single channel can easily be modified without the need to perform a read-modify-write sequence to the EEI register.

The DMA error indicator and the error interrupt enable flag must be asserted before an error interrupt request for a given channel is asserted to the interrupt controller.

Memory map/register definition

DMA_EEI field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15	Enable Error Interrupt 15
EEI15	Lhable Lift interrupt 13
	The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
14 EEI14	Enable Error Interrupt 14
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
13	Enable Error Interrupt 13
EEI13	The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
12	Enable Error Interrupt 12
EEI12	The error signal for corresponding channel does not generate an error interrupt
	The assertion of the error signal for corresponding channel generates an error interrupt request
11	Enable Error Interrupt 11
EEI11	
	The error signal for corresponding channel does not generate an error interrupt
10	1 The assertion of the error signal for corresponding channel generates an error interrupt request
10 EEI10	Enable Error Interrupt 10
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
9	Enable Error Interrupt 9
EEI9	The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
8	Enable Error Interrupt 8
EEI8	The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
7	Enable Error Interrupt 7
EEI7	The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
6 EEI6	Enable Error Interrupt 6


DMA_EEI field descriptions (continued)

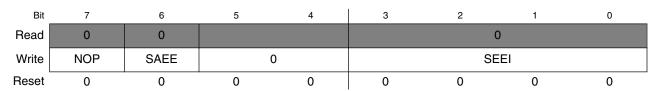
Field	Description
	The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
5 EEI5	Enable Error Interrupt 5
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
4 EEI4	Enable Error Interrupt 4
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
3 EEI3	Enable Error Interrupt 3
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
2 EEI2	Enable Error Interrupt 2
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
1 EEI1	Enable Error Interrupt 1
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
0 EEI0	Enable Error Interrupt 0
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request

22.3.5 Clear Enable Error Interrupt Register (DMA_CEEI)

The CEEI provides a simple memory-mapped mechanism to clear a given bit in the EEI to disable the error interrupt for a given channel. The data value on a register write causes the corresponding bit in the EEI to be cleared. Setting the CAEE bit provides a global clear function, forcing the EEI contents to be cleared, disabling all DMA request inputs. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000 8000h base + 18h offset = 4000 8018h

K22F Sub-Family Reference Manual, Rev. 3, 7/2014


DMA_CEEI field descriptions

Field	Description
7 NOP	No Op enable 0 Normal operation 1 No operation, ignore the other bits in this register
6 CAEE	Clear All Enable Error Interrupts O Clear only the EEI bit specified in the CEEI field 1 Clear all bits in EEI
5–4 Reserved	This field is reserved.
3–0 CEEI	Clear Enable Error Interrupt Clears the corresponding bit in EEI

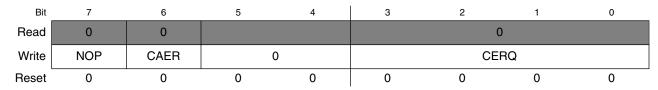
22.3.6 Set Enable Error Interrupt Register (DMA_SEEI)

The SEEI provides a simple memory-mapped mechanism to set a given bit in the EEI to enable the error interrupt for a given channel. The data value on a register write causes the corresponding bit in the EEI to be set. Setting the SAEE bit provides a global set function, forcing the entire EEI contents to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 19h offset = 4000_8019h

DMA_SEEI field descriptions

Field	Description
7	No Op enable
NOP	 Normal operation No operation, ignore the other bits in this register
6 SAEE	Sets All Enable Error Interrupts O Set only the EEI bit specified in the SEEI field. 1 Sets all bits in EEI
5–4 Reserved	This field is reserved.

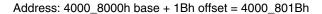

DMA_SEEI field descriptions (continued)

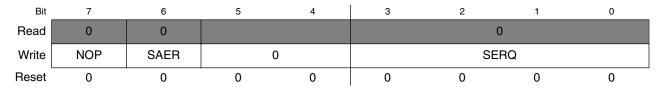
Field	Description
3–0 SEEI	Set Enable Error Interrupt
_	Sets the corresponding bit in EEI

22.3.7 Clear Enable Request Register (DMA_CERQ)

The CERQ provides a simple memory-mapped mechanism to clear a given bit in the ERQ to disable the DMA request for a given channel. The data value on a register write causes the corresponding bit in the ERQ to be cleared. Setting the CAER bit provides a global clear function, forcing the entire contents of the ERQ to be cleared, disabling all DMA request inputs. If NOP is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Ah offset = 4000_801Ah

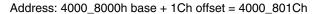


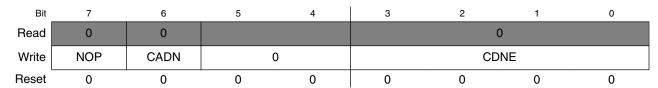

DMA CERQ field descriptions

Field	Description
7 NOP	No Op enable
	0 Normal operation
	1 No operation, ignore the other bits in this register
6 CAER	Clear All Enable Requests
	0 Clear only the ERQ bit specified in the CERQ field
	1 Clear all bits in ERQ
5–4 Reserved	This field is reserved.
3–0 CERQ	Clear Enable Request
	Clears the corresponding bit in ERQ.

22.3.8 Set Enable Request Register (DMA_SERQ)

The SERQ provides a simple memory-mapped mechanism to set a given bit in the ERQ to enable the DMA request for a given channel. The data value on a register write causes the corresponding bit in the ERQ to be set. Setting the SAER bit provides a global set function, forcing the entire contents of ERQ to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.




DMA_SERQ field descriptions

Field	Description
7	No Op enable
NOP	0 Normal operation
	No operation, ignore the other bits in this register
6 SAER	Set All Enable Requests
SAER	0 Set only the ERQ bit specified in the SERQ field
	1 Set all bits in ERQ
5–4 Reserved	This field is reserved.
3–0 SERQ	Set Enable Request
JET 10	Sets the corresponding bit in ERQ.

22.3.9 Clear DONE Status Bit Register (DMA_CDNE)

The CDNE provides a simple memory-mapped mechanism to clear the DONE bit in the TCD of the given channel. The data value on a register write causes the DONE bit in the corresponding transfer control descriptor to be cleared. Setting the CADN bit provides a global clear function, forcing all DONE bits to be cleared. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

DMA_CDNE field descriptions

Field	Description
7	No Op enable
NOP	O. Newsel energies
	0 Normal operation
	1 No operation, ignore the other bits in this register
6	Clears All DONE Bits
CADN	0 0
	0 Clears only the TCDn_CSR[DONE] bit specified in the CDNE field
	1 Clears all bits in TCDn_CSR[DONE]
5–4	This field is reserved.
Reserved	
3–0	Clear DONE Bit
CDNE	
	Clears the corresponding bit in TCDn_CSR[DONE]

22.3.10 Set START Bit Register (DMA_SSRT)

The SSRT provides a simple memory-mapped mechanism to set the START bit in the TCD of the given channel. The data value on a register write causes the START bit in the corresponding transfer control descriptor to be set. Setting the SAST bit provides a global set function, forcing all START bits to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Dh offset = 4000_801Dh

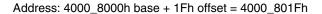
DMA_SSRT field descriptions

Field	Description
7	No Op enable
NOP	0 Normal operation
	No operation, ignore the other bits in this register
6 SAST	Set All START Bits (activates all channels)
	0 Set only the TCDn_CSR[START] bit specified in the SSRT field
	1 Set all bits in TCDn_CSR[START]
5–4 Reserved	This field is reserved.
3–0 SSRT	Set START Bit
	Sets the corresponding bit in TCDn_CSR[START]

22.3.11 Clear Error Register (DMA_CERR)

The CERR provides a simple memory-mapped mechanism to clear a given bit in the ERR to disable the error condition flag for a given channel. The given value on a register write causes the corresponding bit in the ERR to be cleared. Setting the CAEI bit provides a global clear function, forcing the ERR contents to be cleared, clearing all channel error indicators. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Eh offset = 4000_801Eh



DMA_CERR field descriptions

Field	Description
7	No Op enable
NOP	
	0 Normal operation
	1 No operation, ignore the other bits in this register
6	Clear All Error Indicators
CAEI	
	0 Clear only the ERR bit specified in the CERR field
	1 Clear all bits in ERR
5–4	This field is reserved.
Reserved	
3–0	Clear Error Indicator
CERR	
	Clears the corresponding bit in ERR

22.3.12 Clear Interrupt Request Register (DMA_CINT)

The CINT provides a simple, memory-mapped mechanism to clear a given bit in the INT to disable the interrupt request for a given channel. The given value on a register write causes the corresponding bit in the INT to be cleared. Setting the CAIR bit provides a global clear function, forcing the entire contents of the INT to be cleared, disabling all DMA interrupt requests. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

DMA_CINT field descriptions

Field	Description
7	No Op enable
NOP	
	0 Normal operation
	1 No operation, ignore the other bits in this register
6	Clear All Interrupt Requests
CAIR	
	0 Clear only the INT bit specified in the CINT field
	1 Clear all bits in INT
5–4	This field is reserved.
Reserved	
3–0	Clear Interrupt Request
CINT	
	Clears the corresponding bit in INT

22.3.13 Interrupt Request Register (DMA_INT)

The INT register provides a bit map for the 16 channels signaling the presence of an interrupt request for each channel. Depending on the appropriate bit setting in the transfer-control descriptors, the eDMA engine generates an interrupt on data transfer completion. The outputs of this register are directly routed to the interrupt controller (INTC). During the interrupt-service routine associated with any given channel, it is the software's responsibility to clear the appropriate bit, negating the interrupt request. Typically, a write to the CINT register in the interrupt service routine is used for this purpose.

The state of any given channel's interrupt request is directly affected by writes to this register; it is also affected by writes to the CINT register. On writes to INT, a 1 in any bit position clears the corresponding channel's interrupt request. A zero in any bit position has no affect on the corresponding channel's current interrupt status. The CINT register is provided so the interrupt request for a single channel can easily be cleared without the need to perform a read-modify-write sequence to the INT register.

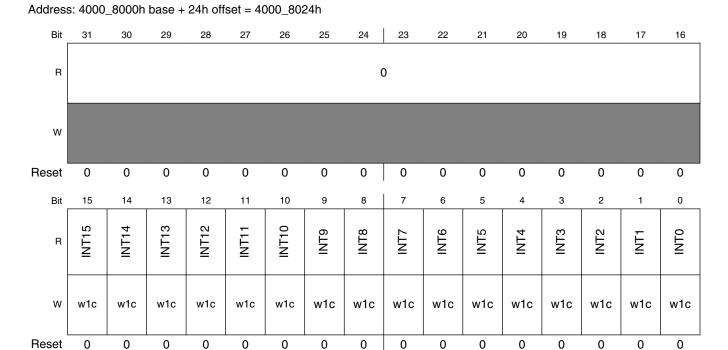


Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

DMA_INT field descriptions

Description

This read-only field is reserved and always has the value 0.

This field is reserved.

Field

31 - 16

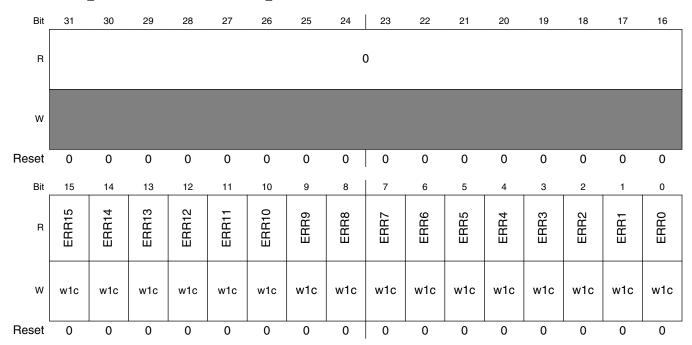
Reserved

DMA_INT field descriptions (continued)

Field	Description
15	Interrupt Request 15
INT15	0 The interrupt request for corresponding channel is cleared
	The interrupt request for corresponding channel is active
14	Interrupt Request 14
INT14	0 The interrupt request for corresponding channel is cleared
	The interrupt request for corresponding channel is active
13 INT13	Interrupt Request 13
INTIS	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
12	Interrupt Request 12
INT12	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
11 INT11	Interrupt Request 11
INTIT	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
10 INT10	Interrupt Request 10
INT10	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
9	Interrupt Request 9
INT9	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
8	Interrupt Request 8
INT8	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
7	Interrupt Request 7
INT7	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
6 INT6	Interrupt Request 6
11410	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
5 INT5	Interrupt Request 5
	O The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
4 INT4	Interrupt Request 4
	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active

DMA_INT field descriptions (continued)

Field	Description
3	Interrupt Request 3
INT3	
	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
2	Interrupt Request 2
INT2	
	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
1	Interrupt Request 1
INT1	
	The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
0	Interrupt Request 0
INT0	
	The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active


22.3.14 Error Register (DMA_ERR)

The ERR provides a bit map for the 16 channels, signaling the presence of an error for each channel. The eDMA engine signals the occurrence of an error condition by setting the appropriate bit in this register. The outputs of this register are enabled by the contents of the EEI, and then routed to the interrupt controller. During the execution of the interrupt-service routine associated with any DMA errors, it is software's responsibility to clear the appropriate bit, negating the error-interrupt request. Typically, a write to the CERR in the interrupt-service routine is used for this purpose. The normal DMA channel completion indicators (setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request) are not affected when an error is detected.

The contents of this register can also be polled because a non-zero value indicates the presence of a channel error regardless of the state of the EEI. The state of any given channel's error indicators is affected by writes to this register; it is also affected by writes to the CERR. On writes to the ERR, a one in any bit position clears the corresponding channel's error status. A zero in any bit position has no affect on the corresponding channel's current error status. The CERR is provided so the error indicator for a single channel can easily be cleared.

Memory map/register definition

Address: 4000_8000h base + 2Ch offset = 4000_802Ch

DMA_ERR field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15 ERR15	Error In Channel 15
	An error in this channel has not occurredAn error in this channel has occurred
14 ERR14	Error In Channel 14
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
13 ERR13	Error In Channel 13
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
12 ERR12	Error In Channel 12
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
11 ERR11	Error In Channel 11
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
10 ERR10	Error In Channel 10
	0 An error in this channel has not occurred
	1 An error in this channel has occurred

DMA_ERR field descriptions (continued)

Field	Description
9	Error In Channel 9
ERR9	0 An error in this channel has not occurred
	1 An error in this channel has occurred
8	Error In Channel 8
ERR8	
	0 An error in this channel has not occurred 1 An error in this channel has occurred
7	
7 ERR7	Error In Channel 7
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
6 ERR6	Error In Channel 6
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
5 ERR5	Error In Channel 5
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
4 ERR4	Error In Channel 4
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
3 ERR3	Error In Channel 3
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
2 ERR2	Error In Channel 2
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
1 ERR1	Error In Channel 1
	0 An error in this channel has not occurred
	1 An error in this channel has occurred
0 ERR0	Error In Channel 0
	0 An error in this channel has not occurred
	1 An error in this channel has occurred

22.3.15 Hardware Request Status Register (DMA_HRS)

The HRS register provides a bit map for the DMA channels, signaling the presence of a hardware request for each channel. The hardware request status bits reflect the current state of the register and qualified (via the ERQ fields) DMA request signals as seen by the DMA's arbitration logic. This view into the hardware request signals may be used for debug purposes.

NOTE

These bits reflect the state of the request as seen by the arbitration logic. Therefore, this status is affected by the ERQ bits.

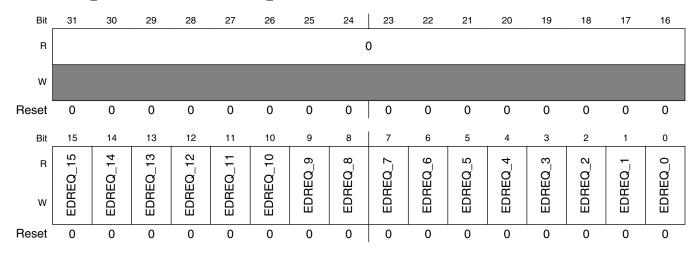
DMA_HRS field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15 HRS15	Hardware Request Status Channel 15

DMA_HRS field descriptions (continued)

Field	Description
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 15 is not present
	1 A hardware service request for channel 15 is present
14 HRS14	Hardware Request Status Channel 14
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 14 is not present
	1 A hardware service request for channel 14 is present
13 HRS13	Hardware Request Status Channel 13
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 13 is not present
	1 A hardware service request for channel 13 is present
12 HRS12	Hardware Request Status Channel 12
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 12 is not present
	1 A hardware service request for channel 12 is present
11	Hardware Request Status Channel 11
HRS11	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	A hardware service request for channel 11 is not present
	A hardware service request for channel 11 is present
10 HRS10	Hardware Request Status Channel 10
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 10 is not present
	1 A hardware service request for channel 10 is present
9 HRS9	Hardware Request Status Channel 9
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.

DMA_HRS field descriptions (continued)


Field	Description
	0 A hardware service request for channel 9 is not present
	1 A hardware service request for channel 9 is present
8 HRS8	Hardware Request Status Channel 8
111100	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 8 is not present
	1 A hardware service request for channel 8 is present
7 HRS7	Hardware Request Status Channel 7
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 7 is not present
	1 A hardware service request for channel 7 is present
6	Hardware Request Status Channel 6
HRS6	
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 6 is not present
	1 A hardware service request for channel 6 is present
5	Hardware Request Status Channel 5
HRS5	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 5 is not present
	A hardware service request for channel 5 is present
4	Hardware Request Status Channel 4
HRS4	
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 4 is not present
	1 A hardware service request for channel 4 is present
3	Hardware Request Status Channel 3
HRS3	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 3 is not present
	A hardware service request for channel 3 is present
2	Hardware Request Status Channel 2
HRS2	

DMA_HRS field descriptions (continued)

Field	Description
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 2 is not present
	1 A hardware service request for channel 2 is present
1 HRS1	Hardware Request Status Channel 1
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 1 is not present
	1 A hardware service request for channel 1 is present
0 HRS0	Hardware Request Status Channel 0
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 0 is not present
	1 A hardware service request for channel 0 is present

22.3.16 Enable Asynchronous Request in Stop Register (DMA_EARS)

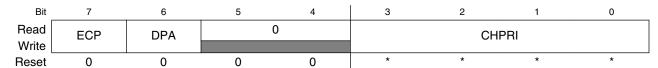
Address: 4000_8000h base + 44h offset = 4000_8044h

DMA_EARS field descriptions

Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

DMA_EARS field descriptions (continued)

Field	Description
15	Enable asynchronous DMA request in stop mode for channel 15
EDREQ_15	Disable asynchronous DMA request for channel 15.
	1 Enable asynchronous DMA request for channel 15.
14 EDREQ_14	Enable asynchronous DMA request in stop mode for channel 14
	0 Disable asynchronous DMA request for channel 14.
	1 Enable asynchronous DMA request for channel 14.
13 EDREQ_13	Enable asynchronous DMA request in stop mode for channel 13
	O Disable asynchronous DMA request for channel 13.
10	1 Enable asynchronous DMA request for channel 13.
12 EDREQ_12	Enable asynchronous DMA request in stop mode for channel 12
251124_12	0 Disable asynchronous DMA request for channel 12.
	1 Enable asynchronous DMA request for channel 12.
11 EDREQ_11	Enable asynchronous DMA request in stop mode for channel 11
_	0 Disable asynchronous DMA request for channel 11.
	1 Enable asynchronous DMA request for channel 11.
10 EDREQ_10	Enable asynchronous DMA request in stop mode for channel 10
	O Disable asynchronous DMA request for channel 10.
	1 Enable asynchronous DMA request for channel 10.
9 EDREQ_9	Enable asynchronous DMA request in stop mode for channel 9
	0 Disable asynchronous DMA request for channel 9.
	1 Enable asynchronous DMA request for channel 9.
8 EDREQ_8	Enable asynchronous DMA request in stop mode for channel 8
	0 Disable asynchronous DMA request for channel 8.
	1 Enable asynchronous DMA request for channel 8.
7 EDREQ_7	Enable asynchronous DMA request in stop mode for channel 7
	0 Disable asynchronous DMA request for channel 7.
	1 Enable asynchronous DMA request for channel 7.
6 EDREQ_6	Enable asynchronous DMA request in stop mode for channel 6
	O Disable asynchronous DMA request for channel 6.
	1 Enable asynchronous DMA request for channel 6.
5 EDREQ_5	Enable asynchronous DMA request in stop mode for channel 5
	Disable asynchronous DMA request for channel 5. Finable asynchronous DMA request for channel 5.
	1 Enable asynchronous DMA request for channel 5.
4 EDREQ_4	Enable asynchronous DMA request in stop mode for channel 4
	 Disable asynchronous DMA request for channel 4. Enable asynchronous DMA request for channel 4.
	1 Enable asynchronous Diviz request for chariner 4.


DMA_EARS field descriptions (continued)

Field	Description
3 EDREQ 3	Enable asynchronous DMA request in stop mode for channel 3.
_	0 Disable asynchronous DMA request for channel 3.
	1 Enable asynchronous DMA request for channel 3.
2 EDREQ_2	Enable asynchronous DMA request in stop mode for channel 2.
	0 Disable asynchronous DMA request for channel 2.
	1 Enable asynchronous DMA request for channel 2.
1 EDREQ_1	Enable asynchronous DMA request in stop mode for channel 1.
_	0 Disable asynchronous DMA request for channel 1
	1 Enable asynchronous DMA request for channel 1.
0 EDREQ 0	Enable asynchronous DMA request in stop mode for channel 0.
_	0 Disable asynchronous DMA request for channel 0.
	1 Enable asynchronous DMA request for channel 0.

22.3.17 Channel n Priority Register (DMA_DCHPRIn)

When fixed-priority channel arbitration is enabled (CR[ERCA] = 0), the contents of these registers define the unique priorities associated with each channel. The channel priorities are evaluated by numeric value; for example, 0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc. Software must program the channel priorities with unique values; otherwise, a configuration error is reported. The range of the priority value is limited to the values of 0 through 15.

Address: 4000_8000h base + 100h offset + $(1d \times i)$, where i=0d to 15d

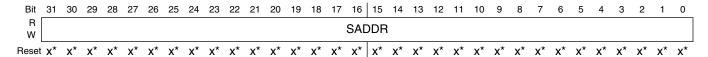
^{*} Notes:

· CHPRI field: See bit field description.

DMA_DCHPRIn field descriptions

Field	Description
7	Enable Channel Preemption.
ECP	
	O Channel n cannot be suspended by a higher priority channel's service request.
	1 Channel n can be temporarily suspended by the service request of a higher priority channel.

Table continues on the next page...


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

DMA_DCHPRIn field descriptions (continued)

Field	Description
6 DPA	Disable Preempt Ability.
	0 Channel n can suspend a lower priority channel.
	1 Channel n cannot suspend any channel, regardless of channel priority.
5–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3–0 CHPRI	Channel n Arbitration Priority
	Channel priority when fixed-priority arbitration is enabled
	NOTE: Reset value for the channel priority field, CHPRI, is equal to the corresponding channel number for each priority register, that is, DCHPRI15[CHPRI] = 0b1111.

22.3.18 TCD Source Address (DMA_TCDn_SADDR)

Address: 4000_8000h base + 1000h offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

DMA_TCDn_SADDR field descriptions

Field	Description
31–0 SADDR	Source Address
	Memory address pointing to the source data.

22.3.19 TCD Signed Source Address Offset (DMA_TCDn_SOFF)

Address: 4000_8000h base + 1004h offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

x = Undefined at reset.

[•] x = Undefined at reset.

DMA_TCDn_SOFF field descriptions

Field	Description
15–0	Source address signed offset
SOFF	Sign-extended offset applied to the current source address to form the next-state value as each source read is completed.

22.3.20 TCD Transfer Attributes (DMA_TCDn_ATTR)

Address: 4000_8000h base + 1006h offset + $(32d \times i)$, where i=0d to 15d

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read Write			SMOD				SSIZE				DMOD				DSIZE		
Reset	X *	х*	X*	Х*	X*	X*	X*	х*	x*	х*	Х*	Х*	X*	X*	х*	х*	

^{*} Notes:

DMA_TCDn_ATTR field descriptions

Field	Description				
15–11 SMOD	Source Address Modulo				
	0 Source address modulo feature is disabled				
	≠0 This value defines a specific address range specified to be the value after SADDR + SOFF calculation is performed on the original register value. Setting this field provides the ability to implement a circular data queue easily. For data queues requiring power-of-2 size bytes, the queue should start at a 0-modulo-size address and the SMOD field should be set to the appropriate value for the queue, freezing the desired number of upper address bits. The value programmed into this field specifies the number of lower address bits allowed to change. For a circular queue application, the SOFF is typically set to the transfer size to implement post-increment addressing with the SMOD function constraining the addresses to a 0-modulo-size range.				
10–8 SSIZE	Source data transfer size				
	NOTE: Using a Reserved value causes a configuration error.				
	000 8-bit				
	001 16-bit				
	010 32-bit				
	011 Reserved				
	100 16-byte				
	101 32-byte burst (4 beats of 64 bits) 110 Reserved				
	111 Reserved				
7–3	Destination Address Modulo				
DMOD	Destination Address Modulo				
	See the SMOD definition				

[•] x = Undefined at reset.

DMA_TCDn_ATTR field descriptions (continued)

Field	Description
2-0 DSIZE	Destination data transfer size
	See the SSIZE definition

22.3.21 TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCDn_NBYTES_MLNO)

This register, or one of the next two registers (TCD_NBYTES_MLOFFNO, TCD_NBYTES_MLOFFYES), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

• Minor loop mapping is disabled (CR[EMLM] = 0)

If minor loop mapping is enabled, see the TCD_NBYTES_MLOFFNO and TCD_NBYTES_MLOFFYES register descriptions for the definition of TCD word 2.

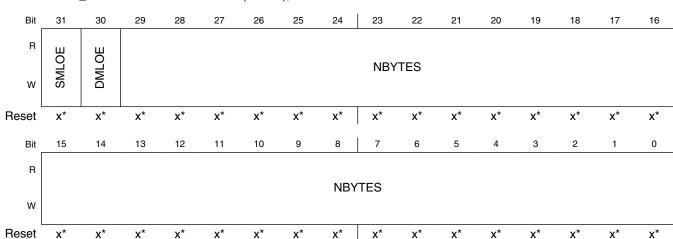
Address: 4000_8000h base + 1008h offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

DMA_TCDn_NBYTES_MLNO field descriptions

Field	Description
31–0 NBYTES	Minor Byte Transfer Count
	Number of bytes to be transferred in each service request of the channel. As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed. NOTE: An NBYTES value of 0x0000_0000 is interpreted as a 4 GB transfer.

x = Undefined at reset.


22.3.22 TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCDn_NBYTES_MLOFFNO)

One of three registers (this register, TCD_NBYTES_MLNO, or TCD_NBYTES_MLOFFYES), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

- Minor loop mapping is enabled (CR[EMLM] = 1) and
- SMLOE = 0 and DMLOE = 0

If minor loop mapping is enabled and SMLOE or DMLOE is set, then refer to the TCD_NBYTES_MLOFFYES register description. If minor loop mapping is disabled, then refer to the TCD_NBYTES_MLNO register description.

Address: 4000_8000h base + 1008h offset + (32d × i), where i=0d to 15d

DMA_TCDn_NBYTES_MLOFFNO field descriptions

Field	Description
31 SMLOE	Source Minor Loop Offset Enable
5202	Selects whether the minor loop offset is applied to the source address upon minor loop completion.
	0 The minor loop offset is not applied to the SADDR
	1 The minor loop offset is applied to the SADDR
30	Destination Minor Loop Offset enable
DMLOE	Selects whether the minor loop offset is applied to the destination address upon minor loop completion.

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

^{*} Notes:

[•] x = Undefined at reset.

DMA_TCDn_NBYTES_MLOFFNO field descriptions (continued)

Field	Description
	0 The minor loop offset is not applied to the DADDR
	1 The minor loop offset is applied to the DADDR
29–0 NBYTES	Minor Byte Transfer Count Number of bytes to be transferred in each service request of the channel.
	As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed.

22.3.23 TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCDn_NBYTES_MLOFFYES)

One of three registers (this register, TCD_NBYTES_MLNO, or TCD_NBYTES_MLOFFNO), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

- Minor loop mapping is enabled (CR[EMLM] = 1) and
- Minor loop offset is enabled (SMLOE or DMLOE = 1)

If minor loop mapping is enabled and SMLOE and DMLOE are cleared, then refer to the TCD_NBYTES_MLOFFNO register description. If minor loop mapping is disabled, then refer to the TCD_NBYTES_MLNO register description.

Address: 4000_8000h base + 1008h offset + (32d × i), where i=0d to 15d 21 20 19 16 R DMLOE SMLOE **MLOFF** W Reset х* х* х* х* х* х* х* х* х* Bit 15 14 13 12 11 10 8 7 5 2 R **MLOFF NBYTES** W \mathbf{x}^{\star} х* \mathbf{x}^{\star} х* х* х* х* х* Reset

^{*} Notes:

• x = Undefined at reset.

DMA_TCDn_NBYTES_MLOFFYES field descriptions

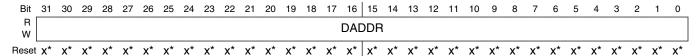
Field	Description
31 SMLOE	Source Minor Loop Offset Enable
	Selects whether the minor loop offset is applied to the source address upon minor loop completion.
	0 The minor loop offset is not applied to the SADDR
	1 The minor loop offset is applied to the SADDR
30 DMLOE	Destination Minor Loop Offset enable
	Selects whether the minor loop offset is applied to the destination address upon minor loop completion.
	0 The minor loop offset is not applied to the DADDR
	1 The minor loop offset is applied to the DADDR
29-10 MLOFF	If SMLOE or DMLOE is set, this field represents a sign-extended offset applied to the source or destination address to form the next-state value after the minor loop completes.
9–0	Minor Byte Transfer Count
NBYTES	Number of bytes to be transferred in each service request of the channel.
	As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed.

22.3.24 TCD Last Source Address Adjustment (DMA_TCDn_SLAST)

Address: 4000_8000h base + 100Ch offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

• x = Undefined at reset.


DMA_TCDn_SLAST field descriptions

Field	Description
SLAST	Last Source Address Adjustment Adjustment value added to the source address at the completion of the major iteration count. This value
	can be applied to restore the source address to the initial value, or adjust the address to reference the next data structure. This register uses two's complement notation; the overflow bit is discarded.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

22.3.25 TCD Destination Address (DMA_TCDn_DADDR)

Address: 4000_8000h base + 1010h offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

DMA_TCDn_DADDR field descriptions

Field	Description
31–0 DADDR	Destination Address
	Memory address pointing to the destination data.

22.3.26 TCD Signed Destination Address Offset (DMA_TCDn_DOFF)

Address: 4000_8000h base + 1014h offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

DMA_TCDn_DOFF field descriptions

Field	Description
DOFF	Destination Address Signed Offset Sign-extended offset applied to the current destination address to form the next-state value as each destination write is completed.

[•] x = Undefined at reset.

[•] x = Undefined at reset.

22.3.27 TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCDn_CITER_ELINKYES)

If TCDn_CITER[ELINK] is set, the TCDn_CITER register is defined as follows.

Address: 4000_8000h base + 1016h offset + $(32d \times i)$, where i=0d to 15d

Bit	15	14	13	12	11	10	9	8
Read Write	ELINK	C)		LIN	KCH		CITER
Reset	х*	X*	X*	X *	X*	X*	X *	X*
Bit	7	6	5	4	3	2	1	0
Read Write				CIT	ER			
Reset	X *	x *	X *	X *	x*	x *	x *	x *

^{*} Notes:

DMA_TCDn_CITER_ELINKYES field descriptions

Field	Description
15 ELINK	Enable channel-to-channel linking on minor-loop complete
ELINA	As the channel completes the minor loop, this flag enables linking to another channel, defined by the LINKCH field. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.
	If channel linking is disabled, the CITER value is extended to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.
	NOTE: This bit must be equal to the BITER[ELINK] bit; otherwise, a configuration error is reported.
	0 The channel-to-channel linking is disabled
	1 The channel-to-channel linking is enabled
14–13 Reserved	This field is reserved.
12–9	Link Channel Number
LINKCH	If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted, the eDMA engine initiates a channel service request to the channel defined by this field by setting that channel's TCDn_CSR[START] bit.
8-0	Current Major Iteration Count
CITER	This 9-bit (ELINK = 1) or 15-bit (ELINK = 0) count represents the current major loop count for the channel. It is decremented each time the minor loop is completed and updated in the transfer control descriptor memory. After the major iteration count is exhausted, the channel performs a number of operations, for example, final source and destination address calculations, optionally generating an interrupt to signal channel completion before reloading the CITER field from the Beginning Iteration Count (BITER) field.

[•] x = Undefined at reset.

Memory map/register definition

DMA_TCDn_CITER_ELINKYES field descriptions (continued)

Field		Description
	NOTE:	When the CITER field is initially loaded by software, it must be set to the same value as that contained in the BITER field.
	NOTE:	If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.

22.3.28 TCD Current Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCDn_CITER_ELINKNO)

If TCDn_CITER[ELINK] is cleared, the TCDn_CITER register is defined as follows.

Address: 4000_8000h base + 1016h offset + $(32d \times i)$, where i=0d to 15d

Bit	15	14	13	12	11	10	9	8
Read Write	ELINK				CITER			
Reset	x *							
Bit	7	6	5	4	3	2	1	0
Read Write				CIT	ER			
Reset	X *							

^{*} Notes:

DMA_TCDn_CITER_ELINKNO field descriptions

Field	Description
15 ELINK	Enable channel-to-channel linking on minor-loop complete
LLINK	As the channel completes the minor loop, this flag enables linking to another channel, defined by the LINKCH field. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.
	If channel linking is disabled, the CITER value is extended to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.
	NOTE: This bit must be equal to the BITER[ELINK] bit; otherwise, a configuration error is reported.
	0 The channel-to-channel linking is disabled
	1 The channel-to-channel linking is enabled
14-0	Current Major Iteration Count
CITER	This 9-bit (ELINK = 1) or 15-bit (ELINK = 0) count represents the current major loop count for the channel. It is decremented each time the minor loop is completed and updated in the transfer control descriptor memory. After the major iteration count is exhausted, the channel performs a number of operations, for

[•] x = Undefined at reset.

DMA_TCDn_CITER_ELINKNO field descriptions (continued)

Field	Description			
	example, final source and destination address calculations, optionally generating an interrupt to signal channel completion before reloading the CITER field from the Beginning Iteration Count (BITER) field.			
	NOTE: When the CITER field is initially loaded by software, it must be set to the same value as that contained in the BITER field.			
	NOTE: If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.			

22.3.29 TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCDn_DLASTSGA)

Address: 4000_8000h base + 1018h offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

x = Undefined at reset.

DMA_TCDn_DLASTSGA field descriptions

Field	Description
31–0 DLASTSGA	Destination last address adjustment or the memory address for the next transfer control descriptor to be loaded into this channel (scatter/gather).
	If (TCDn_CSR[ESG] = 0) then:
	 Adjustment value added to the destination address at the completion of the major iteration count. This value can apply to restore the destination address to the initial value or adjust the address to reference the next data structure. This field uses two's complement notation for the final destination address adjustment.
	Otherwise:
	 This address points to the beginning of a 0-modulo-32-byte region containing the next transfer control descriptor to be loaded into this channel. This channel reload is performed as the major iteration count completes. The scatter/gather address must be 0-modulo-32-byte, otherwise a configuration error is reported.

22.3.30 TCD Control and Status (DMA_TCDn_CSR)

Address: 4000_8000h base + 101Ch offset + $(32d \times i)$, where i=0d to 15d

Bit	15	14	13	12	11	10	9	8
Read Write	BWC		0		MAJORLINKCH			
Reset	X*	X *	X *	X *	X*	x *	X *	X *
Bit	7	6	5	4	3	2	1	0
Read Write	DONE	ACTIVE	MAJORELI NK	ESG	DREQ	INTHALF	INTMAJOR	START
Reset	X*	x*	X*	Χ*	x*	x*	X*	x*

^{*} Notes:

DMA_TCDn_CSR field descriptions

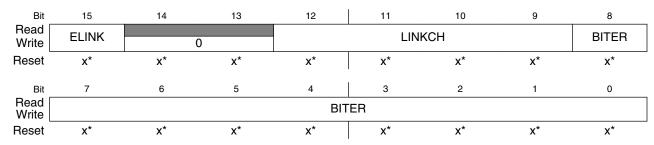
Field	Description			
15–14 BWC	Bandwidth Control			
	Throttles the amount of bus bandwidth consumed by the eDMA. Generally, as the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. This field forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.			
	NOTE: If the source and destination sizes are equal, this field is ignored between the first and second transfers and after the last write of each minor loop. This behavior is a side effect of reducing start-up latency.			
	00 No eDMA engine stalls			
	01 Reserved 10 eDMA engine stalls for 4 cycles after each R/W.			
	11 eDMA engine stalls for 8 cycles after each R/W.			
13–12 Reserved	This field is reserved.			
11–8 MAJORLINKCH	Link Channel Number			
WAJORLINKOH	If (MAJORELINK = 0) then: • No channel-to-channel linking, or chaining, is performed after the major loop counter is exhausted.			
	Otherwise:			
	 After the major loop counter is exhausted, the eDMA engine initiates a channel service request at the channel defined by this field by setting that channel's TCDn_CSR[START] bit. 			
7 DONE	Channel Done			
DONE	This flag indicates the eDMA has completed the major loop. The eDMA engine sets it as the CITER count reaches zero. The software clears it, or the hardware when the channel is activated.			
	NOTE: This bit must be cleared to write the MAJORELINK or ESG bits.			
6 ACTIVE	Channel Active			

[•] x = Undefined at reset.

DMA_TCDn_CSR field descriptions (continued)

Field	Description
	This flag signals the channel is currently in execution. It is set when channel service begins, and is cleared by the eDMA as the minor loop completes or when any error condition is detected.
5	Enable channel-to-channel linking on major loop complete
MAJORELINK	As the channel completes the major loop, this flag enables the linking to another channel, defined by MAJORLINKCH. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.
	NOTE: To support the dynamic linking coherency model, this field is forced to zero when written to while the TCDn_CSR[DONE] bit is set.
	0 The channel-to-channel linking is disabled.
	1 The channel-to-channel linking is enabled.
4	Enable Scatter/Gather Processing
ESG	As the channel completes the major loop, this flag enables scatter/gather processing in the current channel. If enabled, the eDMA engine uses DLASTSGA as a memory pointer to a 0-modulo-32 address containing a 32-byte data structure loaded as the transfer control descriptor into the local memory.
	NOTE: To support the dynamic scatter/gather coherency model, this field is forced to zero when written to while the TCDn_CSR[DONE] bit is set.
	0 The current channel's TCD is normal format.
	1 The current channel's TCD specifies a scatter gather format. The DLASTSGA field provides a memory pointer to the next TCD to be loaded into this channel after the major loop completes its execution.
3	Disable Request
DREQ	If this flag is set, the eDMA hardware automatically clears the corresponding ERQ bit when the current major iteration count reaches zero.
	0 The channel's ERQ bit is not affected.
	1 The channel's ERQ bit is cleared when the major loop is complete.
2	Enable an interrupt when major counter is half complete.
INTHALF	If this flag is set, the channel generates an interrupt request by setting the appropriate bit in the INT register when the current major iteration count reaches the halfway point. Specifically, the comparison performed by the eDMA engine is (CITER == (BITER >> 1)). This halfway point interrupt request is provided to support double-buffered, also known as ping-pong, schemes or other types of data movement where the processor needs an early indication of the transfer's progress.
	NOTE: If BITER = 1, do not use INTHALF. Use INTMAJOR instead.
	The half-point interrupt is disabled.The half-point interrupt is enabled.
1	Enable an interrupt when major iteration count completes.
INTMAJOR	If this flag is set, the channel generates an interrupt request by setting the appropriate bit in the INT when the current major iteration count reaches zero.
	0 The end-of-major loop interrupt is disabled.
	1 The end-of-major loop interrupt is enabled.
0 START	Channel Start

Memory map/register definition


DMA_TCDn_CSR field descriptions (continued)

Field	Description
	If this flag is set, the channel is requesting service. The eDMA hardware automatically clears this flag after the channel begins execution.
	The channel is not explicitly started.The channel is explicitly started via a software initiated service request.

22.3.31 TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCDn_BITER_ELINKYES)

If the TCDn_BITER[ELINK] bit is set, the TCDn_BITER register is defined as follows.

Address: 4000_8000h base + 101Eh offset + $(32d \times i)$, where i=0d to 15d

^{*} Notes:

DMA_TCDn_BITER_ELINKYES field descriptions

Field	Description
15 ELINK	Enables channel-to-channel linking on minor loop complete
LENG	As the channel completes the minor loop, this flag enables the linking to another channel, defined by BITER[LINKCH]. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel. If channel linking disables, the BITER value extends to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.
	0 The channel-to-channel linking is disabled
	1 The channel-to-channel linking is enabled
14–13 Reserved	This field is reserved.
12–9	Link Channel Number
LINKCH	If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted, the eDMA engine initiates a channel service request at the channel defined by this field by setting that channel's TCDn_CSR[START] bit.

[•] x = Undefined at reset.

DMA_TCDn_BITER_ELINKYES field descriptions (continued)

Field	Description
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.
8–0 BITER	Starting major iteration count As the transfer control descriptor is first loaded by software, this 9-bit (ELINK = 1) or 15-bit (ELINK = 0) field must be equal to the value in the CITER field. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field. If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.

22.3.32 TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCDn_BITER_ELINKNO)

If the TCDn_BITER[ELINK] bit is cleared, the TCDn_BITER register is defined as follows.

Address: 4000_8000h base + 101Eh offset + (32d × i), where i=0d to 15d

Bit	15	14	13	12	11	10	9	8
Read Write	ELINK				BITER			
Reset	x *							
Bit	7	6	5	4	3	2	1	0
Read Write				BIT	ER			
Reset	x *	x*						

^{*} Notes:

DMA_TCDn_BITER_ELINKNO field descriptions

Field	Description
15 ELINK	Enables channel-to-channel linking on minor loop complete
LLINK	As the channel completes the minor loop, this flag enables the linking to another channel, defined by BITER[LINKCH]. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel. If channel linking is disabled, the BITER value extends to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.

[•] x = Undefined at reset.

Functional description

DMA_TCDn_BITER_ELINKNO field descriptions (continued)

Field	Description
	0 The channel-to-channel linking is disabled
	1 The channel-to-channel linking is enabled
14–0 BITER	Starting Major Iteration Count
BITEN	As the transfer control descriptor is first loaded by software, this 9-bit (ELINK = 1) or 15-bit (ELINK = 0) field must be equal to the value in the CITER field. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field is reloaded into the CITER field. If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.

22.4 Functional description

The operation of the eDMA is described in the following subsections.

22.4.1 eDMA basic data flow

The basic flow of a data transfer can be partitioned into three segments.

As shown in the following diagram, the first segment involves the channel activation:

Figure 22-290. eDMA operation, part 1

This example uses the assertion of the eDMA peripheral request signal to request service for channel n. Channel activation via software and the TCDn_CSR[START] bit follows the same basic flow as peripheral requests. The eDMA request input signal is registered internally and then routed through the eDMA engine: first through the control module, then into the program model and channel arbitration. In the next cycle, the channel arbitration performs, using the fixed-priority or round-robin algorithm. After arbitration is complete, the activated channel number is sent through the address path and converted into the required address to access the local memory for TCDn. Next, the TCD memory is accessed and the required descriptor read from the local memory and loaded into the eDMA engine address path channel x or y registers. The TCD memory is 64 bits wide to minimize the time needed to fetch the activated channel descriptor and load it into the address path channel x or y registers.

The following diagram illustrates the second part of the basic data flow:

Functional description

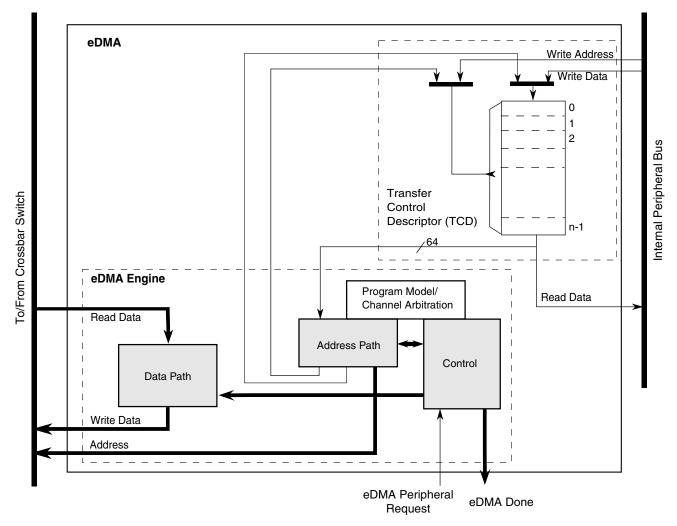


Figure 22-291. eDMA operation, part 2

The modules associated with the data transfer (address path, data path, and control) sequence through the required source reads and destination writes to perform the actual data movement. The source reads are initiated and the fetched data is temporarily stored in the data path block until it is gated onto the internal bus during the destination write. This source read/destination write processing continues until the minor byte count has transferred.

After the minor byte count has moved, the final phase of the basic data flow is performed. In this segment, the address path logic performs the required updates to certain fields in the appropriate TCD, e.g., SADDR, DADDR, CITER. If the major iteration count is exhausted, additional operations are performed. These include the final address adjustments and reloading of the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled). The updates to the TCD memory and the assertion of an interrupt request are shown in the following diagram.

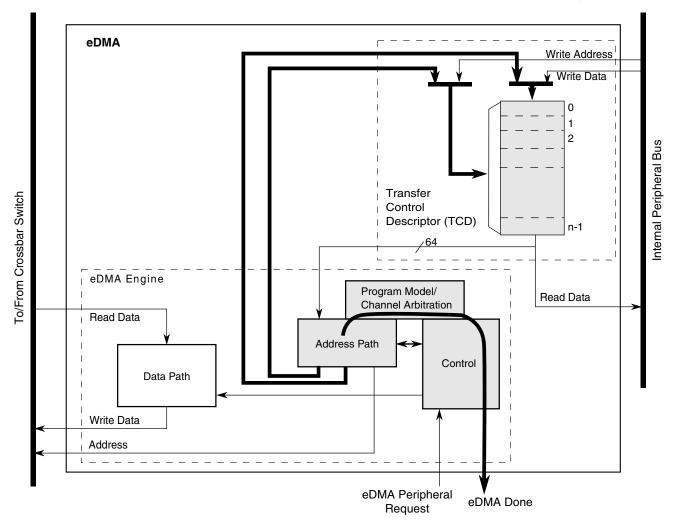


Figure 22-292. eDMA operation, part 3

22.4.2 Fault reporting and handling

Channel errors are reported in the Error Status register (DMAx_ES) and can be caused by:

- A configuration error, which is an illegal setting in the transfer-control descriptor or an illegal priority register setting in Fixed-Arbitration mode, or
- An error termination to a bus master read or write cycle

A configuration error is reported when the starting source or destination address, source or destination offsets, minor loop byte count, or the transfer size represent an inconsistent state. Each of these possible causes are detailed below:

- The addresses and offsets must be aligned on 0-modulo-transfer-size boundaries.
- The minor loop byte count must be a multiple of the source and destination transfer sizes.

Functional description

- All source reads and destination writes must be configured to the natural boundary of the programmed transfer size respectively.
- In fixed arbitration mode, a configuration error is caused by any two channel priorities being equal. All channel priority levels must be unique when fixed arbitration mode is enabled.
- If a scatter/gather operation is enabled upon channel completion, a configuration error is reported if the scatter/gather address (DLAST_SGA) is not aligned on a 32-byte boundary.
- If minor loop channel linking is enabled upon channel completion, a configuration error is reported when the link is attempted if the TCDn_CITER[E_LINK] bit does not equal the TCDn_BITER[E_LINK] bit.

If enabled, all configuration error conditions, except the scatter/gather and minor-loop link errors, report as the channel activates and asserts an error interrupt request. A scatter/gather configuration error is reported when the scatter/gather operation begins at major loop completion when properly enabled. A minor loop channel link configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is stopped and the appropriate bus error flag set. In this case, the state of the channel's transfer control descriptor is updated by the eDMA engine with the current source address, destination address, and current iteration count at the point of the fault. When a system bus error occurs, the channel terminates after the next transfer. Due to pipeline effect, the next transfer is already in progress when the bus error is received by the eDMA. If a bus error occurs on the last read prior to beginning the write sequence, the write executes using the data captured during the bus error. If a bus error occurs on the last write prior to switching to the next read sequence, the read sequence executes before the channel terminates due to the destination bus error.

A transfer may be cancelled by software with the CR[CX] bit. When a cancel transfer request is recognized, the DMA engine stops processing the channel. The current readwrite sequence is allowed to finish. If the cancel occurs on the last read-write sequence of a major or minor loop, the cancel request is discarded and the channel retires normally.

The error cancel transfer is the same as a cancel transfer except the Error Status register (DMAx_ES) is updated with the cancelled channel number and ECX is set. The TCD of a cancelled channel contains the source and destination addresses of the last transfer saved in the TCD. If the channel needs to be restarted, you must re-initialize the TCD because the aforementioned fields no longer represent the original parameters. When a transfer is cancelled by the error cancel transfer mechanism, the channel number is loaded into DMA_ES[ERRCHN] and ECX and VLD are set. In addition, an error interrupt may be generated if enabled.

The occurrence of any error causes the eDMA engine to stop normal processing of the active channel immediately (it goes to its error processing states and the transaction to the system bus still has pipeline effect), and the appropriate channel bit in the eDMA error register is asserted. At the same time, the details of the error condition are loaded into the Error Status register (DMAx_ES). The major loop complete indicators, setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is detected. After the error status has been updated, the eDMA engine continues operating by servicing the next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a channel is terminated by an error and then issues another service request before the error is fixed, that channel executes and terminates with the same error condition.

22.4.3 Channel preemption

Channel preemption is enabled on a per-channel basis by setting the DCHPRIn[ECP] bit. Channel preemption allows the executing channel's data transfers to temporarily suspend in favor of starting a higher priority channel. After the preempting channel has completed all its minor loop data transfers, the preempted channel is restored and resumes execution. After the restored channel completes one read/write sequence, it is again eligible for preemption. If any higher priority channel is requesting service, the restored channel is suspended and the higher priority channel is serviced. Nested preemption, that is, attempting to preempt a preempting channel, is not supported. After a preempting channel begins execution, it cannot be preempted. Preemption is available only when fixed arbitration is selected.

A channel's ability to preempt another channel can be disabled by setting DCHPRIn[DPA]. When a channel's preempt ability is disabled, that channel cannot suspend a lower priority channel's data transfer, regardless of the lower priority channel's ECP setting. This allows for a pool of low priority, large data-moving channels to be defined. These low priority channels can be configured to not preempt each other, thus preventing a low priority channel from consuming the preempt slot normally available to a true, high priority channel.

22.4.4 Performance

This section addresses the performance of the eDMA module, focusing on two separate metrics:

Functional description

- In the traditional data movement context, performance is best expressed as the peak data transfer rates achieved using the eDMA. In most implementations, this transfer rate is limited by the speed of the source and destination address spaces.
- In a second context where device-paced movement of single data values to/from peripherals is dominant, a measure of the requests that can be serviced in a fixed time is a more relevant metric. In this environment, the speed of the source and destination address spaces remains important. However, the microarchitecture of the eDMA also factors significantly into the resulting metric.

22.4.4.1 Peak transfer rates

The peak transfer rates for several different source and destination transfers are shown in the following tables. These tables assume:

- Internal SRAM can be accessed with zero wait-states when viewed from the system bus data phase
- All internal peripheral bus reads require two wait-states, and internal peripheral bus writes three wait-states, when viewed from the system bus data phase
- All internal peripheral bus accesses are 32-bits in size

This table compares peak transfer rates based on different possible system speeds. Specific chips/devices may not support all system speeds listed.

Table 22-293. eDMA peak transfer rates (Mbytes/sec)

Custom Coasal Width	Internal SRAM-to-	32 bit internal peripheral	Internal SRAM-to-32 bit
System Speed, Width	Internal SRAM	bus-to-Internal SRAM	internal peripheral bus
66.7 MHz, 32 bit	133.3	66.7	53.3
83.3 MHz, 32 bit	166.7	83.3	66.7
100.0 MHz, 32 bit	200.0	100.0	80.0
133.3 MHz, 32 bit	266.7	133.3	106.7
150.0 MHz, 32 bit	300.0	150.0	120.0

Internal-SRAM-to-internal-SRAM transfers occur at the core's datapath width. For all transfers involving the internal peripheral bus, 32-bit transfer sizes are used. In all cases, the transfer rate includes the time to read the source plus the time to write the destination.

22.4.4.2 Peak request rates

The second performance metric is a measure of the number of DMA requests that can be serviced in a given amount of time. For this metric, assume that the peripheral request causes the channel to move a single internal peripheral bus-mapped operand to/from internal SRAM. The same timing assumptions used in the previous example apply to this calculation. In particular, this metric also reflects the time required to activate the channel.

The eDMA design supports the following hardware service request sequence. Note that the exact timing from Cycle 7 is a function of the response times for the channel's read and write accesses. In the case of an internal peripheral bus read and internal SRAM write, the combined data phase time is 4 cycles. For an SRAM read and internal peripheral bus write, it is 5 cycles.

Table 22-294. Hardware service request process

Cycle		Description
With internal peripheral bus read and internal SRAM write	With SRAM read and internal peripheral bus write	
-	1	eDMA peripheral request is asserted.
2	2	The eDMA peripheral request is registered locally in the eDMA module and qualified. TCDn_CSR[START] bit initiated requests start at this point with the registering of the user write to TCDn word 7.
(3	Channel arbitration begins.
4	4	Channel arbitration completes. The transfer control descriptor local memory read is initiated.
5-	-6	The first two parts of the activated channel's TCD is read from the local memory. The memory width to the eDMA engine is 64 bits, so the entire descriptor can be accessed in four cycles
7	7	The first system bus read cycle is initiated, as the third part of the channel's TCD is read from the local memory. Depending on the state of the crossbar switch, arbitration at the system bus may insert an additional cycle of delay here.
8–11 8–12		The last part of the TCD is read in. This cycle represents the first data phase for the read, and the address phase for the destination write.
12 13		This cycle represents the data phase of the last destination write.
13 14		The eDMA engine completes the execution of the inner minor loop and prepares to write back the required TCDn fields into the local memory. The TCDn word 7 is read and checked for channel linking or scatter/gather requests.
14 15		The appropriate fields in the first part of the TCD <i>n</i> are written back into the local memory.

Table 22-294. Hardware service request process (continued)

Cycle		Description
With internal peripheral bus read and internal SRAM write	With SRAM read and internal peripheral bus write	
15	16	The fields in the second part of the TCDn are written back into the local memory. This cycle coincides with the next channel arbitration cycle start.
16	17	The next channel to be activated performs the read of the first part of its TCD from the local memory. This is equivalent to Cycle 4 for the first channel's service request.

Assuming zero wait states on the system bus, DMA requests can be processed every 9 cycles. Assuming an average of the access times associated with internal peripheral bus-to-SRAM (4 cycles) and SRAM-to-internal peripheral bus (5 cycles), DMA requests can be processed every 11.5 cycles (4 + (4+5)/2 + 3). This is the time from Cycle 4 to Cycle x +5. The resulting peak request rate, as a function of the system frequency, is shown in the following table.

Table 22-295. eDMA peak request rate (MReq/sec)

Cystom fraguency (MILITA	Request rate	Request rate
System frequency (MHz)	with zero wait states	with wait states
66.6	7.4	5.8
83.3	9.2	7.2
100.0	11.1	8.7
133.3	14.8	11.6
150.0	16.6	13.0

A general formula to compute the peak request rate with overlapping requests is:

$$PEAKreq = freq / [entry + (1 + read_ws) + (1 + write_ws) + exit]$$

where:

Table 22-296. Peak request formula operands

Operand	Description
PEAKreq	Peak request rate
freq	System frequency
entry	Channel startup (4 cycles)
read_ws	Wait states seen during the system bus read data phase
write_ws	Wait states seen during the system bus write data phase
exit	Channel shutdown (3 cycles)

22.4.4.3 eDMA performance example

Consider a system with the following characteristics:

- Internal SRAM can be accessed with one wait-state when viewed from the system bus data phase
- All internal peripheral bus reads require two wait-states, and internal peripheral bus writes three wait-states viewed from the system bus data phase
- System operates at 150 MHz

For an SRAM to internal peripheral bus transfer,

$$PEAKreq = 150 MHz / [4 + (1 + 1) + (1 + 3) + 3] cycles = 11.5 Mreq/sec$$

For an internal peripheral bus to SRAM transfer,

$$PEAKreq = 150 MHz / [4 + (1 + 2) + (1 + 1) + 3] cycles = 12.5 Mreq/sec$$

Assuming an even distribution of the two transfer types, the average peak request rate would be:

$$PEAKreq = (11.5 Mreq/sec + 12.5 Mreq/sec) / 2 = 12.0 Mreq/sec$$

The minimum number of cycles to perform a single read/write, zero wait states on the system bus, from a cold start where no channel is executing and eDMA is idle are:

- 11 cycles for a software, that is, a TCDn_CSR[START] bit, request
- 12 cycles for a hardware, that is, an eDMA peripheral request signal, request

Two cycles account for the arbitration pipeline and one extra cycle on the hardware request resulting from the internal registering of the eDMA peripheral request signals. For the peak request rate calculations above, the arbitration and request registering is absorbed in or overlaps the previous executing channel.

Note

When channel linking or scatter/gather is enabled, a two cycle delay is imposed on the next channel selection and startup. This allows the link channel or the scatter/gather channel to be eligible and considered in the arbitration pool for next channel selection.

22.5 Initialization/application information

The following sections discuss initialization of the eDMA and programming considerations.

22.5.1 eDMA initialization

To initialize the eDMA:

- 1. Write to the CR if a configuration other than the default is desired.
- 2. Write the channel priority levels to the DCHPRI*n* registers if a configuration other than the default is desired.
- 3. Enable error interrupts in the EEI register if so desired.
- 4. Write the 32-byte TCD for each channel that may request service.
- 5. Enable any hardware service requests via the ERQH and ERQL registers.
- 6. Request channel service via either:
 - Software: setting the TCD*n*_CSR[START]
 - Hardware: slave device asserting its eDMA peripheral request signal

After any channel requests service, a channel is selected for execution based on the arbitration and priority levels written into the programmer's model. The eDMA engine reads the entire TCD, including the TCD control and status fields, as shown in the following table, for the selected channel into its internal address path module.

As the TCD is read, the first transfer is initiated on the internal bus, unless a configuration error is detected. Transfers from the source, as defined by TCD*n*_SADDR, to the destination, as defined by TCD*n*_DADDR, continue until the number of bytes specified by TCD*n*_NBYTES are transferred.

When the transfer is complete, the eDMA engine's local TCD*n*_SADDR, TCD*n*_DADDR, and TCD*n*_CITER are written back to the main TCD memory and any minor loop channel linking is performed, if enabled. If the major loop is exhausted, further post processing executes, such as interrupts, major loop channel linking, and scatter/gather operations, if enabled.

Table 22-297. TCD Control and Status fields

TCDn_CSR field name	Description
START	Control bit to start channel explicitly when using a software initiated DMA service (Automatically cleared by hardware)
ACTIVE	Status bit indicating the channel is currently in execution
DONE	Status bit indicating major loop completion (cleared by software when using a software initiated DMA service)
D_REQ	Control bit to disable DMA request at end of major loop completion when using a hardware initiated DMA service
BWC	Control bits for throttling bandwidth control of a channel
E_SG	Control bit to enable scatter-gather feature
INT_HALF	Control bit to enable interrupt when major loop is half complete
INT_MAJ	Control bit to enable interrupt when major loop completes

The following figure shows how each DMA request initiates one minor-loop transfer, or iteration, without CPU intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration count (BITER).

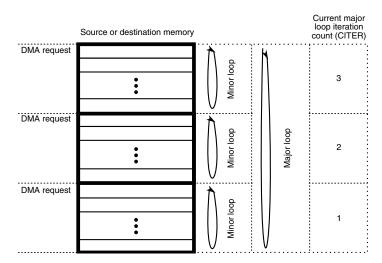


Figure 22-293. Example of multiple loop iterations

The following figure lists the memory array terms and how the TCD settings interrelate.

Initialization/application information

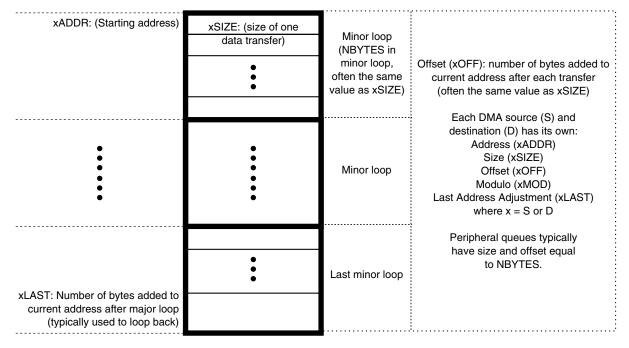


Figure 22-294. Memory array terms

22.5.2 Programming errors

The eDMA performs various tests on the transfer control descriptor to verify consistency in the descriptor data. Most programming errors are reported on a per channel basis with the exception of channel priority error (ES[CPE]).

For all error types other than channel priority error, the channel number causing the error is recorded in the Error Status register (DMAx_ES). If the error source is not removed before the next activation of the problem channel, the error is detected and recorded again.

If priority levels are not unique, when any channel requests service, a channel priority error is reported. The highest channel priority with an active request is selected, but the lowest numbered channel with that priority is selected by arbitration and executed by the eDMA engine. The hardware service request handshake signals, error interrupts, and error reporting is associated with the selected channel.

22.5.3 Arbitration mode considerations

This section discusses arbitration considerations for the eDMA.

22.5.3.1 Fixed channel arbitration

In this mode, the channel service request from the highest priority channel is selected to execute.

22.5.3.2 Round-robin channel arbitration

Channels are serviced starting with the highest channel number and rotating through to the lowest channel number without regard to the channel priority levels.

22.5.4 Performing DMA transfers

This section presents examples on how to perform DMA transfers with the eDMA.

22.5.4.1 Single request

To perform a simple transfer of n bytes of data with one activation, set the major loop to one (TCDn_CITER = TCDn_BITER = 1). The data transfer begins after the channel service request is acknowledged and the channel is selected to execute. After the transfer is complete, the TCDn_CSR[DONE] bit is set and an interrupt generates if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has a byte wide memory port located at 0x1000. The destination memory has a 32-bit port located at 0x2000. The address offsets are programmed in increments to match the transfer size: one byte for the source and four bytes for the destination. The final source and destination addresses are adjusted to return to their beginning values.

```
TCDn_CITER = TCDn_BITER = 1
TCDn_NBYTES = 16
TCDn_SADDR = 0x1000
TCDn_SOFF = 1
TCDn_ATTR[SSIZE] = 0
TCDn_SLAST = -16
TCDn_DADDR = 0x2000
TCDn_DADDR = 0x2000
TCDn_DAFF = 4
TCDn_ATTR[DSIZE] = 2
TCDn_DLAST_SGA = -16
TCDn_CSR[INT_MAJ] = 1
TCDn_CSR[START] = 1 (Should be written last after all other fields have been initialized)
All other TCDn fields = 0
```

This generates the following event sequence:

Initialization/application information

- 1. User write to the TCDn_CSR[START] bit requests channel service.
- 2. The channel is selected by arbitration for servicing.
- 3. eDMA engine writes: $TCDn_CSR[DONE] = 0$, $TCDn_CSR[START] = 0$, $TCDn_CSR[ACTIVE] = 1$.
- 4. eDMA engine reads: channel TCD data from local memory to internal register file.
- 5. The source-to-destination transfers are executed as follows:
 - a. Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read byte from 0x1003.
 - b. Write 32-bits to location $0x2000 \rightarrow$ first iteration of the minor loop.
 - c. Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read byte from 0x1007.
 - d. Write 32-bits to location $0x2004 \rightarrow$ second iteration of the minor loop.
 - e. Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read byte from 0x100B.
 - f. Write 32-bits to location $0x2008 \rightarrow$ third iteration of the minor loop.
 - g. Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, read byte from 0x100F.
 - h. Write 32-bits to location $0x200C \rightarrow last$ iteration of the minor loop \rightarrow major loop complete.
- 6. The eDMA engine writes: $TCDn_SADDR = 0x1000$, $TCDn_DADDR = 0x2000$, $TCDn_CITER = 1$ ($TCDn_BITER$).
- 7. The eDMA engine writes: $TCDn_CSR[ACTIVE] = 0$, $TCDn_CSR[DONE] = 1$, INT[n] = 1.
- 8. The channel retires and the eDMA goes idle or services the next channel.

22.5.4.2 Multiple requests

The following example transfers 32 bytes via two hardware requests, but is otherwise the same as the previous example. The only fields that change are the major loop iteration count and the final address offsets. The eDMA is programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel's hardware requests are enabled in the ERQ register, the slave device initiates channel service requests.

```
TCDn_CITER = TCDn_BITER = 2
TCDn_SLAST = -32
TCDn_DLAST_SGA = -32
```

This would generate the following sequence of events:

- 1. First hardware, that is, eDMA peripheral, request for channel service.
- 2. The channel is selected by arbitration for servicing.
- 3. eDMA engine writes: $TCDn_CSR[DONE] = 0$, $TCDn_CSR[START] = 0$, $TCDn_CSR[ACTIVE] = 1$.
- 4. eDMA engine reads: channel TCDn data from local memory to internal register file.
- 5. The source to destination transfers are executed as follows:
 - a. Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read byte from 0x1003.
 - b. Write 32-bits to location $0x2000 \rightarrow$ first iteration of the minor loop.
 - c. Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read byte from 0x1007.
 - d. Write 32-bits to location $0x2004 \rightarrow$ second iteration of the minor loop.
 - e. Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read byte from 0x100B.
 - f. Write 32-bits to location $0x2008 \rightarrow$ third iteration of the minor loop.
 - g. Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, read byte from 0x100F.
 - h. Write 32-bits to location $0x200C \rightarrow last$ iteration of the minor loop.
- 6. eDMA engine writes: $TCDn_SADDR = 0x1010$, $TCDn_DADDR = 0x2010$, $TCDn_CITER = 1$.
- 7. eDMA engine writes: $TCDn_CSR[ACTIVE] = 0$.
- 8. The channel retires → one iteration of the major loop. The eDMA goes idle or services the next channel.
- 9. Second hardware, that is, eDMA peripheral, requests channel service.
- 10. The channel is selected by arbitration for servicing.
- 11. eDMA engine writes: $TCDn_CSR[DONE] = 0$, $TCDn_CSR[START] = 0$, $TCDn_CSR[ACTIVE] = 1$.

Initialization/application information

- 12. eDMA engine reads: channel TCD data from local memory to internal register file.
- 13. The source to destination transfers are executed as follows:
 - a. Read byte from location 0x1010, read byte from location 0x1011, read byte from 0x1012, read byte from 0x1013.
 - b. Write 32-bits to location $0x2010 \rightarrow$ first iteration of the minor loop.
 - c. Read byte from location 0x1014, read byte from location 0x1015, read byte from 0x1016, read byte from 0x1017.
 - d. Write 32-bits to location $0x2014 \rightarrow$ second iteration of the minor loop.
 - e. Read byte from location 0x1018, read byte from location 0x1019, read byte from 0x101A, read byte from 0x101B.
 - f. Write 32-bits to location $0x2018 \rightarrow$ third iteration of the minor loop.
 - g. Read byte from location 0x101C, read byte from location 0x101D, read byte from 0x101E, read byte from 0x101F.
 - h. Write 32-bits to location $0x201C \rightarrow last$ iteration of the minor loop \rightarrow major loop complete.
- 14. eDMA engine writes: $TCDn_SADDR = 0x1000$, $TCDn_DADDR = 0x2000$, $TCDn_CITER = 2$ ($TCDn_BITER$).
- 15. eDMA engine writes: TCD*n*_CSR[ACTIVE] = 0, TCD*n*_CSR[DONE] = 1, INT[n] = 1.
- 16. The channel retires → major loop complete. The eDMA goes idle or services the next channel.

22.5.4.3 Using the modulo feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size of the queue is a power of 2. MOD is a 5-bit field for the source and destination in the TCD, and it specifies which lower address bits increment from their original value after the address+offset calculation. All upper address bits remain the same as in the original value. A setting of 0 for this field disables the modulo feature.

The following table shows how the transfer addresses are specified based on the setting of the MOD field. Here a circular buffer is created where the address wraps to the original value while the 28 upper address bits (0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the offset is set to 4 bytes and the MOD field is set to 4, allowing for a 2^4 byte (16-byte) size queue.

Transfer Number	Address	
1	0x12345670	
2	0x12345674	
3	0x12345678	
4	0x1234567C	
5	0x12345670	
6	0x12345674	

Table 22-298. Modulo example

22.5.5 Monitoring transfer descriptor status

This section discusses how to monitor eDMA status.

22.5.5.1 Testing for minor loop completion

There are two methods to test for minor loop completion when using software initiated service requests. The first is to read the TCD*n*_CITER field and test for a change. Another method may be extracted from the sequence shown below. The second method is to test the TCD*n*_CSR[START] bit and the TCD*n*_CSR[ACTIVE] bit. The minor-loop-complete condition is indicated by both bits reading zero after the TCD*n*_CSR[START] was set. Polling the TCD*n*_CSR[ACTIVE] bit may be inconclusive, because the active status may be missed if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

Store	TCDn_CSR bits			State
Stage	START	ACTIVE	DONE	State
1	1	0	0 Channel service request via software	
2	0	1	0 Channel is executing	
3a	0	0	0 Channel has completed the minor loop and is idle	
3b	0	0	1	Channel has completed the major loop and is idle

Initialization/application information

The best method to test for minor-loop completion when using hardware, that is, peripheral, initiated service requests is to read the TCD*n*_CITER field and test for a change. The hardware request and acknowledge handshake signals are not visible in the programmer's model.

The TCD status bits execu	4 41 C 11 '	C 1 1	1 1 1
The I(I) status hits execu	ite the tallawing seai	ience for a hardware	-activated channel
The Ted Status ofts exect	ite the following sequ	actice for a flataward	activated chamber.

Stage	TCDn_CSR bits			- State	
Stage	START	ACTIVE	DONE	- State	
1	0	0	0	Channel service request via hardware (peripheral request asserted)	
2	0	1	0	0 Channel is executing	
3a	0	0	0	Channel has completed the minor loop and is idle	
3b	0	0	1	Channel has completed the major loop and is idle	

For both activation types, the major-loop-complete status is explicitly indicated via the TCD*n*_CSR[DONE] bit.

The $TCDn_CSR[START]$ bit is cleared automatically when the channel begins execution regardless of how the channel activates.

22.5.5.2 Reading the transfer descriptors of active channels

The eDMA reads back the true TCD*n*_SADDR, TCD*n*_DADDR, and TCD*n*_NBYTES values if read while a channel executes. The true values of the SADDR, DADDR, and NBYTES are the values the eDMA engine currently uses in its internal register file and not the values in the TCD local memory for that channel. The addresses, SADDR and DADDR, and NBYTES, which decrement to zero as the transfer progresses, can give an indication of the progress of the transfer. All other values are read back from the TCD local memory.

22.5.5.3 Checking channel preemption status

Preemption is available only when fixed arbitration is selected as the channel arbitration mode. A preemptive situation is one in which a preempt-enabled channel runs and a higher priority request becomes active. When the eDMA engine is not operating in fixed channel arbitration mode, the determination of the actively running relative priority outstanding requests become undefined. Channel priorities are treated as equal, that is, constantly rotating, when Round-Robin Arbitration mode is selected.

The TCD*n*_CSR[ACTIVE] bit for the preempted channel remains asserted throughout the preemption. The preempted channel is temporarily suspended while the preempting channel executes one major loop iteration. If two TCD*n*_CSR[ACTIVE] bits are set simultaneously in the global TCD map, a higher priority channel is actively preempting a lower priority channel.

22.5.6 Channel Linking

Channel linking (or chaining) is a mechanism where one channel sets the TCD*n*_CSR[START] bit of another channel (or itself), therefore initiating a service request for that channel. When properly enabled, the EDMA engine automatically performs this operation at the major or minor loop completion.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major loop). The TCDn_CITER[E_LINK] field determines whether a minor loop link is requested. When enabled, the channel link is made after each iteration of the major loop except for the last. When the major loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be made. For example, the initial fields of:

```
TCDn_CITER[E_LINK] = 1
TCDn_CITER[LINKCH] = 0xC
TCDn_CITER[CITER] value = 0x4
TCDn_CSR[MAJOR_E_LINK] = 1
TCDn_CSR[MAJOR_LINKCH] = 0x7
```

executes as:

- 1. Minor loop done \rightarrow set TCD12_CSR[START] bit
- 2. Minor loop done \rightarrow set TCD12_CSR[START] bit
- 3. Minor loop done \rightarrow set TCD12_CSR[START] bit
- 4. Minor loop done, major loop done→ set TCD7_CSR[START] bit

When minor loop linking is enabled (TCDn_CITER[E_LINK] = 1), the TCDn_CITER[CITER] field uses a nine bit vector to form the current iteration count. When minor loop linking is disabled (TCDn_CITER[E_LINK] = 0), the TCDn_CITER[CITER] field uses a 15-bit vector to form the current iteration count. The bits associated with the TCDn_CITER[LINKCH] field are concatenated onto the CITER value to increase the range of the CITER.

Note

The TCD*n*_CITER[E_LINK] bit and the TCD*n*_BITER[E_LINK] bit must equal or a configuration error is reported. The CITER and BITER vector widths must be equal to calculate the major loop, half-way done interrupt point.

The following table summarizes how a DMA channel can link to another DMA channel, i.e, use another channel's TCD, at the end of a loop.

Desired Link Behavior	TCD Control Field Name	Description
Link at end of Minor Loop	CITER[E_LINK]	Enable channel-to-channel linking on minor loop completion (current iteration)
Willion Loop	CITER[LINKCH]	Link channel number when linking at end of minor loop (current iteration)
Link at end of	CSR[MAJOR_E_LINK]	Enable channel-to-channel linking on major loop completion
Major Loop	CSR[MAJOR_LINKCH]	Link channel number when linking at end of major loop

Table 22-299. Channel Linking Parameters

22.5.7 Dynamic programming

This section provides recommended methods to change the programming model during channel execution.

22.5.7.1 Dynamically changing the channel priority

The following two options are recommended for dynamically changing channel priority levels:

- 1. Switch to Round-Robin Channel Arbitration mode, change the channel priorities, then switch back to Fixed Arbitration mode,
- 2. Disable all the channels, change the channel priorities, then enable the appropriate channels.

22.5.7.2 Dynamic channel linking

Dynamic channel linking is the process of setting the TCD.major.e_link bit during channel execution. This bit is read from the TCD local memory at the end of channel execution, thus allowing the user to enable the feature during channel execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed. Consider the scenario where the user attempts to execute a dynamic channel link by enabling the TCD.major.e_link bit at the same time the eDMA engine is retiring the channel. The TCD.major.e_link would be set in the programmer's model, but it would be unclear whether the actual link was made before the channel retired.

The following coherency model is recommended when executing a dynamic channel link request.

- 1. Write 1 to the TCD.major.e_link bit.
- 2. Read back the TCD.major.e_link bit.
- 3. Test the TCD.major.e_link request status:
 - If TCD.major.e_link = 1, the dynamic link attempt was successful.
 - If TCD.major.e_link = 0, the attempted dynamic link did not succeed (the channel was already retiring).

For this request, the TCD local memory controller forces the TCD.major.e_link bit to zero on any writes to a channel's TCD.word7 after that channel's TCD.done bit is set, indicating the major loop is complete.

NOTE

The user must clear the TCD.done bit before writing the TCD.major.e_link bit. The TCD.done bit is cleared automatically by the eDMA engine after a channel begins execution.

22.5.7.3 Dynamic scatter/gather

Scatter/gather is the process of automatically loading a new TCD into a channel. It allows a DMA channel to use multiple TCDs; this enables a DMA channel to scatter the DMA data to multiple destinations or gather it from multiple sources. When scatter/gather is enabled and the channel has finished its major loop, a new TCD is fetched from system memory and loaded into that channel's descriptor location in eDMA programmer's model, thus replacing the current descriptor.

Because the user is allowed to change the configuration during execution, a coherency model is needed. Consider the scenario where the user attempts to execute a dynamic scatter/gather operation by enabling the TCD.e_sg bit at the same time the eDMA engine is retiring the channel. The TCD.e_sg would be set in the programmer's model, but it would be unclear whether the actual scatter/gather request was honored before the channel retired.

Initialization/application information

Two methods for this coherency model are shown in the following subsections. Method 1 has the advantage of reading the major.linkch field and the e_sg bit with a single read. For both dynamic channel linking and scatter/gather requests, the TCD local memory controller forces the TCD.major.e_link and TCD.e_sg bits to zero on any writes to a channel's TCD.word7 if that channel's TCD.done bit is set indicating the major loop is complete.

NOTE

The user must clear the TCD.done bit before writing the TCD.major.e_link or TCD.e_sg bits. The TCD.done bit is cleared automatically by the eDMA engine after a channel begins execution.

22.5.7.3.1 Method 1 (channel not using major loop channel linking)

For a channel not using major loop channel linking, the coherency model described here may be used for a dynamic scatter/gather request.

When the TCD.major.e_link bit is zero, the TCD.major.linkch field is not used by the eDMA. In this case, the TCD.major.linkch bits may be used for other purposes. This method uses the TCD.major.linkch field as a TCD indentification (ID).

- 1. When the descriptors are built, write a unique TCD ID in the TCD.major.linkch field for each TCD associated with a channel using dynamic scatter/gather.
- 2. Write 1b to the TCD.d_req bit.

Should a dynamic scatter/gather attempt fail, setting the TCD.d_req bit will prevent a future hardware activation of this channel. This stops the channel from executing with a destination address (daddr) that was calculated using a scatter/gather address (written in the next step) instead of a dlast final offest value.

- 3. Write the TCD.dlast_sga field with the scatter/gather address.
- 4. Write 1b to the TCD.e_sg bit.
- 5. Read back the 16 bit TCD control/status field.
- 6. Test the TCD.e_sg request status and TCD.major.linkch value:

If $e_sg = 1b$, the dynamic link attempt was successful.

If e_sg = 0b and the major.linkch (ID) did not change, the attempted dynamic link did not succeed (the channel was already retiring).

If e_sg = 0b and the major.linkch (ID) changed, the dynamic link attempt was successful (the new TCD's e_sg value cleared the e_sg bit).

22.5.7.3.2 Method 2 (channel using major loop channel linking)

For a channel using major loop channel linking, the coherency model described here may be used for a dynamic scatter/gather request. This method uses the TCD.dlast_sga field as a TCD indentification (ID).

1. Write 1b to the TCD.d_req bit.

Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a future hardware activation of this channel. This stops the channel from executing with a destination address (daddr) that was calculated using a scatter/gather address (written in the next step) instead of a dlast final offest value.

- 2. Write the TCD. dlast_sga field with the scatter/gather address.
- 3. Write 1b to the TCD.e_sg bit.
- 4. Read back the TCD.e_sg bit.
- 5. Test the TCD.e_sg request status:

If $e_sg = 1b$, the dynamic link attempt was successful.

If e_sg = 0b, read the 32 bit TCD dlast_sga field.

If e_sg = 0b and the dlast_sga did not change, the attempted dynamic link did not succeed (the channel was already retiring).

If e_sg = 0b and the dlast_sga changed, the dynamic link attempt was successful (the new TCD's e_sg value cleared the e_sg bit).

Initialization/application information

Chapter 23 External Watchdog Monitor (EWM)

23.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The watchdog is generally used to monitor the flow and execution of embedded software within an MCU. The watchdog consists of a counter that if allowed to overflow, forces an internal reset (asynchronous) to all on-chip peripherals and optionally assert the RESET pin to reset external devices/circuits. The overflow of the watchdog counter must not occur if the software code works well and services the watchdog to re-start the actual counter.

For safety, a redundant watchdog system, External Watchdog Monitor (EWM), is designed to monitor external circuits, as well as the MCU software flow. This provides a back-up mechanism to the internal watchdog that resets the MCU's CPU and peripherals.

The EWM differs from the internal watchdog in that it does not reset the MCU's CPU and peripherals. The EWM if allowed to time-out, provides an independent EWM_out pin that when asserted resets or places an external circuit into a safe mode. The CPU resets the EWM counter that is logically ANDed with an external digital input pin. This pin allows an external circuit to influence the reset_out signal.

23.1.1 Features

Features of EWM module include:

- Independent LPO clock source
- Programmable time-out period specified in terms of number of EWM LPO clock cycles.

Introduction

- Windowed refresh option
 - Provides robust check that program flow is faster than expected.
 - Programmable window.
 - Refresh outside window leads to assertion of EWM_out.
- Robust refresh mechanism
 - Write values of 0xB4 and 0x2C to EWM Refresh Register within 15 (EWM_service_time) peripheral bus clock cycles.
- One output port, <u>EWM_out</u>, when asserted is used to reset or place the external circuit into safe mode.
- One Input port, EWM_in, allows an external circuit to control the EWM_out signal.

23.1.2 Modes of Operation

This section describes the module's operating modes.

23.1.2.1 Stop Mode

When the EWM is in stop mode, the CPU services to the EWM cannot occur. On entry to stop mode, the EWM's counter freezes.

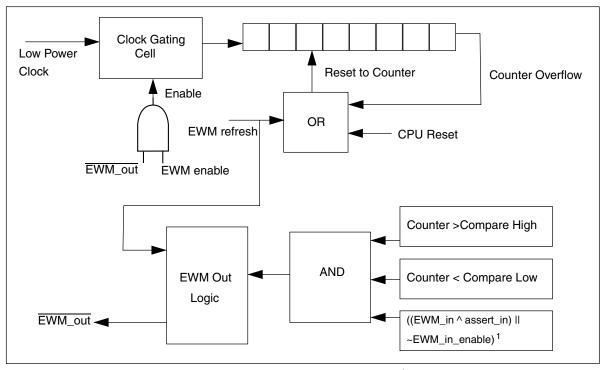
There are two possible ways to exit from Stop mode:

- On exit from stop mode through a reset, the EWM remains disabled.
- On exit from stop mode by an interrupt, the EWM is re-enabled, and the counter continues to be clocked from the same value prior to entry to stop mode.

Note the following if the EWM enters the stop mode during CPU service mechanism: At the exit from stop mode by an interrupt, refresh mechanism state machine starts from the previous state which means, if first service command is written correctly and EWM enters the stop mode immediately, the next command has to be written within the next 15 (EWM_service_time) peripheral bus clocks after exiting from stop mode. User must mask all interrupts prior to executing EWM service instructions.

23.1.2.2 Wait Mode

The EWM module treats the stop and wait modes as the same. EWM functionality remains the same in both of these modes.


23.1.2.3 **Debug Mode**

Entry to debug mode has no effect on the EWM.

- If the EWM is enabled prior to entry of debug mode, it remains enabled.
- If the EWM is disabled prior to entry of debug mode, it remains disabled.

23.1.3 Block Diagram

This figure shows the EWM block diagram.

¹Compare High > Counter > Compare Low

Figure 23-1. EWM Block Diagram

23.2 EWM Signal Descriptions

The EWM has two external signals, as shown in the following table.

Table 23-1. EWM Signal Descriptions

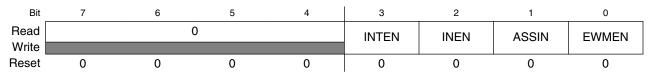
Signal	Description	I/O
EWM_in	EWM input for safety status of external safety circuits. The polarity of EWM_in is programmable using the EWM_CTRL[ASSIN] bit. The default polarity is active-low.	I
EWM_out	EWM reset out signal	0

23.3 Memory Map/Register Definition

This section contains the module memory map and registers.

EWM memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_1000	Control Register (EWM_CTRL)		R/W	00h	23.3.1/520
4006_1001	Service Register (EWM_SERV)	8	W (always reads 0)	00h	23.3.2/521
4006_1002	Compare Low Register (EWM_CMPL)	8	R/W	00h	23.3.3/521
4006_1003	Compare High Register (EWM_CMPH)	8	R/W	FFh	23.3.4/522
4006_1005	Clock Prescaler Register (EWM_CLKPRESCALER)	8	R/W	00h	23.3.5/523


23.3.1 Control Register (EWM_CTRL)

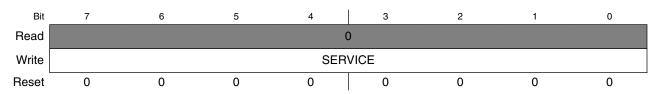
The CTRL register is cleared by any reset.

NOTE

INEN, ASSIN and EWMEN bits can be written once after a CPU reset. Modifying these bits more than once, generates a bus transfer error.

Address: 4006_1000h base + 0h offset = 4006_1000h

K22F Sub-Family Reference Manual, Rev. 3, 7/2014


EWM_CTRL field descriptions

Field	Description
7–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3 INTEN	Interrupt Enable.
	This bit when set and EWM_out is asserted, an interrupt request is generated. To de-assert interrupt request, user should clear this bit by writing 0.
2 INEN	Input Enable.
	This bit when set, enables the EWM_in port.
1 ASSIN	EWM_in's Assertion State Select.
	Default assert state of the EWM_in signal is logic zero. Setting ASSIN bit inverts the assert state to a logic one.
0 EWMEN	EWM enable.
	This bit when set, enables the EWM module. This resets the EWM counter to zero and deasserts the EWM_out signal. Clearing EWMEN bit disables the EWM, and therefore it cannot be enabled until a reset occurs, due to the write-once nature of this bit.

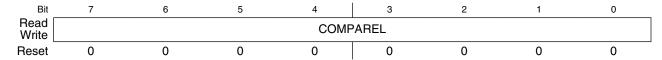
23.3.2 Service Register (EWM_SERV)

The SERV register provides the interface from the CPU to the EWM module. It is write-only and reads of this register return zero.

Address: 4006_1000h base + 1h offset = 4006_1001h

EWM_SERV field descriptions

Field	Description
7–0 SERVICE	The EWM service mechanism requires the CPU to write two values to the SERV register: a first data byte of 0xB4, followed by a second data byte of 0x2C. The EWM service is illegal if either of the following conditions is true. • The first or second data byte is not written correctly. • The second data byte is not written within a fixed number of peripheral bus cycles of the first data byte. This fixed number of cycles is called <i>EWM_service_time</i> .


23.3.3 Compare Low Register (EWM_CMPL)

The CMPL register is reset to zero after a CPU reset. This provides no minimum time for the CPU to service the EWM counter.

NOTE

This register can be written only once after a CPU reset. Writing this register more than once generates a bus transfer error.

Address: 4006_1000h base + 2h offset = 4006_1002h

EWM_CMPL field descriptions

Field	Description
	To prevent runaway code from changing this field, software should write to this field after a CPU reset even if the (default) minimum service time is required.

23.3.4 Compare High Register (EWM_CMPH)

The CMPH register is reset to 0xFF after a CPU reset. This provides a maximum of 256 clocks time, for the CPU to service the EWM counter.

NOTE

This register can be written only once after a CPU reset. Writing this register more than once generates a bus transfer error.

NOTE

The valid values for CMPH are up to 0xFE because the EWM counter never expires when CMPH = 0xFF. The expiration happens only if EWM counter is greater than CMPH.

Address: 4006_1000h base + 3h offset = 4006_1003h

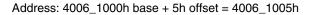
EWM_CMPH field descriptions

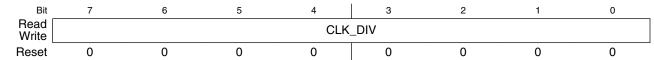
Field	Description	
	To prevent runaway code from changing this field, software should write to this field after a CPU reset even if the (default) maximum service time is required.	

23.3.5 Clock Prescaler Register (EWM_CLKPRESCALER)

This CLKPRESCALER register is reset to 0x00 after a CPU reset.

NOTE


This register can be written only once after a CPU reset. Writing this register more than once generates a bus transfer error.


NOTE

Write the required prescaler value before enabling the EWM.

NOTE

The implementation of this register is chip-specific. See the Chip Configuration details.

EWM_CLKPRESCALER field descriptions

Field	Description	
7–0 CLK_DIV	Selected low power source for running the EWM counter can be prescaled as below. • Prescaled clock frequency = low power clock source frequency/ (1+ CLK_DIV)	

23.4 Functional Description

The following sections describe functional details of the EWM module.

23.4.1 The EWM_out Signal

The EWM_out is a digital output signal used to gate an external circuit (application specific) that controls critical safety functions. For example, the EWM_out could be connected to the high voltage transistors circuits that control an AC motor in a large appliance.

The EWM_out signal remains deasserted when the EWM is being regularly serviced by the CPU within the programmable service window, indicating that the application code is executed as expected.

Functional Description

The EWM_out signal is asserted in any of the following conditions:

- Servicing the EWM when the counter value is less than CMPL value.
- If the EWM counter value reaches the CMPH value, and no EWM service has occurred.
- Servicing the EWM when the counter value is more than CMPL and less than CMPH values and EWM_in signal is asserted.
- If functionality of EWM_in pin is enabled and EWM_in pin is asserted while servicing the EWM.
- After any reset (by the virtue of the external pull-down mechanism on the EWM_out pin)

On a normal reset, the \overline{EWM} _out is asserted. To deassert the \overline{EWM} _out, set EWMEN bit in the CTRL register to enable the EWM.

If the EWM_out signal shares its pad with a digital I/O pin, on reset this actual pad defers to being an input signal. It takes the EWM_out output condition only after you enable the EWM by the EWMEN bit in the CTRL register.

When the EWM_out pin is asserted, it can only be deasserted by forcing a MCU reset.

Note

EWM_out pad must be in pull down state when EWM functionality is used and when EWM is under Reset.

23.4.2 The EWM_in Signal

The EWM_in is a digital input signal that allows an external circuit to control the EWM_out signal. For example, in the application, an external circuit monitors a critical safety function, and if there is fault with this circuit's behavior, it can then actively initiate the EWM_out signal that controls the gating circuit.

The EWM_in signal is ignored if the EWM is disabled, or if INEN bit of CTRL register is cleared, as after any reset.

On enabling the EWM (setting the CTRL[EWMEN] bit) and enabling EWM_in functionality (setting the CTRL[INEN] bit), the EWM_in signal must be in the deasserted state prior to the CPU servicing the EWM. This ensures that the EWM_out stays in the deasserted state; otherwise, the EWM_out pin is asserted.

Note

You must update the CMPH and CMPL registers prior to enabling the EWM. After enabling the EWM, the counter resets to zero, therefore providing a reasonable time after a power-on reset for the external monitoring circuit to stabilize and ensure that the EWM_in pin is deasserted.

23.4.3 EWM Counter

It is an 8-bit ripple counter fed from a clock source that is independent of the peripheral bus clock source. As the preferred time-out is between 1 ms and 100 ms the actual clock source should be in the kHz range.

The counter is reset to zero, after a CPU reset, or a EWM refresh cycle. The counter value is not accessible to the CPU.

23.4.4 EWM Compare Registers

The compare registers CMPL and CMPH are write-once after a CPU reset and cannot be modified until another CPU reset occurs.

The EWM compare registers are used to create a service window, which is used by the CPU to service/refresh the EWM module.

- If the CPU services the EWM when the counter value lies between CMPL value and CMPH value, the counter is reset to zero. This is a legal service operation.
- If the CPU executes a EWM service/refresh action outside the legal service window, EWM_out is asserted.

It is illegal to program CMPL and CMPH with same value. In this case, as soon as counter reaches (CMPL + 1), EWM_out is asserted.

23.4.5 EWM Refresh Mechanism

Other than the initial configuration of the EWM, the CPU can only access the EWM by the EWM Service Register. The CPU must access the EWM service register with correct write of unique data within the windowed time frame as determined by the CMPL and CMPH registers. Therefore, three possible conditions can occur:

Functional Description

Table 23-8. EWM Refresh Mechanisms

Condition	Mechanism
A unique EWM service occurs when CMPL < Counter < CMPH.	The software behaves as expected and the counter of the EWM is reset to zero, and EWM_out pin remains in the deasserted state.
	Note: EWM_in pin is also assumed to be in the deasserted state.
A unique EWM service occurs when Counter < CMPL	The software services the EWM and therefore resets the counter to zero and asserts the EWM_out pin (irrespective of the EWM_in pin). The EWM_out pin is expected to gate critical safety circuits.
Counter value reaches CMPH prior to a unique EWM service	The counter value reaches the CMPH value and no service of the EWM resets the counter to zero and assert the EWM_out pin (irrespective of the EWM_in pin). The EWM_out pin is expected to gate critical safety circuits.

Any illegal service on EWM has no effect on EWM_out.

23.4.6 EWM Interrupt

When \overline{EWM} out is asserted, an interrupt request is generated to indicate the assertion of the EWM reset out signal. This interrupt is enabled when CTRL[INTEN] is set. Clearing this bit clears the interrupt request but does not affect \overline{EWM} out. The \overline{EWM} out signal can be deasserted only by forcing a system reset.

23.4.7 Counter clock prescaler

The EWM counter clock source can be prescaled by a clock divider, by programming CLKPRESCALER[CLK_DIV]. This divided clock is used to run the EWM counter.

NOTE

The divided clock used to run the EWM counter must be no more than half the frequency of the bus clock.

Chapter 24 Watchdog Timer (WDOG)

24.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Watchdog Timer (WDOG) keeps a watch on the system functioning and resets it in case of its failure. Reasons for failure include run-away software code and the stoppage of the system clock that in a safety critical system can lead to serious consequences. In such cases, the watchdog brings the system into a safe state of operation. The watchdog monitors the operation of the system by expecting periodic communication from the software, generally known as servicing or refreshing the watchdog. If this periodic refreshing does not occur, the watchdog resets the system.

24.2 Features

The features of the Watchdog Timer (WDOG) include:

- Clock source input independent from CPU/bus clock. Choice between two clock sources:
 - Low-power oscillator (LPO)
 - External system clock
- Unlock sequence for allowing updates to write-once WDOG control/configuration bits.
- All WDOG control/configuration bits are writable once only within 256 bus clock cycles of being unlocked.

Features

- You need to always update these bits after unlocking within 256 bus clock cycles. Failure to update these bits resets the system.
- Programmable time-out period specified in terms of number of WDOG clock cycles.
- Ability to test WDOG timer and reset with a flag indicating watchdog test.
 - Quick test—Small time-out value programmed for quick test.
 - Byte test—Individual bytes of timer tested one at a time.
 - Read-only access to the WDOG timer—Allows dynamic check that WDOG timer is operational.

NOTE

Reading the watchdog timer counter while running the watchdog on the bus clock might not give the accurate counter value.

- Windowed refresh option
 - Provides robust check that program flow is faster than expected.
 - Programmable window.
 - Refresh outside window leads to reset.
- Robust refresh mechanism
 - Write values of 0xA602 and 0xB480 to WDOG Refresh Register within 20 bus clock cycles.
- Count of WDOG resets as they occur.
- Configurable interrupt on time-out to provide debug breadcrumbs. This is followed by a reset after 256 bus clock cycles.

24.3 Functional overview

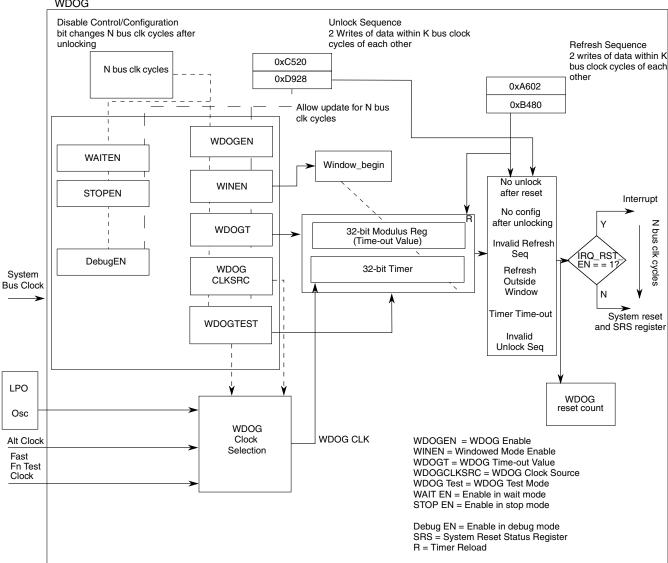


Figure 24-1. WDOG operation

The preceding figure shows the operation of the watchdog. The values for N and K are:

- N = 256
- K = 20

The watchdog is a fail safe mechanism that brings the system into a known initial state in case of its failure due to CPU clock stopping or a run-away condition in code execution. In its simplest form, the watchdog timer runs continuously off a clock source and expects

Functional overview

to be serviced periodically, failing which it resets the system. This ensures that the software is executing correctly and has not run away in an unintended direction. Software can adjust the period of servicing or the time-out value for the watchdog timer to meet the needs of the application.

You can select a windowed mode of operation that expects the servicing to be done only in a particular window of the time-out period. An attempted servicing of the watchdog outside this window results in a reset. By operating in this mode, you can get an indication of whether the code is running faster than expected. The window length is also user programmable.

If a system fails to update/refresh the watchdog due to an unknown and persistent cause, it will be caught in an endless cycle of resets from the watchdog. To analyze the cause of such conditions, you can program the watchdog to first issue an interrupt, followed by a reset. In the interrupt service routine, the software can analyze the system stack to aid debugging.

To enhance the independence of watchdog from the system, it runs off an independent LPO oscillator clock. You can also switch over to an alternate clock source if required, through a control register bit.

24.3.1 Unlocking and updating the watchdog

As long as ALLOW_UPDATE in the watchdog control register is set, you can unlock and modify the write-once-only control and configuration registers:

- 1. Write 0xC520 followed by 0xD928 within 20 bus clock cycles to a specific unlock register (WDOG_UNLOCK).
- 2. Wait one bus clock cycle. You cannot update registers on the bus clock cycle immediately following the write of the unlock sequence.
- 3. An update window equal in length to the watchdog configuration time (WCT) opens. Within this window, you can update the configuration and control register bits.

These register bits can be modified only once after unlocking.

If none of the configuration and control registers is updated within the update window, the watchdog issues a reset, that is, interrupt-then-reset, to the system. Trying to unlock the watchdog within the WCT after an initial unlock has no effect. During the update operation, the watchdog timer is not paused and continues running in the background. After the update window closes, the watchdog timer restarts and the watchdog functions according to the new configuration.

The update feature is useful for applications that have an initial, non-safety critical part, where the watchdog is kept disabled or with a conveniently long time-out period. This means the application coder does not have to frequently service the watchdog. After the critical part of the application begins, the watchdog can be reconfigured as needed.

The watchdog issues a reset, that is, interrupt-then-reset if enabled, to the system for any of these invalid unlock sequences:

- Write any value other than 0xC520 or 0xD928 to the unlock register.
- ALLOW_UPDATE is set and a gap of more than 20 bus clock cycles is inserted between the writing of the unlock sequence values.

An attempted refresh operation between the two writes of the unlock sequence and in the WCT time following a successful unlock, goes undetected. Also, see Watchdog Operation with 8-bit access for guidelines related to 8-bit accesses to the unlock register.

Note

A context switch during unlocking and refreshing may lead to a watchdog reset.

24.3.2 Watchdog configuration time (WCT)

To prevent unintended modification of the watchdog's control and configuration register bits, you are allowed to update them only within a period of 256 bus clock cycles after unlocking. This period is known as the watchdog configuration time (WCT). In addition, these register bits can be modified only once after unlocking them for editing, even after reset.

You must unlock the registers within WCT after system reset, failing which the WDOG issues a reset to the system. In other words, you must write at least the first word of the unlocking sequence within the WCT after reset. After this is done, you have a further 20 bus clock cycles, the maximum allowed gap between the words of the unlock sequence, to complete the unlocking operation. Thereafter, to make sure that you do not forget to configure the watchdog, the watchdog issues a reset if none of the WDOG control and configuration registers is updated in the WCT after unlock. After the close of this window or after the first write, these register bits are locked out from any further changes.

The watchdog timer keeps running according to its default configuration through unlocking and update operations that can extend up to a maximum total of 2xWCT + 20 bus clock cycles. Therefore, it must be ensured that the time-out value for the watchdog is always greater than 2xWCT time + 20 bus clock cycles.

Functional overview

Updates in the write-once registers take effect only after the WCT window closes with the following exceptions for which changes take effect immediately:

- Stop, Wait, and Debug mode enable
- IRQ_RST_EN

The operations of refreshing the watchdog goes undetected during the WCT.

24.3.3 Refreshing the watchdog

A robust refreshing mechanism has been chosen for the watchdog. A valid refresh is a write of 0xA602 followed by 0xB480 within 20 bus clock cycles to watchdog refresh register. If these two values are written more than 20 bus cycles apart or if something other than these two values is written to the register, a watchdog reset, or interrupt-then-reset if enabled, is issued to the system. A valid refresh makes the watchdog timer restart on the next bus clock. Also, an attempted unlock operation in between the two writes of the refresh sequence goes undetected. See Watchdog Operation with 8-bit access for guidelines related to 8-bit accesses to the refresh register.

24.3.4 Windowed mode of operation

In this mode of operation, a restriction is placed on the point in time within the time-out period at which the watchdog can be refreshed. The refresh is considered valid only when the watchdog timer increments beyond a certain count as specified by the watchdog window register. This is known as refreshing the watchdog within a window of the total time-out period. If a refresh is attempted before the timer reaches the window value, the watchdog generates a reset, or interrupt-then-reset if enabled. If there is no refresh at all, the watchdog times out and generates a reset or interrupt-then-reset if enabled.

24.3.5 Watchdog disabled mode of operation

When the watchdog is disabled through the WDOG_EN bit in the watchdog status and control register, the watchdog timer is reset to zero and is disabled from counting until you enable it or it is enabled again by the system reset. In this mode, the watchdog timer cannot be refreshed—there is no requirement to do so while the timer is disabled. However, the watchdog still generates a reset, or interrupt-then-reset if enabled, on a non-

time-out exception. See Generated Resets and Interrupts. You need to unlock the watchdog before enabling it. A system reset brings the watchdog out of the disabled mode.

24.3.6 Debug modes of operation

You can program the watchdog to disable in debug modes through DBG_EN in the watchdog control register. This results in the watchdog timer pausing for the duration of the mode. Register read/writes are still allowed, which means that operations like refresh, unlock, and so on are allowed. Upon exit from the mode, the timer resumes its operation from the point of pausing.

The entry of the system into the mode does not excuse it from compulsorily configuring the watchdog in the WCT time after unlock, unless the system bus clock is gated off, in which case the internal state machine pauses too. Failing to do so still results in a reset, or interrupt-then-reset, if enabled, to the system. Also, all of the exception conditions that result in a reset to the system, as described in Generated Resets and Interrupts, are still valid in mode. So, if an exception condition occurs and the system bus clock is on, a reset occurs, or interrupt-then-reset, if enabled.

The entry into Debug mode within WCT after reset is treated differently. The WDOG timer is kept reset to zero and there is no need to unlock and configure it within WCT. You must not try to refresh or unlock the WDOG in this state or unknown behavior may result. Upon exit from mode, the WDOG timer restarts and the WDOG has to be unlocked and configured within WCT.

24.4 Testing the watchdog

For IEC 60730 and other safety standards, the expectation is that anything that monitors a safety function must be tested, and this test is required to be fault tolerant. To test the watchdog, its main timer and its associated compare and reset logic must be tested. To this end, two tests are implemented for the watchdog, as described in Quick Test and Byte Test. A control bit is provided to put the watchdog into functional test mode. There is also an overriding test-disable control bit which allows the functional test mode to be disabled permanently. After it is set, this test-disable bit can only be cleared by a reset.

These two tests achieve the overall aim of testing the counter functioning and the compare and reset logic.

Note

Do not enable the watchdog interrupt during these tests. If required, you must ensure that the effective time-out value is greater than WCT time. See Generated Resets and Interrupts for more details.

To run a particular test:

- 1. Select either quick test or byte test..
- 2. Set a certain test mode bit to put the watchdog in the functional test mode. Setting this bit automatically switches the watchdog timer to a fast clock source. The switching of the clock source is done to achieve a faster time-out and hence a faster test.

In a successful test, the timer times out after reaching the programmed time-out value and generates a system reset.

Note

After emerging from a reset due to a watchdog test, unlock and configure the watchdog. The refresh and unlock operations and interrupt are not automatically disabled in the test mode.

24.4.1 Quick test

In this test, the time-out value of watchdog timer is programmed to a very low value to achieve quick time-out. The only difference between the quick test and the normal mode of the watchdog is that TESTWDOG is set for the quick test. This allows for a faster test of the watchdog reset mechanism.

24.4.2 Byte test

The byte test is a more thorough a test of the watchdog timer. In this test, the timer is split up into its constituent byte-wide stages that are run independently and tested for time-out against the corresponding byte of the time-out value register. The following figure explains the splitting concept:

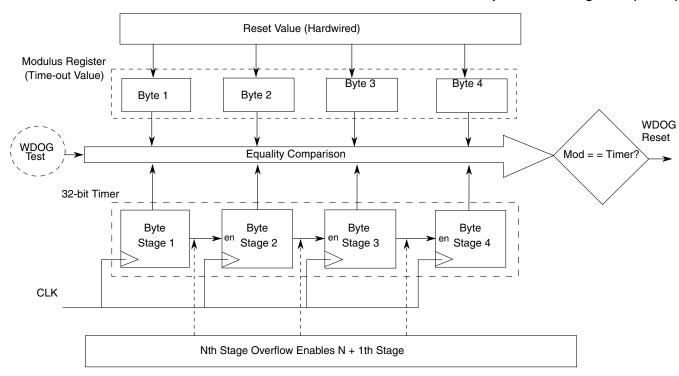


Figure 24-2. Watchdog timer byte splitting

Each stage is an 8-bit synchronous counter followed by combinational logic that generates an overflow signal. The overflow signal acts as an enable to the N + 1th stage.

In the test mode, when an individual byte, N, is tested, byte N-1 is loaded forcefully with 0xFF, and both these bytes are allowed to run off the clock source. By doing so, the overflow signal from stage N-1 is generated immediately, enabling counter stage N. The Nth stage runs and compares with the Nth byte of the time-out value register. In this way, the byte N is also tested along with the link between it and the preceding stage. No other stages, N-2, N-3... and N+1, N+2... are enabled for the test on byte N. These disabled stages, except the most significant stage of the counter, are loaded with a value of 0xFF.

24.5 Backup reset generator

The backup reset generator generates the final reset which goes out to the system. It has a backup mechanism which ensures that in case the bus clock stops and prevents the main state machine from generating a reset exception/interrupt, the watchdog timer's time-out is separately routed out as a reset to the system. Two successive timer time-outs without an intervening system reset result in the backup reset generator routing out the time-out signal as a reset to the system.

24.6 Generated resets and interrupts

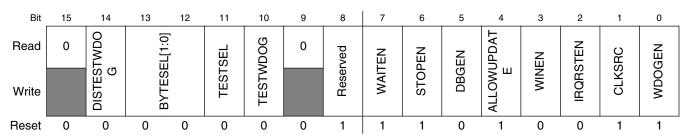
The watchdog generates a reset in the following events, also referred to as exceptions:

- A watchdog time-out
- Failure to unlock the watchdog within WCT time after system reset deassertion
- No update of the control and configuration registers within the WCT window after unlocking. At least one of the following registers must be written to within the WCT window to avoid reset:
 - WDOG_ST_CTRL_H, WDOG_ST_CTRL_L
 - WDOG_TO_VAL_H, WDOG_TO_VAL_L
 - WDOG_WIN_H, WDOG_WIN_L
 - WDOG PRESCALER
- A value other than the unlock sequence or the refresh sequence is written to the unlock and/or refresh registers, respectively.
- A gap of more than 20 bus cycles exists between the writes of two values of the unlock sequence.
- A gap of more than 20 bus cycles exists between the writes of two values of the refresh sequence.

The watchdog can also generate an interrupt. If IRQ_RST_EN is set, then on the above mentioned events WDOG_ST_CTRL_L[INT_FLG] is set, generating an interrupt. A watchdog reset is also generated WCT time later to ensure the watchdog is fault tolerant. The interrupt can be cleared by writing 1 to INT_FLG.

The gap of WCT between interrupt and reset means that the WDOG time-out value must be greater than WCT. Otherwise, if the interrupt was generated due to a time-out, a second consecutive time-out will occur in that WCT gap. This will trigger the backup reset generator to generate a reset to the system, prematurely ending the interrupt service routine execution. Also, jobs such as counting the number of watchdog resets would not be done.

24.7 Memory map and register definition


This section consists of the memory map and register descriptions.

WDOG memory map

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4005_2000	Watchdog Status and Control Register High (WDOG_STCTRLH)	16	R/W	01D3h	24.7.1/537
4005_2002	Watchdog Status and Control Register Low (WDOG_STCTRLL)	16	R/W	0001h	24.7.2/539
4005_2004	Watchdog Time-out Value Register High (WDOG_TOVALH)	16	R/W	004Ch	24.7.3/539
4005_2006	Watchdog Time-out Value Register Low (WDOG_TOVALL)	16	R/W	4B4Ch	24.7.4/540
4005_2008	Watchdog Window Register High (WDOG_WINH)	16	R/W	0000h	24.7.5/540
4005_200A	Watchdog Window Register Low (WDOG_WINL)	16	R/W	0010h	24.7.6/541
4005_200C	Watchdog Refresh register (WDOG_REFRESH)	16	R/W	B480h	24.7.7/541
4005_200E	Watchdog Unlock register (WDOG_UNLOCK)	16	R/W	D928h	24.7.8/541
4005_2010	Watchdog Timer Output Register High (WDOG_TMROUTH)	16	R/W	0000h	24.7.9/542
4005_2012	Watchdog Timer Output Register Low (WDOG_TMROUTL)	16	R/W	0000h	24.7.10/ 542
4005_2014	Watchdog Reset Count register (WDOG_RSTCNT)	16	R/W	0000h	24.7.11/ 543
4005_2016	Watchdog Prescaler register (WDOG_PRESC)	16	R/W	0400h	24.7.12/ 543

24.7.1 Watchdog Status and Control Register High (WDOG_STCTRLH)

Address: 4005_2000h base + 0h offset = 4005_2000h

WDOG_STCTRLH field descriptions

Field	Description	
15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.	
14 DISTESTWDOG	Allows the WDOG's functional test mode to be disabled permanently. After it is set, it can only be cleare by a reset. It cannot be unlocked for editing after it is set.	
	0 WDOG functional test mode is not disabled.1 WDOG functional test mode is disabled permanently until reset.	
13–12 BYTESEL[1:0]	This 2-bit field selects the byte to be tested when the watchdog is in the byte test mode.	

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Memory map and register definition

WDOG_STCTRLH field descriptions (continued)

Field	Description
	00 Byte 0 selected 01 Byte 1 selected
	10 Byte 2 selected
	11 Byte 3 selected
11 TESTSEL	Effective only if TESTWDOG is set. Selects the test to be run on the watchdog timer.
	O Quick test. The timer runs in normal operation. You can load a small time-out value to do a quick test.
	Byte test. Puts the timer in the byte test mode where individual bytes of the timer are enabled for operation and are compared for time-out against the corresponding byte of the programmed time-out value. Select the byte through BYTESEL[1:0] for testing.
10 TESTWDOG	Puts the watchdog in the functional test mode. In this mode, the watchdog timer and the associated compare and reset generation logic is tested for correct operation. The clock for the timer is switched from the main watchdog clock to the fast clock input for watchdog functional test. The TESTSEL bit selects the test to be run.
9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
8 Reserved	This field is reserved.
7 WAITEN	Enables or disables WDOG in Wait mode.
	0 WDOG is disabled in CPU Wait mode.
	1 WDOG is enabled in CPU Wait mode.
6 STOPEN	Enables or disables WDOG in Stop mode.
0.0.2.	0 WDOG is disabled in CPU Stop mode.
	1 WDOG is enabled in CPU Stop mode.
5 DBGEN	Enables or disables WDOG in Debug mode.
	0 WDOG is disabled in CPU Debug mode.
	1 WDOG is enabled in CPU Debug mode.
4 ALLOWUPDATE	Enables updates to watchdog write-once registers, after the reset-triggered initial configuration window (WCT) closes, through unlock sequence.
	No further updates allowed to WDOG write-once registers.
	1 WDOG write-once registers can be unlocked for updating.
3 WINEN	Enables Windowing mode.
	0 Windowing mode is disabled.1 Windowing mode is enabled.
2 IRQRSTEN	Used to enable the debug breadcrumbs feature. A change in this bit is updated immediately, as opposed to updating after WCT.
	0 WDOG time-out generates reset only.
	1 WDOG time-out initially generates an interrupt. After WCT, it generates a reset.
1 CLKSRC	Selects clock source for the WDOG timer and other internal timing operations.
	0 WDOG clock sourced from LPO .
	1 WDOG clock sourced from alternate clock source.

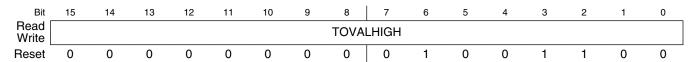
Table continues on the next page...

WDOG_STCTRLH field descriptions (continued)

Field	Description
0 WDOGEN	Enables or disables the WDOG's operation. In the disabled state, the watchdog timer is kept in the reset state, but the other exception conditions can still trigger a reset/interrupt. A change in the value of this bit must be held for more than one WDOG_CLK cycle for the WDOG to be enabled or disabled.
	0 WDOG is disabled.1 WDOG is enabled.

24.7.2 Watchdog Status and Control Register Low (WDOG_STCTRLL)

Address: 4005_2000h base + 2h offset = 4005_2002h


Bit	15	14	13	12	11	10	9	8
Read Write	INTFLG				Reserved			
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Read Write				Rese	erved			
Reset	0	0	0	0	0	0	0	1

WDOG_STCTRLL field descriptions

Field	Description
15 INTFLG	Interrupt flag. It is set when an exception occurs. IRQRSTEN = 1 is a precondition to set this flag. INTFLG = 1 results in an interrupt being issued followed by a reset, WCT later. The interrupt can be cleared by writing 1 to this bit. It also gets cleared on a system reset.
14–0 Reserved	This field is reserved.
	NOTE: Do not modify this field value.

24.7.3 Watchdog Time-out Value Register High (WDOG_TOVALH)

Address: 4005_2000h base + 4h offset = 4005_2004h

WDOG_TOVALH field descriptions

Field	Description
	Defines the upper 16 bits of the 32-bit time-out value for the watchdog timer. It is defined in terms of cycles of the watchdog clock.

24.7.4 Watchdog Time-out Value Register Low (WDOG_TOVALL)

The time-out value of the watchdog must be set to a minimum of four watchdog clock cycles. This is to take into account the delay in new settings taking effect in the watchdog clock domain.

Address: 4005_2000h base + 6h offset = 4005_2006h

WDOG_TOVALL field descriptions

Field	Description
	Defines the lower 16 bits of the 32-bit time-out value for the watchdog timer. It is defined in terms of cycles of the watchdog clock.

24.7.5 Watchdog Window Register High (WDOG_WINH)

NOTE

You must set the Window Register value lower than the Timeout Value Register.

Address: 4005_2000h base + 8h offset = 4005_2008h

WDOG_WINH field descriptions

Field	Description
WINHIGH	Defines the upper 16 bits of the 32-bit window for the windowed mode of operation of the watchdog. It is defined in terms of cycles of the watchdog clock. In this mode, the watchdog can be refreshed only when the timer has reached a value greater than or equal to this window length. A refresh outside this window resets the system or if IRQRSTEN is set, it interrupts and then resets the system.

24.7.6 Watchdog Window Register Low (WDOG_WINL)

NOTE

You must set the Window Register value lower than the Timeout Value Register.

Address: 4005_2000h base + Ah offset = 4005_200Ah

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read Write								WIN	LOW								
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	ı

WDOG_WINL field descriptions

Field	Description
WINLOW	Defines the lower 16 bits of the 32-bit window for the windowed mode of operation of the watchdog. It is defined in terms of cycles of the pre-scaled watchdog clock. In this mode, the watchdog can be refreshed only when the timer reaches a value greater than or equal to this window length value. A refresh outside of this window resets the system or if IRQRSTEN is set, it interrupts and then resets the system.

24.7.7 Watchdog Refresh register (WDOG_REFRESH)

Address: 4005_2000h base + Ch offset = 4005_200Ch

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read [Write							V	/DOGR	EFRES	Н						
Reset	1	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0

WDOG_REFRESH field descriptions

Field	Description
WDOGREFRESH	Watchdog refresh register. A sequence of 0xA602 followed by 0xB480 within 20 bus clock cycles written to this register refreshes the WDOG and prevents it from resetting the system. Writing a value other than the above mentioned sequence or if the sequence is longer than 20 bus cycles, resets the system, or if IRQRSTEN is set, it interrupts and then resets the system.

24.7.8 Watchdog Unlock register (WDOG_UNLOCK)

Address: 4005_2000h base + Eh offset = 4005_200Eh

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write							١	NDOGL	JNLOC	<						
Reset	1	1	0	1	1	0	0	1	0	0	1	0	1	0	0	0

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

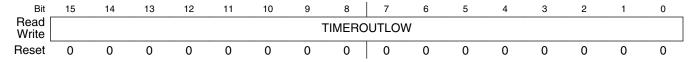
WDOG_UNLOCK field descriptions

Field	Description
15–0 WDOGUNLOCK	Writing the unlock sequence values to this register to makes the watchdog write-once registers writable again. The required unlock sequence is 0xC520 followed by 0xD928 within 20 bus clock cycles. A valid unlock sequence opens a window equal in length to the WCT within which you can update the registers. Writing a value other than the above mentioned sequence or if the sequence is longer than 20 bus cycles, resets the system or if IRQRSTEN is set, it interrupts and then resets the system. The unlock sequence is effective only if ALLOWUPDATE is set.

24.7.9 Watchdog Timer Output Register High (WDOG_TMROUTH)

Address: 4005_2000h base + 10h offset = 4005_2010h

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write							Т	IMERO	UTHIG	Н						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

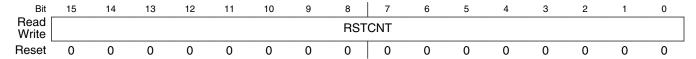

WDOG_TMROUTH field descriptions

Field	Description
15–0	Shows the value of the upper 16 bits of the watchdog timer.
TIMEROUTHIGH	

24.7.10 Watchdog Timer Output Register Low (WDOG_TMROUTL)

During Stop mode, the WDOG_TIMER_OUT will be caught at the pre-stop value of the watchdog timer. After exiting Stop mode, a maximum delay of 1 WDOG_CLK cycle + 3 bus clock cycles will occur before the WDOG_TIMER_OUT starts following the watchdog timer.

Address: 4005_2000h base + 12h offset = 4005_2012h

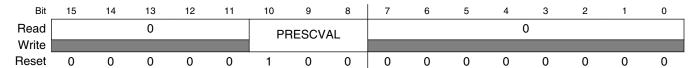


WDOG_TMROUTL field descriptions

Field	Description
15–0	Shows the value of the lower 16 bits of the watchdog timer.
TIMEROUTLOW	

24.7.11 Watchdog Reset Count register (WDOG_RSTCNT)

Address: 4005_2000h base + 14h offset = 4005_2014h



WDOG_RSTCNT field descriptions

Field	Description
	Counts the number of times the watchdog resets the system. This register is reset only on a POR. Writing 1 to the bit to be cleared enables you to clear the contents of this register.

24.7.12 Watchdog Prescaler register (WDOG_PRESC)

Address: 4005_2000h base + 16h offset = 4005_2016h

WDOG_PRESC field descriptions

Field	Description
15–11 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
10–8 PRESCVAL	3-bit prescaler for the watchdog clock source. A value of zero indicates no division of the input WDOG clock. The watchdog clock is divided by (PRESCVAL + 1) to provide the prescaled WDOG_CLK.
7–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

24.8 Watchdog operation with 8-bit access

24.8.1 General guideline

When performing 8-bit accesses to the watchdog's 16-bit registers where the intention is to access both the bytes of a register, place the two 8-bit accesses one after the other in your code.

24.8.2 Refresh and unlock operations with 8-bit access

One exception condition that generates a reset to the system is the write of any value other than those required for a legal refresh/update sequence to the respective refresh and unlock registers.

For an 8-bit access to these registers, writing a correct value requires at least two bus clock cycles, resulting in an invalid value in the registers for one cycle. Therefore, the system is reset even if the intention is to write a correct value to the refresh/unlock register. Keeping this in mind, the exception condition for 8-bit accesses is slightly modified.

Whereas the match for a correct value for a refresh/unlock sequence is as according to the original definition, the match for an incorrect value is done byte-wise on the refresh/unlock rather than for the whole 16-bit value. This means that if the high byte of the refresh/unlock register contains any value other than high bytes of the two values that make up the sequence, it is treated as an exception condition, leading to a reset or interrupt-then-reset. The same holds true for the lower byte of the refresh or unlock register. Take the refresh operation that expects a write of 0xA602 followed by 0xB480 to the refresh register, as an example.

	WDOG_REFRESH[15:8]	WDOG_REFRESH[7:0]	Sequence value1 or value2 match	Mismatch exception
Current Value	0xB4	0x80	Value2 match	No
Write 1	0xB4	0x02	No match	No
Write 2	0xA6	0x02	Value1 match	No
Write 3	0xB4	0x02	No match	No
Write 4	0xB4	0x80	Value2 match. Sequence complete.	No
Write 5	0x02	0x80	No match	Yes

Table 24-14. Refresh for 8-bit access

As shown in the preceding table, the refresh register holds its reset value initially. Thereafter, two 8-bit accesses are performed on the register to write the first value of the refresh sequence. No mismatch exception is registered on the intermediate write, Write1. The sequence is completed by performing two more 8-bit accesses, writing in the second value of the sequence for a successful refresh. It must be noted that the match of value2 takes place only when the complete 16-bit value is correctly written, write4. Hence, the requirement of writing value2 of the sequence within 20 bus clock cycles of value1 is checked by measuring the gap between write2 and write4.

It is reiterated that the condition for matching values 1 and 2 of the refresh or unlock sequence remains unchanged. The difference for 8-bit accesses is that the criterion for detecting a mismatch is less strict. Any 16-bit access still needs to adhere to the original guidelines, mentioned in the sections Refreshing the Watchdog.

24.9 Restrictions on watchdog operation

This section mentions some exceptions to the watchdog operation that may not be apparent to you.

- Restriction on unlock/refresh operations—In the period between the closure of the WCT window after unlock and the actual reload of the watchdog timer, unlock and refresh operations need not be attempted.
- The update and reload of the watchdog timer happens two to three watchdog clocks after WCT window closes, following a successful configuration on unlock.
- Clock Switching Delay—The watchdog uses glitch-free multiplexers at two places one to choose between the LPO oscillator input and alternate clock input, and the other to choose between the watchdog functional clock and fast clock input for watchdog functional test. A maximum time period of ~2 clock A cycles plus ~2 clock B cycles elapses from the time a switch is requested to the occurrence of the actual clock switch, where clock A and B are the two input clocks to the clock mux.
- For the windowed mode, there is a two to three bus clock latency between the watchdog counter going past the window value and the same registering in the bus clock domain.
- For proper operation of the watchdog, the watchdog clock must be at least five times slower than the system bus clock at all times. An exception is when the watchdog clock is synchronous to the bus clock wherein the watchdog clock can be as fast as the bus clock.
- WCT must be equivalent to at least three watchdog clock cycles. If not ensured, this means that even after the close of the WCT window, you have to wait for the synchronized system reset to deassert in the watchdog clock domain, before expecting the configuration updates to take effect.
- The time-out value of the watchdog should be set to a minimum of four watchdog clock cycles. This is to take into account the delay in new settings taking effect in the watchdog clock domain.

Restrictions on watchdog operation

- You must take care not only to refresh the watchdog within the watchdog timer's actual time-out period, but also provide enough allowance for the time it takes for the refresh sequence to be detected by the watchdog timer, on the watchdog clock.
- Updates cannot be made in the bus clock cycle immediately following the write of the unlock sequence, but one bus clock cycle later.
- It should be ensured that the time-out value for the watchdog is always greater than 2xWCT time + 20 bus clock cycles.
- An attempted refresh operation, in between the two writes of the unlock sequence and in the WCT time following a successful unlock, will go undetected.
- Trying to unlock the watchdog within the WCT time after an initial unlock has no effect.
- The refresh and unlock operations and interrupt are not automatically disabled in the watchdog functional test mode.
- After emerging from a reset due to a watchdog functional test, you are still expected to go through the mandatory steps of unlocking and configuring the watchdog. The watchdog continues to be in its functional test mode and therefore you should pull the watchdog out of the functional test mode within WCT time of reset.
- After emerging from a reset due to a watchdog functional test, you still need to go through the mandatory steps of unlocking and configuring the watchdog.
- You must ensure that both the clock inputs to the glitchless clock multiplexers are alive during the switching of clocks. Failure to do so results in a loss of clock at their outputs.
- There is a gap of two to three watchdog clock cycles from the point that stop mode is entered to the watchdog timer actually pausing, due to synchronization. The same holds true for an exit from the stop mode, this time resulting in a two to three watchdog clock cycle delay in the timer restarting. In case the duration of the stop mode is less than one watchdog clock cycle, the watchdog timer is not guaranteed to pause.
- Consider the case when the first refresh value is written, following which the system enters stop mode with system bus clk still on. If the second refresh value is not written within 20 bus cycles of the first value, the system is reset, or interrupt-then-reset if enabled.

Chapter 25 Multipurpose Clock Generator (MCG)

25.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The multipurpose clock generator (MCG) module provides several clock source choices for the MCU.

The module contains a frequency-locked loop (FLL) and a phase-locked loop (PLL). The FLL is controllable by either an internal or an external reference clock. The PLL is controllable by the external reference clock. The module can select either an FLL or PLL output clock, or a reference clock (internal or external) as a source for the MCU system clock. The MCG operates in conjuction with a crystal oscillator, which allows an external crystal, ceramic resonator, or another external clock source to produce the external reference clock.

25.1.1 Features

Key features of the MCG module are:

- Frequency-locked loop (FLL):
 - Digitally-controlled oscillator (DCO)
 - DCO frequency range is programmable for up to four different frequency ranges.
 - Option to program and maximize DCO output frequency for a low frequency external reference clock source.
 - Option to prevent FLL from resetting its current locked frequency when switching clock modes if FLL reference frequency is not changed.

Introduction

- Internal or external reference clock can be used as the FLL source.
- Can be used as a clock source for other on-chip peripherals.
- Phase-locked loop (PLL):
 - Voltage-controlled oscillator (VCO)
 - External reference clock is used as the PLL source.
 - Modulo VCO frequency divider
 - Phase/Frequency detector
 - Integrated loop filter
 - Can be used as a clock source for other on-chip peripherals.
- Internal reference clock generator:
 - Slow clock with nine trim bits for accuracy
 - Fast clock with four trim bits
 - Can be used as source clock for the FLL. In FEI mode, only the slow Internal Reference Clock (IRC) can be used as the FLL source.
 - Either the slow or the fast clock can be selected as the clock source for the MCU.
 - Can be used as a clock source for other on-chip peripherals.
- Control signals for the MCG external reference low power oscillator clock generators are provided:
 - HGO, RANGE, EREFS
- External clock from the Crystal Oscillator:
 - Can be used as a source for the FLL and/or the PLL.
 - Can be selected as the clock source for the MCU.
- External clock from the Real Time Counter (RTC):
 - Can only be used as a source for the FLL.
 - Can be selected as the clock source for the MCU.
- External clock monitor with reset and interrupt request capability to check for external clock failure when running in FBE, PEE, BLPE, or FEE modes
- Lock detector with interrupt request capability for use with the PLL

- Internal Reference Clocks Auto Trim Machine (ATM) capability using an external clock as a reference
- Reference dividers for both the FLL and the PLL are provided
- Reference dividers for the Fast Internal Reference Clock are provided
- MCG PLL Clock (MCGPLLCLK) is provided as a clock source for other on-chip peripherals
- MCG FLL Clock (MCGFLLCLK) is provided as a clock source for other on-chip peripherals
- MCG Fixed Frequency Clock (MCGFFCLK) is provided as a clock source for other on-chip peripherals
- MCG Internal Reference Clock (MCGIRCLK) is provided as a clock source for other on-chip peripherals

This figure presents the block diagram of the MCG module.

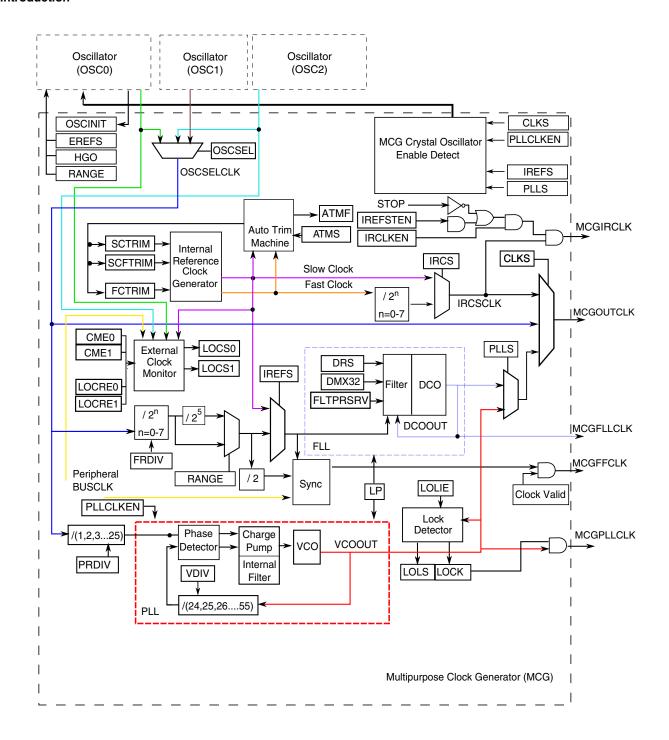


Figure 25-1. Multipurpose Clock Generator (MCG) block diagram
NOTE

Refer to the chip configuration chapter to identify the oscillator used in this MCU.

25.1.2 Modes of Operation

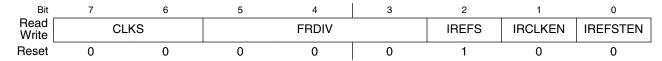
The MCG has the following modes of operation: FEI, FEE, FBI, FBE, PBE, PEE, BLPI, BLPE, and Stop. For details, see MCG modes of operation.

25.2 External Signal Description

There are no MCG signals that connect off chip.

25.3 Memory Map/Register Definition

This section includes the memory map and register definition.


The MCG registers can only be written when in supervisor mode. Write accesses when in user mode will result in a bus error. Read accesses may be performed in both supervisor and user mode.

MCG memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_4000	MCG Control 1 Register (MCG_C1)	8	R/W	04h	25.3.1/552
4006_4001	MCG Control 2 Register (MCG_C2)	8	R/W	80h	25.3.2/553
4006_4002	MCG Control 3 Register (MCG_C3)	8	R/W	Undefined	25.3.3/554
4006_4003	MCG Control 4 Register (MCG_C4)	8	R/W	Undefined	25.3.4/555
4006_4004	MCG Control 5 Register (MCG_C5)	8	R/W	00h	25.3.5/556
4006_4005	MCG Control 6 Register (MCG_C6)	8	R/W	00h	25.3.6/557
4006_4006	MCG Status Register (MCG_S)	8	R	10h	25.3.7/559
4006_4008	MCG Status and Control Register (MCG_SC)	8	R/W	02h	25.3.8/560
4006_400A	MCG Auto Trim Compare Value High Register (MCG_ATCVH)	8	R/W	00h	25.3.9/562
4006_400B	MCG Auto Trim Compare Value Low Register (MCG_ATCVL)	8	R/W	00h	25.3.10/ 562
4006_400C	MCG Control 7 Register (MCG_C7)	8	R/W	00h	25.3.11/ 562
4006_400D	MCG Control 8 Register (MCG_C8)	8	R/W	80h	25.3.12/ 563

25.3.1 MCG Control 1 Register (MCG_C1)

Address: 4006_4000h base + 0h offset = 4006_4000h

MCG_C1 field descriptions

Field	Description
7–6 CLKS	Clock Source Select Selects the clock source for MCGOUTCLK. O Encoding 0 — Output of FLL or PLL is selected (depends on PLLS control bit). O1 Encoding 1 — Internal reference clock is selected.
	 10 Encoding 2 — External reference clock is selected. 11 Encoding 3 — Reserved.
5–3 FRDIV	FLL External Reference Divider Selects the amount to divide down the external reference clock for the FLL. The resulting frequency must be in the range 31.25 kHz to 39.0625 kHz (This is required when FLL/DCO is the clock source for MCGOUTCLK. In FBE mode, it is not required to meet this range, but it is recommended in the cases when trying to enter a FLL mode from FBE).
	 If RANGE = 0 or OSCSEL=1, Divide Factor is 1; for all other RANGE values, Divide Factor is 32. If RANGE = 0 or OSCSEL=1, Divide Factor is 2; for all other RANGE values, Divide Factor is 64. If RANGE = 0 or OSCSEL=1, Divide Factor is 4; for all other RANGE values, Divide Factor is 128. If RANGE = 0 or OSCSEL=1, Divide Factor is 8; for all other RANGE values, Divide Factor is 256. If RANGE = 0 or OSCSEL=1, Divide Factor is 16; for all other RANGE values, Divide Factor is 512. If RANGE = 0 or OSCSEL=1, Divide Factor is 32; for all other RANGE values, Divide Factor is 1024. If RANGE = 0 or OSCSEL=1, Divide Factor is 64; for all other RANGE values, Divide Factor is 1280. If RANGE = 0 or OSCSEL=1, Divide Factor is 128; for all other RANGE values, Divide Factor is 1280.
2 IREFS	Internal Reference Select Selects the reference clock source for the FLL. 0 External reference clock is selected. 1 The slow internal reference clock is selected.
1 IRCLKEN	Internal Reference Clock Enable Enables the internal reference clock for use as MCGIRCLK. 0 MCGIRCLK inactive. 1 MCGIRCLK active.
0 IREFSTEN	Internal Reference Stop Enable Controls whether or not the internal reference clock remains enabled when the MCG enters Stop mode.

Table continues on the next page...

MCG_C1 field descriptions (continued)

Field	Description
	0 Internal reference clock is disabled in Stop mode.
	1 Internal reference clock is enabled in Stop mode if IRCLKEN is set or if MCG is in FEI, FBI, or BLPI modes before entering Stop mode.

25.3.2 MCG Control 2 Register (MCG_C2)

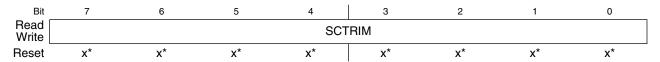
Address: 4006_4000h base + 1h offset = 4006_4001h

Bit	7	6	5	4	3	2	1	0
Read [Write	LOCRE0	FCFTRIM	RAN	NGE	HGO	EREFS	LP	IRCS
Reset	1	0	0	0	0	0	0	0

MCG_C2 field descriptions

Field	Description
7 LOCRE0	Loss of Clock Reset Enable
	Determines whether an interrupt or a reset request is made following a loss of OSC0 external reference clock. The LOCRE0 only has an affect when CME0 is set.
	0 Interrupt request is generated on a loss of OSC0 external reference clock.
	1 Generate a reset request on a loss of OSC0 external reference clock.
6	Fast Internal Reference Clock Fine Trim
FCFTRIM	FCFTRIM controls the smallest adjustment of the fast internal reference clock frequency. Setting FCFTRIM increases the period and clearing FCFTRIM decreases the period by the smallest amount possible. If an FCFTRIM value stored in nonvolatile memory is to be used, it is your responsibility to copy that value from the nonvolatile memory location to this bit.
5–4	Frequency Range Select
RANGE	Selects the frequency range for the crystal oscillator or external clock source. See the Oscillator (OSC) chapter for more details and the device data sheet for the frequency ranges used.
	00 Encoding 0 — Low frequency range selected for the crystal oscillator.
	01 Encoding 1 — High frequency range selected for the crystal oscillator .
	1X Encoding 2 — Very high frequency range selected for the crystal oscillator .
3	High Gain Oscillator Select
HGO	Controls the crystal oscillator mode of operation. See the Oscillator (OSC) chapter for more details.
	0 Configure crystal oscillator for low-power operation.
	1 Configure crystal oscillator for high-gain operation.
2	External Reference Select
EREFS	Selects the source for the external reference clock. See the Oscillator (OSC) chapter for more details.
	0 External reference clock requested.
	1 Oscillator requested.

Table continues on the next page...


Memory Map/Register Definition

MCG_C2 field descriptions (continued)

Field	Description
1	Low Power Select
LP	Controls whether the FLL or PLL is disabled in BLPI and BLPE modes. In FBE or PBE modes, setting this bit to 1 will transition the MCG into BLPE mode; in FBI mode, setting this bit to 1 will transition the MCG into BLPI mode. In any other MCG mode, LP bit has no affect.
	O FLL or PLL is not disabled in bypass modes. 1 FLL or PLL is disabled in bypass modes (lower power)
0 IRCS	Internal Reference Clock Select
11100	Selects between the fast or slow internal reference clock source.
	0 Slow internal reference clock selected.
	1 Fast internal reference clock selected.

25.3.3 MCG Control 3 Register (MCG_C3)

Address: 4006_4000h base + 2h offset = 4006_4002h

^{*} Notes:

MCG_C3 field descriptions

Field	Description
7–0	Slow Internal Reference Clock Trim Setting
SCTRIM	SCTRIM ¹ controls the slow internal reference clock frequency by controlling the slow internal reference clock period. The SCTRIM bits are binary weighted, that is, bit 1 adjusts twice as much as bit 0. Increasing the binary value increases the period, and decreasing the value decreases the period.
	An additional fine trim bit is available in C4 register as the SCFTRIM bit. Upon reset, this value is loaded with a factory trim value.
	If an SCTRIM value stored in nonvolatile memory is to be used, it is your responsibility to copy that value from the nonvolatile memory location to this register.

1. A value for SCTRIM is loaded during reset from a factory programmed location.

[•] x = Undefined at reset.

25.3.4 MCG Control 4 Register (MCG_C4)

NOTE

Reset values for DRST and DMX32 bits are 0.

Address: 4006_4000h base + 3h offset = 4006_4003h

Bit	7	6	5	4	3	2	1	0
Read Write	DMX32	DRST	_DRS		FCT	ΓRIM		SCFTRIM
Reset	0	0	0	x *	x*	x *	x *	X*

^{*} Notes:

- x = Undefined at reset.
- A value for FCTRIM is loaded during reset from a factory programmed location. x = Undefined at reset.

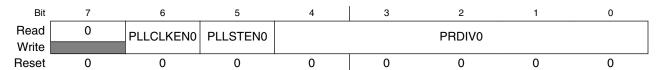
MCG_C4 field descriptions

Field			Description				
7	DCO Maximum Frequency with 32.768 kHz Reference						
DMX32	The DMX32 bit controls whether the DCO frequency range is narrowed to its maximum frequency with a 32.768 kHz reference.						
	The following table ide	ntifies settings fo	r the DCO frequency rang	e.			
	NOTE: The system c	locks derived fror	n this source should not e	xceed their specifie	d maximums.		
	DRST_DRS	DMX32	Reference Range	FLL Factor	DCO Range		
	00	0	31.25–39.0625 kHz	640	20–25 MHz		
		1	32.768 kHz	732	24 MHz		
	01	0	31.25–39.0625 kHz	1280	40–50 MHz		
		1	32.768 kHz	1464	48 MHz		
	10	0	31.25–39.0625 kHz	1920	60–75 MHz		
		1	32.768 kHz	2197	72 MHz		
	11	0	31.25–39.0625 kHz	2560	80–100 MHz		
		1	32.768 kHz	2929	96 MHz		
		•	quency with 32.768 kHz re	eference.			
6-5	DCO Range Select						
DRST_DRS	the DRS bits are ignor DRST field does not u	ed. The DRST re odate immediatel	e for the FLL output, DCO ad field indicates the curre y after a write to the DRS Frequency Range table for	ent frequency range field due to internal	for DCOOUT. The		
	00 Encoding 0 — Lo	w range (reset de	efault).				

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Memory Map/Register Definition


MCG_C4 field descriptions (continued)

Field	Description
	01 Encoding 1 — Mid range.
	10 Encoding 2 — Mid-high range.
	11 Encoding 3 — High range.
4–1 FCTRIM	Fast Internal Reference Clock Trim Setting
T OTTIM	FCTRIM ¹ controls the fast internal reference clock frequency by controlling the fast internal reference clock period. The FCTRIM bits are binary weighted, that is, bit 1 adjusts twice as much as bit 0. Increasing the binary value increases the period, and decreasing the value decreases the period.
	If an FCTRIM[3:0] value stored in nonvolatile memory is to be used, it is your responsibility to copy that value from the nonvolatile memory location to this register.
0	Slow Internal Reference Clock Fine Trim
SCFTRIM	SCFTRIM ² controls the smallest adjustment of the slow internal reference clock frequency. Setting SCFTRIM increases the period and clearing SCFTRIM decreases the period by the smallest amount possible.
	If an SCFTRIM value stored in nonvolatile memory is to be used, it is your responsibility to copy that value from the nonvolatile memory location to this bit.

- 1. A value for FCTRIM is loaded during reset from a factory programmed location.
- 2. A value for SCFTRIM is loaded during reset from a factory programmed location .

25.3.5 MCG Control 5 Register (MCG_C5)

Address: 4006_4000h base + 4h offset = 4006_4004h

MCG_C5 field descriptions

Field	Description
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 PLLCLKEN0	PLL Clock Enable Enables the PLL independent of PLLS and enables the PLL clock for use as MCGPLLCLK. (PRDIV 0 needs to be programmed to the correct divider to generate a PLL reference clock in the range of 2 - 4 MHz range prior to setting the PLLCLKEN 0 bit). Setting PLLCLKEN 0 will enable the external oscillator if not already enabled. Whenever the PLL is being enabled by means of the PLLCLKEN 0 bit, and the external oscillator is being used as the reference clock, the OSCINIT 0 bit should be checked to make sure it is set. 0 MCGPLLCLK is inactive. 1 MCGPLLCLK is active.
5 PLLSTEN0	PLL Stop Enable

Table continues on the next page...

MCG_C5 field descriptions (continued)

	Description								
	Enables the PLL Clock during Normal Stop. In Low Power Stop mode, the PLL clock gets disabled even if PLLSTEN 0 =1. All other power modes, PLLSTEN 0 bit has no affect and does not enable the PLL Clock to run if it is written to 1.								
	1	APLLCLK is dis APLLCLK is ena	_	-					
4–0 PRDIV0	PLL Exte	ernal Reference	Divider						
	be in the	range of 2 MH value must no	z to 4 MHz. Af t be changed v	ter the PLL is on the Men LOCK0 is	enabled (by se	tting either PLI	esulting freque _CLKEN 0 or P Factor		
	PRDIV 0	Divide Factor	PRDIV 0	Divide Factor	PRDIV 0	Divide Factor	PRDIV 0	Divide Factor	
	00000	1	01000	9	10000	17	11000	25	
	00000	1.	0.000		10000	1	111000	23	
	00000	2	01001	10	10000	18	11001		
								Reserv	
	00001	2	01001	10	10001	18	11001	Reserved Reserved	
	00001	3	01001	10	10001	18	11001	Reserved Reserved Reserved	
	00001 00010 00011	3 4	01001 01010 01011	10 11 12	10001 10010 10011	18 19 20	11001 11010 11011	Reserved Reserved Reserved Reserved Reserved	
	00001 00010 00011 00100	2 3 4 5	01001 01010 01011 01100	10 11 12 13	10001 10010 10011 10100	18 19 20 21	11001 11010 11011 11100	Reserved Reserved Reserved Reserved Reserved Reserved	

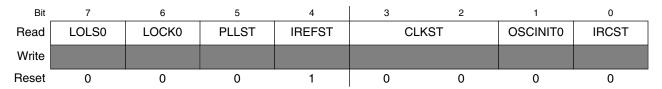
25.3.6 MCG Control 6 Register (MCG_C6)

Address: 4006_4000h base + 5h offset = 4006_4005h

MCG_C6 field descriptions

Field	Description
7	Loss of Lock Interrrupt Enable
LOLIE0	

Table continues on the next page...


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

MCG_C6 field descriptions (continued)

Field				Desc	ription			
		nes if an interru DLS 0 is set.	ot request is n	nade following a	a loss of lock ir	ndication. This	bit only has an	effect
	0 No ir	nterrupt request	is generated	on loss of lock.				
		erate an interru	•					
6	PLL Sele	ect						
PLLS	bit is clea disabled	whether the PL ared and PLLCI in all modes.						
		is selected.						
		is selected (PR c in the range o				ct divider to gei	nerate a PLL re	eference
5	Clock Mo	onitor Enable						
GME0 4-0 VDIV0	will deter bit must (FEE, FE bits in the any Stop logic 0 be 0 Exte 1 Exte VCO 0 D Selects t (M) appli	the loss of clock mine if a interrult only be set to a BE, PEE, PBE, et C2 register shounded by the mode. Otherwise of the control clock monitorial clock monit	upt or a reset of logic 1 when or BLPE). Who hould not be clise, a reset replaced to ris disabled to ris enabled divide the VCO ence clock free emust not be	request is gene the MCG is in a nenever the CM hanged. CME0 quest may occi V power modes for OSC0. for OSC0.	erated following an operational IEO bit is set to bit should be sur while in Stops if the MCG is PLL. The VDIV ie PLL is enable LOCK 0 is zer	g a loss of OSC mode that use a logic 1, the set to a logic 0 mode. CME0 in BLPE mode O bits established (by setting of o.	to indication. The sthe external of value of the RA before the MC should also be the the the the the the the the the th	he CME clock NGE0 G enters e set to a
	VDIV 0	Multiply	VDIV 0	Multiply	VDIV 0	Multiply	VDIV 0	Multiply
	00000	Factor	0.1005	Factor	40000	Factor	4 1000	Factor
	00000	24	01000	32	10000	40	11000	48
	00001	25	01001	33	10001	41	11001	49
			01010	34	10010	42	11010	50
	00010	26	01011	0.5	40011		4 4 4 4 4	
	00010 00011	27	01011	35	10011	43	11011	51
	00010 00011 00100	27 28	01100	36	10100	44	11100	52
	00010 00011 00100 00101	27 28 29	01100 01101	36 37	10100 10101	44 45	11100 11101	52 53
	00010 00011 00100	27 28	01100	36	10100	44	11100	52

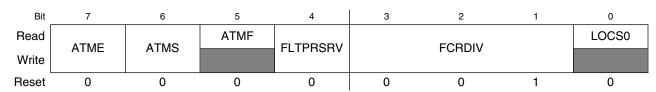
25.3.7 MCG Status Register (MCG_S)

Address: 4006_4000h base + 6h offset = 4006_4006h

MCG_S field descriptions

Field	Description
7 LOLS0	Loss of Lock Status This bit is a sticky bit indicating the lock status for the PLL. LOLS is set if after acquiring lock, the PLL output frequency has fallen outside the lock exit frequency tolerance, D uni. LOLIE determines whether an interrupt request is made when LOLS is set. LOLRE determines whether a reset request is made when LOLS is set. This bit is cleared by reset or by writing a logic 1 to it when set. Writing a logic 0 to this bit has no effect. O PLL has not lost lock since LOLS 0 was last cleared. PLL has lost lock since LOLS 0 was last cleared.
6 LOCK0	Lock Status This bit indicates whether the PLL has acquired lock. Lock detection is only enabled when the PLL is enabled (either through clock mode selection or PLLCLKEN0=1 setting). While the PLL clock is locking to the desired frequency, the MCG PLL clock (MCGPLLCLK) will be gated off until the LOCK bit gets asserted. If the lock status bit is set, changing the value of the PRDIV0 [4:0] bits in the C5 register or the VDIV0[4:0] bits in the C6 register causes the lock status bit to clear and stay cleared until the PLL has reacquired lock. Loss of PLL reference clock will also cause the LOCK0 bit to clear until the PLL has reacquired lock. Entry into LLS, VLPS, or regular Stop with PLLSTEN=0 also causes the lock status bit to clear and stay cleared until the Stop mode is exited and the PLL has reacquired lock. Any time the PLL is enabled and the LOCK0 bit is cleared, the MCGPLLCLK will be gated off until the LOCK0 bit is asserted again. O PLL is currently unlocked. 1 PLL is currently locked.
5 PLLST	PLL Select Status This bit indicates the clock source selected by PLLS . The PLLST bit does not update immediately after a write to the PLLS bit due to internal synchronization between clock domains. O Source of PLLS clock is FLL clock. Source of PLLS clock is PLL output clock.
4 IREFST	Internal Reference Status This bit indicates the current source for the FLL reference clock. The IREFST bit does not update immediately after a write to the IREFS bit due to internal synchronization between clock domains. O Source of FLL reference clock is the external reference clock. Source of FLL reference clock is the internal reference clock.

Table continues on the next page...


Memory Map/Register Definition

MCG_S field descriptions (continued)

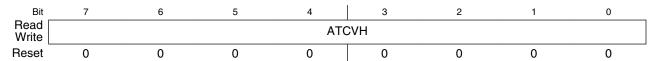
Field	Description
3–2 CLKST	Clock Mode Status
	These bits indicate the current clock mode. The CLKST bits do not update immediately after a write to the CLKS bits due to internal synchronization between clock domains.
	00 Encoding 0 — Output of the FLL is selected (reset default).
	01 Encoding 1 — Internal reference clock is selected.
	10 Encoding 2 — External reference clock is selected.
	11 Encoding 3 — Output of the PLL is selected.
1 OSCINITO	OSC Initialization
	This bit, which resets to 0, is set to 1 after the initialization cycles of the crystal oscillator clock have completed. After being set, the bit is cleared to 0 if the OSC is subsequently disabled. See the OSC module's detailed description for more information.
0 IRCST	Internal Reference Clock Status
	The IRCST bit indicates the current source for the internal reference clock select clock (IRCSCLK). The IRCST bit does not update immediately after a write to the IRCS bit due to internal synchronization between clock domains. The IRCST bit will only be updated if the internal reference clock is enabled, either by the MCG being in a mode that uses the IRC or by setting the C1[IRCLKEN] bit.
	0 Source of internal reference clock is the slow clock (32 kHz IRC).
	1 Source of internal reference clock is the fast clock (4 MHz IRC).

25.3.8 MCG Status and Control Register (MCG_SC)

Address: 4006_4000h base + 8h offset = 4006_4008h

MCG_SC field descriptions

Field	Description
7 ATME	Automatic Trim Machine Enable
7.11112	Enables the Auto Trim Machine to start automatically trimming the selected Internal Reference Clock.
	NOTE: ATME deasserts after the Auto Trim Machine has completed trimming all trim bits of the IRCS clock selected by the ATMS bit.
	Writing to C1, C3, C4, and SC registers or entering Stop mode aborts the auto trim operation and clears this bit.
	0 Auto Trim Machine disabled.1 Auto Trim Machine enabled.

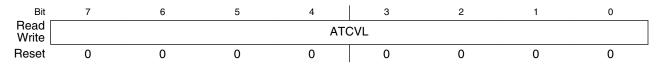

Table continues on the next page...

MCG_SC field descriptions (continued)

Field	Description
6	Automatic Trim Machine Select
ATMS	Selects the IRCS clock for Auto Trim Test.
	0 32 kHz Internal Reference Clock selected.
	1 4 MHz Internal Reference Clock selected.
5 ATMF	Automatic Trim Machine Fail Flag
	Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine is enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters into any Stop mode. A write to ATMF clears the flag.
	0 Automatic Trim Machine completed normally.
	1 Automatic Trim Machine failed.
4 FLTPRSRV	FLL Filter Preserve Enable
TETTROTTV	This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain the same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that the FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Otherwise FLL filter and frequency values will change.)
	0 FLL filter and FLL frequency will reset on changes to currect clock mode.
	1 Fll filter and FLL frequency retain their previous values during new clock mode change.
3–1	Fast Clock Internal Reference Divider
FCRDIV	Selects the amount to divide down the fast internal reference clock. The resulting frequency will be in the range 31.25 kHz to 4 MHz (Note: Changing the divider when the Fast IRC is enabled is not supported).
	000 Divide Factor is 1
	001 Divide Factor is 2.
	010 Divide Factor is 4.
	011 Divide Factor is 8.
	100 Divide Factor is 16
	101 Divide Factor is 32 110 Divide Factor is 64
	110 Divide Factor is 64 111 Divide Factor is 128.
0	OSC0 Loss of Clock Status
LOCS0	The LOCS0 indicates when a loss of OSC0 reference clock has occurred. The LOCS0 bit only has an effect when CME0 is set. This bit is cleared by writing a logic 1 to it when set.
	0 Loss of OSC0 has not occurred.
	1 Loss of OSC0 has occurred.
L	

25.3.9 MCG Auto Trim Compare Value High Register (MCG_ATCVH)

Address: 4006_4000h base + Ah offset = 4006_400Ah



MCG_ATCVH field descriptions

Field	Description
ATCVH	ATM Compare Value High Values are used by Auto Trim Machine to compare and adjust Internal Reference trim values during ATM SAR conversion.

25.3.10 MCG Auto Trim Compare Value Low Register (MCG_ATCVL)

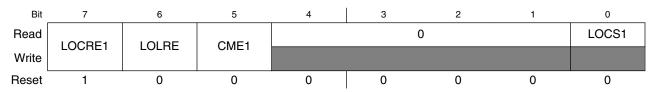
Address: 4006_4000h base + Bh offset = 4006_400Bh

MCG_ATCVL field descriptions

Field	Description
ATCVL	ATM Compare Value Low Values are used by Auto Trim Machine to compare and adjust Internal Reference trim values during ATM SAR conversion.

25.3.11 MCG Control 7 Register (MCG_C7)

Address: 4006_4000h base + Ch offset = 4006_400Ch



MCG_C7 field descriptions

Field	Description
7–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–2 Reserved	Reserved This field is reserved. This read-only field is reserved and always has the value 0.
1–0 OSCSEL	MCG OSC Clock Select Selects the MCG FLL external reference clock NOTE: The OSCSEL field can't be changed during MCG modes (like PBE), when external clock is serving as the clock source for MCG. O Selects Oscillator (OSCCLK0). Selects 32 kHz RTC Oscillator. Selects Oscillator (OSCCLK1). RESERVED

25.3.12 MCG Control 8 Register (MCG_C8)

Address: 4006_4000h base + Dh offset = 4006_400Dh

MCG_C8 field descriptions

Field	Description
7 LOCRE1	Loss of Clock Reset Enable
2001.21	Determines if a interrupt or a reset request is made following a loss of RTC external reference clock. The LOCRE1 only has an affect when CME1 is set.
	0 Interrupt request is generated on a loss of RTC external reference clock.
	1 Generate a reset request on a loss of RTC external reference clock
6 LOLRE	PLL Loss of Lock Reset Enable
	Determines if an interrupt or a reset request is made following a PLL loss of lock.
	0 Interrupt request is generated on a PLL loss of lock indication. The PLL loss of lock interrupt enable bit must also be set to generate the interrupt request.
	1 Generate a reset request on a PLL loss of lock indication.
5 CME1	Clock Monitor Enable1
	Enables the loss of clock monitoring circuit for the output of the RTC external reference clock. The LOCRE1 bit will determine whether an interrupt or a reset request is generated following a loss of RTC

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Functional description

MCG_C8 field descriptions (continued)

Field	Description
	clock indication. The CME1 bit should be set to a logic 1 when the MCG is in an operational mode that uses the RTC as its external reference clock or if the RTC is operational. CME1 bit must be set to a logic 0 before the MCG enters any Stop mode. Otherwise, a reset request may occur when in Stop mode. CME1 should also be set to a logic 0 before entering VLPR or VLPW power modes. O External clock monitor is disabled for RTC clock.
	External clock monitor is enabled for RTC clock.
	External clock monitor is enabled for hire clock.
4–1	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
0 LOCS1	RTC Loss of Clock Status
	This bit indicates when a loss of clock has occurred. This bit is cleared by writing a logic 1 to it when set.
	0 Loss of RTC has not occur.
	1 Loss of RTC has occur

25.4 Functional description

25.4.1 MCG mode state diagram

The nine states of the MCG are shown in the following figure and are described in Table 25-16. The arrows indicate the permitted MCG mode transitions.

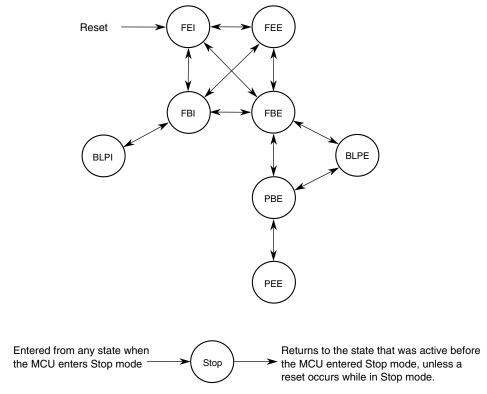


Figure 25-14. MCG mode state diagram

NOTE

- During exits from LLS or VLPS when the MCG is in PEE mode, the MCG will reset to PBE clock mode and the C1[CLKS] and S[CLKST] will automatically be set to 2'b10.
- If entering Normal Stop mode when the MCG is in PEE mode with PLLSTEN=0, the MCG will reset to PBE clock mode and C1[CLKS] and S[CLKST] will automatically be set to 2'b10.

25.4.1.1 MCG modes of operation

The MCG operates in one of the following modes.

Note

The MCG restricts transitions between modes. For the permitted transitions, see Figure 25-14.

Functional description

Table 25-16. MCG modes of operation

Mode	Description
FLL Engaged Internal (FEI)	FLL engaged internal (FEI) is the default mode of operation and is entered when all the following condtions occur:
	00 is written to C1[CLKS].
	1 is written to C1[IREFS].
	0 is written to C6[PLLS].
	In FEI mode, MCGOUTCLK is derived from the FLL clock (DCOCLK) that is controlled by the 32 kHz Internal Reference Clock (IRC). The FLL loop will lock the DCO frequency to the FLL factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the internal reference frequency. See the C4[DMX32] bit description for more details. In FEI mode, the PLL is disabled in a low-power state unless C5[PLLCLKEN] is set .
FLL Engaged External	FLL engaged external (FEE) mode is entered when all the following conditions occur:
(FEE)	00 is written to C1[CLKS].
	0 is written to C1[IREFS].
	C1[FRDIV] must be written to divide external reference clock to be within the range of 31.25 kHz to 39.0625 kHz
	0 is written to C6[PLLS].
	In FEE mode, MCGOUTCLK is derived from the FLL clock (DCOCLK) that is controlled by the external reference clock. The FLL loop will lock the DCO frequency to the FLL factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the external reference frequency, as specified by C1[FRDIV] and C2[RANGE]. See the C4[DMX32] bit description for more details. In FEE mode, the PLL is disabled in a low-power state unless C5[PLLCLKEN] is set .
FLL Bypassed Internal	FLL bypassed internal (FBI) mode is entered when all the following conditions occur:
(FBI)	01 is written to C1[CLKS].
	1 is written to C1[IREFS].
	0 is written to C6[PLLS]
	0 is written to C2[LP].
	In FBI mode, the MCGOUTCLK is derived either from the slow (32 kHz IRC) or fast (4 MHz IRC) internal reference clock, as selected by the C2[IRCS] bit. The FLL is operational but its output is not used. This mode is useful to allow the FLL to acquire its target frequency while the MCGOUTCLK is driven from the C2[IRCS] selected internal reference clock. The FLL clock (DCOCLK) is controlled by the slow internal reference clock, and the DCO clock frequency locks to a multiplication factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the internal reference frequency. See the C4[DMX32] bit description for more details. In FBI mode, the PLL is disabled in a low-power state unless C5[PLLCLKEN] is set .

Table continues on the next page...

Table 25-16. MCG modes of operation (continued)

Mode	Description
FLL Bypassed External (FBE)	FLL bypassed external (FBE) mode is entered when all the following conditions occur:
	10 is written to C1[CLKS].
	0 is written to C1[IREFS].
	C1[FRDIV] must be written to divide external reference clock to be within the range of 31.25 kHz to 39.0625 kHz.
	0 is written to C6[PLLS].
	0 is written to C2[LP].
	In FBE mode, the MCGOUTCLK is derived from the OSCSEL external reference clock. The FLL is operational but its output is not used. This mode is useful to allow the FLL to acquire its target frequency while the MCGOUTCLK is driven from the external reference clock. The FLL clock (DCOCLK) is controlled by the external reference clock, and the DCO clock frequency locks to a multiplication factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the divided external reference frequency. See the C4[DMX32] bit description for more details. In FBE mode, the PLL is disabled in a low-power state unless C5[PLLCLKEN] is set .
PLL Engaged External	PLL Engaged External (PEE) mode is entered when all the following conditions occur:
(PEE)	00 is written to C1[CLKS].
	0 is written to C1[IREFS].
	1 is written to C6[PLLS].
	In PEE mode, the MCGOUTCLK is derived from the output of PLL which is controlled by a external reference clock. The PLL clock frequency locks to a multiplication factor, as specified by its corresponding VDIV, times the selected PLL reference frequency, as specified by its corresponding PRDIV. The PLL's programmable reference divider must be configured to produce a valid PLL reference clock. The FLL is disabled in a low-power state.
PLL Bypassed External (PBE)	PLL Bypassed External (PBE) mode is entered when all the following conditions occur:
	10 is written to C1[CLKS].
	0 is written to C1[IREFS].
	1 is written to C6[PLLS].
	0 is written to C2[LP].
	In PBE mode, MCGOUTCLK is derived from the OSCSEL external reference clock; the PLL is operational, but its output clock is not used. This mode is useful to allow the PLL to acquire its target frequency while MCGOUTCLK is driven from the external reference clock. The PLL clock frequency locks to a multiplication factor, as specified by its [VDIV], times the PLL reference frequency, as specified by its [PRDIV]. In preparation for transition to PEE, the PLL's programmable reference divider must be configured to produce a valid PLL reference clock. The FLL is disabled in a low-power state.

Table continues on the next page...

Functional description

Table 25-16. MCG modes of operation (continued)

Mode	Description		
Bypassed Low Power Internal (BLPI)1	Bypassed Low Power Internal (BLPI) mode is entered when all the following conditions occur:		
	01 is written to C1[CLKS].		
	1 is written to C1[IREFS].		
	0 is written to C6[PLLS].		
	1 is written to C2[LP].		
	In BLPI mode, MCGOUTCLK is derived from the internal reference clock. The FLL is disabled and PLL is disabled even if C5[PLLCLKEN] is set to 1.		
Bypassed Low Power External (BLPE)	Bypassed Low Power External (BLPE) mode is entered when all the following conditions occur:		
	10 is written to C1[CLKS].		
	0 is written to C1[IREFS].		
	1 is written to C2[LP].		
	In BLPE mode, MCGOUTCLK is derived from the OSCSEL external reference clock. The FLL is disabled and PLL is disabled even if the C5[PLLCLKEN] is set to 1.		
Stop	Entered whenever the MCU enters a Stop state. The power modes are chip specific. For power mode assignments, see the chapter that describes how modules are configured and MCG behavior during Stop recovery. Entering Stop mode, the FLL is disabled, and all MCG clock signals are static except in the following case:		
	MCGPLLCLK is active in Normal Stop mode when PLLSTEN=1		
	MCGIRCLK is active in Normal Stop mode when all the following conditions become true:		
	• C1[IRCLKEN] = 1		
	C1[IREFSTEN] = 1		
	NOTE: • When entering Low Power Stop modes (LLS or VLPS) from PEE mode, on exit the MCG clock mode is forced to PBE clock mode. C1[CLKS] and S[CLKST] will be configured to 2'b10 and S[LOCK] bit will be cleared without setting S[LOLS].		
	 When entering Normal Stop mode from PEE mode and if C5[PLLSTEN]=0, on exit the MCG clock mode is forced to PBE mode, the C1[CLKS] and S[CLKST] will be configured to 2'b10 and S[LOCK] bit will clear without setting S[LOLS]. If C5[PLLSTEN]=1, the S[LOCK] bit will not get cleared and on exit the MCG will continue to run in PEE mode. 		

1. If entering VLPR mode, MCG has to be configured and enter BLPE mode or BLPI mode with the Fast IRC clock selected (C2[IRCS]=1). After it enters VLPR mode, writes to any of the MCG control registers that can cause an MCG clock mode switch to a non low power clock mode must be avoided.

NOTE

For the chip-specific modes of operation, see the power management chapter of this MCU.

25.4.1.2 MCG mode switching

C1[IREFS] can be changed at any time, but the actual switch to the newly selected reference clocks is shown by S[IREFST]. When switching between engaged internal and engaged external modes, the FLL will begin locking again after the switch is completed.

C1[CLKS] can also be changed at any time, but the actual switch to the newly selected clock is shown by S[CLKST]. If the newly selected clock is not available, the previous clock will remain selected.

The C4[DRST_DRS] write bits can be changed at any time except when C2[LP] bit is 1. If C4[DRST_DRS] write bits are changed while in FLL engaged internal (FEI) or FLL engaged external (FEE) mode, the MCGOUTCLK switches to the new selected DCO range within three clocks of the selected DCO clock. After switching to the new DCO (indicated by the updated C4[DRST_DRS] read bits), the FLL remains unlocked for several reference cycles. The FLL lock time is provided in the device data sheet as $t_{\rm fll_acquire}$.

25.4.2 Low-power bit usage

C2[LP] is provided to allow the FLL or PLL to be disabled and thus conserve power when these systems are not being used. C4[DRST_DRS] can not be written while C2[LP] is 1. However, in some applications, it may be desirable to enable the FLL or PLL and allow it to lock for maximum accuracy before switching to an engaged mode. Do this by writing 0 to C2[LP].

25.4.3 MCG Internal Reference Clocks

This module supports two internal reference clocks with nominal frequencies of 32 kHz (slow IRC) and 4 MHz (fast IRC). The fast IRC frequency can be divided down by programming of the FCRDIV to produce a frequency range of 32 kHz to 4 MHz.

25.4.3.1 MCG Internal Reference Clock

The MCG Internal Reference Clock (MCGIRCLK) provides a clock source for other onchip peripherals and is enabled when C1[IRCLKEN]=1. When enabled, MCGIRCLK is driven by either the fast internal reference clock (4 MHz IRC which can be divided down by the FRDIV factors) or the slow internal reference clock (32 kHz IRC). The IRCS clock frequency can be re-targeted by trimming the period of its IRCS selected internal reference clock. This can be done by writing a new trim value to the

Functional description

C3[SCTRIM]:C4[SCFTRIM] bits when the slow IRC clock is selected or by writing a new trim value to C4[FCTRIM]:C2[FCFTRIM] when the fast IRC clock is selected. The internal reference clock period is proportional to the trim value written.

C3[SCTRIM]:C4[SCFTRIM] (if C2[IRCS]=0) and C4[FCTRIM]:C2[FCFTRIM] (if C2[IRCS]=1) bits affect the MCGOUTCLK frequency if the MCG is in FBI or BLPI modes. C3[SCTRIM]:C4[SCFTRIM] (if C2[IRCS]=0) bits also affect the MCGOUTCLK frequency if the MCG is in FEI mode.

Additionally, this clock can be enabled in Stop mode by setting C1[IRCLKEN] and C1[IREFSTEN], otherwise this clock is disabled in Stop mode.

25.4.4 External Reference Clock

The MCG module can support an external reference clock in all modes. See the device datasheet for external reference frequency range. When C1[IREFS] is set, the external reference clock will not be used by the FLL or PLL. In these modes, the frequency can be equal to the maximum frequency the chip-level timing specifications will support.

If any of the CME bits are asserted the slow internal reference clock is enabled along with the enabled external clock monitor. For the case when C6[CME0]=1, a loss of clock is detected if the OSC0 external reference falls below a minimum frequency (f_{loc_high} or f_{loc_low} depending on C2[RANGE0]). For the case when C8[CME1]=1, a loss of clock is detected if the RTC external reference falls below a minimum frequency (f_{loc_low}).

NOTE

All clock monitors must be disabled before entering these low-power modes: Stop, VLPS, VLPR, VLPW, LLS, and VLLSx.

On detecting a loss-of-clock event, the MCU generates a system reset if the respective LOCRE bit is set. Otherwise the MCG sets the respective LOCS bit and the MCG generates a LOCS interrupt request. In the case where a OSC loss of clock is detected, the PLL LOCK status bit is cleared.

25.4.5 MCG Fixed Frequency Clock

The MCG Fixed Frequency Clock (MCGFFCLK) provides a fixed frequency clock source for other on-chip peripherals; see the block diagram. This clock is driven by either the slow clock from the internal reference clock generator or the external reference clock from the Crystal Oscillator, divided by the FLL reference clock divider. The source of MCGFFCLK is selected by C1[IREFS].

This clock is synchronized to the peripheral bus clock and is valid only when its frequency is not more than 1/8 of the MCGOUTCLK frequency. When it is not valid, it is disabled and held high. The MCGFFCLK is not available when the MCG is in BLPI mode. This clock is also disabled in Stop mode. The FLL reference clock must be set within the valid frequency range for the MCGFFCLK.

25.4.6 MCG PLL clock

The MCG PLL Clock (MCGPLLCLK) is available depending on the device's configuration of the MCG module. For more details, see the clock distribution chapter of this MCU. The MCGPLLCLK is prevented from coming out of the MCG until it is enabled and S[LOCK0] is set.

25.4.7 MCG Auto TRIM (ATM)

The MCG Auto Trim (ATM) is a MCG feature that when enabled, it configures the MCG hardware to automatically trim the MCG Internal Reference Clocks using an external clock as a reference. The selection between which MCG IRC clock gets tested and enabled is controlled by the ATC[ATMS] control bit (ATC[ATMS]=0 selects the 32 kHz IRC and ATC[ATMS]=1 selects the 4 MHz IRC). If 4 MHz IRC is selected for the ATM, a divide by 128 is enabled to divide down the 4 MHz IRC to a range of 31.250 kHz.

When MCG ATM is enabled by writing ATC[ATME] bit to 1, The ATM machine will start auto trimming the selected IRC clock. During the autotrim process, ATC[ATME] will remain asserted and will deassert after ATM is completed or an abort occurs. The MCG ATM is aborted if a write to any of the following control registers is detected: C1, C3, C4, or ATC or if Stop mode is entered. If an abort occurs, ATC[ATMF] fail flag is asserted.

The ATM machine uses the bus clock as the external reference clock to perform the IRC auto-trim. Therefore, it is required that the MCG is configured in a clock mode where the reference clock used to generate the system clock is the external reference clock such as FBE clock mode. The MCG must not be configured in a clock mode where selected IRC ATM clock is used to generate the system clock. The bus clock is also required to be running with in the range of 8–16 MHz.

To perform the ATM on the selected IRC, the ATM machine uses the successive approximation technique to adjust the IRC trim bits to generate the desired IRC trimmed frequency. The ATM SARs each of the ATM IRC trim bits starting with the MSB. For each trim bit test, the ATM uses a pulse that is generated by the ATM selected IRC clock to enable a counter that counts number of ATM external clocks. At end of each trim bit,

Initialization / Application information

the ATM external counter value is compared to the ATCV[15:0] register value. Based on the comparison result, the ATM trim bit under test will get cleared or stay asserted. This is done until all trim bits have been tested by ATM SAR machine.

Before the ATM can be enabled, the ATM expected count needs to be derived and stored into the ATCV register. The ATCV expected count is derived based on the required target Internal Reference Clock (IRC) frequency, and the frequency of the external reference clock using the following formula:

ATCV Expected Count Value = 21*(Fe/Fr)

- Fr = Target Internal Reference Clock (IRC) Trimmed Frequency
- Fe = External Clock Frequency

If the auto trim is being performed on the 4 MHz IRC, the calculated expected count value must be multiplied by 128 before storing it in the ATCV register. Therefore, the ATCV Expected Count Value for trimming the 4 MHz IRC is calculated using the following formula.

Expected Count Value = (Fe/Fr) *21*(128)

25.5 Initialization / Application information

This section describes how to initialize and configure the MCG module in an application.

The following sections include examples on how to initialize the MCG and properly switch between the various available modes.

25.5.1 MCG module initialization sequence

The MCG comes out of reset configured for FEI mode.

The internal reference will stabilize in t_{irefsts} microseconds before the FLL can acquire lock. As soon as the internal reference is stable, the FLL will acquire lock in t_{fll_acquire} milliseconds.

25.5.1.1 Initializing the MCG

Because the MCG comes out of reset in FEI mode, the only MCG modes that can be directly switched to upon reset are FEE, FBE, and FBI modes (see Figure 25-14). Reaching any of the other modes requires first configuring the MCG for one of these three intermediate modes. Care must be taken to check relevant status bits in the MCG status register reflecting all configuration changes within each mode.

To change from FEI mode to FEE or FBE modes, follow this procedure:

- 1. Enable the external clock source by setting the appropriate bits in C2 register.
- 2. Write to C1 register to select the clock mode.
 - If entering FEE mode, set C1[FRDIV] appropriately, clear C1[IREFS] bit to switch to the external reference, and leave C1[CLKS] at 2'b00 so that the output of the FLL is selected as the system clock source.
 - If entering FBE, clear C1[IREFS] to switch to the external reference and change C1[CLKS] to 2'b10 so that the external reference clock is selected as the system clock source. The C1[FRDIV] bits should also be set appropriately here according to the external reference frequency to keep the FLL reference clock in the range of 31.25 kHz to 39.0625 kHz. Although the FLL is bypassed, it is still on in FBE mode.
 - The internal reference can optionally be kept running by setting C1[IRCLKEN]. This is useful if the application will switch back and forth between internal and external modes. For minimum power consumption, leave the internal reference disabled while in an external clock mode.
- 3. Once the proper configuration bits have been set, wait for the affected bits in the MCG status register to be changed appropriately, reflecting that the MCG has moved into the proper mode.
 - If the MCG is in FEE, FBE, PEE, PBE, or BLPE mode, and C2[EREFS0] was also set in step 1, wait here for S[OSCINIT0] bit to become set indicating that the external clock source has finished its initialization cycles and stabilized.
 - If in FEE mode, check to make sure S[IREFST] is cleared before moving on.
 - If in FBE mode, check to make sure S[IREFST] is cleared and S[CLKST] bits have changed to 2'b10 indicating the external reference clock has been appropriately selected. Although the FLL is bypassed, it is still on in FBE mode.
- 4. Write to the C4 register to determine the DCO output (MCGFLLCLK) frequency range.

Initialization / Application information

- By default, with C4[DMX32] cleared to 0, the FLL multiplier for the DCO output is 640. For greater flexibility, if a mid-low-range FLL multiplier of 1280 is desired instead, set C4[DRST_DRS] bits to 2'b01 for a DCO output frequency of 40 MHz. If a mid high-range FLL multiplier of 1920 is desired instead, set the C4[DRST_DRS] bits to 2'b10 for a DCO output frequency of 60 MHz. If a high-range FLL multiplier of 2560 is desired instead, set the C4[DRST_DRS] bits to 2'b11 for a DCO output frequency of 80 MHz.
- When using a 32.768 kHz external reference, if the maximum low-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b00 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 732 will be 24 MHz.
- When using a 32.768 kHz external reference, if the maximum mid-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b01 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 1464 will be 48 MHz.
- When using a 32.768 kHz external reference, if the maximum mid high-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b10 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 2197 will be 72 MHz.
- When using a 32.768 kHz external reference, if the maximum high-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b11 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 2929 will be 96 MHz.
- 5. Wait for the FLL lock time to guarantee FLL is running at new C4[DRST_DRS] and C4[DMX32] programmed frequency.

To change from FEI clock mode to FBI clock mode, follow this procedure:

- 1. Change C1[CLKS] bits in C1 register to 2'b01 so that the internal reference clock is selected as the system clock source.
- 2. Wait for S[CLKST] bits in the MCG status register to change to 2'b01, indicating that the internal reference clock has been appropriately selected.
- 3. Write to the C2 register to determine the IRCS output (IRCSCLK) frequency range.

• By default, with C2[IRCS] cleared to 0, the IRCS selected output clock is the slow internal reference clock (32 kHz IRC). If the faster IRC is desired, set C2[IRCS] to 1 for a IRCS clock derived from the 4 MHz IRC source.

25.5.2 Using a 32.768 kHz reference

In FEE and FBE modes, if using a 32.768 kHz external reference, at the default FLL multiplication factor of 640, the DCO output (MCGFLLCLK) frequency is 20.97 MHz at low-range.

If C4[DRST_DRS] bits are set to 2'b01, the multiplication factor is doubled to 1280, and the resulting DCO output frequency is 41.94 MHz at mid-low-range. If C4[DRST_DRS] bits are set to 2'b10, the multiplication factor is set to 1920, and the resulting DCO output frequency is 62.91 MHz at mid high-range. If C4[DRST_DRS] bits are set to 2'b11, the multiplication factor is set to 2560, and the resulting DCO output frequency is 83.89 MHz at high-range.

In FBI and FEI modes, setting C4[DMX32] bit is not recommended. If the internal reference is trimmed to a frequency above 32.768 kHz, the greater FLL multiplication factor could potentially push the microcontroller system clock out of specification and damage the part.

25.5.3 MCG mode switching

When switching between operational modes of the MCG, certain configuration bits must be changed in order to properly move from one mode to another.

Each time any of these bits are changed (C6[PLLS], C1[IREFS], C1[CLKS], C2[IRCS], or C2[EREFS0]), the corresponding bits in the MCG status register (PLLST, IREFST, CLKST, IRCST, or OSCINIT) must be checked before moving on in the application software.

Additionally, care must be taken to ensure that the reference clock divider (C1[FRDIV] and C5[PRDIV0]) is set properly for the mode being switched to. For instance, in PEE mode, if using a 4 MHz crystal, C5[PRDIV0] must be set to 5'b000 (divide-by-1) or 5'b001 (divide-by-2) to divide the external reference down to the required frequency between 2 and 4 MHz.

In FBE, FEE, FBI, and FEI modes, at any time, the application can switch the FLL multiplication factor between 640, 1280, 1920, and 2560 with C4[DRST_DRS] bits. Writes to C4[DRST_DRS] bits will be ignored if C2[LP]=1.

Initialization / Application information

The table below shows MCGOUTCLK frequency calculations using C1[FRDIV], C5[PRDIV0], and C6[VDIV0] settings for each clock mode.

Table 25-17. MCGOUTCLK Frequency Calculation Options

Clock Mode	f _{MCGOUTCLK} 1	Note
FEI (FLL engaged internal)	(f _{int} * F)	Typical f _{MCGOUTCLK} = 21 MHz immediately after reset.
FEE (FLL engaged external)	(f _{ext} / FLL_R) *F	f _{ext} / FLL_R must be in the range of 31.25 kHz to 39.0625 kHz
FBE (FLL bypassed external)	OSCCLK	OSCCLK / FLL_R must be in the range of 31.25 kHz to 39.0625 kHz
FBI (FLL bypassed internal)	MCGIRCLK	Selectable between slow and fast IRC
PEE (PLL engaged external)	(OSCCLK / PLL_R) * M	OSCCLK / PLL_R must be in the range of 2 – 4 MHz
PBE (PLL bypassed external)	OSCCLK	OSCCLK / PLL_R must be in the range of 2 – 4 MHz
BLPI (Bypassed low power internal)	MCGIRCLK	Selectable between slow and fast IRC
BLPE (Bypassed low power external)	OSCCLK	

FLL_R is the reference divider selected by the C1[FRDIV] bits, PLL_R is the reference divider selected by C5[PRDIV0] bits, F is the FLL factor selected by C4[DRST_DRS] and C4[DMX32] bits, and M is the multiplier selected by C6[VDIV0] bits.

This section will include three mode switching examples using an 4 MHz external crystal. If using an external clock source less than 2 MHz, the MCG must not be configured for any of the PLL modes (PEE and PBE).

25.5.3.1 Example 1: Moving from FEI to PEE mode: External Crystal = 4 MHz, MCGOUTCLK frequency = 48 MHz

In this example, the MCG will move through the proper operational modes from FEI to PEE to achieve 48 MHz MCGOUTCLK frequency from 4 MHz external crystal reference. First, the code sequence will be described. Then there is a flowchart that illustrates the sequence.

1. First, FEI must transition to FBE mode:

a.
$$C2 = 0x2C$$

• C2[RANGE] set to 2'b01 because the frequency of 4 MHz is within the high frequency range.

- C2[HGO] set to 1 to configure the crystal oscillator for high gain operation.
- C2[EREFS] set to 1, because a crystal is being used.
- b. C1 = 0x90
 - C1[CLKS] set to 2'b10 to select external reference clock as system clock source
 - C1[FRDIV] set to 3'b010, or divide-by-128 because 4 MHz / 128 = 31.25 kHz which is in the 31.25 kHz to 39.0625 kHz range required by the FLL
 - C1[IREFS] cleared to 0, selecting the external reference clock and enabling the external oscillator.
- c. Loop until S[OSCINIT0] is 1, indicating the crystal selected by C2[EREFS0] has been initialized.
- d. Loop until S[IREFST] is 0, indicating the external reference is the current source for the reference clock.
- e. Loop until S[CLKST] is 2'b10, indicating that the external reference clock is selected to feed MCGOUTCLK.
- 2. Then configure C5[PRDIV0] to generate correct PLL reference frequency.
 - a. C5 = 0x01
 - C5[PRDIV] set to 5'b00001, or divide-by-2 resulting in a pll reference frequency of 4MHz/2 = 2 MHz.
- 3. Then, FBE must transition either directly to PBE mode or first through BLPE mode and then to PBE mode:
 - a. BLPE: If a transition through BLPE mode is desired, first set C2[LP] to 1.
 - b. BLPE/PBE: C6 = 0x40
 - C6[PLLS] set to 1, selects the PLL. At this time, with a C1[PRDIV] value of 2'b001, the PLL reference divider is 2 (see PLL External Reference Divide Factor table), resulting in a reference frequency of 4 MHz/ 2 = 2 MHz. In BLPE mode, changing the C6[PLLS] bit only prepares the MCG for PLL usage in PBE mode.
 - C6[VDIV] set to 5'b00000, or multiply-by-24 because 2 MHz reference * 24 = 48 MHz. In BLPE mode, the configuration of the VDIV bits does not matter because the PLL is disabled. Changing them only sets up the multiply value for PLL usage in PBE mode.

Initialization / Application information

- c. BLPE: If transitioning through BLPE mode, clear C2[LP] to 0 here to switch to PBE mode.
- d. PBE: Loop until S[PLLST] is set, indicating that the current source for the PLLS clock is the PLL.
- e. PBE: Then loop until S[LOCK0] is set, indicating that the PLL has acquired lock.
- 4. Lastly, PBE mode transitions into PEE mode:
 - a. C1 = 0x10
 - C1[CLKS] set to 2'b00 to select the output of the PLL as the system clock source.
 - b. Loop until S[CLKST] are 2'b11, indicating that the PLL output is selected to feed MCGOUTCLK in the current clock mode.
 - Now, with PRDIV of divide-by-2, and C6[VDIV] of multiply-by-24, MCGOUTCLK = [(4 MHz / 2) * 24] = 48 MHz.

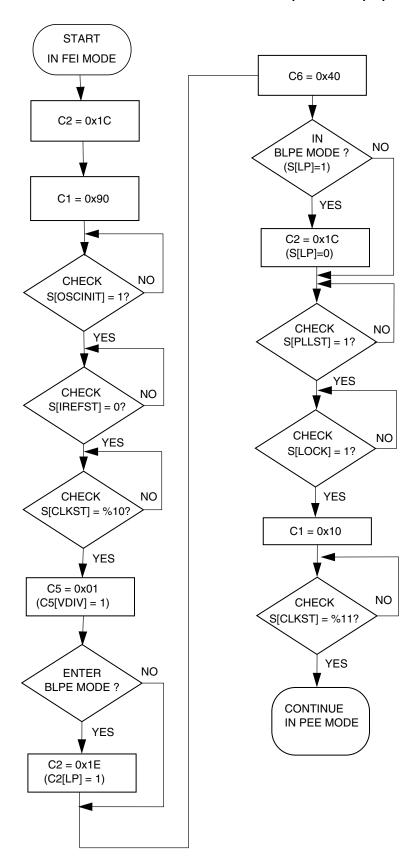


Figure 25-15. Flowchart of FEI to PEE mode transition using an 4 MHz crystal

25.5.3.2 Example 2: Moving from PEE to BLPI mode: MCGOUTCLK frequency =32 kHz

In this example, the MCG will move through the proper operational modes from PEE mode with a 4 MHz crystal configured for a 48 MHz MCGOUTCLK frequency (see previous example) to BLPI mode with a 32 kHz MCGOUTCLK frequency. First, the code sequence will be described. Then there is a flowchart that illustrates the sequence.

- 1. First, PEE must transition to PBE mode:
 - a. C1 = 0x90
 - C1[CLKS] set to 2'b10 to switch the system clock source to the external reference clock.
 - b. Loop until S[CLKST] are 2'b10, indicating that the external reference clock is selected to feed MCGOUTCLK.
- 2. Then, PBE must transition either directly to FBE mode or first through BLPE mode and then to FBE mode:
 - a. BLPE: If a transition through BLPE mode is desired, first set C2[LP] to 1.
 - b. BLPE/FBE: C6 = 0x00
 - C6[PLLS] clear to 0 to select the FLL. At this time, with C1[FRDIV] value of 3'b010, the FLL divider is set to 128, resulting in a reference frequency of 4 MHz / 128 = 31.25 kHz. If C1[FRDIV] was not previously set to 3'b010 (necessary to achieve required 31.25–39.06 kHz FLL reference frequency with an 4 MHz external source frequency), it must be changed prior to clearing C6[PLLS] bit. In BLPE mode, changing this bit only prepares the MCG for FLL usage in FBE mode. With C6[PLLS] = 0, the C6[VDIV] value does not matter.
 - c. BLPE: If transitioning through BLPE mode, clear C2[LP] to 0 here to switch to FBE mode.
 - d. FBE: Loop until S[PLLST] is cleared, indicating that the current source for the PLLS clock is the FLL.
- 3. Next, FBE mode transitions into FBI mode:
 - a. C1 = 0x54
 - C1[CLKS] set to 2'b01 to switch the system clock to the internal reference clock.

- C1[IREFS] set to 1 to select the internal reference clock as the reference clock source.
- C1[FRDIV] remain unchanged because the reference divider does not affect the internal reference.
- b. Loop until S[IREFST] is 1, indicating the internal reference clock has been selected as the reference clock source.
- c. Loop until S[CLKST] are 2'b01, indicating that the internal reference clock is selected to feed MCGOUTCLK.
- 4. Lastly, FBI transitions into BLPI mode.
 - a. C2 = 0x02
 - C2[LP] is 1
 - C2[RANGE], C2[HGO], C2[EREFS], C1[IRCLKEN], and C1[IREFSTEN] bits are ignored when the C1[IREFS] bit is set. They can remain set, or be cleared at this point.

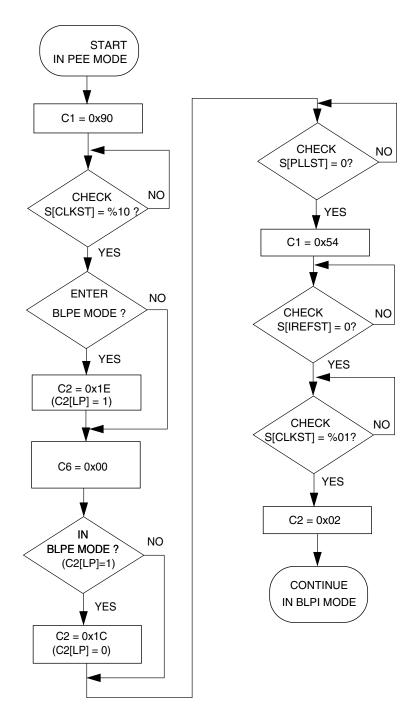


Figure 25-16. Flowchart of PEE to BLPI mode transition using an 4 MHz crystal

25.5.3.3 Example 3: Moving from BLPI to FEE mode

In this example, the MCG will move through the proper operational modes from BLPI mode at a 32 kHz MCGOUTCLK frequency running off the internal reference clock (see previous example) to FEE mode using a 4 MHz crystal configured for a 20 MHz MCGOUTCLK frequency. First, the code sequence will be described. Then there is a flowchart that illustrates the sequence.

- 1. First, BLPI must transition to FBI mode.
 - a. C2 = 0x00
 - C2[LP] is 0
- 2. Next, FBI will transition to FEE mode.
 - a. C2 = 0x1C
 - C2[RANGE] set to 2'b01 because the frequency of 4 MHz is within the high frequency range.
 - C2[HGO] set to 1 to configure the crystal oscillator for high gain operation.
 - C2[EREFS] set to 1, because a crystal is being used.
 - b. C1 = 0x10
 - C1[CLKS] set to 2'b00 to select the output of the FLL as system clock source.
 - C1[FRDIV] remain at 3'b010, or divide-by-128 for a reference of 4 MHz / 128 = 31.25 kHz.
 - C1[IREFS] cleared to 0, selecting the external reference clock.
 - c. Loop until S[OSCINIT] is 1, indicating the crystal selected by the C2[EREFS] bit has been initialized.
 - d. Loop until S[IREFST] is 0, indicating the external reference clock is the current source for the reference clock.
 - e. Loop until S[CLKST] are 2'b00, indicating that the output of the FLL is selected to feed MCGOUTCLK.
 - f. Now, with a 31.25 kHz reference frequency, a fixed DCO multiplier of 640, MCGOUTCLK = 31.25 kHz * 640 / 1 = 20 MHz.
 - g. At this point, by default, the C4[DRST_DRS] bits are set to 2'b00 and C4[DMX32] is cleared to 0. If the MCGOUTCLK frequency of 40 MHz is desired instead, set the C4[DRST_DRS] bits to 0x01 to switch the FLL

multiplication factor from 640 to 1280. To return the MCGOUTCLK frequency to 20 MHz, set C4[DRST_DRS] bits to 2'b00 again, and the FLL multiplication factor will switch back to 640.

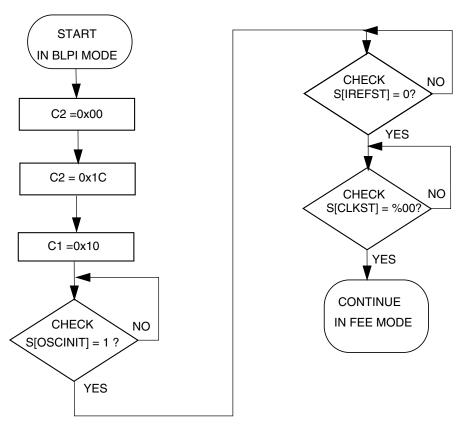


Figure 25-17. Flowchart of BLPI to FEE mode transition using an 4 MHz crystal

Chapter 26 Oscillator (OSC)

26.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The OSC module is a crystal oscillator. The module, in conjunction with an external crystal or resonator, generates a reference clock for the MCU.

26.2 Features and Modes

Key features of the module are listed here.

- Supports 32 kHz crystals (Low Range mode)
- Supports 3–8 MHz, 8–32 MHz crystals and resonators (High Range mode)
- Automatic Gain Control (AGC) to optimize power consumption in high frequency ranges 3–8 MHz, 8–32 MHz using low-power mode
- High gain option in frequency ranges: 32 kHz, 3-8 MHz, and 8-32 MHz
- Voltage and frequency filtering to guarantee clock frequency and stability
- Optionally external input bypass clock from EXTAL signal directly
- One clock for MCU clock system
- Two clocks for on-chip peripherals that can work in Stop modes

Functional Description describes the module's operation in more detail.

26.3 Block Diagram

The OSC module uses a crystal or resonator to generate three filtered oscillator clock signals. Three clocks are output from OSC module: OSCCLK for MCU system, OSCERCLK for on-chip peripherals, and OSC32KCLK. The OSCCLK can only work in run mode. OSCERCLK and OSC32KCLK can work in low power modes. For the clock source assignments, refer to the clock distribution information of this MCU.

Refer to the chip configuration details for the external reference clock source in this MCU.

The figure found here shows the block diagram of the OSC module.

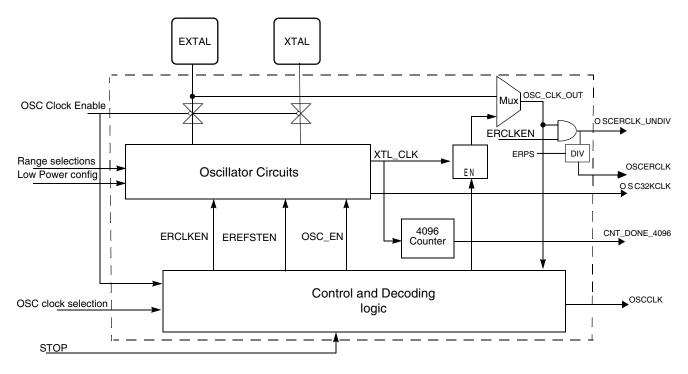


Figure 26-1. OSC Module Block Diagram

26.4 OSC Signal Descriptions

The table found here shows the user-accessible signals available for the OSC module.

Refer to signal multiplexing information for this MCU for more details.

Table 26-1. OSC Signal Descriptions

Signal	Description	I/O
EXTAL	External clock/Oscillator input	I
XTAL	Oscillator output	0

26.5 External Crystal / Resonator Connections

The connections for a crystal/resonator frequency reference are shown in the figures found here.

When using low-frequency, low-power mode, the only external component is the crystal or ceramic resonator itself. In the other oscillator modes, load capacitors (C_x, C_y) and feedback resistor (R_F) are required. The following table shows all possible connections.

Table 26-2. External Caystal/Resonator Connections

Oscillator Mode	Connections
Low-frequency (32 kHz), low-power	Connection 1
Low-frequency (32 kHz), high-gain	Connection 2/Connection 3 ¹
High-frequency (3~32 MHz), low-power	Connection 1/Connection 3 ^{2,2}
High-frequency (3~32 MHz), high-gain	Connection 2/Connection 3 ²

- 1. When the load capacitors (Cx, Cy) are greater than 30 pF, use Connection 3.
- 2. With the low-power mode, the oscillator has the internal feedback resistor R_F. Therefore, the feedback resistor must not be externally with the Connection 3.

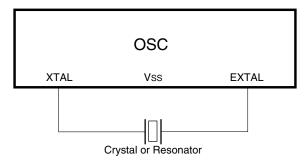


Figure 26-2. Crystal/Ceramic Resonator Connections - Connection 1

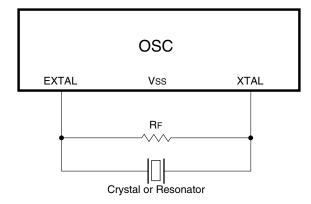


Figure 26-3. Crystal/Ceramic Resonator Connections - Connection 2

NOTE

Connection 1 and Connection 2 should use internal capacitors as the load of the oscillator by configuring the CR[SCxP] bits.

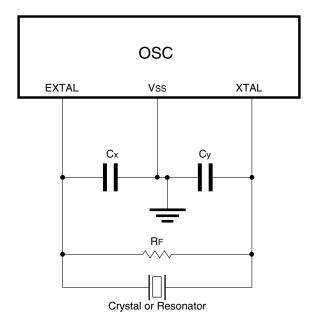


Figure 26-4. Crystal/Ceramic Resonator Connections - Connection 3

26.6 External Clock Connections

In external clock mode, the pins can be connected as shown in the figure found here.

NOTE

XTAL can be used as a GPIO when the GPIO alternate function is configured for it.

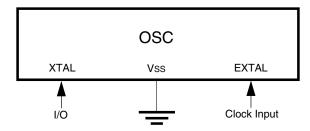


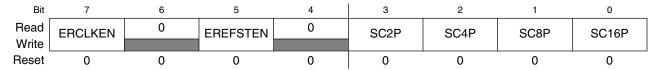
Figure 26-5. External Clock Connections

26.7 Memory Map/Register Definitions

Some oscillator module register bits are typically incorporated into other peripherals such as MCG or SIM.

26.7.1 OSC Memory Map/Register Definition

OSC memory map


Absolute address (hex)	Register name		Access	Reset value	Section/ page
4006_5000	OSC Control Register (OSC_CR)	8	R/W	00h	26.71.1/ 589
4006_5002	OSC_DIV (OSC_OSC_DIV)	8	R/W	00h	26.71.2/ 591

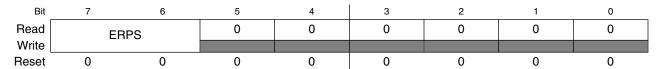
26.71.1 OSC Control Register (OSC_CR)

NOTE

After OSC is enabled and starts generating the clocks, the configurations such as low power and frequency range, must not be changed.

Address: 4006_5000h base + 0h offset = 4006_5000h

OSC Memory Map/Register Definition


OSC_CR field descriptions

Field	Description
7	External Reference Enable
ERCLKEN	Enables external reference clock (OSCERCLK).
	0 External reference clock is inactive.
	1 External reference clock is enabled.
6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5 EREFSTEN	External Reference Stop Enable
	Controls whether or not the external reference clock (OSCERCLK) remains enabled when MCU enters Stop mode.
	0 External reference clock is disabled in Stop mode.
	1 External reference clock stays enabled in Stop mode if ERCLKEN is set before entering Stop mode.
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3 SC2P	Oscillator 2 pF Capacitor Load Configure
	Configures the oscillator load.
	0 Disable the selection.
	1 Add 2 pF capacitor to the oscillator load.
2 SC4P	Oscillator 4 pF Capacitor Load Configure
304P	Configures the oscillator load.
	0 Disable the selection.
	1 Add 4 pF capacitor to the oscillator load.
1 SC8P	Oscillator 8 pF Capacitor Load Configure
	Configures the oscillator load.
	0 Disable the selection.
	1 Add 8 pF capacitor to the oscillator load.
0 SC16P	Oscillator 16 pF Capacitor Load Configure
	Configures the oscillator load.
	0 Disable the selection.
	1 Add 16 pF capacitor to the oscillator load.

26.71.2 OSC_DIV (OSC_OSC_DIV)

OSC CLock divider register.

Address: 4006_5000h base + 2h offset = 4006_5002h

OSC_OSC_DIV field descriptions

Field	Description
7–6 ERPS	ERCLK prescaler. These two bits are used to divide the ERCLK output. The un-divided ERCLK output is not affected by these two bits.
	00 The divisor ratio is 1.
	01 The divisor ratio is 2.
	10 The divisor ratio is 4.
	11 The divisor ratio is 8.
5	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

26.8 Functional Description

Functional details of the module can be found here.

26.8.1 OSC module states

The states of the OSC module are shown in the following figure. The states and their transitions between each other are described in this section.

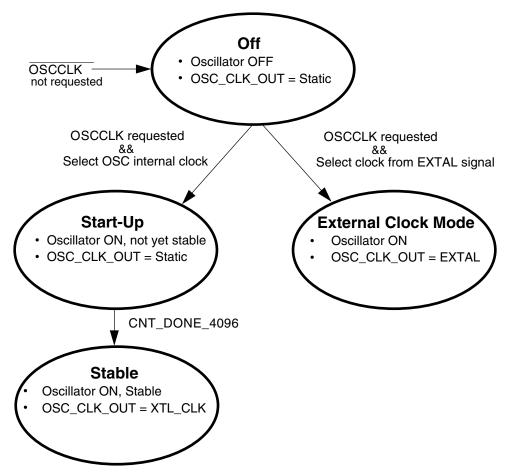


Figure 26-8. OSC Module state diagram

NOTE

XTL_CLK is the clock generated internally from OSC circuits.

26.8.1.1 Off

The OSC enters the Off state when the system does not require OSC clocks. Upon entering this state, XTL_CLK is static unless OSC is configured to select the clock from the EXTAL pad by clearing the external reference clock selection bit. For details regarding the external reference clock source in this MCU, refer to the chip configuration details. The EXTAL and XTAL pins are also decoupled from all other oscillator circuitry in this state. The OSC module circuitry is configured to draw minimal current.

26.8.1.2 Oscillator startup

The OSC enters startup state when it is configured to generate clocks (internally the OSC_EN transitions high) using the internal oscillator circuits by setting the external reference clock selection bit. In this state, the OSC module is enabled and oscillations are starting up, but have not yet stabilized. When the oscillation amplitude becomes large enough to pass through the input buffer, XTL_CLK begins clocking the counter. When the counter reaches 4096 cycles of XTL_CLK, the oscillator is considered stable and XTL_CLK is passed to the output clock OSC_CLK_OUT.

26.8.1.3 Oscillator Stable

The OSC enters stable state when it is configured to generate clocks (internally the OSC_EN transitions high) using the internal oscillator circuits by setting the external reference clock selection bit and the counter reaches 4096 cycles of XTL_CLK (when CNT_DONE_4096 is high). In this state, the OSC module is producing a stable output clock on OSC_CLK_OUT. Its frequency is determined by the external components being used.

26.8.1.4 External Clock mode

The OSC enters external clock state when it is enabled and external reference clock selection bit is cleared. For details regarding external reference clock source in this MCU, see the chip configuration details. In this state, the OSC module is set to buffer (with hysteresis) a clock from EXTAL onto the OSC_CLK_OUT. Its frequency is determined by the external clock being supplied.

26.8.2 OSC module modes

The OSC is a pierce-type oscillator that supports external crystals or resonators operating over the frequency ranges shown in Table 26-6. These modes assume the following conditions: OSC is enabled to generate clocks (OSC_EN=1), configured to generate clocks internally (MCG_C2[EREFS] = 1), and some or one of the other peripherals (MCG, Timer, and so on) is configured to use the oscillator output clock (OSC_CLK_OUT).

Table 26-6. Oscillator modes

Mode	Frequency Range		
Low-frequency, high-gain	f _{osc_lo} (32.768 kHz) up to f _{osc_lo} (39.0625 kHz)		

Table 26-6. Oscillator modes (continued)

Mode	Frequency Range		
High-frequency mode1, high-gain	f (2 MHz) up to f (9 MHz)		
High-frequency mode1, low-power	f _{osc_hi_1} (3 MHz) up to f _{osc_hi_1} (8 MHz)		
High-frequency mode2, high-gain	f (9 MHz) up to f (22 MHz)		
High-frequency mode2, low-power	f _{osc_hi_2} (8 MHz) up to f _{osc_hi_2} (32 MHz)		

NOTE

For information about low power modes of operation used in this chip and their alignment with some OSC modes, see the chip's Power Management details.

26.8.2.1 Low-Frequency, High-Gain Mode

In Low-frequency, high-gain mode, the oscillator uses a simple inverter-style amplifier. The gain is set to achieve rail-to-rail oscillation amplitudes.

The oscillator input buffer in this mode is single-ended. It provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels. In this mode, the internal capacitors could be used.

26.8.2.2 Low-Frequency, Low-Power Mode

In low-frequency, low-power mode, the oscillator uses a gain control loop to minimize power consumption. As the oscillation amplitude increases, the amplifier current is reduced. This continues until a desired amplitude is achieved at steady-state. This mode provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels. In this mode, the internal capacitors could be used, the internal feedback resistor is connected, and no external resistor should be used.

In this mode, the amplifier inputs, gain-control input, and input buffer input are all capacitively coupled for leakage tolerance (not sensitive to the DC level of EXTAL).

Also in this mode, all external components except for the resonator itself are integrated, which includes the load capacitors and feeback resistor that biases EXTAL.

26.8.2.3 High-Frequency, High-Gain Mode

In high-frequency, high-gain mode, the oscillator uses a simple inverter-style amplifier. The gain is set to achieve rail-to-rail oscillation amplitudes. This mode provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels. In this mode, the internal capacitors could be used.

26.8.2.4 High-Frequency, Low-Power Mode

In high-frequency, low-power mode, the oscillator uses a gain control loop to minimize power consumption. As the oscillation amplitude increases, the amplifier current is reduced. This continues until a desired amplitude is achieved at steady-state. In this mode, the internal capacitors could be used, the internal feedback resistor is connected, and no external resistor should be used.

The oscillator input buffer in this mode is differential. It provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels.

26.8.3 Counter

The oscillator output clock (OSC_CLK_OUT) is gated off until the counter has detected 4096 cycles of its input clock (XTL_CLK). After 4096 cycles are completed, the counter passes XTL_CLK onto OSC_CLK_OUT. This counting timeout is used to guarantee output clock stability.

26.8.4 Reference clock pin requirements

The OSC module requires use of both the EXTAL and XTAL pins to generate an output clock in Oscillator mode, but requires only the EXTAL pin in External clock mode. The EXTAL and XTAL pins are available for I/O. For the implementation of these pins on this device, refer to the Signal Multiplexing chapter.

26.9 Reset

There is no reset state associated with the OSC module. The counter logic is reset when the OSC is not configured to generate clocks.

There are no sources of reset requests for the OSC module.

26.10 Low power modes operation

When the MCU enters Stop modes, the OSC is functional depending on CR[ERCLKEN] and CR[EREFSETN] bit settings. If both these bits are set, the OSC is in operation.

In Low Leakage Stop (LLS) modes, the OSC holds all register settings. If CR[ERCLKEN] and CR[EREFSTEN] are set before entry to Low Leakage Stop modes, the OSC is still functional in these modes. After waking up from Very Low Leakage Stop (VLLSx) modes, all OSC register bits are reset and initialization is required through software.

26.11 Interrupts

The OSC module does not generate any interrupts.

Chapter 27 RTC Oscillator (OSC32K)

27.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The RTC oscillator module provides the clock source for the RTC. The RTC oscillator module, in conjunction with an external crystal, generates a reference clock for the RTC.

27.1.1 Features and Modes

The key features of the RTC oscillator are as follows:

- Supports 32 kHz crystals with very low power
- Consists of internal feed back resistor
- \bullet Consists of internal programmable capacitors as the C_{load} of the oscillator
- Automatic Gain Control (AGC) to optimize power consumption

The RTC oscillator operations are described in detail in Functional Description.

27.1.2 Block Diagram

The following is the block diagram of the RTC oscillator.

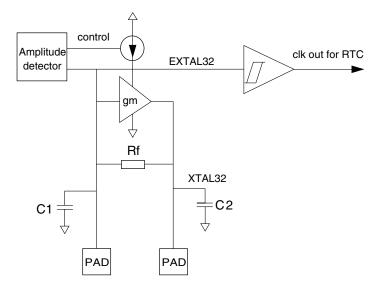


Figure 27-1. RTC Oscillator Block Diagram

27.2 RTC Signal Descriptions

The following table shows the user-accessible signals available for the RTC oscillator. See the chip-level specification to find out which signals are actually connected to the external pins.

Table 27-1. RTC Signal Descriptions

Signal	Description	I/O
EXTAL32	Oscillator Input	I
XTAL32	Oscillator Output	0

27.2.1 EXTAL32 — Oscillator Input

This signal is the analog input of the RTC oscillator.

27.2.2 XTAL32 — Oscillator Output

This signal is the analog output of the RTC oscillator module.

27.3 External Crystal Connections

The connections with a crystal is shown in the following figure. External load capacitors and feedback resistor are not required.

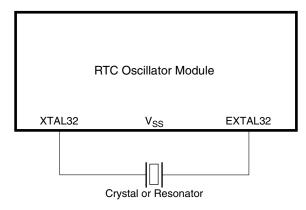


Figure 27-2. Crystal Connections

27.4 Memory Map/Register Descriptions

RTC oscillator control bits are part of the RTC registers. Refer to RTC Control register for more details.

27.5 Functional Description

As shown in Figure 27-1, the module includes an amplifier which supplies the negative resistor for the RTC oscillator. The gain of the amplifier is controlled by the amplitude detector, which optimizes the power consumption. A schmitt trigger is used to translate the sine-wave generated by this oscillator to a pulse clock out, which is a reference clock for the RTC digital core.

The oscillator includes an internal feedback resistor of approximately $100 \text{ M}\Omega$ between EXTAL32 and XTAL32.

In addition, there are two programmable capacitors with this oscillator, which can be used as the Cload of the oscillator. The programmable range is from 0pF to 30pF.

27.6 Reset Overview

There is no reset state associated with the RTC oscillator.

27.7 Interrupts

The RTC oscillator does not generate any interrupts.

Chapter 28 Flash Memory Controller (FMC)

28.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Flash Memory Controller (FMC) is a memory acceleration unit that provides:

- an interface between the device and the nonvolatile memory.
- buffers that can accelerate flash memory transfers.

28.1.1 Overview

The Flash Memory Controller manages the interface between the device and the flash memory. The FMC receives status information detailing the configuration of the memory and uses this information to ensure a proper interface. The following table shows the supported read/write operations.

Flash memory type	Read	Write
Program flash memory	8-bit, 16-bit, and 32-bit reads	_1

1. A write operation to program flash memory results in a bus error.

In addition, for bank 0 and bank 1, the FMC provides three separate mechanisms for accelerating the interface between the device and the flash memory. A 64-bit speculation buffer can prefetch the next 64-bit flash memory location, and both a 4-way, 8-set cache and a single-entry 64-bit buffer can store previously accessed flash memory data for quick access times.

28.1.2 Features

The FMC's features include:

- Interface between the device and the flash memory:
 - 8-bit, 16-bit, and 32-bit read operations to program flash memory.
 - For bank 0 and bank 1: Read accesses to consecutive 32-bit spaces in memory return the second read data with no wait states. The memory returns 64 bits via the 32-bit bus access.
 - Crossbar master access protection for setting no access, read-only access, write-only access, or read/write access for each crossbar master.
- For bank 0 and bank 1: Acceleration of data transfer from program flash memory to the device:
 - 64-bit prefetch speculation buffer with controls for instruction/data access per master and bank
 - 4-way, 8-set, 64-bit line size cache for a total of thirty-two 64-bit entries with controls for replacement algorithm and lock per way for each bank
 - Single-entry buffer per bank
 - Invalidation control for the speculation buffer and the single-entry buffer

28.2 Modes of operation

The FMC only operates when a bus master accesses the flash memory.

For any device power mode where the flash memory cannot be accessed, the FMC is disabled.

28.3 External signal description

The FMC has no external signals.

28.4 Memory map and register descriptions

The programming model consists of the FMC control registers and the program visible cache (data and tag/valid entries).

NOTE

Program the registers only while the flash controller is idle (for example, execute from RAM). Changing configuration settings

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

while a flash access is in progress can lead to non-deterministic behavior.

Table 28-2. FMC register access

Registers	Read	access Write access		access
	Mode	Length	Mode	Length
Control registers: PFAPR, PFB0CR, PFB1CR	Supervisor (privileged) mode or user mode	32 bits	Supervisor (privileged) mode only	32 bits
Cache registers	Supervisor (privileged) mode or user mode	32 bits	Supervisor (privileged) mode only	32 bits

NOTE

Accesses to unimplemented registers within the FMC's 4 KB address space return a bus error.

The cache entries, both data and tag/valid, can be read at any time.

NOTE

System software is required to maintain memory coherence when any segment of the flash cache is programmed. For example, all buffer data associated with the reprogrammed flash should be invalidated. Accordingly, cache program visible writes must occur after a programming or erase event is completed and before the new memory image is accessed.

The cache is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. The following table elaborates on the tag/valid and data entries.

Table 28-3. Program visible cache registers

Cache storage	Based at offset	Contents of 32-bit read	Nomenclature	Nomenclature example
Tag	100h	13'h0, tag[18:5], 4'h0, valid	In TAGVDWxSy, x denotes the way and y denotes the set.	TAGVDW2S0 is the 14-bit tag and 1-bit valid for cache entry way 2, set 0.
Data	200h	data	In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively.	DATAW1SOU represents bits [63:32] of data entry way 1, set 0, and DATAW1SOL represents bits [31:0] of data entry way 1, set 0.

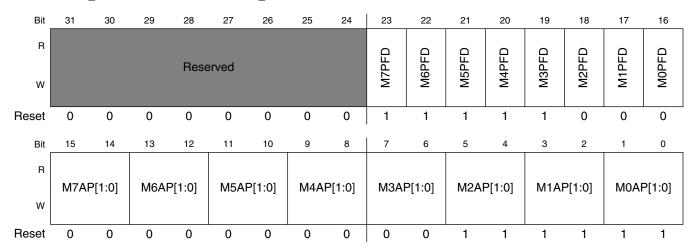
FMC memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4001_F000	Flash Access Protection Register (FMC_PFAPR)	32	R/W	00F8_003Fh	28.4.1/607
4001_F004	Flash Bank 0 Control Register (FMC_PFB0CR)	32	R/W	3002_001Fh	28.4.2/611
4001_F008	Flash Bank 1 Control Register (FMC_PFB1CR)	32	R/W	3002_001Fh	28.4.3/614
4001_F100	Cache Tag Storage (FMC_TAGVDW0S0)	32	R/W	0000_0000h	28.4.4/616
4001_F104	Cache Tag Storage (FMC_TAGVDW0S1)	32	R/W	0000_0000h	28.4.4/616
4001_F108	Cache Tag Storage (FMC_TAGVDW0S2)	32	R/W	0000_0000h	28.4.4/616
4001_F10C	Cache Tag Storage (FMC_TAGVDW0S3)	32	R/W	0000_0000h	28.4.4/616
4001_F110	Cache Tag Storage (FMC_TAGVDW0S4)	32	R/W	0000_0000h	28.4.4/616
4001_F114	Cache Tag Storage (FMC_TAGVDW0S5)	32	R/W	0000_0000h	28.4.4/616
4001_F118	Cache Tag Storage (FMC_TAGVDW0S6)	32	R/W	0000_0000h	28.4.4/616
4001_F11C	Cache Tag Storage (FMC_TAGVDW0S7)	32	R/W	0000_0000h	28.4.4/616
4001_F120	Cache Tag Storage (FMC_TAGVDW1S0)	32	R/W	0000_0000h	28.4.5/617
4001_F124	Cache Tag Storage (FMC_TAGVDW1S1)	32	R/W	0000_0000h	28.4.5/617
4001_F128	Cache Tag Storage (FMC_TAGVDW1S2)	32	R/W	0000_0000h	28.4.5/617
4001_F12C	Cache Tag Storage (FMC_TAGVDW1S3)	32	R/W	0000_0000h	28.4.5/617
4001_F130	Cache Tag Storage (FMC_TAGVDW1S4)	32	R/W	0000_0000h	28.4.5/617
4001_F134	Cache Tag Storage (FMC_TAGVDW1S5)	32	R/W	0000_0000h	28.4.5/617
4001_F138	Cache Tag Storage (FMC_TAGVDW1S6)	32	R/W	0000_0000h	28.4.5/617
4001_F13C	Cache Tag Storage (FMC_TAGVDW1S7)	32	R/W	0000_0000h	28.4.5/617
4001_F140	Cache Tag Storage (FMC_TAGVDW2S0)	32	R/W	0000_0000h	28.4.6/618
4001_F144	Cache Tag Storage (FMC_TAGVDW2S1)	32	R/W	0000_0000h	28.4.6/618
4001_F148	Cache Tag Storage (FMC_TAGVDW2S2)	32	R/W	0000_0000h	28.4.6/618
4001_F14C	Cache Tag Storage (FMC_TAGVDW2S3)	32	R/W	0000_0000h	28.4.6/618
4001_F150	Cache Tag Storage (FMC_TAGVDW2S4)	32	R/W	0000_0000h	28.4.6/618
4001_F154	Cache Tag Storage (FMC_TAGVDW2S5)	32	R/W	0000_0000h	28.4.6/618
4001_F158	Cache Tag Storage (FMC_TAGVDW2S6)	32	R/W	0000_0000h	28.4.6/618
4001_F15C	Cache Tag Storage (FMC_TAGVDW2S7)	32	R/W	0000_0000h	28.4.6/618
4001_F160	Cache Tag Storage (FMC_TAGVDW3S0)	32	R/W	0000_0000h	28.4.7/619
4001_F164	Cache Tag Storage (FMC_TAGVDW3S1)	32	R/W	0000_0000h	28.4.7/619
4001_F168	Cache Tag Storage (FMC_TAGVDW3S2)	32	R/W	0000_0000h	28.4.7/619
4001_F16C	Cache Tag Storage (FMC_TAGVDW3S3)	32	R/W	0000_0000h	28.4.7/619
4001_F170	Cache Tag Storage (FMC_TAGVDW3S4)	32	R/W	0000_0000h	28.4.7/619
4001_F174	Cache Tag Storage (FMC_TAGVDW3S5)	32	R/W	0000_0000h	28.4.7/619
4001_F178	Cache Tag Storage (FMC_TAGVDW3S6)	32	R/W	0000_0000h	28.4.7/619
4001_F17C	Cache Tag Storage (FMC_TAGVDW3S7)	32	R/W	0000_0000h	28.4.7/619
4001_F200	Cache Data Storage (upper word) (FMC_DATAW0S0U)	32	R/W	0000_0000h	28.4.8/619
4001_F204	Cache Data Storage (lower word) (FMC_DATAW0S0L)	32	R/W	0000_0000h	28.4.9/620
4001_F208	Cache Data Storage (upper word) (FMC_DATAW0S1U)	32	R/W	0000_0000h	28.4.8/619

FMC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4001_F20C	Cache Data Storage (lower word) (FMC_DATAW0S1L)	32	R/W	0000_0000h	28.4.9/620
4001_F210	Cache Data Storage (upper word) (FMC_DATAW0S2U)	32	R/W	0000_0000h	28.4.8/619
4001_F214	Cache Data Storage (lower word) (FMC_DATAW0S2L)	32	R/W	0000_0000h	28.4.9/620
4001_F218	Cache Data Storage (upper word) (FMC_DATAW0S3U)	32	R/W	0000_0000h	28.4.8/619
4001_F21C	Cache Data Storage (lower word) (FMC_DATAW0S3L)	32	R/W	0000_0000h	28.4.9/620
4001_F220	Cache Data Storage (upper word) (FMC_DATAW0S4U)	32	R/W	0000_0000h	28.4.8/619
4001_F224	Cache Data Storage (lower word) (FMC_DATAW0S4L)	32	R/W	0000_0000h	28.4.9/620
4001_F228	Cache Data Storage (upper word) (FMC_DATAW0S5U)	32	R/W	0000_0000h	28.4.8/619
4001_F22C	Cache Data Storage (lower word) (FMC_DATAW0S5L)	32	R/W	0000_0000h	28.4.9/620
4001_F230	Cache Data Storage (upper word) (FMC_DATAW0S6U)	32	R/W	0000_0000h	28.4.8/619
4001_F234	Cache Data Storage (lower word) (FMC_DATAW0S6L)	32	R/W	0000_0000h	28.4.9/620
4001_F238	Cache Data Storage (upper word) (FMC_DATAW0S7U)	32	R/W	0000_0000h	28.4.8/619
4001_F23C	Cache Data Storage (lower word) (FMC_DATAW0S7L)	32	R/W	0000_0000h	28.4.9/620
4001_F240	Cache Data Storage (upper word) (FMC_DATAW1S0U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F244	Cache Data Storage (lower word) (FMC_DATAW1S0L)	32	R/W	0000_0000h	28.4.11/ 621
4001_F248	Cache Data Storage (upper word) (FMC_DATAW1S1U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F24C	Cache Data Storage (lower word) (FMC_DATAW1S1L)	32	R/W	0000_0000h	28.4.11/ 621
4001_F250	Cache Data Storage (upper word) (FMC_DATAW1S2U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F254	Cache Data Storage (lower word) (FMC_DATAW1S2L)	32	R/W	0000_0000h	28.4.11/ 621
4001_F258	Cache Data Storage (upper word) (FMC_DATAW1S3U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F25C	Cache Data Storage (lower word) (FMC_DATAW1S3L)	32	R/W	0000_0000h	28.4.11/ 621
4001_F260	Cache Data Storage (upper word) (FMC_DATAW1S4U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F264	Cache Data Storage (lower word) (FMC_DATAW1S4L)	32	R/W	0000_0000h	28.4.11/ 621
4001_F268	Cache Data Storage (upper word) (FMC_DATAW1S5U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F26C	Cache Data Storage (lower word) (FMC_DATAW1S5L)	32	R/W	0000_0000h	28.4.11/ 621
4001_F270	Cache Data Storage (upper word) (FMC_DATAW1S6U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F274	Cache Data Storage (lower word) (FMC_DATAW1S6L)	32	R/W	0000_0000h	28.4.11/ 621

FMC memory map (continued)


Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4001_F278	Cache Data Storage (upper word) (FMC_DATAW1S7U)	32	R/W	0000_0000h	28.4.10/ 620
4001_F27C	Cache Data Storage (lower word) (FMC_DATAW1S7L)	32	R/W	0000_0000h	28.4.11/ 621
4001_F280	Cache Data Storage (upper word) (FMC_DATAW2S0U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F284	Cache Data Storage (lower word) (FMC_DATAW2S0L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F288	Cache Data Storage (upper word) (FMC_DATAW2S1U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F28C	Cache Data Storage (lower word) (FMC_DATAW2S1L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F290	Cache Data Storage (upper word) (FMC_DATAW2S2U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F294	Cache Data Storage (lower word) (FMC_DATAW2S2L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F298	Cache Data Storage (upper word) (FMC_DATAW2S3U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F29C	Cache Data Storage (lower word) (FMC_DATAW2S3L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F2A0	Cache Data Storage (upper word) (FMC_DATAW2S4U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F2A4	Cache Data Storage (lower word) (FMC_DATAW2S4L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F2A8	Cache Data Storage (upper word) (FMC_DATAW2S5U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F2AC	Cache Data Storage (lower word) (FMC_DATAW2S5L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F2B0	Cache Data Storage (upper word) (FMC_DATAW2S6U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F2B4	Cache Data Storage (lower word) (FMC_DATAW2S6L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F2B8	Cache Data Storage (upper word) (FMC_DATAW2S7U)	32	R/W	0000_0000h	28.4.12/ 621
4001_F2BC	Cache Data Storage (lower word) (FMC_DATAW2S7L)	32	R/W	0000_0000h	28.4.13/ 622
4001_F2C0	Cache Data Storage (upper word) (FMC_DATAW3S0U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2C4	Cache Data Storage (lower word) (FMC_DATAW3S0L)	32	R/W	0000_0000h	28.4.15/ 623
4001_F2C8	Cache Data Storage (upper word) (FMC_DATAW3S1U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2CC	Cache Data Storage (lower word) (FMC_DATAW3S1L)	32	R/W	0000_0000h	28.4.15/ 623

FMC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4001_F2D0	Cache Data Storage (upper word) (FMC_DATAW3S2U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2D4	Cache Data Storage (lower word) (FMC_DATAW3S2L)	32	R/W	0000_0000h	28.4.15/ 623
4001_F2D8	Cache Data Storage (upper word) (FMC_DATAW3S3U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2DC	Cache Data Storage (lower word) (FMC_DATAW3S3L)	32	R/W	0000_0000h	28.4.15/ 623
4001_F2E0	Cache Data Storage (upper word) (FMC_DATAW3S4U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2E4	Cache Data Storage (lower word) (FMC_DATAW3S4L)	32	R/W	0000_0000h	28.4.15/ 623
4001_F2E8	Cache Data Storage (upper word) (FMC_DATAW3S5U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2EC	Cache Data Storage (lower word) (FMC_DATAW3S5L)	32	R/W	0000_0000h	28.4.15/ 623
4001_F2F0	Cache Data Storage (upper word) (FMC_DATAW3S6U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2F4	Cache Data Storage (lower word) (FMC_DATAW3S6L)	32	R/W	0000_0000h	28.4.15/ 623
4001_F2F8	Cache Data Storage (upper word) (FMC_DATAW3S7U)	32	R/W	0000_0000h	28.4.14/ 622
4001_F2FC	Cache Data Storage (lower word) (FMC_DATAW3S7L)	32	R/W	0000_0000h	28.4.15/ 623

28.4.1 Flash Access Protection Register (FMC_PFAPR)

Address: 4001_F000h base + 0h offset = 4001_F000h

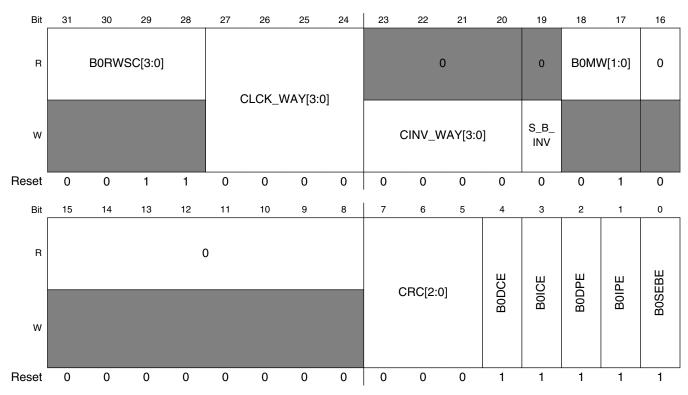
Memory map and register descriptions

FMC_PFAPR field descriptions

Field	Description
31–24 Reserved	This field is reserved.
23 M7PFD	Master 7 Prefetch Disable These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.
	 O Prefetching for this master is enabled. 1 Prefetching for this master is disabled.
22 M6PFD	Master 6 Prefetch Disable These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.
	0 Prefetching for this master is enabled.1 Prefetching for this master is disabled.
21 M5PFD	Master 5 Prefetch Disable These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.
	 O Prefetching for this master is enabled. 1 Prefetching for this master is disabled.
20 M4PFD	Master 4 Prefetch Disable These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.
	0 Prefetching for this master is enabled.1 Prefetching for this master is disabled.
19 M3PFD	Master 3 Prefetch Disable These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.
	0 Prefetching for this master is enabled.1 Prefetching for this master is disabled.
18 M2PFD	Master 2 Prefetch Disable These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.
	0 Prefetching for this master is enabled.1 Prefetching for this master is disabled.
17 M1PFD	Master 1 Prefetch Disable These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.
	0 Prefetching for this master is enabled.1 Prefetching for this master is disabled.

FMC_PFAPR field descriptions (continued)

Field	Description		
16	Master 0 Prefetch Disable		
M0PFD	These bits control whether prefetching is enabled based on the logical number of the requesting crossbar switch master. This field is further qualified by the PFBnCR[BxDPE,BxIPE] bits.		
	0 Prefetching for this master is enabled.		
	1 Prefetching for this master is disabled.		
15–14	Master 7 Access Protection		
M7AP[1:0]	This field controls whether read and write access to the flash are allowed based on the logical master number of the requesting crossbar switch master.		
	00 No access may be performed by this master.		
	01 Only read accesses may be performed by this master.		
	10 Only write accesses may be performed by this master.		
	11 Both read and write accesses may be performed by this master.		
13–12	Master 6 Access Protection		
M6AP[1:0]	This field controls whether read and write access to the flash are allowed based on the logical master number of the requesting crossbar switch master.		
	00 No access may be performed by this master		
	01 Only read accesses may be performed by this master		
	10 Only write accesses may be performed by this master		
	11 Both read and write accesses may be performed by this master		
11–10	Master 5 Access Protection		
M5AP[1:0]	This field controls whether read and write access to the flash are allowed based on the logical master number of the requesting crossbar switch master.		
	00 No access may be performed by this master		
	01 Only read accesses may be performed by this master		
	10 Only write accesses may be performed by this master		
	11 Both read and write accesses may be performed by this master		
9–8 M4AP[1:0]	Master 4 Access Protection		
	This field controls whether read and write access to the flash are allowed based on the logical master number of the requesting crossbar switch master.		
	00 No access may be performed by this master		
	01 Only read accesses may be performed by this master		
	10 Only write accesses may be performed by this master		
	11 Both read and write accesses may be performed by this master		
7–6 M3AP[1:0]	Master 3 Access Protection		
	This field controls whether read and write access to the flash are allowed based on the logical master number of the requesting crossbar switch master.		
	00 No access may be performed by this master		
	01 Only read accesses may be performed by this master		
1			


Memory map and register descriptions

FMC_PFAPR field descriptions (continued)

Field	Description
	10 Only write accesses may be performed by this master
	11 Both read and write accesses may be performed by this master
5–4 M2AP[1:0]	Master 2 Access Protection
	This field controls whether read and write access to the flash are allowed based on the logical master number of the requesting crossbar switch master.
	00 No access may be performed by this master
	01 Only read accesses may be performed by this master
	10 Only write accesses may be performed by this master
	11 Both read and write accesses may be performed by this master
3–2 M1AP[1:0]	Master 1 Access Protection
,	This field controls whether read and write access to the flash are allowed based on the logical master number of the requesting crossbar switch master.
	00 No access may be performed by this master
	01 Only read accesses may be performed by this master
	10 Only write accesses may be performed by this master
	11 Both read and write accesses may be performed by this master
1–0 M0AP[1:0]	Master 0 Access Protection
	This field controls whether read and write access to the flash are allowed based on the logical master
	number of the requesting crossbar switch master.
	00 No access may be performed by this master
	01 Only read accesses may be performed by this master
	10 Only write accesses may be performed by this master
	11 Both read and write accesses may be performed by this master

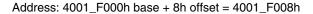
28.4.2 Flash Bank 0 Control Register (FMC_PFB0CR)

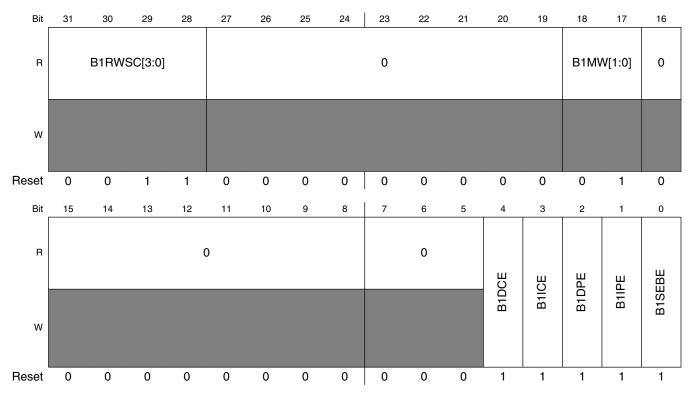
Address: 4001_F000h base + 4h offset = 4001_F004h

FMC_PFB0CR field descriptions

Field	Description		
31–28	Bank 0 Read Wait State Control		
B0RWSC[3:0]	This read-only field defines the number of wait states required to access the bank 0 flash memory.		
	The relationship between the read access time of the flash array (expressed in system clock cycles) and RWSC is defined as:		
	Access time of flash array [system clocks] = RWSC + 1		
	The FMC automatically calculates this value based on the ratio of the system clock speed to the flash clock speed. For example, when this ratio is 4:1, the field's value is 3h.		
27–24	Cache Lock Way x		
CLCK_WAY[3:0]	These bits determine if the given cache way is locked such that its contents will not be displaced by future misses.		
	The bit setting definitions are for each bit in the field.		
	0 Cache way is unlocked and may be displaced		
	Cache way is locked and its contents are not displaced		
23–20 CINV_WAY[3:0]	Cache Invalidate Way x		

FMC_PFB0CR field descriptions (continued)


Field	Description
	These bits determine if the given cache way is to be invalidated (cleared). When a bit within this field is written, the corresponding cache way is immediately invalidated: the way's tag, data, and valid contents are cleared. This field always reads as zero.
	Cache invalidation takes precedence over locking. The cache is invalidated by system reset. System software is required to maintain memory coherency when any segment of the flash memory is programmed or erased. Accordingly, cache invalidations must occur after a programming or erase event is completed and before the new memory image is accessed.
	The bit setting definitions are for each bit in the field.
	 No cache way invalidation for the corresponding cache Invalidate cache way for the corresponding cache: clear the tag, data, and vld bits of ways selected
19 S_B_INV	Invalidate Prefetch Speculation Buffer
	This bit determines if the FMC's prefetch speculation buffer and the single entry page buffer are to be invalidated (cleared). When this bit is written, the speculation buffer and single entry buffer are immediately cleared. This bit always reads as zero.
	0 Speculation buffer and single entry buffer are not affected.
	1 Invalidate (clear) speculation buffer and single entry buffer.
18–17 B0MW[1:0]	Bank 0 Memory Width This road only field defines the width of the bank 0 memory
	This read-only field defines the width of the bank 0 memory.
	00 32 bits
	01 64 bits 10 Reserved
	11 Reserved
16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–5	Cache Replacement Control
CRC[2:0]	This 3-bit field defines the replacement algorithm for accesses that are cached.
	000 LRU replacement algorithm per set across all four ways 001 Reserved
	010 Independent LRU with ways [0-1] for ifetches, [2-3] for data
	011 Independent LRU with ways [0-2] for ifetches, [3] for data
	1xx Reserved
4 B0DCE	Bank 0 Data Cache Enable
	This bit controls whether data references are loaded into the cache.
	0 Do not cache data references.
	1 Cache data references.
3 B0ICE	Bank 0 Instruction Cache Enable
DOIOL	This bit controls whether instruction fetches are loaded into the cache.


FMC_PFB0CR field descriptions (continued)

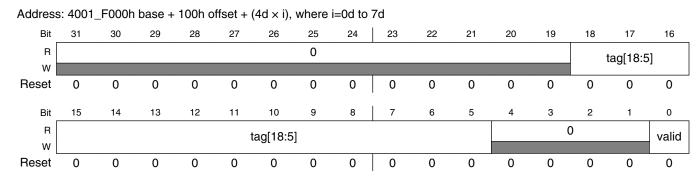
Field	Description
	0 Do not cache instruction fetches.
	1 Cache instruction fetches.
2 B0DPE	Bank 0 Data Prefetch Enable
	This bit controls whether prefetches (or speculative accesses) are initiated in response to data references.
	0 Do not prefetch in response to data references.
	1 Enable prefetches in response to data references.
1	Bank 0 Instruction Prefetch Enable
B0IPE	This bit controls whether prefetches (or speculative accesses) are initiated in response to instruction fetches.
	0 Do not prefetch in response to instruction fetches.
	1 Enable prefetches in response to instruction fetches.
0	Bank 0 Single Entry Buffer Enable
B0SEBE	This bit controls whether the single entry page buffer is enabled in response to flash read accesses. Its operation is independent from bank 1's cache.
	A high-to-low transition of this enable forces the page buffer to be invalidated.
	0 Single entry buffer is disabled.
	1 Single entry buffer is enabled.

28.4.3 Flash Bank 1 Control Register (FMC_PFB1CR)

This register has a format similar to that for PFB0CR, except it controls the operation of flash bank 1, and the "global" cache control fields are empty.

FMC_PFB1CR field descriptions

Field	Description
31–28	Bank 1 Read Wait State Control
B1RWSC[3:0]	This read-only field defines the number of wait states required to access the bank 1 flash memory.
	The relationship between the read access time of the flash array (expressed in system clock cycles) and RWSC is defined as:
	Access time of flash array [system clocks] = RWSC + 1
	The FMC automatically calculates this value based on the ratio of the system clock speed to the flash clock speed. For example, when this ratio is 4:1, the field's value is 3h.
27–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18–17	Bank 1 Memory Width
B1MW[1:0]	This read-only field defines the width of the bank 1 memory.

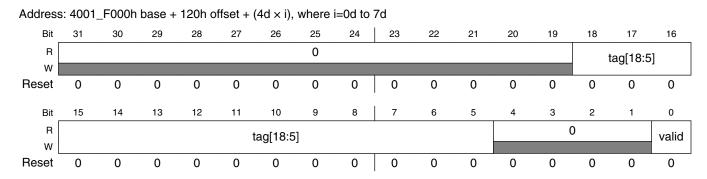

Table continues on the next page...

FMC_PFB1CR field descriptions (continued)

Field	Description
	00 32 bits
	01 64 bits
	10 Reserved
	11 Reserved
16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4	Bank 1 Data Cache Enable
B1DCE	This bit controls whether data references are loaded into the cache.
	0 Do not cache data references.
	1 Cache data references.
3 B1ICE	Bank 1 Instruction Cache Enable
	This bit controls whether instruction fetches are loaded into the cache.
	0 Do not cache instruction fetches.
	1 Cache instruction fetches.
2 B1DPE	Bank 1 Data Prefetch Enable
	This bit controls whether prefetches (or speculative accesses) are initiated in response to data references.
	0 Do not prefetch in response to data references.
	1 Enable prefetches in response to data references.
1 B1IPE	Bank 1 Instruction Prefetch Enable
BIIFE	This bit controls whether prefetches (or speculative accesses) are initiated in response to instruction fetches.
	0 Do not prefetch in response to instruction fetches.
	1 Enable prefetches in response to instruction fetches.
0	Bank 1 Single Entry Buffer Enable
B1SEBE	This bit controls whether the single entry buffer is enabled in response to flash read accesses. Its operation is independent from bank 0's cache.
	A high-to-low transition of this enable forces the page buffer to be invalidated.
	0 Single entry buffer is disabled.
	1 Single entry buffer is enabled.

28.4.4 Cache Tag Storage (FMC_TAGVDW0Sn)

The cache is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In TAGVDWxSy, x denotes the way, and y denotes the set. This section represents tag/vld information for all sets in the indicated way.

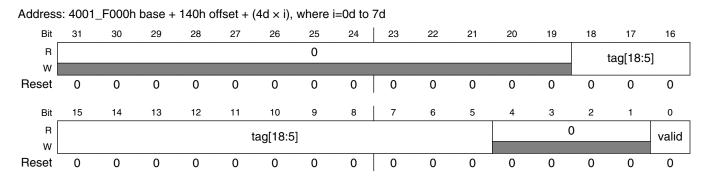


FMC_TAGVDW0Sn field descriptions

Field	Description
31–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18-5 tag[18:5]	14-bit tag for cache entry
4–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 valid	1-bit valid for cache entry

28.4.5 Cache Tag Storage (FMC_TAGVDW1Sn)

The cache is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In TAGVDWxSy, x denotes the way, and y denotes the set. This section represents tag/vld information for all sets in the indicated way.

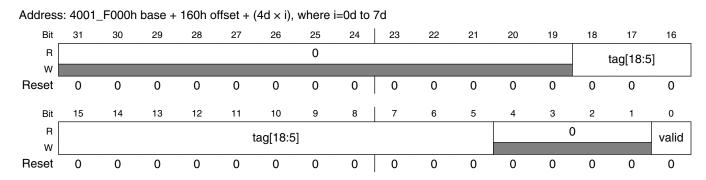


FMC_TAGVDW1Sn field descriptions

Field	Description
31–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18-5 tag[18:5]	14-bit tag for cache entry
4–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 valid	1-bit valid for cache entry

28.4.6 Cache Tag Storage (FMC_TAGVDW2Sn)

The cache is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In TAGVDWxSy, x denotes the way, and y denotes the set. This section represents tag/vld information for all sets in the indicated way.



FMC_TAGVDW2Sn field descriptions

Field	Description
31–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18–5 tag[18:5]	14-bit tag for cache entry
4–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 valid	1-bit valid for cache entry

28.4.7 Cache Tag Storage (FMC_TAGVDW3Sn)

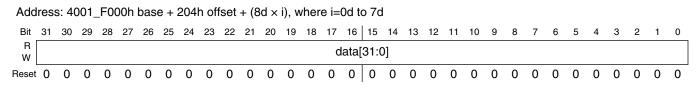
The cache is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In TAGVDWxSy, x denotes the way, and y denotes the set. This section represents tag/vld information for all sets in the indicated way.

FMC_TAGVDW3Sn field descriptions

Field	Description
31–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18-5 tag[18:5]	14-bit tag for cache entry
4–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 valid	1-bit valid for cache entry

28.4.8 Cache Data Storage (upper word) (FMC_DATAW0SnU)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the upper word (bits [63:32]) of all sets in the indicated way.

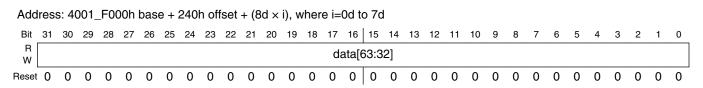

Address: 4001_F000h base + 200h offset + (8d × i), where i=0d to 7d 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 R data[63:32] W 0

FMC_DATAW0SnU field descriptions

Field	Description
31-0 data[63:32]	Bits [63:32] of data entry

28.4.9 Cache Data Storage (lower word) (FMC_DATAW0SnL)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the lower word (bits [31:0]) of all sets in the indicated way.

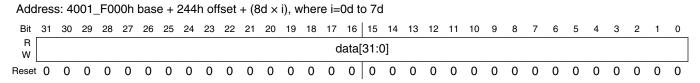


FMC_DATAW0SnL field descriptions

Field	Description
31–0 data[31:0]	Bits [31:0] of data entry

28.4.10 Cache Data Storage (upper word) (FMC_DATAW1SnU)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the upper word (bits [63:32]) of all sets in the indicated way.

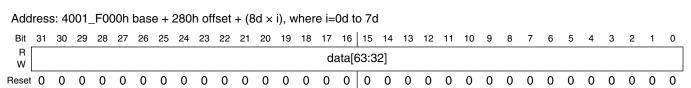


FMC_DATAW1SnU field descriptions

Field	Description
31–0 data[63:32]	Bits [63:32] of data entry

28.4.11 Cache Data Storage (lower word) (FMC_DATAW1SnL)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the lower word (bits [31:0]) of all sets in the indicated way.

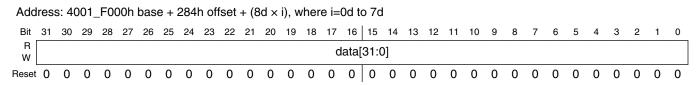


FMC_DATAW1SnL field descriptions

Field	Description
31–0 data[31:0]	Bits [31:0] of data entry

28.4.12 Cache Data Storage (upper word) (FMC_DATAW2SnU)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the upper word (bits [63:32]) of all sets in the indicated way.

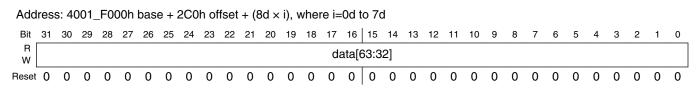


FMC_DATAW2SnU field descriptions

Field	Description
31-0 data[63:32]	Bits [63:32] of data entry

28.4.13 Cache Data Storage (lower word) (FMC_DATAW2SnL)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the lower word (bits [31:0]) of all sets in the indicated way.

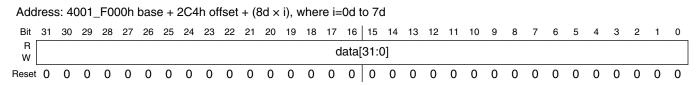


FMC_DATAW2SnL field descriptions

Field	Description
31–0 data[31:0]	Bits [31:0] of data entry

28.4.14 Cache Data Storage (upper word) (FMC_DATAW3SnU)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the upper word (bits [63:32]) of all sets in the indicated way.



FMC_DATAW3SnU field descriptions

Field	Description
31–0 data[63:32]	Bits [63:32] of data entry

28.4.15 Cache Data Storage (lower word) (FMC_DATAW3SnL)

The cache of 64-bit entries is a 4-way, set-associative cache with 8 sets. The ways are numbered 0-3 and the sets are numbered 0-7. In DATAWxSyU and DATAWxSyL, x denotes the way, y denotes the set, and U and L represent upper and lower word, respectively. This section represents data for the lower word (bits [31:0]) of all sets in the indicated way.

FMC_DATAW3SnL field descriptions

Field	Description
31–0 data[31:0]	Bits [31:0] of data entry

28.5 Functional description

The FMC is a flash acceleration unit with flexible buffers for user configuration. Besides managing the interface between the device and the flash memory, the FMC can be used to restrict access from crossbar switch masters and—for program flash only—to customize the cache and buffers to provide single-cycle system-clock data-access times. Whenever a hit occurs for the prefetch speculation buffer, the cache, or the single-entry buffer, the requested data is transferred within a single system clock.

28.5.1 Default configuration

Upon system reset, the FMC is configured to provide a significant level of buffering for transfers from the flash memory:

Functional description

- Crossbar masters 0, 1, 2 have read access to bank 0 and bank 1.
- For bank 0 and bank 1:
 - Prefetch support for data and instructions is enabled for crossbar masters 0, 1, 2.
 - The cache is configured for least recently used (LRU) replacement for all four ways.
 - The cache is configured for data or instruction replacement.
 - The single-entry buffer is enabled.

28.5.2 Configuration options

Though the default configuration provides a high degree of flash acceleration, advanced users may desire to customize the FMC buffer configurations to maximize throughput for their use cases. When reconfiguring the FMC for custom use cases, do not program the FMC's control registers while the flash memory is being accessed. Instead, change the control registers with a routine executing from RAM in supervisor mode.

The FMC's cache and buffering controls within PFB0CR and PFB1CR allow the tuning of resources to suit particular applications' needs. The cache and buffer are each controlled individually. The register controls enable buffering and prefetching per memory bank and access type (instruction fetch or data reference). The cache also supports 3 types of LRU replacement algorithms:

- LRU per set across all 4 ways,
- LRU with ways [0-1] for instruction fetches and ways [2-3] for data fetches, and
- LRU with ways [0-2] for instruction fetches and way [3] for data fetches.

As an application example: if both instruction fetches and data references are accessing flash memory, then control is available to send instruction fetches, data references, or both to the cache or the single-entry buffer. Likewise, speculation can be enabled or disabled for either type of access. If both instruction fetches and data references are cached, then the cache's way resources may be divided in several ways between the instruction fetches and data references.

In another application example, the cache can be configured for replacement from bank 0, while the single-entry buffer can be enabled for bank 1 only. This configuration is ideal for applications that use bank 0 for program space and bank 1 for data space.

28.5.3 Speculative reads

The FMC has a single buffer that reads ahead to the next word in the flash memory if there is an idle cycle. Speculative prefetching is programmable for each bank for instruction and/or data accesses using the B0DPE and B0IPE fields of PFB0CR and the B1DPE and B1IPE fields of PFB1CR. Because many code accesses are sequential, using the speculative prefetch buffer improves performance in most cases.

When speculative reads are enabled, the FMC immediately requests the next sequential address after a read completes. By requesting the next word immediately, speculative reads can help to reduce or even eliminate wait states when accessing sequential code and/or data.

For example, consider the following scenario:

- Assume a system with a 4:1 core-to-flash clock ratio and with speculative reads enabled.
- The core requests four sequential longwords in back-to-back requests, meaning there are no core cycle delays except for stalls waiting for flash memory data to be returned.
- None of the data is already stored in the cache or speculation buffer.

In this scenario, the sequence of events for accessing the four longwords is as follows:

- 1. The first longword read requires 4 to 7 core clocks. See Wait states for more information.
- 2. Due to the 64-bit data bus of the flash memory, the second longword read takes only 1 core clock because the data is already available inside the FMC. While the data for the second longword is being returned to the core, the FMC also starts reading the third and fourth longwords from the flash memory.
- 3. Accessing the third longword requires 3 core clock cycles. The flash memory read itself takes 4 clocks, but the first clock overlaps with the second longword read.
- 4. Reading the fourth longword, like the second longword, takes only 1 clock due to the 64-bit flash memory data bus.

28.6 Initialization and application information

The FMC does not require user initialization. Flash acceleration features are enabled by default.

Initialization and application information

The FMC has no visibility into flash memory erase and program cycles because the Flash Memory module manages them directly. As a result, if an application is executing flash memory commands, the FMC's cache might need to be disabled and/or flushed to prevent the possibility of returning stale data. Use the PFB0CR[CINV_WAY] field to invalidate the cache in this manner.

Chapter 29 Flash Memory Module (FTFA)

29.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The flash memory module includes the following accessible memory regions:

Program flash memory for vector space and code store

Flash memory is ideal for single-supply applications, permitting in-the-field erase and reprogramming operations without the need for any external high voltage power sources.

The flash memory module includes a memory controller that executes commands to modify flash memory contents. An erased bit reads '1' and a programmed bit reads '0'. The programming operation is unidirectional; it can only move bits from the '1' state (erased) to the '0' state (programmed). Only the erase operation restores bits from '0' to '1'; bits cannot be programmed from a '0' to a '1'.

CAUTION

A flash memory location must be in the erased state before being programmed. Cumulative programming of bits (back-toback program operations without an intervening erase) within a flash memory location is not allowed. Re-programming of existing 0s to 0 is not allowed as this overstresses the device.

The standard shipping condition for flash memory is erased with security disabled. Data loss over time may occur due to degradation of the erased ('1') states and/or programmed ('0') states. Therefore, it is recommended that each flash block or sector be re-erased immediately prior to factory programming to ensure that the full data retention capability is achieved.

29.1.1 Features

The flash memory module includes the following features.

NOTE

See the device's Chip Configuration details for the exact amount of flash memory available on your device.

29.1.1.1 Program Flash Memory Features

- Sector size of 2 KB
- Program flash protection scheme prevents accidental program or erase of stored data
- Program flash access control scheme prevents unauthorized access to selected code segments
- Automated, built-in, program and erase algorithms with verify
- Read access to one program flash block is possible while programming or erasing data in the other program flash block

29.1.1.2 Other Flash Memory Module Features

- Internal high-voltage supply generator for flash memory program and erase operations
- Optional interrupt generation upon flash command completion
- Supports MCU security mechanisms which prevent unauthorized access to the flash memory contents

29.1.2 Block Diagram

The block diagram of the flash memory module is shown in the following figure.

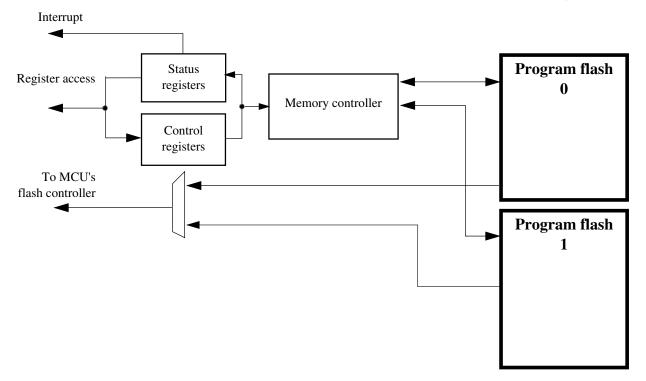


Figure 29-1. Flash Block Diagram

29.1.3 Glossary

Command write sequence — A series of MCU writes to the flash FCCOB register group that initiates and controls the execution of flash algorithms that are built into the flash memory module.

Endurance — The number of times that a flash memory location can be erased and reprogrammed.

FCCOB (**Flash Common Command Object**) — A group of flash registers that are used to pass command, address, data, and any associated parameters to the memory controller in the flash memory module.

Flash block — A macro within the flash memory module which provides the nonvolatile memory storage.

Flash Memory Module — All flash blocks plus a flash management unit providing high-level control and an interface to MCU buses.

HSRUN — An MCU power mode enabling high-speed access to the memory resources in the flash module. The user has no access to the flash command set when the MCU is in HSRUN mode.

External Signal Description

IFR — Nonvolatile information register found in each flash block, separate from the main memory array.

Longword — 32 bits of data with an aligned longword having byte-address[1:0] = 00.

NVM — Nonvolatile memory. A memory technology that maintains stored data during power-off. The flash array is an NVM using NOR-type flash memory technology.

NVM Normal Mode — An NVM mode that provides basic user access to flash memory module resources. The CPU or other bus masters initiate flash program and erase operations (or other flash commands) using writes to the FCCOB register group in the flash memory module.

NVM Special Mode — An NVM mode enabling external, off-chip access to the memory resources in the flash memory module. A reduced flash command set is available when the MCU is secured. See the Chip Configuration details for information on when this mode is used.

Phrase — 64 bits of data with an aligned phrase having byte-address[2:0] = 000.

Program flash — The program flash memory provides nonvolatile storage for vectors and code store.

Program flash Sector — The smallest portion of the program flash memory (consecutive addresses) that can be erased.

Retention — The length of time that data can be kept in the NVM without experiencing errors upon readout. Since erased (1) states are subject to degradation just like programmed (0) states, the data retention limit may be reached from the last erase operation (not from the programming time).

RWW— Read-While-Write. The ability to simultaneously read from one memory resource while commanded operations are active in another memory resource.

Secure — An MCU state conveyed to the flash memory module as described in the Chip Configuration details for this device. In the secure state, reading and changing NVM contents is restricted.

Word — 16 bits of data with an aligned word having byte-address[0] = 0.

29.2 External Signal Description

The flash memory module contains no signals that connect off-chip.

29.3 Memory Map and Registers

This section describes the memory map and registers for the flash memory module.

Data read from unimplemented memory space in the flash memory module is undefined. Writes to unimplemented or reserved memory space (registers) in the flash memory module are ignored.

29.3.1 Flash Configuration Field Description

The program flash memory contains a 16-byte flash configuration field that stores default protection settings (loaded on reset) and security information that allows the MCU to restrict access to the flash memory module.

Flash Configuration Field Byte Address	Size (Bytes)	Field Description
0x0_0400-0x0_0407	8	Backdoor Comparison Key. Refer to Verify Backdoor Access Key Command and Unsecuring the Chip Using Backdoor Key Access.
0x0_0408-0x0_040B	4	Program flash protection bytes. Refer to the description of the Program Flash Protection Registers (FPROT0-3).
0x0_040F	1	Reserved
0x0_040E	1	Reserved
0x0_040D	1	Flash nonvolatile option byte. Refer to the description of the Flash Option Register (FOPT).
0x0_040C	1	Flash security byte. Refer to the description of the Flash Security Register (FSEC).

29.3.2 Program Flash IFR Map

The program flash IFR is nonvolatile information memory that can be read freely, but the user has no erase and limited program capabilities (see the Read Once, Program Once, and Read Resource commands in Read Once Command, Program Once Command and Read Resource Command).

The contents of the program flash IFR are summarized in the table found here and further described in the subsequent paragraphs.

Memory Map and Registers

The program flash IFR is located within the program flash 0 memory block.

Address Range	Size (Bytes)	Field Description
0x00 – 0x9F	160	Reserved
0xA0 - 0xA3	4	Program Once XACCH-1 Field (index = 0x10)
0xA4 - 0xA7	4	Program Once XACCL-1 Field (index = 0x10)
0xA8 – 0xAB	4	Program Once XACCH-2 Field (index = 0x11)
0xAC – 0xAF	4	Program Once XACCL-2 Field (index = 0x11)
0xB0 - 0xB3	4	Program Once SACCH-1 Field (index = 0x12)
0xB4 - 0xB7	4	Program Once SACCL-1 Field (index = 0x12)
0xB8 - 0xBB	4	Program Once SACCH-2 Field (index = 0x13)
0xBC – 0xBF	4	Program Once SACCL-2 Field (index = 0x13)
0xC0 – 0xFF	64	Program Once ID Field (index = 0x00 - 0x0F)

29.3.2.1 Program Once Field

The Program Once Field in the program flash IFR provides 96 bytes of user data storage separate from the program flash main array. The user can program the Program Once Field one time only as there is no program flash IFR erase mechanism available to the user. The Program Once Field can be read any number of times. This section of the program flash IFR is accessed in 4-byte or 8-Byte records using the Read Once and Program Once commands (see Read Once Command and Program Once Command).

29.3.3 Register Descriptions

The flash memory module contains a set of memory-mapped control and status registers.

NOTE

While a command is running (FSTAT[CCIF]=0), register writes are not accepted to any register except FCNFG and FSTAT. The no-write rule is relaxed during the start-up reset sequence, prior to the initial rise of CCIF. During this initialization period the user may write any register. All register writes are also disabled (except for registers FCNFG and

FSTAT) whenever an erase suspend request is active (FCNFG[ERSSUSP]=1).

FTFA memory map

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4002_0000	Flash Status Register (FTFA_FSTAT)	8	R/W	00h	29.33.1/ 634
4002_0001	Flash Configuration Register (FTFA_FCNFG)	8	R/W	00h	29.33.2/ 636
4002_0002	Flash Security Register (FTFA_FSEC)	8	R	Undefined	29.33.3/ 637
4002_0003	Flash Option Register (FTFA_FOPT)	8	R	Undefined	29.33.4/ 638
4002_0004	Flash Common Command Object Registers (FTFA_FCCOB3)	8	R/W	00h	29.33.5/ 639
4002_0005	Flash Common Command Object Registers (FTFA_FCCOB2)	8	R/W	00h	29.33.5/ 639
4002_0006	Flash Common Command Object Registers (FTFA_FCCOB1)	8	R/W	00h	29.33.5/ 639
4002_0007	Flash Common Command Object Registers (FTFA_FCCOB0)	8	R/W	00h	29.33.5/ 639
4002_0008	Flash Common Command Object Registers (FTFA_FCCOB7)	8	R/W	00h	29.33.5/ 639
4002_0009	Flash Common Command Object Registers (FTFA_FCCOB6)		R/W	00h	29.33.5/ 639
4002_000A	Flash Common Command Object Registers (FTFA_FCCOB5)		R/W	00h	29.33.5/ 639
4002_000B	Flash Common Command Object Registers (FTFA_FCCOB4)		R/W	00h	29.33.5/ 639
4002_000C	Flash Common Command Object Registers (FTFA_FCCOBB)		R/W	00h	29.33.5/ 639
4002_000D	Flash Common Command Object Registers (FTFA_FCCOBA)	8	R/W	00h	29.33.5/ 639
4002_000E	Flash Common Command Object Registers (FTFA_FCCOB9)	8	R/W	00h	29.33.5/ 639
4002_000F	Flash Common Command Object Registers (FTFA_FCCOB8)	8	R/W	00h	29.33.5/ 639
4002_0010	Program Flash Protection Registers (FTFA_FPROT3)		R/W	Undefined	29.33.6/ 640
4002_0011	Program Flash Protection Registers (FTFA_FPROT2)		R/W	Undefined	29.33.6/ 640
4002_0012	Program Flash Protection Registers (FTFA_FPROT1)		R/W	Undefined	29.33.6/ 640
4002_0013	2_0013 Program Flash Protection Registers (FTFA_FPROT0)		R/W	Undefined	29.33.6/ 640

Table continues on the next page...

FTFA memory map (continued)

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4002_0018	Execute-only Access Registers (FTFA_XACCH3)	8	R	Undefined	29.33.7/ 642
4002_0019	Execute-only Access Registers (FTFA_XACCH2)	8	R	Undefined	29.33.7/ 642
4002_001A	Execute-only Access Registers (FTFA_XACCH1)	8	R	Undefined	29.33.7/ 642
4002_001B	Execute-only Access Registers (FTFA_XACCH0)	8	R	Undefined	29.33.7/ 642
4002_001C	Execute-only Access Registers (FTFA_XACCL3)	8	R	Undefined	29.33.7/ 642
4002_001D	Execute-only Access Registers (FTFA_XACCL2)	8	R	Undefined	29.33.7/ 642
4002_001E	Execute-only Access Registers (FTFA_XACCL1)	8	R	Undefined	29.33.7/ 642
4002_001F	Execute-only Access Registers (FTFA_XACCL0)	8	R	Undefined	29.33.7/ 642
4002_0020	Supervisor-only Access Registers (FTFA_SACCH3)	8	R	Undefined	29.33.8/ 643
4002_0021	Supervisor-only Access Registers (FTFA_SACCH2)	8	R	Undefined	29.33.8/ 643
4002_0022	Supervisor-only Access Registers (FTFA_SACCH1)	8	R	Undefined	29.33.8/ 643
4002_0023	Supervisor-only Access Registers (FTFA_SACCH0)	8	R	Undefined	29.33.8/ 643
4002_0024	Supervisor-only Access Registers (FTFA_SACCL3)	8	R	Undefined	29.33.8/ 643
4002_0025	Supervisor-only Access Registers (FTFA_SACCL2)	8	R	Undefined	29.33.8/ 643
4002_0026	Supervisor-only Access Registers (FTFA_SACCL1)	8	R	Undefined	29.33.8/ 643
4002_0027	Supervisor-only Access Registers (FTFA_SACCL0)	8	R	Undefined	29.33.8/ 643
4002_0028	Flash Access Segment Size Register (FTFA_FACSS)	8	R	Undefined	29.33.9/ 644
4002_002B	Flash Access Segment Number Register (FTFA_FACSN)	8	R	Undefined	29.33.10/ 645

29.33.1 Flash Status Register (FTFA_FSTAT)

The FSTAT register reports the operational status of the flash memory module.

The CCIF, RDCOLERR, ACCERR, and FPVIOL bits are readable and writable. The MGSTAT0 bit is read only. The unassigned bits read 0 and are not writable.

NOTE

When set, the Access Error (ACCERR) and Flash Protection Violation (FPVIOL) bits in this register prevent the launch of any more commands until the flag is cleared (by writing a one to it).

Address: 4002_0000h base + 0h offset = 4002_0000h

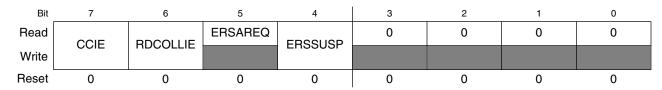
Bit	7	6	5	4	3	2	1	0
Read	CCIF	RDCOLERR	ACCERR	FPVIOL		0		MGSTAT0
Write	w1c	w1c	w1c	w1c				
Reset	0	0	0	0	0	0	0	0

FTFA_FSTAT field descriptions

	·
Field	Description
7 CCIF	Command Complete Interrupt Flag
Con	Indicates that a flash command has completed. The CCIF flag is cleared by writing a 1 to CCIF to launch a command, and CCIF stays low until command completion or command violation.
	CCIF is reset to 0 but is set to 1 by the memory controller at the end of the reset initialization sequence. Depending on how quickly the read occurs after reset release, the user may or may not see the 0 hardware reset value.
	0 Flash command in progress
	1 Flash command has completed
6	Flash Read Collision Error Flag
RDCOLERR	Indicates that the MCU attempted a read from a flash memory resource that was being manipulated by a flash command (CCIF=0). Any simultaneous access is detected as a collision error by the block arbitration logic. The read data in this case cannot be guaranteed. The RDCOLERR bit is cleared by writing a 1 to it. Writing a 0 to RDCOLERR has no effect.
	0 No collision error detected
	1 Collision error detected
5	Flash Access Error Flag
ACCERR	Indicates an illegal access has occurred to a flash memory resource caused by a violation of the command write sequence or issuing an illegal flash command. While ACCERR is set, the CCIF flag cannot be cleared to launch a command. The ACCERR bit is cleared by writing a 1 to it. Writing a 0 to the ACCERR bit has no effect.
	0 No access error detected
	1 Access error detected
4	Flash Protection Violation Flag
FPVIOL	Indicates an attempt was made to program or erase an address in a protected area of program flash memory during a command write sequence . While FPVIOL is set, the CCIF flag cannot be cleared to launch a command. The FPVIOL bit is cleared by writing a 1 to it. Writing a 0 to the FPVIOL bit has no effect.
	 No protection violation detected Protection violation detected

Table continues on the next page...

FTFA_FSTAT field descriptions (continued)


Field	Description
3–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 MGSTAT0	Memory Controller Command Completion Status Flag The MGSTATO status flag is set if an error is detected during execution of a flash command or during the flash reset sequence. As a status flag, this field cannot (and need not) be cleared by the user like the other error flags in this register.
	The value of the MGSTAT0 bit for "command-N" is valid only at the end of the "command-N" execution when CCIF=1 and before the next command has been launched. At some point during the execution of "command-N+1," the previous result is discarded and any previous error is cleared.

29.33.2 Flash Configuration Register (FTFA_FCNFG)

This register provides information on the current functional state of the flash memory module.

The erase control bits (ERSAREQ and ERSSUSP) have write restrictions. The unassigned bits read as noted and are not writable.

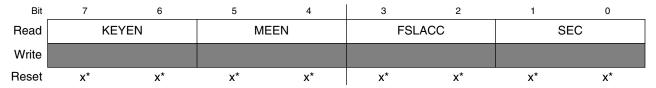
Address: 4002 0000h base + 1h offset = 4002 0001h

FTFA_FCNFG field descriptions

Field	Description
7	Command Complete Interrupt Enable
CCIE	Controls interrupt generation when a flash command completes.
	0 Command complete interrupt disabled
	1 Command complete interrupt enabled. An interrupt request is generated whenever the FSTAT[CCIF] flag is set.
6	Read Collision Error Interrupt Enable
RDCOLLIE	Controls interrupt generation when a flash memory read collision error occurs.
	0 Read collision error interrupt disabled
	1 Read collision error interrupt enabled. An interrupt request is generated whenever a flash memory read collision error is detected (see the description of FSTAT[RDCOLERR]).
5 ERSAREQ	Erase All Request

Table continues on the next page...

FTFA_FCNFG field descriptions (continued)


Field	Description
	Issues a request to the memory controller to execute the Erase All Blocks command and release security. ERSAREQ is not directly writable but is under indirect user control. Refer to the device's Chip Configuration details on how to request this command.
	ERSAREQ sets when an erase all request is triggered external to the flash memory module and CCIF is set (no command is currently being executed). ERSAREQ is cleared by the flash memory module when the operation completes.
	0 No request or request complete
	 Request to: run the Erase All Blocks command, verify the erased state, program the security byte in the Flash Configuration Field to the unsecure state, and
	4. release MCU security by setting the FSEC[SEC] field to the unsecure state.
4 Erase Suspend ERSSUSP Allows the user to suspend (interrupt) the Erase Flash Sector command while it is executing.	
	0 No suspend requested
	1 Suspend the current Erase Flash Sector command execution.
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

29.33.3 Flash Security Register (FTFA_FSEC)

This read-only register holds all bits associated with the security of the MCU and flash memory module.

During the reset sequence, the register is loaded with the contents of the flash security byte in the Flash Configuration Field located in program flash memory. The flash basis for the values is signified by X in the reset value.

Address: 4002_0000h base + 2h offset = 4002_0002h

^{*} Notes:

• x = Undefined at reset.

FTFA_FSEC field descriptions

Field	Description			
7–6	Backdoor Key Security Enable			
KEYEN	Enables or disables backdoor key access to the flash memory module.			
	00 Backdoor key access disabled			
	01 Backdoor key access disabled (preferred KEYEN state to disable backdoor key access)			
	10 Backdoor key access enabled			
	11 Backdoor key access disabled			
5–4	Mass Erase Enable Bits			
MEEN	Enables and disables mass erase capability of the flash memory module. The state of this field is relevant only when SEC is set to secure outside of NVM Normal Mode. When SEC is set to unsecure, the MEEN setting does not matter.			
	00 Mass erase is enabled			
	01 Mass erase is enabled			
	10 Mass erase is disabled			
	11 Mass erase is enabled			
3–2	Freescale Failure Analysis Access Code			
FSLACC	Enables or disables access to the flash memory contents during returned part failure analysis at Freescale. When SEC is secure and FSLACC is denied, access to the program flash contents is denied and any failure analysis performed by Freescale factory test must begin with a full erase to unsecure the part.			
	When access is granted (SEC is unsecure, or SEC is secure and FSLACC is granted), Freescale factory testing has visibility of the current flash contents. The state of the FSLACC bits is only relevant when SEC is set to secure. When SEC is set to unsecure, the FSLACC setting does not matter.			
	00 Freescale factory access granted			
	01 Freescale factory access denied			
	10 Freescale factory access denied			
	11 Freescale factory access granted			
1-0	Flash Security			
SEC	Defines the security state of the MCU. In the secure state, the MCU limits access to flash memory module			
	resources. The limitations are defined per device and are detailed in the Chip Configuration details. If the flash memory module is unsecured using backdoor key access, SEC is forced to 10b.			
	00 MCU security status is secure.			
	01 MCU security status is secure.			
	10 MCU security status is unsecure. (The standard shipping condition of the flash memory module is			
	unsecure.)			
	11 MCU security status is secure.			

29.33.4 Flash Option Register (FTFA_FOPT)

The flash option register allows the MCU to customize its operations by examining the state of these read-only bits, which are loaded from NVM at reset. The function of the bits is defined in the device's Chip Configuration details.

All bits in the register are read-only.

During the reset sequence, the register is loaded from the flash nonvolatile option byte in the Flash Configuration Field located in program flash memory. The flash basis for the values is signified by X in the reset value. However, the register is written to 0xFF if the contents of the flash nonvolatile option byte are 0x00.

Address: 4002_0000h base + 3h offset = 4002_0003h

- * Notes:
- x = Undefined at reset.


FTFA FOPT field descriptions

Field	Description
OPT	Nonvolatile Option These bits are loaded from flash to this register at reset. Refer to the device's Chip Configuration details for the definition and use of these bits.

29.33.5 Flash Common Command Object Registers (FTFA_FCCOBn)

The FCCOB register group provides 12 bytes for command codes and parameters. The individual bytes within the set append a 0-B hex identifier to the FCCOB register name: FCCOB0, FCCOB1, ..., FCCOBB.

Address: 4002_0000h base + 4h offset + (1d × i), where i=0d to 11d

FTFA_FCCOBn field descriptions

Field	Description
CCOBn	The FCCOB register provides a command code and relevant parameters to the memory controller. The individual registers that compose the FCCOB data set can be written in any order, but you must provide all needed values, which vary from command to command. First, set up all required FCCOB fields and then initiate the command's execution by writing a 1 to the FSTAT[CCIF] bit. This clears the CCIF bit, which locks all FCCOB parameter fields and they cannot be changed by the user until the command completes

FTFA_FCCOBn field descriptions (continued)

Field	Description					
		(CCIF returns to 1). No command buffering or queueing is provided; the next command can be loaded only after the current command completes.				
		Some commands return information to the FCCOB registers. Any values returned to FCCOB are available for reading after the FSTAT[CCIF] flag returns to 1 by the memory controller.				
	contains the command co	The following table shows a generic flash command format. The first FCCOB register, FCCOB0, always contains the command code. This 8-bit value defines the command to be executed. The command code is followed by the parameters required for this specific flash command, typically an address and/or data values.				
		arameter table is written in terms of FCCOB Number (which is equivalent to the his number is a reference to the FCCOB register name and is not the register				
	FCCOB Number	Typical Command Parameter Contents [7:0]				
	0	FCMD (a code that defines the flash command)				
	1	Flash address [23:16]				
	2	Flash address [15:8]				
	3	Flash address [7:0]				
	4	Data Byte 0				
	5	Data Byte 1				
	6	Data Byte 2				
	7	Data Byte 3				
	8	Data Byte 4				
	9	Data Byte 5				
	Α	Data Byte 6				
	В	Data Byte 7				
		p uses a big endian addressing convention. For all command parameter fields st significant data resides in the lowest FCCOB register number.				

29.33.6 Program Flash Protection Registers (FTFA_FPROT*n*)

The FPROT registers define which program flash regions are protected from program and erase operations. Protected flash regions cannot have their content changed; that is, these regions cannot be programmed and cannot be erased by any flash command. Unprotected regions can be changed by program and erase operations.

The four FPROT registers allow up to 32 protectable regions. Each bit protects a 1/32 region of the program flash memory except for memory configurations with less than 32 KB of program flash where each assigned bit protects 1 KB. For configurations with 24 KB of program flash memory or less, FPROT0 is not used. For configurations with 16

KB of program flash memory or less, FPROT1 is not used. For configurations with 8 KB of program flash memory, FPROT2 is not used. The bitfields are defined in each register as follows:

Program flash protection register	Program flash protection bits
FPROT0	PROT[31:24]
FPROT1	PROT[23:16]
FPROT2	PROT[15:8]
FPROT3	PROT[7:0]

During the reset sequence, the FPROT registers are loaded with the contents of the program flash protection bytes in the Flash Configuration Field as indicated in the following table.

Program flash protection register	Flash Configuration Field offset address	
FPROT0	0x000B	
FPROT1	0x000A	
FPROT2	0x0009	
FPROT3	0x0008	

To change the program flash protection that is loaded during the reset sequence, unprotect the sector of program flash memory that contains the Flash Configuration Field. Then, reprogram the program flash protection byte.

Address: 4002_0000h base + 10h offset + $(1d \times i)$, where i=0d to 3d

Bit	7	6	5	4	3	2	1	0
Read Write	PROT							
Reset	x *	x *	x *	x*	X *	x *	x *	x*

^{*} Notae:

FTFA_FPROTn field descriptions

Field	Description
7–0 PROT	Program Flash Region Protect Each program flash region can be protected from program and erase operations by setting the associated PROT bit.
	In NVM Normal mode: The protection can only be increased, meaning that currently unprotected memory can be protected, but currently protected memory cannot be unprotected. Since unprotected regions are marked with a 1 and protected regions use a 0, only writes changing 1s to 0s are accepted. This 1-to-0 transition check is performed on a bit-by-bit basis. Those FPROT bits with 1-to-0 transitions are accepted while all bits with 0-to-1 transitions are ignored.

[•] x = Undefined at reset.

FTFA_FPROTn field descriptions (continued)

Field	Description		
	In NVM Special mode: All bits of FPROT are writable without restriction. Unprotected areas can be protected and protected areas can be unprotected.		
	Restriction: The user must never write to any FPROT register while a command is running (CCIF=0).		
	Trying to alter data in any protected area in the program flash memory results in a protection violation error and sets the FSTAT[FPVIOL] bit. A full block erase of a program flash block is not possible if it contains any protected region.		
	Each bit in the 32-bit protection register represents 1/32 of the total program flash except for configurations where program flash memory is less than 32 KB. For configurations with less than 32 KB of program flash memory, each assigned bit represents 1 KB.		
	0 Program flash region is protected.		
	1 Program flash region is not protected		

29.33.7 Execute-only Access Registers (FTFA_XACCn)

The XACC registers define which program flash segments are restricted to data read or execute only or both data and instruction fetches.

The eight XACC registers allow up to 64 restricted segments of equal memory size.

Execute-only access register	Program flash execute-only access bits
XACCH0	XA[63:56]
XACCH1	XA[55:48]
XACCH2	XA[47:40]
XACCH3	XA[39:32]
XACCL0	XA[31:24]
XACCL1	XA[23:16]
XACCL2	XA[15:8]
XACCL3	XA[7:0]

During the reset sequence, the XACC registers are loaded with the logical AND of Program Flash IFR addresses A and B as indicated in the following table.

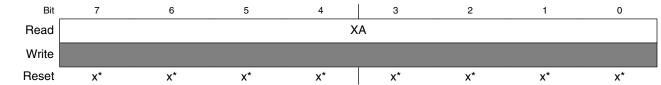

Execute-only access register	Program Flash IFR address A	Program Flash IFR address B
XACCH0	0xA3	0xAB
XACCH1	0xA2	0xAA
XACCH2	0xA1	0xA9
XACCH3	0xA0	0xA8
XACCL0	0xA7	0xAF
XACCL1	0xA6	0xAE

Table continues on the next page...

Execute-only access register	Program Flash IFR address A	Program Flash IFR address B
XACCL2	0xA5	0xAD
XACCL3	0xA4	0xAC

Use the Program Once command to program the execute-only access control fields that are loaded during the reset sequence.

Address: 4002_0000h base + 18h offset + (1d × i), where i=0d to 7d

^{*} Notes:

FTFA_XACCn field descriptions

Field	Description
	Execute-only access control
XA	Associated segment is accessible in execute mode only (as an instruction fetch)
	Associated segment is accessible as data or in execute mode

29.33.8 Supervisor-only Access Registers (FTFA_SACCn)

The SACC registers define which program flash segments are restricted to supervisor only or user and supervisor access.

The eight SACC registers allow up to 64 restricted segments of equal memory size.

Supervisor-only access register	Program flash supervisor-only access bits
SACCH0	SA[63:56]
SACCH1	SA[55:48]
SACCH2	SA[47:40]
SACCH3	SA[39:32]
SACCL0	SA[31:24]
SACCL1	SA[23:16]
SACCL2	SA[15:8]
SACCL3	SA[7:0]

During the reset sequence, the SACC registers are loaded with the logical AND of Program Flash IFR addresses A and B as indicated in the following table.

[•] x = Undefined at reset.

Memory Map and Registers

Supervisor-only access register	Program Flash IFR address A	Program Flash IFR address B
SACCH0	0xB3	0xBB
SACCH1	0xB2	0xBA
SACCH2	0xB1	0xB9
SACCH3	0xB0	0xB8
SACCL0	0xB7	0xBF
SACCL1	0xB6	0xBE
SACCL2	0xB5	0xBD
SACCL3	0xB4	0xBC

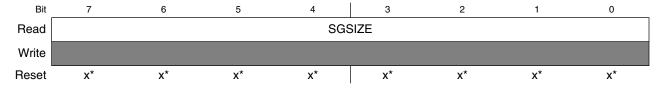
Use the Program Once command to program the supervisor-only access control fields that are loaded during the reset sequence.

Address: 4002_0000h base + 20h offset + (1d × i), where i=0d to 7d

^{*} Notes:

FTFA_SACCn field descriptions

Field	Description
	Supervisor-only access control
SA	Associated segment is accessible in supervisor mode only
	Associated segment is accessible in user or supervisor mode


29.33.9 Flash Access Segment Size Register (FTFA_FACSS)

The flash access segment size register determines which bits in the address are used to index into the SACC and XACC bitmaps to get the appropriate permission flags.

All bits in the register are read-only.

The contents of this register are loaded during the reset sequence.

Address: 4002_0000h base + 28h offset = 4002_0028h

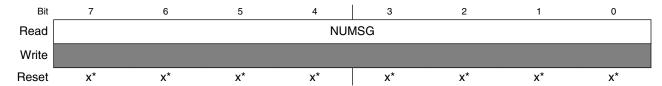
K22F Sub-Family Reference Manual, Rev. 3, 7/2014

[•] x = Undefined at reset.

- * Notes:
- x = Undefined at reset.

FTFA_FACSS field descriptions

Field	Description		
7-0 SGSIZE Segment Size The segment size is a fixed value based on the available program flash size divided by NI			n size divided by NUMSG.
	Program Flash Size	Segment Size	Segment Size Encoding
	64 KBytes	2 KBytes	0x3
	128 KBytes	4 KBytes	0x4
	160 KBytes	4 KBytes	0x4
	256 KBytes	4 KBytes	0x4
	512 KBytes	8 KBytes	0x5
			'


29.33.10 Flash Access Segment Number Register (FTFA_FACSN)

The flash access segment number register provides the number of program flash segments that are available for XACC and SACC permissions.

All bits in the register are read-only.

The contents of this register are loaded during the reset sequence.

Address: 4002_0000h base + 2Bh offset = 4002_002Bh

- * Notes:
- x = Undefined at reset.

FTFA_FACSN field descriptions

Field	Description
7–0	Number of Segments Indicator
NUMSG	The NUMSG field indicates the number of equal-sized segments in the program flash.
	0x20 Program flash memory is divided into 32 segments (64 Kbytes, 128 Kbytes)

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

FTFA_FACSN field descriptions (continued)

Field	Description	
	0x28	Program flash memory is divided into 40 segments (160 Kbytes)
	0x40	Program flash memory is divided into 64 segments (256 Kbytes, 512 Kbytes)

29.4 Functional Description

The information found here describes functional details of the flash memory module.

29.4.1 Flash Protection

Individual regions within the flash memory can be protected from program and erase operations.

Protection is controlled by the following registers:

- FPROT*n*
 - For 2ⁿ program flash sizes, four registers typically protect 32 regions of the program flash memory as shown in the following figure

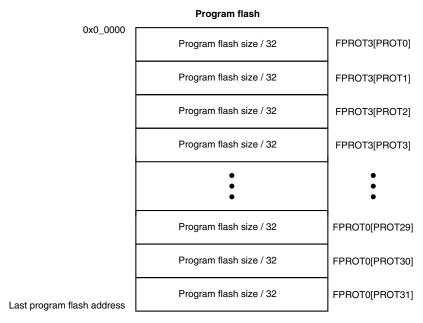


Figure 29-44. Program flash protection

NOTE

Flash protection features are discussed further in AN4507: Using the Kinetis Security and Flash Protection Features . Not

all features described in the application note are available on this device.

29.4.2 Flash Access Protection

Individual segments within the program flash memory can be designated for restricted access. Specific flash commands monitor FXACC contents to protect flash memory but the FSACC contents do not impact flash command operation. Access is controlled by the following registers:

- FXACC
 - For 2ⁿ program flash sizes greater than 128KB, eight registers control 64 segments of the program flash memory as shown in the following figure

Program flash

	Program nasn	
0x0_0000	Program flash size / 64	XACCL3[XA0]
	Program flash size / 64	XACCL3[XA1]
	Program flash size / 64	XACCL3[XA2]
	Program flash size / 64	XACCL3[XA3]
	Program flash size / 64	XACCL3[XA4]
	:	•
	Program flash size / 64	XACCL0[XA31]
	Program flash size / 64	XACCH3[XA32]
	:	:
	Program flash size / 64	XACCH0[XA29]
	Program flash size / 64	XACCH0[XA60]
	Program flash size / 64	XACCH0[XA61]
	Program flash size / 64	XACCH0[XA62]
Last program flash address	Program flash size / 64	XACCH0[XA63]

Figure 29-45. Program flash access control (256KB or 512KB of program flash)

- FSACC
 - For 2ⁿ program flash sizes greater than 128KB, eight registers control 64 segments of the program flash memory as shown in the following figure

	r rogram naon	
0x0_0000	Program flash size / 64	SACCL3[SA0]
	Program flash size / 64	SACCL3[SA1]
	Program flash size / 64	SACCL3[SA2]
	Program flash size / 64	SACCL3[SA3]
	Program flash size / 64	SACCL3[SA4]
	•	:
	Program flash size / 64	SACCL0[SA31]
	Program flash size / 64	SACCH3[SA32]
	•	:
	Program flash size / 64	SACCH0[SA59]
	Program flash size / 64	SACCH0[SA60]
	Program flash size / 64	SACCH0[SA61]
	Program flash size / 64	SACCH0[SA62]
Last program flash address	Program flash size / 64	SACCH0[SA63]

Program flash

Figure 29-46. Program flash access control (256KB or 512KB of program flash)

29.4.3 Interrupts

The flash memory module can generate interrupt requests to the MCU upon the occurrence of various flash events.

These interrupt events and their associated status and control bits are shown in the following table.

Flash Event	Readable	Interrupt
	Status Bit	Enable Bit
Flash Command Complete	FSTAT[CCIF]	FCNFG[CCIE]
Flash Read Collision Error	FSTAT[RDCOLERR]	FCNFG[RDCOLLIE]

Table 29-44. Flash Interrupt Sources

Note

Vector addresses and their relative interrupt priority are determined at the MCU level.

Some devices also generate a bus error response as a result of a Read Collision Error event. See the chip configuration information to determine if a bus error response is also supported.

29.4.4 Flash Operation in Low-Power Modes

29.4.4.1 Wait Mode

When the MCU enters wait mode, the flash memory module is not affected. The flash memory module can recover the MCU from wait via the command complete interrupt (see Interrupts).

29.4.4.2 Stop Mode

When the MCU requests stop mode, if a flash command is active (CCIF = 0) the command execution completes before the MCU is allowed to enter stop mode.

CAUTION

The MCU should never enter stop mode while any flash command is running (CCIF = 0).

NOTE

While the MCU is in very-low-power modes (VLPR, VLPW, VLPS), the flash memory module does not accept flash commands.

29.4.5 Functional Modes of Operation

The flash memory module has two operating modes: NVM Normal and NVM Special.

The operating mode affects the command set availability (see Table 29-45). Refer to the Chip Configuration details of this device for how to activate each mode.

29.4.6 Flash Reads and Ignored Writes

The flash memory module requires only the flash address to execute a flash memory read.

The MCU must not read from the flash memory while commands are running (as evidenced by CCIF=0) on that block. Read data cannot be guaranteed from a flash block while any command is processing within that block. The block arbitration logic detects any simultaneous access and reports this as a read collision error (see the FSTAT[RDCOLERR] bit).

29.4.7 Read While Write (RWW)

The following simultaneous accesses are allowed:

• The user may read from one logical program flash memory space while flash commands are active in the other logical program flash memory space.

Simultaneous operations are further discussed in Allowed Simultaneous Flash Operations.

29.4.8 Flash Program and Erase

All flash functions except read require the user to setup and launch a flash command through a series of peripheral bus writes.

The user cannot initiate any further flash commands until notified that the current command has completed. The flash command structure and operation are detailed in Flash Command Operations.

29.4.9 Flash Command Operations

Flash command operations are typically used to modify flash memory contents.

The next sections describe:

- The command write sequence used to set flash command parameters and launch execution
- A description of all flash commands available

29.4.9.1 Command Write Sequence

Flash commands are specified using a command write sequence illustrated in Figure 29-47. The flash memory module performs various checks on the command (FCCOB) content and continues with command execution if all requirements are fulfilled.

Before launching a command, the ACCERR and FPVIOL bits in the FSTAT register must be zero and the CCIF flag must read 1 to verify that any previous command has completed. If CCIF is zero, the previous command execution is still active, a new command write sequence cannot be started, and all writes to the FCCOB registers are ignored.

Attempts to launch a flash command in VLP mode will be ignored. Attempts to launch a flash command in HSRUN mode will be trapped with the ACCERR flag being set.

29.4.9.1.1 Load the FCCOB Registers

The user must load the FCCOB registers with all parameters required by the desired flash command. The individual registers that make up the FCCOB data set can be written in any order.

29.4.9.1.2 Launch the Command by Clearing CCIF

Once all relevant command parameters have been loaded, the user launches the command by clearing FSTAT[CCIF] by writing a '1' to it. FSTAT[CCIF] remains 0 until the flash command completes.

The FSTAT register contains a blocking mechanism that prevents a new command from launching (can't clear FSTAT[CCIF]) if the previous command resulted in an access error (FSTAT[ACCERR]=1) or a protection violation (FSTAT[FPVIOL]=1). In error scenarios, two writes to FSTAT are required to initiate the next command: the first write clears the error flags, the second write clears CCIF.

29.4.9.1.3 Command Execution and Error Reporting

The command processing has several steps:

1. The flash memory module reads the command code and performs a series of parameter checks and protection checks, if applicable, which are unique to each command.

If the parameter check fails, the FSTAT[ACCERR] (access error) flag is set. FSTAT[ACCERR] reports invalid instruction codes and out-of bounds addresses. Usually, access errors suggest that the command was not set-up with valid parameters in the FCCOB register group.

Program and erase commands also check the address to determine if the operation is requested to execute on protected areas. If the protection check fails, FSTAT[FPVIOL] (protection error) flag is set.

Command processing never proceeds to execution when the parameter or protection step fails. Instead, command processing is terminated after setting FSTAT[CCIF].

- 2. If the parameter and protection checks pass, the command proceeds to execution. Run-time errors, such as failure to erase verify, may occur during the execution phase. Run-time errors are reported in FSTAT[MGSTAT0]. A command may have access errors, protection errors, and run-time errors, but the run-time errors are not seen until all access and protection errors have been corrected.
- 3. Command execution results, if applicable, are reported back to the user via the FCCOB and FSTAT registers.
- 4. The flash memory module sets FSTAT[CCIF] signifying that the command has completed.

The flow for a generic command write sequence is illustrated in the following figure.

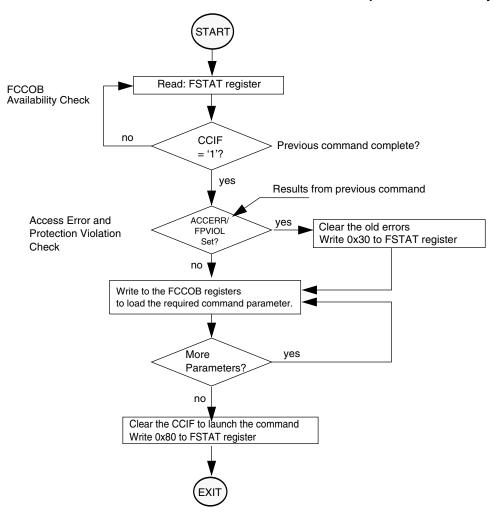


Figure 29-47. Generic flash command write sequence flowchart

29.4.9.2 Flash Commands

The following table summarizes the function of all flash commands.

FCMD	Command	Program flash 0	Program flash 1	Function
0x00	Read 1s Block	×	×	Verify that a program flash block is erased.
0x01	Read 1s Section	×	×	Verify that a given number of program flash locations from a starting address are erased.
0x02	Program Check	×	×	Tests previously- programmed locations at margin read levels.

Table continues on the next page...

FCMD	Command	Program flash 0	Program flash 1	Function
0x03	Read Resource	IFR, ID	IFR	Read 4 bytes from program flash IFR or version ID.
0x06	Program Longword	×	×	Program 4 bytes in a program flash block.
0x08	Erase Flash Block	×	×	Erase a program flash block. An erase of any flash block is only possible when unprotected.
0x09	Erase Flash Sector	×	×	Erase all bytes in a program flash sector.
0x40	Read 1s All Blocks	×	×	Verify that all program flash blocks are erased then release MCU security.
0x41	Read Once	IFR		Read 4 bytes of a dedicated 64 byte field in the program flash 0 IFR.
0x43	Program Once	IFR		One-time program of 4 bytes of a dedicated 64-byte field in the program flash 0 IFR.
0x44	Erase All Blocks	×	×	Erase all program flash blocks. Then, verify- erase and release MCU security.
				NOTE: An erase is only possible when all memory locations are unprotected.
0x45	Verify Backdoor Access Key	×	×	Release MCU security after comparing a set of user-supplied security keys to those stored in the program flash.

29.4.9.3 Flash Commands by Mode

The following table shows the flash commands that can be executed in each flash operating mode.

Table 29-45. Flash Commands by Mode

FOMD	Command	NVM Normal			NVM Special		
FCMD	Command	Unsecure	Secure	MEEN=10	Unsecure	Secure	MEEN=10
0x00	Read 1s Block	×	×	×	×	_	_
0x01	Read 1s Section	×	×	×	×	_	_
0x02	Program Check	×	×	×	×	_	_
0x03	Read Resource	×	×	×	×	_	_
0x06	Program Longword	×	×	×	×	_	_
80x0	Erase Flash Block	×	×	×	×	_	_
0x09	Erase Flash Sector	×	×	×	×	_	_
0x40	Read 1s All Blocks	×	×	×	×	×	_
0x41	Read Once	×	×	×	×	_	_
0x43	Program Once	×	×	×	×	_	_
0x44	Erase All Blocks	×	×	×	×	×	_
0x45	Verify Backdoor Access Key	×	×	×	×	-	_

29.4.9.4 Allowed Simultaneous Flash Operations

Only the operations marked 'OK' in the following table are permitted to run simultaneously on the program flash memories. Some operations cannot be executed simultaneously because certain hardware resources are shared by the memories.

Table 29-46. Allowed Simultaneous Memory Operations

		F	Program Flash 0		Program Flash 1		
		Read	Program	Sector Erase	Read	Program	Sector Erase
	Read	_				OK	OK
Program flash 0	Program		_		OK		
	Sector Erase			_	OK		
_	Read		ОК	OK	_		
Program flash 1	Program	OK				_	
	Sector Erase	OK					_

29.4.10 Margin Read Commands

The Read-1s commands (Read 1s All Blocks, Read 1s Block, and Read 1s Section) and the Program Check command have a margin choice parameter that allows the user to apply non-standard read reference levels to the program flash array reads performed by these commands.

Using the preset 'user' and 'factory' margin levels, these commands perform their associated read operations at tighter tolerances than a 'normal' read. These non-standard read levels are applied only during the command execution. All simple (uncommanded) flash array reads to the MCU always use the standard, un-margined, read reference level.

Only the 'normal' read level should be employed during normal flash usage. The non-standard, 'user' and 'factory' margin levels should be employed only in special cases. They can be used during special diagnostic routines to gain confidence that the device is not suffering from the end-of-life data loss customary of flash memory devices.

Erased ('1') and programmed ('0') bit states can degrade due to elapsed time and data cycling (number of times a bit is erased and re-programmed). The lifetime of the erased states is relative to the last erase operation. The lifetime of the programmed states is measured from the last program time.

The 'user' and 'factory' levels become, in effect, a minimum safety margin; i.e. if the reads pass at the tighter tolerances of the 'user' and 'factory' margins, then the 'normal' reads have at least this much safety margin before they experience data loss.

The 'user' margin is a small delta to the normal read reference level. 'User' margin levels can be employed to check that flash memory contents have adequate margin for normal level read operations. If unexpected read results are encountered when checking flash memory contents at the 'user' margin levels, loss of information might soon occur during 'normal' readout.

The 'factory' margin is a bigger deviation from the norm, a more stringent read criteria that should only be attempted immediately (or very soon) after completion of an erase or program command, early in the cycling life. 'Factory' margin levels can be used to check that flash memory contents have adequate margin for long-term data retention at the normal level setting. If unexpected results are encountered when checking flash memory contents at 'factory' margin levels, the flash memory contents should be erased and reprogrammed.

CAUTION

Factory margin levels must only be used during verify of the initial factory programming.

29.4.11 Flash Command Description

This section describes all flash commands that can be launched by a command write sequence.

The flash memory module sets the FSTAT[ACCERR] bit and aborts the command execution if any of the following illegal conditions occur:

- There is an unrecognized command code in the FCCOB FCMD field.
- There is an error in a FCCOB field for the specific commands. Refer to the error handling table provided for each command.

Ensure that FSTAT[ACCERR] and FSTAT[FPVIOL] are cleared prior to starting the command write sequence. As described in Launch the Command by Clearing CCIF, a new command cannot be launched while these error flags are set.

Do not attempt to read a flash block while the flash memory module is running a command (FSTAT[CCIF] = 0) on that same block. The flash memory module may return invalid data to the MCU with the collision error flag (FSTAT[RDCOLERR]) set.

CAUTION

Flash data must be in the erased state before being programmed. Cumulative programming of bits (adding more zeros) is not allowed.

29.4.11.1 Read 1s Block Command

The Read 1s Block command checks to see if an entire program flash block has been erased to the specified margin level. The FCCOB flash address bits determine which flash block is erase-verified.

FCCOB Number

FCCOB Contents [7:0]

0

0x00 (RD1BLK)

1 Flash address [23:16] in the flash block to be verified

2 Flash address [15:8] in the flash block to be verified

3 Flash address [7:0]¹ in the flash block to be verified

4 Read-1 Margin Choice

Table 29-47. Read 1s Block Command FCCOB Requirements

1. Must be longword aligned (Flash address [1:0] = 00).

After clearing CCIF to launch the Read 1s Block command, the flash memory module sets the read margin for 1s according to Table 29-48 and then reads all locations within the selected program flash block.

Table 29-48. Margin Level Choices for Read 1s Block

Read Margin Choice	Margin Level Description
0x00	Use the 'normal' read level for 1s
0x01	Apply the 'User' margin to the normal read-1 level
0x02	Apply the 'Factory' margin to the normal read-1 level

Table 29-49. Read 1s Block Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid margin choice is specified	FSTAT[ACCERR]
Program flash is selected and the address is out of program flash range	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]
Read-1s fails	FSTAT[MGSTAT0]

29.4.11.2 Read 1s Section Command

The Read 1s Section command checks if a section of program flash memory is erased to the specified read margin level. The Read 1s Section command defines the starting address and the number of phrases to be verified.

Table 29-50. Read 1s Section Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]
0	0x01 (RD1SEC)
1	Flash address [23:16] of the first phrase to be verified
2	Flash address [15:8] of the first phrase to be verified
3	Flash address [7:0] ¹ of the first phrase to be verified
4	Number of phrases to be verified [15:8]
5	Number of phrases to be verified [7:0]
6	Read-1 Margin Choice

1. Must be phrase aligned (Flash address [2:0] = 000).

Upon clearing CCIF to launch the Read 1s Section command, the flash memory module sets the read margin for 1s according to Table 29-51 and then reads all locations within the specified section of flash memory. If the flash memory module fails to read all 1s (that is, the flash section is not erased), FSTAT[MGSTAT0] is set. FSTAT[CCIF] sets after the Read 1s Section operation completes.

Table 29-51. Margin Level Choices for Read 1s Section

Read Margin Choice	Margin Level Description
0x00	Use the 'normal' read level for 1s
0x01	Apply the 'User' margin to the normal read-1 level
0x02	Apply the 'Factory' margin to the normal read-1 level

Table 29-52. Read 1s Section Command Error Handling

Error condition	Error bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid margin code is supplied.	FSTAT[ACCERR]
An invalid flash address is supplied.	FSTAT[ACCERR]
Flash address is not phrase aligned.	FSTAT[ACCERR]
The requested section crosses a Flash block boundary.	FSTAT[ACCERR]
The requested number of phrases is 0.	FSTAT[ACCERR]
Read-1s fails.	FSTAT[MGSTAT0]

29.4.11.3 Program Check Command

The Program Check command tests a previously programmed program flash longword to see if it reads correctly at the specified margin level.

Table 29-53. Program Check Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]
0	0x02 (PGMCHK)
1	Flash address [23:16]
2	Flash address [15:8]
3	Flash address [7:0] ¹
4	Margin Choice
8	Byte 0 expected data
9	Byte 1 expected data
А	Byte 2 expected data
В	Byte 3 expected data

^{1.} Must be longword aligned (Flash address [1:0] = 00).

Upon clearing CCIF to launch the Program Check command, the flash memory module sets the read margin for 1s according to Table 29-54, reads the specified longword, and compares the actual read data to the expected data provided by the FCCOB. If the comparison at margin-1 fails, FSTAT[MGSTAT0] is set.

The flash memory module then sets the read margin for 0s, re-reads, and compares again. If the comparison at margin-0 fails, FSTAT[MGSTAT0] is set. FSTAT[CCIF] is set after the Program Check operation completes.

The supplied address must be longword aligned (the lowest two bits of the byte address must be 00):

- Byte 3 data is written to the supplied byte address ('start'),
- Byte 2 data is programmed to byte address start+0b01,
- Byte 1 data is programmed to byte address start+0b10,
- Byte 0 data is programmed to byte address start+0b11.

NOTE

See the description of margin reads, Margin Read Commands

Table 29-54. Margin Level Choices for Program Check

Read Margin Choice	Margin Level Description
0x01	Read at 'User' margin-1 and 'User' margin-0
0x02	Read at 'Factory' margin-1 and 'Factory' margin-0

Table 29-55. Program Check Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid flash address is supplied	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]
An invalid margin choice is supplied	FSTAT[ACCERR]
Flash address is located in an XA controlled segment and the Erase All Blocks or the Read 1s All Blocks command has not successfully completed since the last reset	FSTAT[FPVIOL]
Either of the margin reads does not match the expected data	FSTAT[MGSTAT0]

29.4.11.4 Read Resource Command

The Read Resource command allows the user to read data from special-purpose memory resources located within the flash memory module. The special-purpose memory resources available include program flash IFR space and the Version ID field. Each resource is assigned a select code as shown in Table 29-57.

Table 29-56. Read Resource Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]	
0	0x03 (RDRSRC)	
1	Flash address [23:16]	
2	Flash address [15:8]	
3	Flash address [7:0] ¹	
	Returned Values	
4	Read Data [31:24]	
5	Read Data [23:16]	
6	Read Data [15:8]	
7	Read Data [7:0]	
	User-provided values	
8	Resource Select Code (see Table 29-57)	

^{1.} Must be longword aligned (Flash address [1:0] = 00).

Table 29-57. Read Resource Select Codes

Resource Select Code	Description	Resource Size	Local Address Range
0x00	Program Flash 0 IFR	256 Bytes	0x00_0000-0x00_00FF
0x01 ¹	Version ID	8 Bytes	0x00_0000-0x00_0007

^{1.} Located in program flash 0 reserved space.

After clearing CCIF to launch the Read Resource command, four consecutive bytes are read from the selected resource at the provided relative address and stored in the FCCOB register. The CCIF flag sets after the Read Resource operation completes. The Read Resource command exits with an access error if an invalid resource code is provided or if the address for the applicable area is out-of-range.

Table 29-58. Read Resource Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid resource code is entered	FSTAT[ACCERR]
Flash address is out-of-range for the targeted resource.	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]

29.4.11.5 Program Longword Command

The Program Longword command programs four previously-erased bytes in the program flash memory using an embedded algorithm.

CAUTION

A flash memory location must be in the erased state before being programmed. Cumulative programming of bits (back-toback program operations without an intervening erase) within a flash memory location is not allowed. Re-programming of existing 0s to 0 is not allowed as this overstresses the device.

FCCOB Number	FCCOB Contents [7:0]	·
0	0x06 (PGM4)	
1	Flash address [23:16]	
2	Flash address [15:8]	
3	Flash address [7:0] ¹	
4	Byte 0 program value	
5	Byte 1 program value	
6	Byte 2 program value	
7	Byte 3 program value	

Table 29-59. Program Longword Command FCCOB Requirements

1. Must be longword aligned (Flash address [1:0] = 00).

Upon clearing CCIF to launch the Program Longword command, the flash memory module programs the data bytes into the flash using the supplied address. The targeted flash locations must be currently unprotected (see the description of the FPROT registers) to permit execution of the Program Longword operation.

The programming operation is unidirectional. It can only move NVM bits from the erased state ('1') to the programmed state ('0'). Erased bits that fail to program to the '0' state are flagged as errors in FSTAT[MGSTAT0]. The CCIF flag is set after the Program Longword operation completes.

The supplied address must be longword aligned (flash address [1:0] = 00):

- Byte 3 data is written to the supplied byte address ('start'),
- Byte 2 data is programmed to byte address start+0b01,
- Byte 1 data is programmed to byte address start+0b10, and
- Byte 0 data is programmed to byte address start+0b11.

 Table 29-60.
 Program Longword Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid flash address is supplied	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]
Flash address points to a protected area	FSTAT[FPVIOL]

Table continues on the next page...

Table 29-60. Program Longword Command Error Handling (continued)

Error Condition	Error Bit
Flash address is located in an XA controlled segment and the Erase All Blocks or the Read 1s All Blocks command has not successfully completed since the last reset	FSTAT[FPVIOL]
Any errors have been encountered during the verify operation	FSTAT[MGSTAT0]

29.4.11.6 Erase Flash Block Command

The Erase Flash Block operation erases all addresses in a single program flash.

Table 29-61. Erase Flash Block Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]
0	0x08 (ERSBLK)
1	Flash address [23:16] in the flash block to be erased
2	Flash address [15:8] in the flash block to be erased
3	Flash address [7:0] ¹ in the flash block to be erased

1. Must be longword aligned (Flash address [1:0] = 00).

Upon clearing CCIF to launch the Erase Flash Block command, the flash memory module erases the main array of the selected flash block and verifies that it is erased. The Erase Flash Block command aborts and sets the FSTAT[FPVIOL] bit if any region within the block is protected (see the description of the FPROT registers). If the erase verify fails, FSTAT[MGSTAT0] is set. The CCIF flag will set after the Erase Flash Block operation has completed.

Table 29-62. Erase Flash Block Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
Program flash is selected and the address is out of program flash range	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]
Any area of the selected flash block is protected	FSTAT[FPVIOL]
The selected program flash block contains an XA controlled segment and the Erase All Blocks or the Read 1s All Blocks command has not successfully completed since the last reset	FSTAT[FPVIOL]
Any errors have been encountered during the verify operation ¹	FSTAT[MGSTAT0]

1. User margin read may be run using the Read 1s Block command to verify all bits are erased.

29.4.11.7 Erase Flash Sector Command

The Erase Flash Sector operation erases all addresses in a flash sector.

Table 29-63. Erase Flash Sector Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]
0	0x09 (ERSSCR)
1	Flash address [23:16] in the flash sector to be erased
2	Flash address [15:8] in the flash sector to be erased
3	Flash address [7:0] ¹ in the flash sector to be erased

1. Must be phrase aligned (flash address [2:0] = 000).

After clearing CCIF to launch the Erase Flash Sector command, the flash memory module erases the selected program flash sector and then verifies that it is erased. The Erase Flash Sector command aborts if the selected sector is protected (see the description of the FPROT registers). If the erase-verify fails the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase Flash Sector operation completes. The Erase Flash Sector command is suspendable (see the FCNFG[ERSSUSP] bit and Figure 29-48).

Table 29-64. Erase Flash Sector Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid Flash address is supplied	FSTAT[ACCERR]
Flash address is not phrase aligned	FSTAT[ACCERR]
The selected program flash sector is protected	FSTAT[FPVIOL]
The selected program flash sector is located in an XA controlled segment and the Erase All Blocks or the Read 1s All Blocks command has not successfully completed since the last reset	FSTAT[FPVIOL]
Any errors have been encountered during the verify operation ¹	FSTAT[MGSTAT0]

^{1.} User margin read may be run using the Read 1s Section command to verify all bits are erased.

29.4.11.7.1 Suspending an Erase Flash Sector Operation

To suspend an Erase Flash Sector operation set the FCNFG[ERSSUSP] bit (see Flash Configuration Field Description) when CCIF is clear and the CCOB command field holds the code for the Erase Flash Sector command. During the Erase Flash Sector operation (see Erase Flash Sector Command), the flash memory module samples the state of the ERSSUSP bit at convenient points. If the flash memory module detects that the ERSSUSP bit is set, the Erase Flash Sector operation is suspended and the flash memory module sets CCIF. While ERSSUSP is set, all writes to flash registers are ignored except for writes to the FSTAT and FCNFG registers.

If an Erase Flash Sector operation effectively completes before the flash memory module detects that a suspend request has been made, the flash memory module clears the ERSSUSP bit prior to setting CCIF. When an Erase Flash Sector operation has been successfully suspended, the flash memory module sets CCIF and leaves the ERSSUSP bit set. While CCIF is set, the ERSSUSP bit can only be cleared to prevent the withdrawal of a suspend request before the flash memory module has acknowledged it.

29.4.11.7.2 Resuming a Suspended Erase Flash Sector Operation

If the ERSSUSP bit is still set when CCIF is cleared to launch the next command, the previous Erase Flash Sector operation resumes. The flash memory module acknowledges the request to resume a suspended operation by clearing the ERSSUSP bit. A new suspend request can then be made by setting ERSSUSP. A single Erase Flash Sector operation can be suspended and resumed multiple times.

There is a minimum elapsed time limit between the request to resume the Erase Flash Sector operation (CCIF is cleared) and the request to suspend the operation again (ERSSUSP is set). This minimum time period is required to ensure that the Erase Flash Sector operation will eventually complete. If the minimum period is continually violated, i.e. the suspend requests come repeatedly and too quickly, no forward progress is made by the Erase Flash Sector algorithm. The resume/suspend sequence runs indefinitely without completing the erase.

29.4.11.7.3 Aborting a Suspended Erase Flash Sector Operation

The user may choose to abort a suspended Erase Flash Sector operation by clearing the ERSSUSP bit prior to clearing CCIF for the next command launch. When a suspended operation is aborted, the flash memory module starts the new command using the new FCCOB contents.

Note

Aborting the erase leaves the bitcells in an indeterminate, partially-erased state. Data in this sector is not reliable until a new erase command fully completes.

The following figure shows how to suspend and resume the Erase Flash Sector operation.

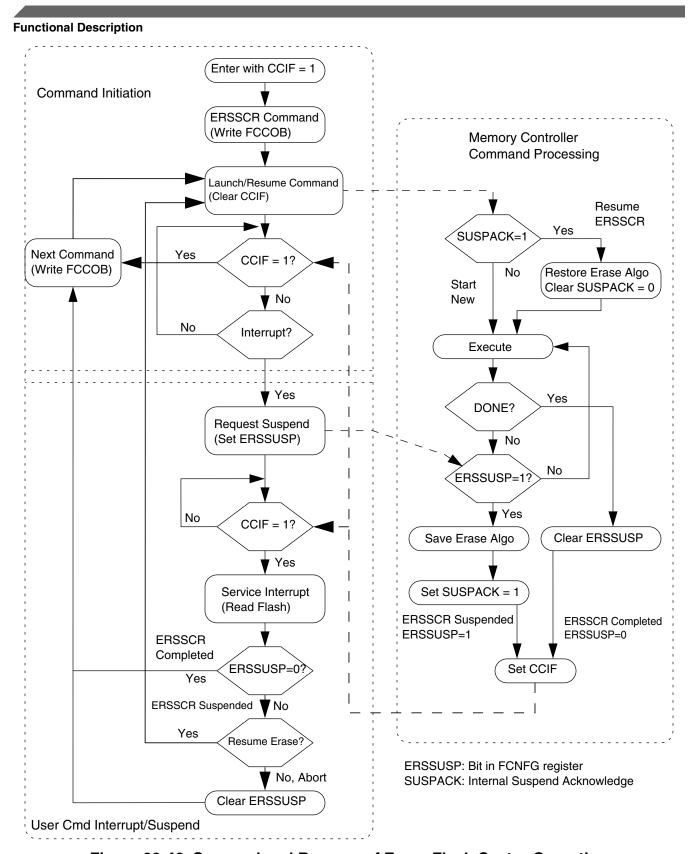


Figure 29-48. Suspend and Resume of Erase Flash Sector Operation

29.4.11.8 Read 1s All Blocks Command

The Read 1s All Blocks command checks if the program flash blocks have been erased to the specified read margin level, if applicable, and releases security if the readout passes, i.e. all data reads as '1'.

Table 29-65. Read 1s All Blocks Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]
0	0x40 (RD1ALL)
1	Read-1 Margin Choice

After clearing CCIF to launch the Read 1s All Blocks command, the flash memory module:

- sets the read margin for 1s according to Table 29-66,
- checks the contents of the program flash are in the erased state.

If the flash memory module confirms that these memory resources are erased, access control is disabled and security is released by setting the FSEC[SEC] field to the unsecure state. The security byte in the flash configuration field (see Flash Configuration Field Description) remains unaffected by the Read 1s All Blocks command. If the read fails, i.e. all memory resources are not in the fully erased state, the FSTAT[MGSTAT0] bit is set.

The CCIF flag sets after the Read 1s All Blocks operation has completed.

Table 29-66. Margin Level Choices for Read 1s All Blocks

Read Margin Choice	Margin Level Description
0x00	Use the 'normal' read level for 1s
0x01	Apply the 'User' margin to the normal read-1 level
0x02	Apply the 'Factory' margin to the normal read-1 level

Table 29-67. Read 1s All Blocks Command Error Handling

Error Condition	Error Bit
An invalid margin choice is specified	FSTAT[ACCERR]
Read-1s fails	FSTAT[MGSTAT0]

11

29.4.11.9 Read Once Command

The Read Once command provides read access to special 96-byte fields located in the program flash 0 IFR (see Program Flash IFR Map and Program Once Field). Access to the Program Once ID field is via 16 records (index values 0x00 - 0x0F), each 4 bytes long. Access to the Program Once XACC and SACC fields are via 4 records (index values 0x10 - 0x13), each of which is 8 bytes long. These fields are programmed using the Program Once command described in Program Once Command.

FCCOB Number FCCOB Contents [7:0] 0 0x41 (RDONCE) 1 Program Once record index (0x00 - 0x13) 2 Not used 3 Not used Returned Values 4 Program Once byte 0 value 5 Program Once byte 1 value Program Once byte 2 value 6 7 Program Once byte 3 value 8 Program Once byte 4 value (index 0x10 - 0x13) 9 Program Once byte 5 value (index 0x10 - 0x13) Program Once byte 6 value (index 0x10 - 0x13) 10

Table 29-68. Read Once Command FCCOB Requirements

After clearing CCIF to launch the Read Once command, a 4-byte or 8-byte Program Once record is read and stored in the FCCOB register. The CCIF flag is set after the Read Once operation completes. Valid record index values for the Read Once command range from 0x00 - 0x13. During execution of the Read Once command, any attempt to read addresses within the program flash block containing the selected record index returns invalid data. The Read Once command can be executed any number of times.

Program Once byte 7 value (index 0x10 - 0x13)

Table 29-69. Read Once Command Error Handling

Error Condition	Error Bit	
Command not available in current mode/security	FSTAT[ACCERR]	
An invalid record index is supplied	FSTAT[ACCERR]	

29.4.11.10 Program Once Command

The Program Once command enables programming to special 96-byte fields in the program flash 0 IFR (see Program Flash IFR Map and Program Once Field). Access to the Program Once ID field is via 16 records (index values 0x00 - 0x0F), each 4 bytes long. Access to the Program Once XACC and SACC fields are via 4 records (index values 0x10 - 0x13), each of which is 8 bytes long. These records can be read using the Read Once command (see Read Once Command) or using the Read Resource command (see Read Resource Command). These records can be programmed only once since the program flash 0 IFR cannot be erased.

FCCOB Number FCCOB Contents [7:0] 0 0x43 (PGMONCE) 1 Program Once record index (0x00 - 0x13) 2 Not Used 3 Not Used 4 Program Once byte 0 value Program Once byte 1 value 5 6 Program Once byte 2 value 7 Program Once byte 3 value 8 Program Once byte 4 value (index 0x10 - 0x13) 9 Program Once byte 5 value (index 0x10 - 0x13) 10 Program Once byte 6 value (index 0x10 - 0x13) Program Once byte 7 value (index 0x10 - 0x13) 11

Table 29-70. Program Once Command FCCOB Requirements

After clearing CCIF to launch the Program Once command, the flash memory module first verifies that the selected record is erased. If erased, then the selected record is programmed using the values provided. The Program Once command also verifies that the programmed values read back correctly. The CCIF flag is set after the Program Once operation has completed.

Any attempt to program one of these records when the existing value is not Fs (erased) is not allowed. Valid record index values for the Program Once command range from 0x00 - 0x13. During execution of the Program Once command, any attempt to read addresses within the program flash block containing the selected record index returns invalid data.

Table 29-71. Program Once Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid record index is supplied	FSTAT[ACCERR]
The requested record has already been programmed to a non-FFFF value ¹	FSTAT[ACCERR]

Table continues on the next page...

Table 29-71. Program Once Command Error Handling (continued)

Error Condition	Error Bit
Any errors have been encountered during the verify operation	FSTAT[MGSTAT0]

^{1.} If a Program Once record is initially programmed to 0xFFFF_FFFF (0xFFFF_FFFF_FFFF_FFFF for index 0x10 - 0x13), the Program Once command is allowed to execute again on that same record.

29.4.11.11 Erase All Blocks Command

The Erase All Blocks operation erases all flash memory, verifies all memory contents, and releases MCU security.

Table 29-72. Erase All Blocks Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]
0	0x44 (ERSALL)

After clearing CCIF to launch the Erase All Blocks command, the flash memory module erases all program flash memory, then verifies that all are erased.

If the flash memory module verifies that all flash memories were properly erased, access control is disabled and security is released by setting the FSEC[SEC] field to the unsecure state. The Erase All Blocks command aborts if any flash region is protected. The security byte and all other contents of the flash configuration field (see Flash Configuration Field Description) are erased by the Erase All Blocks command. If the erase-verify fails, the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase All Blocks operation completes.

Access control determined by the contents of the FXACC registers will not block execution of the Erase All Blocks command. While most Flash memory will be erased, the program flash IFR space containing the Program Once XACC and SACC fields will not be erased and, therefore, the contents of the Program Once XACC and SACC fields will not change. The contents of the FXACC and FSACC registers will not be impacted by the execution of the Erase All Blocks command. After completion of the Erase All Blocks command, access control is disabled until the next reset of the flash module or the Read 1s All Blocks command is executed and fails (FSTAT[MGSTAT0] is set).

Table 29-73. Erase All Blocks Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
Any region of the program flash memory is protected FSTAT[FPVIOL	
Any errors have been encountered during the verify operation ¹	FSTAT[MGSTAT0]

1. User margin read may be run using the Read 1s All Blocks command to verify all bits are erased.

29.4.11.11.1 Triggering an Erase All External to the Flash Memory Module

The functionality of the Erase All BlocksErase All Blocks Unsecure command is also available in an uncommanded fashion outside of the flash memory. Refer to the device's Chip Configuration details for information on this functionality.

Before invoking the external erase all function, the FSTAT[ACCERR and PVIOL] flags must be cleared and the FCCOB0 register must not contain 0x44. When invoked, the erase-all function erases all program flash memory regardless of the protection settings. If the post-erase verify passes, access control determined by the contents of the FXACC registers is disabled and the routine then releases security by setting the FSEC[SEC] field register to the unsecure state. The security byte in the Flash Configuration Field is also programmed to the unsecure state. The status of the erase-all request is reflected in the FCNFG[ERSAREQ] bit. The FCNFG[ERSAREQ] bit is cleared once the operation completes and the normal FSTAT error reporting is available as described in Erase All Blocks Command.

29.4.11.12 Verify Backdoor Access Key Command

The Verify Backdoor Access Key command only executes if the mode and security conditions are satisfied (see Flash Commands by Mode). Execution of the Verify Backdoor Access Key command is further qualified by the FSEC[KEYEN] bits. The Verify Backdoor Access Key command releases security if user-supplied keys in the FCCOB match those stored in the Backdoor Comparison Key bytes of the Flash Configuration Field (see Flash Configuration Field Description). The column labelled Flash Configuration Field offset address shows the location of the matching byte in the Flash Configuration Field.

Table 29-74. Verify Backdoor Access Key Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]	Flash Configuration Field Offset Address
0	0x45 (VFYKEY)	
1-3	Not Used	
4	Key Byte 0	0x0_0003
5	Key Byte 1	0x0_0002
6	Key Byte 2	0x0_0001
7	Key Byte 3	0x0_0000
8	Key Byte 4	0x0_0007
9	Key Byte 5	0x0_0006
А	Key Byte 6	0x0_0005

Table continues on the next page...

Table 29-74. Verify Backdoor Access Key Command FCCOB Requirements (continued)

FCCOB Number	FCCOB Contents [7:0]	Flash Configuration Field Offset Address
В	Key Byte 7	0x0_0004

After clearing CCIF to launch the Verify Backdoor Access Key command, the flash memory module checks the FSEC[KEYEN] bits to verify that this command is enabled. If not enabled, the flash memory module sets the FSTAT[ACCERR] bit and terminates. If the command is enabled, the flash memory module compares the key provided in FCCOB to the backdoor comparison key in the Flash Configuration Field. If the backdoor keys match, the FSEC[SEC] field is changed to the unsecure state and security is released. If the backdoor keys do not match, security is not released and all future attempts to execute the Verify Backdoor Access Key command are immediately aborted and the FSTAT[ACCERR] bit is (again) set to 1 until a reset of the flash memory module module occurs. If the entire 8-byte key is all zeros or all ones, the Verify Backdoor Access Key command fails with an access error. The CCIF flag is set after the Verify Backdoor Access Key operation completes.

Table 29-75. Verify Backdoor Access Key Command Error Handling

Error Condition	Error Bit
The supplied key is all-0s or all-Fs	FSTAT[ACCERR]
An incorrect backdoor key is supplied	FSTAT[ACCERR]
Backdoor key access has not been enabled (see the description of the FSEC register)	FSTAT[ACCERR]
This command is launched and the backdoor key has mismatched since the last power down reset	FSTAT[ACCERR]

29.4.12 Security

The flash memory module provides security information to the MCU based on contents of the FSEC security register.

The MCU then limits access to flash memory resources as defined in the device's Chip Configuration details. During reset, the flash memory module initializes the FSEC register using data read from the security byte of the Flash Configuration Field (see Flash Configuration Field Description).

The following fields are available in the FSEC register. The settings are described in the Flash Security Register (FTFA_FSEC) details.

Flash security features are discussed further in AN4507: Using the Kinetis Security and Flash Protection Features. Note that not all features described in the application note are available on this device.

Table 29-76. FSEC register fields

FSEC field	Description
KEYEN	Backdoor Key Access
MEEN	Mass Erase Capability
FSLACC	Freescale Factory Access
SEC	MCU security

29.4.12.1 Flash Memory Access by Mode and Security

The following table summarizes how access to the flash memory module is affected by security and operating mode.

Table 29-77. Flash Memory Access Summary

Operating Mode	Chip Security State		
Operating wode	Unsecure	Secure	
NVM Normal	Full command set		
NVM Special	Full command set	Only the Erase All Blocks and Read 1s Al Blocks commands.	

29.4.12.2 Changing the Security State

The security state out of reset can be permanently changed by programming the security byte of the flash configuration field. This assumes that you are starting from a mode where the necessary program flash erase and program commands are available and that the region of the program flash containing the flash configuration field is unprotected. If the flash security byte is successfully programmed, its new value takes affect after the next chip reset.

29.4.12.2.1 Unsecuring the Chip Using Backdoor Key Access

The chip can be unsecured by using the backdoor key access feature, which requires knowledge of the contents of the 8-byte backdoor key value stored in the Flash Configuration Field (see Flash Configuration Field Description). If the FSEC[KEYEN] bits are in the enabled state, the Verify Backdoor Access Key command (see Verify

The user code stored in the program flash memory must have a method of receiving the backdoor keys from an external stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If the KEYEN bits are in the enabled state, the chip can be unsecured by the following backdoor key access sequence:

- 1. Follow the command sequence for the Verify Backdoor Access Key command as explained in Verify Backdoor Access Key Command
- 2. If the Verify Backdoor Access Key command is successful, the chip is unsecured and the FSEC[SEC] bits are forced to the unsecure state

An illegal key provided to the Verify Backdoor Access Key command prohibits further use of the Verify Backdoor Access Key command. A reset of the chip is the only method to re-enable the Verify Backdoor Access Key command when a comparison fails.

After the backdoor keys have been correctly matched, the chip is unsecured by changing the FSEC[SEC] bits. A successful execution of the Verify Backdoor Access Key command changes the security in the FSEC register only. It does not alter the security byte or the keys stored in the Flash Configuration Field (Flash Configuration Field Description). After the next reset of the chip, the security state of the flash memory module reverts back to the flash security byte in the Flash Configuration Field. The Verify Backdoor Access Key command sequence has no effect on the program and erase protections defined in the program flash protection registers.

If the backdoor keys successfully match, the unsecured chip has full control of the contents of the Flash Configuration Field. The chip may erase the sector containing the Flash Configuration Field and reprogram the flash security byte to the unsecure state and change the backdoor keys to any desired value.

29.4.13 Reset Sequence

On each system reset the flash memory module executes a sequence which establishes initial values for the flash block configuration parameters, FPROT, FOPT, and FSEC registers.

FSTAT[CCIF] is cleared throughout the reset sequence. The flash memory module holds off CPU access during the reset sequence. Flash reads are possible when the hold is removed. Completion of the reset sequence is marked by setting CCIF which enables flash user commands.

If a reset occurs while any flash command is in progress, that command is immediately aborted. The state of the word being programmed or the sector/block being erased is not guaranteed. Commands and operations do not automatically resume after exiting reset.

Chapter 30 EzPort

30.1 Overview

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The EzPort module is a serial flash programming interface that enables In-System Programming (ISP) of flash memory contents in a 32-bit general-purpose microcontroller. Memory contents can be read/erased/programmed from an external source, in a format that is compatible with many standalone flash memory chips, without requiring the removal of the microcontroller from the system board.

30.1.1 Block diagram

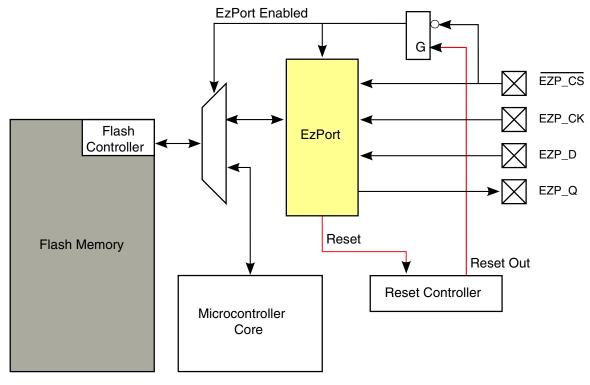


Figure 30-1. EzPort block diagram

30.1.2 Features

EzPort includes the following features:

- Serial interface that is compatible with a subset of the SPI format.
- Ability to read, erase, and program flash memory.
- Ability to reset the microcontroller, allowing it to boot from the flash memory after the memory has been configured.

30.1.3 Modes of operation

The EzPort can operate in one of two modes, enabled or disabled.

- Enabled When enabled, the EzPort steals access to the flash memory, preventing access from other cores or peripherals. The rest of the microcontroller is disabled to avoid conflicts. The flash is configured for NVM Special mode.
- Disabled When the EzPort is disabled, the rest of the microcontroller can access flash memory as normal.

The EzPort provides a simple interface to connect an external device to the flash memory on board a 32 bit microcontroller. The interface itself is compatible with the SPI interface, with the EzPort operating as a slave, running in either of the two following modes. The data is transmitted with the most significant bit first.

- CPOL = 0, CPHA = 0
- CPOL = 1, CPHA = 1

Commands are issued by the external device to erase, program, or read the contents of the flash memory. The serial data out from the EzPort is tri-stated unless data is being driven. This allows the signal to be shared among several different EzPort (or compatible) devices in parallel, as long as they have different chip-selects.

30.2 External signal descriptions

After the table of EzPort external signals, subsequent sections explain the signals in more detail.

JTAG (cJTAG) Signal	External Signal	Name	I/O
TCK (TCKC)	EZP_CK	EzPort Clock	Input
TMS (TMSC)	EZP_CS	EzPort Chip Select	Input
TDI (TDIC)	EZP_D	EzPort Serial Data In	Input
TDO (TDOC)	EZP_Q	EzPort Serial Data Out	Output

Table 30-1. EzPort external signals

30.2.1 EzPort Clock (EZP_CK)

EZP_CK is the serial clock for data transfers. The serial data in (EZP_D) and chip select (EZP_CS) are registered on the rising edge of EZP_CK, while serial data out (EZP_Q) is driven on the falling edge of EZP_CK.

Command definition

The maximum frequency of the EzPort clock is half the system clock frequency for all commands, except when executing the Read Data commands. When executing the Read Data commands, the EzPort clock has a maximum frequency of 1/8 the system clock frequency.

30.2.2 EzPort Chip Select (EZP_CS)

EZP_CS is the chip select for signaling the start and end of serial transfers. While EZP_CS is asserted, if the microcontroller's reset out signal is negated, then EzPort is enabled out of reset; otherwise EzPort is disabled. After EzPort is enabled, asserting EZP_CS starts a serial data transfer, which continues until EZP_CS is negated again. The negation of EZP_CS indicates that the current command has finished and resets the EzPort state machine, so that EzPort is ready to receive the next command.

30.2.3 EzPort Serial Data In (EZP_D)

EZP_D is the serial data in for data transfers. EZP_D is registered on the rising edge of EZP_CK. All commands, addresses, and data are shifted in most significant bit first. When the EzPort is driving output data on EZP_Q, the data shifted in EZP_D is ignored.

30.2.4 EzPort Serial Data Out (EZP Q)

EZP_Q is the serial data out for data transfers. EZP_Q is driven on the falling edge of EZP_CK. It is tri-stated unless EZP_CS is asserted and the EzPort is driving data out. All data is shifted out most significant bit first.

30.3 Command definition

The EzPort receives commands from an external device and translates the commands into flash memory accesses. The following table lists the supported commands.

Address Accepted when Command Code **Data Bytes** Description **Bytes** secure? **WREN** Write Enable 0 0 Yes 0x06 WRDI 0x04 Write Disable 0 0 Yes Read Status Register **RDSR** 0x05 1 Yes

Table 30-2. EzPort commands

Table continues on the next page...

Table 30-2.	EzPort commands	(continued))
-------------	-----------------	-------------	---

Command	Description	Code	Address Bytes	Data Bytes	Accepted when secure?
READ	Flash Read Data	0x03	3 ¹	1+	No
FAST_READ	Flash Read Data at High Speed	0x0B	3 ¹	1+2	No
SP	Flash Section Program	0x02	3 ³	4 - SECTION ⁴	No
SE	Flash Sector Erase	0xD8	3 ³	0	No
BE	Flash Bulk Erase	0xC7	0	0	Yes ⁵
RESET	Reset Chip	0xB9	0	0	Yes
WRFCCOB	Write FCCOB Registers	0xBA	0	12	Yes ⁶
FAST_RDFCCOB	Read FCCOB registers at high speed	0xBB	0	1 - 12 ²	No

- 1. Address must be 32-bit aligned (two LSBs must be zero).
- 2. One byte of dummy data must be shifted in before valid data is shifted out.
- 3. Address must be 32-bit aligned (two LSBs must be zero).
- 4. Please see the Flash Memory chapter for a definition of section size. Total number of data bytes programmed must be a multiple of 4.
- 5. Bulk Erase is accepted when security is set and only when the BEDIS status field is not set.
- 6. The flash will be in NVM Special mode, restricting the type of commands that can be executed through WRITE_FCCOB when security is enabled.

30.3.1 Command descriptions

This section describes the module commands.

30.3.1.1 Write Enable

Figure 30-2. Write Enable command sequence

The Write Enable (WREN) command sets the write enable register field in the EzPort status register. The write enable field must be set for a write command (SP, SE, BE, WRFCCOB) to be accepted. The write enable register field clears on reset, on a Write Disable command, and at the completion of write command. This command must not be used if a write is already in progress.

30.3.1.2 Write Disable

Figure 30-3. Write Disable command sequence

The Write Disable (WRDI) command clears the write enable register field in the status register. This command must not be used if a write is already in progress.

30.3.1.3 Read Status Register

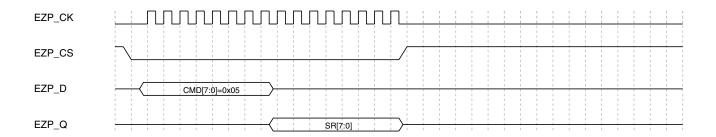


Figure 30-4. Read Status Register command sequence

The Read Status Register (RDSR) command returns the contents of the EzPort status register.

7 6 5 3 2 4 1 0 FS WEF **BEDIS** WEN **WIP** W 13 0/11 0 0 $0/1^{2}$ Reset: 0 0 0

Table 30-3. EzPort status register

- 1. Reset value reflects the status of flash security out of reset.
- 2. Reset value reflects whether bulk erase is enabled or disabled out of reset.

3. Initial value of WIP is 1, but the value clears to 0 after EzPort initialization is complete.

Table 30-4. EzPort status register field description

Field	Description	
0	Write in progress.	
WIP	Sets after a write command (SP, SE, BE, WRFCCOB) is accepted and clears after the flash memory has completed all operations associated with the write command, as indicated by the Command Complete Interrupt Flag (CCIF) inside the flash. This field is also asserted on reset and cleared when EzPort initialization is complete. Only the Read Status Register (RDSR) command is accepted while a write is in progress.	
	0 = Write is not in progress. Accept any command.	
	1 = Write is in progress. Only accept RDSR command.	
1	Write enable	
WEN	Enables the write comman that follows. It is a control field that must be set before a write command (SP, SE, BE, WRFCCOB) is accepted. Is set by the Write Enable (WREN) command and cleared by reset or a Write Disable (WRDI) command. This field also clears when the flash memory has completed all operations associated with the command.	
	0 = Disables the following write command.	
	1 = Enables the following write command.	
2	Bulk erase disable	
BEDIS	Indicates whether bulk erase (BE) is disabled when flash is secure.	
	0 = BE is enabled.	
	1 = BE is disabled if FS is also set. Attempts to issue a BE command will result in the WEF flag being set.	
6	Write error flag	
WEF	Indicates whether there has been an error while executing a write command (SP, SE, BE, WRFCCOB). The WEF flag will set if Flash Access Error Flag (ACCERR), Flash Protection Violation (FPVIOL), or Memory Controller Command Completion Status (MGSTAT0) inside the flash memory is set at the completion of the write command. See the flash memory chapter for further description of these flags and their sources. The WEF flag clears after a Read Status Register (RDSR) command.	
	0 = No error on previous write command.	
	1 = Error on previous write command.	
7	Flash security	
FS	Indicates whether the flash is secure. See Table 30-2 for the list of commands that will be accepted when flash is secure. Flash security can be disabled by performing a BE command.	
	0 = Flash is not secure.	
	1 = Flash is secure.	

30.3.1.4 Read Data

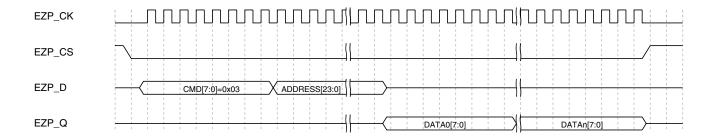


Figure 30-5. Read command sequence

The Read Data (READ) command returns data from the flash memory. The initial address must be 32-bit aligned with the two LSBs being zero.

Data continues being returned for as long as the EzPort chip select (EZP_CS) is asserted, with the address automatically incrementing. In this way, the entire contents of flash can be returned by one command. Attempts to read from an address which does not fall within the valid address range for the flash memory regions returns unknown data. See Flash memory map for EzPort access.

For this command to return the correct data, the EzPort clock (EZP_CK) must run at the internal system clock divided by eight or slower. This command is not accepted if the WEF, WIP, or FS field in the EzPort status register is set.

30.3.1.5 Read Data at High Speed

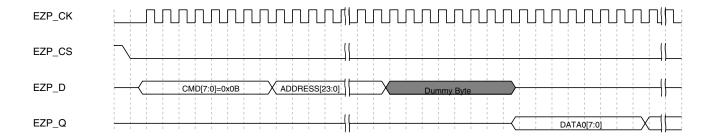


Figure 30-6. Read Data at High Speed command sequence

The Read Data at High Speed (FAST_READ) command is identical to the READ command, except for the inclusion of a dummy byte following the address bytes and before the first data byte is returned.

This command can be run with an EzPort clock (EZP_CK) frequency of half the internal system clock frequency of the microcontroller or slower. This command is not accepted if the WEF, WIP, or FS field in the EzPort status register is set.

30.3.1.6 Section Program

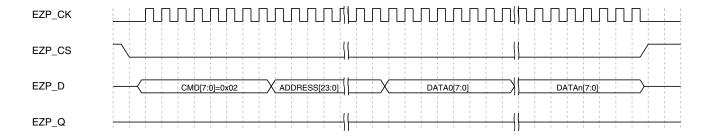


Figure 30-7. Section Program command sequence

The Section Program (SP) command programs up to one section of flash memory that has previously been erased. Please see the Flash Memory chapter for a definition of section size. The starting address of the memory to program is sent after the command word and must be a 32-bit aligned address with the two LSBs being zero.

As data is shifted in, the EzPort buffers the data in System RAM before sequentially moving the data into flash using the Program Longword command. For this reason, the number of bytes to be programmed must be a multiple of 4 and up to one flash section can be programmed at a time. For more details, see the Flash Memory Module.

Attempts to program from an initial address which does not fall within the valid address range for the flash causes the WEF flag to set. See Flash memory map for EzPort access.

This command is not accepted if the WEF, WIP, or FS field is set or if the WEN field is not set in the EzPort status register.

30.3.1.7 Sector Erase

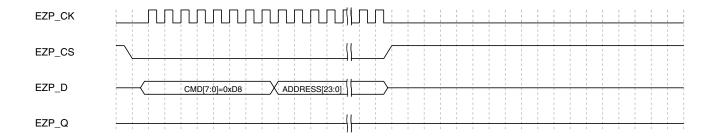


Figure 30-8. Sector Erase command sequence

The Sector Erase (SE) command erases the contents of one sector of flash memory. The three byte address sent after the command byte can be any address within the sector to erase, but must be a 64-bit aligned address (the three LSBs must be zero). Attempts to erase from an initial address which does not fall within the valid address range (see Flash memory map for EzPort access) for the flash results in the WEF flag being set.

This command is not accepted if the WEF, WIP or FS field is set or if the WEN field is not set in the EzPort status register.

30.3.1.8 Bulk Erase

Figure 30-9. Bulk Erase command sequence

The Bulk Erase (BE) command erases the entire contents of flash memory, ignoring any protected sectors or flash security. Flash security is disabled upon successful completion of the BE command.

Attempts to issue a BE command while the BEDIS and FS fields are set results in the WEF flag being set in the EzPort status register. Also, this command is not accepted if the WEF or WIP field is set or if the WEN field is not set in the EzPort status register.

30.3.1.9 EzPort Reset Chip

Figure 30-10. Reset Chip command sequence

The Reset Chip (RESET) command forces the chip into the reset state. If the EzPort chip select (EZP_CS) pin is asserted at the end of the reset period, EzPort is enabled; otherwise, it is disabled. This command allows the chip to boot up from flash memory after being programmed by an external source.

This command is not accepted if the WIP field is set in the EzPort status register.

30.3.1.10 Write FCCOB Registers

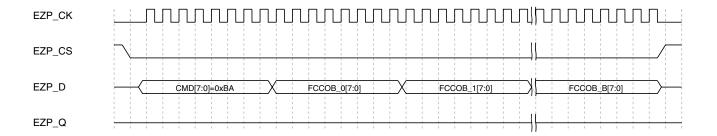


Figure 30-11. Write FCCOB Registers command sequence

The Write FCCOB Registers (WRFCCOB) command allows the user to write to the flash common command object registers and execute any command allowed by the flash.

NOTE

When security is enabled, the flash is configured in NVM Special mode, restricting the commands that can be executed by the flash.

Flash memory map for EzPort access

After receiving 12 bytes of data, EzPort writes the data to the FCCOB 0-B registers in the flash and then automatically launches the command within the flash. If greater or less than 12 bytes of data is received, this command has unexpected results and may result in the WEF flag being set.

This command is not accepted if the WEF or WIP field is set or if the WEN field is not set in the EzPort status register.

30.3.1.11 Read FCCOB Registers at High Speed

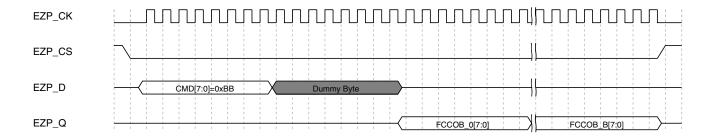


Figure 30-12. Read FCCOB Registers at High Speed command sequence

The Read FCCOB Registers at High Speed (FAST_RDFCCOB) command allows the user to read the contents of the flash common command object registers. After receiving the command, EzPort waits for one dummy byte of data before returning FCCOB register data starting at FCCOB 0 and ending with FCCOB B.

This command can be run with an EzPort clock (EZP_CK) frequency half the internal system clock frequency of the microcontroller or slower. Attempts to read greater than 12 bytes of data returns unknown data. This command is not accepted if the WEF, WIP, or FS fields in the EzPort status register are 1.

30.4 Flash memory map for EzPort access

The following table shows the flash memory map for access through EzPort.

NOTE

The flash block address map for access through EzPort may not conform to the system memory map. Changes are made to allow the EzPort address width to remain 24 bits.

Table 30-5. Flash Memory Map for EzPort Access

Valid start address	Size	Flash block	Valid commands
0x0000_0000	See device's chip configuration details	Flash	READ, FAST_READ, SP, SE, BE

Flash memory map for EzPort access

Chapter 31 External Bus Interface (FlexBus)

31.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

This chapter describes external bus data transfer operations and error conditions. It describes transfers initiated by the core processor (or any other bus master) and includes detailed timing diagrams showing the interaction of signals in supported bus operations.

31.1.1 Definition

The FlexBus multifunction external bus interface controller is a hardware module that:

- Provides memory expansion and provides connection to external peripherals with a parallel bus
- Can be directly connected to the following asynchronous or synchronous slave-only devices with little or no additional circuitry:
 - External ROMs
 - Flash memories
 - Programmable logic devices
 - Other simple target (slave) devices

31.1.2 Features

FlexBus offers the following features:

- Six independent, user-programmable chip-select signals (FB_CS5 –FB_CS0)
- 8-bit, 16-bit, and 32-bit port sizes with configuration for multiplexed or nonmultiplexed address and data buses
- 8-bit, 16-bit, 32-bit, and 16-byte transfers
- Programmable burst and burst-inhibited transfers selectable for each chip-select and transfer direction
- Programmable address-setup time with respect to the assertion of a chip-select
- Programmable address-hold time with respect to the deassertion of a chip-select and transfer direction
- Extended address latch enable option to assist with glueless connections to synchronous and asynchronous memory devices

31.2 Signal descriptions

This table describes the external signals involved in data-transfer operations.

NOTE

Not all of the following signals may be available on a particular device. See the Chip Configuration details for information on which signals are available.

Table 31-1. FlexBus signal descriptions

Signal	I/O	Function
FB_A31-FB_A0	0	Address Bus
		When FlexBus is used in a nonmultiplexed configuration, this is the address bus. When FlexBus is used in a multiplexed configuration, this bus is not used.
FB_D31-FB_D0	I/O	Data Bus—During the first cycle, this bus drives the upper address byte, addr[31:24].
		When FlexBus is used in a nonmultiplexed configuration, this is the data bus, FB_D. When FlexBus is used in a multiplexed configuration, this is the address and data bus, FB_AD.
		The number of byte lanes carrying the data is determined by the port size associated with the matching chip-select.
		When FlexBus is used in a multiplexed configuration, the full 32-bit address is driven on the first clock of a bus cycle (address phase). After the first clock, the data is driven on the bus (data phase). During the data phase, the address is driven on the pins not used for data. For example, in 16-bit mode, the lower address is driven on FB_AD15—FB_AD0, and in 8-bit mode, the lower address is driven on FB_AD23—FB_AD0.

Table 31-1. FlexBus signal descriptions (continued)

Signal	I/O	Function
FB_CS5-FB_CS0	0	General Purpose Chip-Selects—Indicate which external memory or peripheral is selected. A particular chip-select is asserted when the transfer address is within the external memory's or peripheral's address space, as defined in CSAR[BA] and CSMR[BAM].
FB_BE_31_24	0	Byte Enables—Indicate that data is to be latched or driven onto a specific byte lane of
FB_BE_23_16		the data bus. CSCR[BEM] determines if these signals are asserted on reads and writes or on writes only.
FB_BE_15_8		For external SRAM or flash devices, the FB_BE outputs should be connected to
FB_BE_7_0		individual byte strobe signals.
FB_OE	0	Output Enable—Sent to the external memory or peripheral to enable a read transfer. This signal is asserted during read accesses only when a chip-select matches the current address decode.
FB_R/W	0	Read/Write—Indicates whether the current bus operation is a read operation (FB_R/W high) or a write operation (FB_R/W low).
FB_TS	0	Transfer Start—Indicates that the chip has begun a bus transaction and that the address and attributes are valid.
		An inverted FB_TS is available as an address latch enable (FB_ALE), which indicates when the address is being driven on the FB_AD bus.
		FB_TS/FB_ALE is asserted for one bus clock cycle.
		The chip can extend this signal until the first positive clock edge after FB_CS asserts. See CSCR[EXTS] and Extended Transfer Start/Address Latch Enable.
FB_ALE	0	Address Latch Enable—Indicates when the address is being driven on the FB_A bus (inverse of FB_TS).

Table 31-1. FlexBus signal descriptions (continued)

Signal	I/O	Function
FB_TSIZ1-FB_TSIZ0	0	Transfer Size—Indicates (along with FB_TBST) the data transfer size of the current bus operation. The interface supports 8-, 16-, and 32-bit operand transfers and allows accesses to 8-, 16-, and 32-bit data ports.
		• 00b = 4 bytes
		• 01b = 1 byte
		• 10b = 2 bytes
		• 11b = 16 bytes (line)
		For misaligned transfers, FB_TSIZ1-FB_TSIZ0 indicate the size of each transfer. For example, if a 32-bit access through a 32-bit port device occurs at a misaligned offset of 1h, 8 bits are transferred first (FB_TSIZ1-FB_TSIZ0 = 01b), 16 bits are transferred next at offset 2h (FB_TSIZ1-FB_TSIZ0 = 10b), and the final 8 bits are transferred at offset 4h (FB_TSIZ1-FB_TSIZ0 = 01b).
		For aligned transfers larger than the port size, FB_TSIZ1-FB_TSIZ0 behave as follows:
		If bursting is used, FB_TSIZ1-FB_TSIZ0 are driven to the transfer size.
		 If bursting is inhibited, FB_TSIZ1-FB_TSIZ0 first show the entire transfer size and then show the port size.
		For burst-inhibited transfers, FB_TSIZ1–FB_TSIZ0 change with each FB_TS assertion to reflect the next transfer size.
		For transfers to port sizes smaller than the transfer size, FB_TSIZ1–FB_TSIZ0 indicate the size of the entire transfer on the first access and the size of the current port transfer on subsequent transfers. For example, for a 32-bit write to an 8-bit port, FB_TSIZ1–FB_TSIZ0 are 00b for the first transaction and 01b for the next three transactions. If bursting is used for a 32-bit write to an 8-bit port, FB_TSIZ1–FB_TSIZ0 are driven to 00b for the entire transfer.
FB_TBST	0	Transfer Burst—Indicates that a burst transfer is in progress as driven by the chip. A burst transfer can be 2 to 16 beats depending on FB_TSIZ1–FB_TSIZ0 and the port size.
		Note: When a burst transfer is in progress (FB_TBST = 0b), the transfer size is 16 bytes (FB_TSIZ1-FB_TSIZ0 = 11b), and the address is misaligned within the 16-byte boundary, the external memory or peripheral must be able to wrap around the address.

Table 31-1. FlexBus signal descriptions (continued)

Signal	I/O	Function	
FB_TA	I	Transfer Acknowledge—Indicates that the external data transfer is complete. When \overline{FB}_TA is asserted during a read transfer, FlexBus latches the data and then terminates the transfer. When \overline{FB}_TA is asserted during a write transfer, the transfer is terminated. If auto-acknowledge is disabled (CSCR[AA] = 0), the external memory or peripheral drives \overline{FB}_TA to terminate the transfer. If auto-acknowledge is enabled (CSCR[AA] = 1), \overline{FB}_TA is generated internally after a specified number of wait states, or the external memory or peripheral may assert external \overline{FB}_TA before the wait-state countdown to terminate the transfer early. The chip deasserts \overline{FB}_CS one cycle after the last \overline{FB}_TA is asserted. During read transfers, the external memory or peripheral must continue to drive data until \overline{FB}_TA is recognized. For write transfers, the chip continues driving data one clock cycle after \overline{FB}_CS is deasserted.	
		The number of wait states is determined by CSCR or the external FB_TA input. If the external FB_TA is used, the external memory or peripheral has complete control of the number of wait states.	
		Note: External memory or peripherals should assert FB_TA only while the FB_CS signal to the external memory or peripheral is asserted.	
		The CSPMCR register controls muxing of FB_TA with other signals. If autoacknowledge is not used and CSPMCR does not allow FB_TA control, FlexBus may hang.	
FB_CLK	0	FlexBus Clock Output	

31.3 Memory Map/Register Definition

The following tables describe the registers and bit meanings for configuring chip-select operation.

The actual number of chip selects available depends upon the device and its pin configuration. If the device does not support certain chip select signals or the pin is not configured for a chip-select function, then that corresponding set of chip-select registers has no effect on an external pin.

Note

You must set CSMR0[V] before the chip select registers take effect.

A bus error occurs when writing to reserved register locations.

FB memory map

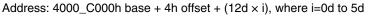
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_C000	Chip Select Address Register (FB_CSAR0)	32	R/W	0000_0000h	31.3.1/696
4000_C004	Chip Select Mask Register (FB_CSMR0)	32	R/W	0000_0000h	31.3.2/697
4000_C008	Chip Select Control Register (FB_CSCR0)	32	R/W	0000_0000h	31.3.3/698
4000_C00C	Chip Select Address Register (FB_CSAR1)	32	R/W	0000_0000h	31.3.1/696
4000_C010	Chip Select Mask Register (FB_CSMR1)	32	R/W	0000_0000h	31.3.2/697
4000_C014	Chip Select Control Register (FB_CSCR1)	32	R/W	0000_0000h	31.3.3/698
4000_C018	Chip Select Address Register (FB_CSAR2)	32	R/W	0000_0000h	31.3.1/696
4000_C01C	Chip Select Mask Register (FB_CSMR2)	32	R/W	0000_0000h	31.3.2/697
4000_C020	Chip Select Control Register (FB_CSCR2)	32	R/W	0000_0000h	31.3.3/698
4000_C024	Chip Select Address Register (FB_CSAR3)	32	R/W	0000_0000h	31.3.1/696
4000_C028	Chip Select Mask Register (FB_CSMR3)	32	R/W	0000_0000h	31.3.2/697
4000_C02C	Chip Select Control Register (FB_CSCR3)	32	R/W	0000_0000h	31.3.3/698
4000_C030	Chip Select Address Register (FB_CSAR4)	32	R/W	0000_0000h	31.3.1/696
4000_C034	Chip Select Mask Register (FB_CSMR4)	32	R/W	0000_0000h	31.3.2/697
4000_C038	Chip Select Control Register (FB_CSCR4)	32	R/W	0000_0000h	31.3.3/698
4000_C03C	Chip Select Address Register (FB_CSAR5)	32	R/W	0000_0000h	31.3.1/696
4000_C040	Chip Select Mask Register (FB_CSMR5)	32	R/W	0000_0000h	31.3.2/697
4000_C044	Chip Select Control Register (FB_CSCR5)	32	R/W	0000_0000h	31.3.3/698
4000_C060	Chip Select port Multiplexing Control Register (FB_CSPMCR)	32	R/W	0000_0000h	31.3.4/701

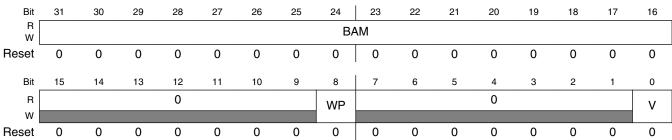
31.3.1 Chip Select Address Register (FB_CSARn)

Specifies the associated chip-select's base address.

Address: 4000_C000h base + 0h offset + (12d × i), where i=0d to 5d

FB_CSARn field descriptions


Field	Description
31–16 BA	Base Address
	Defines the base address for memory dedicated to the associated chip-select. BA is compared to bits 31–16 on the internal address bus to determine if the associated chip-select's memory is being accessed.


FB_CSARn field descriptions (continued)

Field	Description		
	NOTE: Because the FlexBus module is one of the slaves connected to the crossbar switch, it is only accessible within a certain memory range. See the chip memory map for the applicable FlexBus "expansion" address range for which the chip-selects can be active. Set the CSARn and CSMRn registers appropriately before accessing this region.		
15–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		

31.3.2 Chip Select Mask Register (FB_CSMRn)

Specifies the address mask and allowable access types for the associated chip-select.

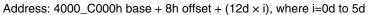
FB_CSMRn field descriptions

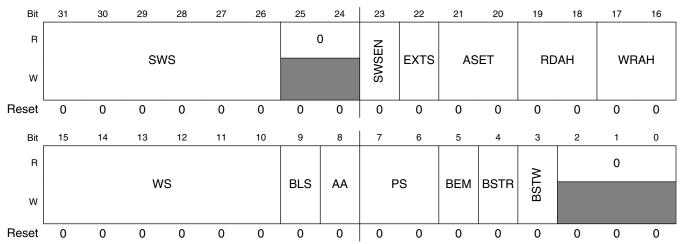
Field	Description
31–16	Base Address Mask
BAM	Defines the associated chip-select's block size by masking address bits.
	0 The corresponding address bit in CSAR is used in the chip-select decode.
	1 The corresponding address bit in CSAR is a don't care in the chip-select decode.
15–9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
8 WP	Write Protect Controls write accesses to the address range in the corresponding CSAR
	Controls write accesses to the address range in the corresponding CSAR.
	0 Write accesses are allowed.
	1 Write accesses are not allowed. Attempting to write to the range of addresses for which the WP bit is set results in a bus error termination of the internal cycle and no external cycle.
7–1	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
0	Valid
V	Specifies whether the corresponding CSAR, CSMR, and CSCR contents are valid. Programmed chip-selects do not assert until the V bit is 1b (except for FB_CS0, which acts as the global chip-select).

FB_CSMRn field descriptions (continued)

Field	Description		
	NOTE: At reset, FB_CS0 will fire for any access to the FlexBus memory region. CSMR0[V] must be set as part of the chip select initialization sequence to allow other chip selects to function as programmed.		
	0 Chip-select is invalid.1 Chip-select is valid.		

31.3.3 Chip Select Control Register (FB_CSCRn)


Controls the auto-acknowledge, address setup and hold times, port size, burst capability, and number of wait states for the associated chip select.


NOTE

To support the global chip-select (FB_CS0), the CSCR0 reset values differ from the other CSCRs. The reset value of CSCR0 is as follows:

- Bits 31–24 are 0b
- Bit 23–3 are chip-dependent
- Bits 3–0 are 0b

See the chip configuration details for your particular chip for information on the exact CSCR0 reset value.

FB_CSCRn field descriptions

Field	Description
31–26 SWS	Secondary Wait States

FB_CSCRn field descriptions (continued)

Field	Description
	Used only when the SWSEN bit is 1b. Specifies the number of wait states inserted before an internal transfer acknowledge is generated for a burst transfer (except for the first termination, which is controlled by WS).
25–24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23 SWSEN	Secondary Wait State Enable
	O Disabled. A number of wait states (specified by WS) are inserted before an internal transfer acknowledge is generated for all transfers.
	1 Enabled. A number of wait states (specified by SWS) are inserted before an internal transfer acknowledge is generated for burst transfer secondary terminations.
22	Extended Transfer Start/Extended Address Latch Enable
EXTS	Controls how long FB_TS /FB_ALE is asserted.
	0 Disabled. FB_TS /FB_ALE asserts for one bus clock cycle.
	Enabled. FB_TS /FB_ALE remains asserted until the first positive clock edge after FB_CSn asserts.
21–20 ASET	Address Setup
7.62	Controls when the chip-select is asserted with respect to assertion of a valid address and attributes.
	OO Assert FB_CSn on the first rising clock edge after the address is asserted (default for all but FB_CS0).
	01 Assert FB_CSn on the second rising clock edge after the address is asserted.
	10 Assert FB_CSn on the third rising clock edge after the address is asserted.
	Assert FB_CSn on the fourth rising clock edge after the address is asserted (default for FB_CS0).
19–18 RDAH	Read Address Hold or Deselect
NDAH	Controls the address and attribute hold time after the termination during a read cycle that hits in the associated chip-select's address space.
	 NOTE: The hold time applies only at the end of a transfer. Therefore, during a burst transfer or a transfer to a port size smaller than the transfer size, the hold time is only added after the last bus cycle. The number of cycles the address and attributes are held after FB_CSn deassertion
	depends on the value of the AA bit.
	00 When AA is 0b, 1 cycle. When AA is 1b, 0 cycles.
	01 When AA is 0b, 2 cycles. When AA is 1b, 1 cycle.
	When AA is 0b, 3 cycles. When AA is 1b, 2 cycles.When AA is 0b, 4 cycles. When AA is 1b, 3 cycles.
17–16	Write Address Hold or Deselect
WRAH	
	Controls the address, data, and attribute hold time after the termination of a write cycle that hits in the associated chip-select's address space.
	NOTE: The hold time applies only at the end of a transfer. Therefore, during a burst transfer or a transfer to a port size smaller than the transfer size, the hold time is only added after the last bus cycle.
	00 1 cycle (default for all but FB_CS0)
	01 2 cycles
	10 3 cycles
	11 4 cycles (default for FB_CS0)

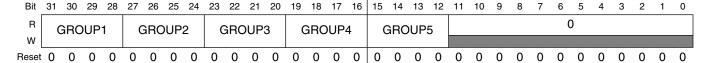
FB_CSCRn field descriptions (continued)

Field	Description
15–10	Wait States
WS	Specifies the number of wait states inserted after FlexBus asserts the associated chip-select and before an internal transfer acknowledge is generated (WS = 00h inserts 0 wait states,, WS = 3Fh inserts 63 wait states).
9 BLS	Byte-Lane Shift Specifies if data on FB_AD appears left-aligned or right-aligned during the data phase of a FlexBus
	access.
	0 Not shifted. Data is left-aligned on FB_AD.
	1 Shifted. Data is right-aligned on FB_AD.
8 AA	Auto-Acknowledge Enable
, , ,	Asserts the internal transfer acknowledge for accesses specified by the chip-select address.
	NOTE: If AA is 1b for a corresponding FB_CSn and the external system asserts an external FB_TA before the wait-state countdown asserts the internal FB_TA, the cycle is terminated. Burst cycles increment the address bus between each internal termination.
	NOTE: This field must be 1b if CSPMCR disables FB_TA.
	 Disabled. No internal transfer acknowledge is asserted and the cycle is terminated externally. Enabled. Internal transfer acknowledge is asserted as specified by WS.
7–6	Port Size
PS	Specifies the data port width of the associated chip-select, and determines where data is driven during write cycles and where data is sampled during read cycles.
	00 32-bit port size. Valid data is sampled and driven on FB_D[31:0].
	01 8-bit port size. Valid data is sampled and driven on FB_D[31:24] when BLS is 0b, or FB_D[7:0] when BLS is 1b.
	1X 16-bit port size. Valid data is sampled and driven on FB_D[31:16] when BLS is 0b, or FB_D[15:0] when BLS is 1b.
5	Byte-Enable Mode
BEM	Specifies whether the corresponding FB_BE is asserted for read accesses. Certain memories have byte enables that must be asserted during reads and writes. Write 1b to the BEM bit in the relevant CSCR to provide the appropriate mode of byte enable support for these SRAMs.
	0 FB_BE is asserted for data write only.
	TB_BE is asserted for data read and write accesses.
4	Burst-Read Enable
BSTR	Specifies whether burst reads are enabled for memory associated with each chip select.
	O Disabled. Data exceeding the specified port size is broken into individual, port-sized, non-burst reads. For example, a 32-bit read from an 8-bit port is broken into four 8-bit reads.
	1 Enabled. Enables data burst reads larger than the specified port size, including 32-bit reads from 8-and 16-bit ports, 16-bit reads from 8-bit ports, and line reads from 8-, 16-, and 32-bit ports.
3 BSTW	Burst-Write Enable
DOTA	Specifies whether burst writes are enabled for memory associated with each chip select.

FB_CSCRn field descriptions (continued)

Field	Description		
	 Disabled. Data exceeding the specified port size is broken into individual, port-sized, non-burst writes. For example, a 32-bit write to an 8-bit port takes four byte writes. Enabled. Enables burst write of data larger than the specified port size, including 32-bit writes to 8-and 16-bit ports, 16-bit writes to 8-bit ports, and line writes to 8-, 16-, and 32-bit ports. 		
2–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		

31.3.4 Chip Select port Multiplexing Control Register (FB_CSPMCR)


Controls the multiplexing of the FlexBus signals.

NOTE

A bus error occurs when you do any of the following:

- Write to a reserved address
- Write to a reserved field in this register, or
- Access this register using a size other than 32 bits.

Address: 4000_C000h base + 60h offset = 4000_C060h

FB_CSPMCR field descriptions

Field	Description		
31–28	FlexBus Signal Group 1 Multiplex control		
GROUP1	Controls the multiplexing of the FB_ALE, FB_CS1, and FB_TS signals.		
	0000 FB_ALE		
	0001 FB_CS1		
	0010 FB_TS		
	Any other value Reserved		
27–24 GROUP2	FlexBus Signal Group 2 Multiplex control		
	Controls the multiplexing of the FB_CS4 , FB_TSIZ0, and FB_BE_31_24 signals.		
	0000 FB_CS4		
	0001 FB_TSIZ0		
	0010 FB_BE_31_24		
	Any other value Reserved		
23–20 GROUP3	FlexBus Signal Group 3 Multiplex control		
	Controls the multiplexing of the FB_CS5 , FB_TSIZ1, and FB_BE_23_16 signals.		

FB_CSPMCR field descriptions (continued)

Field	Description			
	0000 FB_CS5			
	0001 FB_TSIZ1			
	0010 FB_BE_23_16			
	Any other value Reserved			
19–16 GROUP4	FlexBus Signal Group 4 Multiplex control			
	Controls the multiplexing of the FB_TBST, FB_CS2, and FB_BE_15_8 signals.			
	0000 FB_TBST			
	0001 FB_CS2			
	0010 FB_BE_15_8			
	Any other value Reserved			
15–12 GROUP5	FlexBus Signal Group 5 Multiplex control			
	Controls the multiplexing of the FB_TA, FB_CS3, and FB_BE_7_0 signals.			
	NOTE: When GROUP5 is not 0000b, you must write 1b to the CSCR[AA] bit. Otherwise, the bus hangs during a transfer.			
	0000 FB_TA			
	0001 FB_CS3 . You must also write 1b to CSCR[AA].			
	0010 FB_BE_7_0 . You must also write 1b to CSCR[AA].			
	Any other value Reserved			
11–0	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			

31.4 Functional description

31.4.1 Modes of operation

FlexBus supports the following modes of operation:

- Multiplexed 32-bit address and 32-bit data
- Multiplexed 32-bit address and 16-bit data (non-multiplexed 16-bit address and 16-bit data)
- Multiplexed 32-bit address and 8-bit data (non-multiplexed 24-bit address and 8-bit data)
- Non-multiplexed 32-bit address and 32-bit data busses

31.4.2 Address comparison

When a bus cycle is routed to FlexBus, FlexBus compares the transfer address to the base address (see CSAR[BA]) and base address mask (see CSMR[BAM]). This table describes how FlexBus decides to assert a chip-select and complete the bus cycle based on the address comparison.

When the transfer address	Then FlexBus
Matabas and address register	Asserts the appropriate chip-select, generating a FlexBus bus cycle as defined in the appropriate CSCR.
Matches one address register configuration	If CSMR[WP] is set and a write access is performed, FlexBus terminates the internal bus cycle with a bus error, does not assert a chip-select, and does not perform an external bus cycle.
Does not match an address register configuration	Terminates the transfer with a bus error response, does not assert a chip-select, and does not perform a FlexBus cycle.
Matches more than one address register configuration	Terminates the transfer with a bus error response, does not assert a chip-select, and does not perform a FlexBus cycle.

31.4.3 Address driven on address bus

FlexBus always drives a 32-bit address on the FB_AD bus regardless of the external memory's or peripheral's address size.

31.4.4 Connecting address/data lines

The external device must connect its address and data lines as follows:

- Address lines
 - FB_AD from FB_AD0 upward
- Data lines
 - If CSCR[BLS] = 0, FB_AD from FB_AD31 downward
 - If CSCR[BLS] = 1, FB_AD from FB_AD0 upward

31.4.5 Bit ordering

No bit ordering is required when connecting address and data lines to the FB_AD bus. For example, a full 16-bit address/16-bit data device connects its addr15-addr0 to FB_AD16-FB_AD1 and data15-data0 to FB_AD31-FB_AD16. See Data-byte alignment and physical connections for a graphical connection.

31.4.6 Data transfer signals

Data transfers between FlexBus and the external memory or peripheral involve these signals:

- Address/data bus (FB_AD31-FB_AD0)
- Control signals (FB_TS/FB_ALE, FB_TA, FB_CSn, FB_OE, FB_R/W, FB_BEn)
- Attribute signals (FB_TBST, FB_TSIZ1-FB_TSIZ0)

31.4.7 Signal transitions

These signals change on the rising edge of the FlexBus clock (FB_CLK):

- Address
- Write data
- FB_TS/FB_ALE
- FB CSn
- All attribute signals

FlexBus latches the read data on the rising edge of the clock.

31.4.8 Data-byte alignment and physical connections

The device aligns data transfers in FlexBus byte lanes with the number of lanes depending on the data port width.

The following figure shows the byte lanes that external memory or peripheral connects to and the sequential transfers of a 32-bit transfer for the supported port sizes when byte lane shift is disabled. For example, an 8-bit memory connects to the single lane FB_AD31_FB_AD24 (FB_BE_31_24). A 32-bit transfer through this 8-bit port takes four transfers, starting with the LSB to the MSB. A 32-bit transfer through a 32-bit port requires one transfer on each four-byte lane.

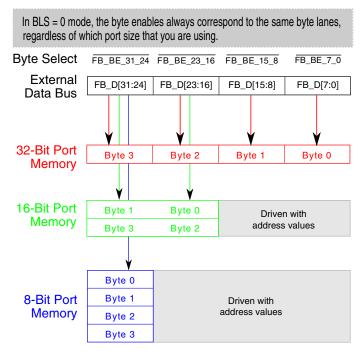


Figure 31-23. Connections for external memory port sizes (CSCRn[BLS] = 0)

The following figure shows the byte lanes that external memory or peripheral connects to and the sequential transfers of a 32-bit transfer for the supported port sizes when byte lane shift is enabled.

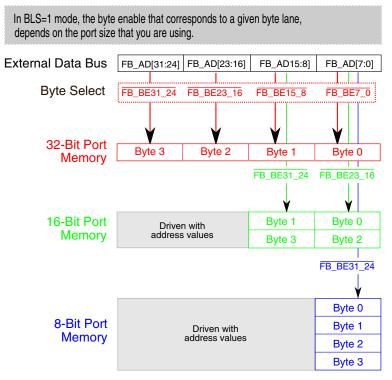


Figure 31-24. Connections for external memory port sizes (CSCRn[BLS] = 1)

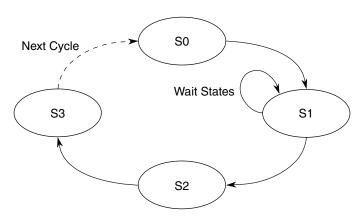
31.4.9 Address/data bus multiplexing

FlexBus supports a single 32-bit wide multiplexed address and data bus (FB_AD31–FB_AD0). FlexBus always drives the full 32-bit address on the first clock of a bus cycle. During the data phase, the FB_AD31–FB_AD0 lines used for data are determined by the programmed port size and BLS setting for the corresponding chip-select. FlexBus continues to drive the address on any FB_AD31–FB_AD0 lines not used for data.

31.4.9.1 FlexBus multiplexed operating modes for CSCRn[BLS]=0

This table shows the supported combinations of address and data bus widths when CSCRn[BLS] is 0b.

Port size and phase		FB_AD				
	Fort size and phase		23–16	15–8	7–0	
#	≟ Address phase Address		ress			
32-bit	Data phase	Data				
÷	Address phase	Address				
16-bit	Data phase Data		Address			
÷	Address phase	Address				
8-bit	Data phase	Data Address				


31.4.9.2 FlexBus multiplexed operating modes for CSCRn[BLS]=1

This table shows the supported combinations of address and data bus widths when CSCRn[BLS] is 1b.

Dout size and where		FB_AD				
	Port size and phase		23–16	15–8	7–0	
±.	Address phase	Address				
32-bit	Data phase	Data				
	Address phase	Address				
16-bit	Data phase	Address		Da	nta	
÷	Address phase	Address				
8-bit	Data phase	Address			Data	

31.4.10 Data transfer states

Basic data transfers occur in four clocks or states. (See Figure 31-26 and Figure 31-28 for examples of basic data transfers.) The FlexBus state machine controls the data-transfer operation. This figure shows the state-transition diagram for basic read and write cycles.

The states are described in this table.

State	Cycle	Description	
S0	All	The read or write cycle is initiated. On the rising clock edge, FlexBus: • Places a valid address on FB_ADn • Asserts FB_TS/FB_ALE • Drives FB_R/W high for a read and low for a write	
S1	All	FlexBus: Negates FB_TS/FB_ALE on the rising edge of FB_CLK Asserts FB_CSn Drives the data on FB_AD31– FB_ADX for writes Tristates FB_AD31– FB_ADX for reads Continues to drive the address on FB_AD pins that are unused for data If the external memory or perihperal asserts FB_TA, then the process moves to S2. If FB_TA is not asserted internally or externally, then S1 repeats.	
	Read	The external memory or peripheral drives the data before the next rising edge of FB_CLK (the rising edge that begins S2) with FB_TA asserted.	
S2	All	For internal termination, FlexBus negates $\overline{FB_CS}$ n and the transfer is complete. For external termination, the external memory or peripheral negates $\overline{FB_TA}$, and FlexBus negates $\overline{FB_CS}$ n after the rising edge of FB_CLK at the end of S2.	
	Read	FlexBus latches the data on the rising clock edge entering S2. The external memory or peripheral can stop driving the data after this edge or continue to drive the data until the end of S3 or through any additional address hold cycles.	
S3	All	FlexBus invalidates the address, data, and FB_R/W on the rising edge of FB_CLK at the beginning of S3, terminating the transfer.	

31.4.11 FlexBus Timing Examples

Note

The timing diagrams throughout this section use signal names that may not be included on your particular device. Ignore these extraneous signals.

Note

Throughout this section:

- FB_D[X] indicates a 32-, 16-, or 8-bit wide data bus
- FB_A[Y] indicates an address bus that can be 32, 24, or 16 bits wide.

31.4.11.1 Basic Read Bus Cycle

During a read cycle, the MCU receives data from memory or a peripheral device. The following figure shows a read cycle flowchart.

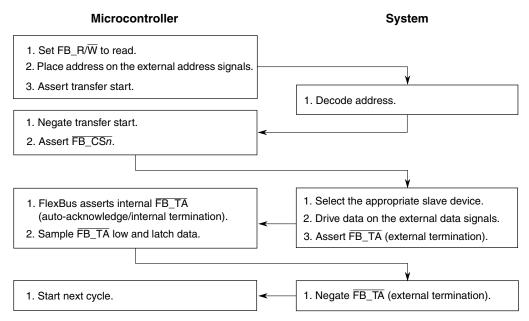


Figure 31-25. Read Cycle Flowchart

The read cycle timing diagram is shown in the following figure.

Note

FB_TA does not have to be driven by the external device for internally-terminated bus cycles.

Note

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and another module. At the end of the read bus cycles the address signals are indeterminate.

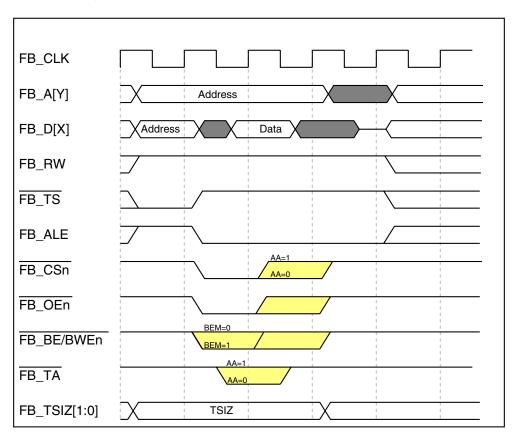


Figure 31-26. Basic Read-Bus Cycle

31.4.11.2 Basic Write Bus Cycle

During a write cycle, the device sends data to memory or to a peripheral device. The following figure shows the write cycle flowchart.

Functional description

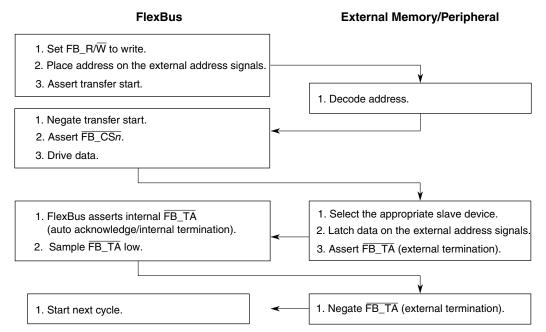


Figure 31-27. Write-Cycle Flowchart

The following figure shows the write cycle timing diagram.

Note

The address and data busses are muxed between the FlexBus and another module. At the end of the write bus cycles, the address signals are indeterminate.

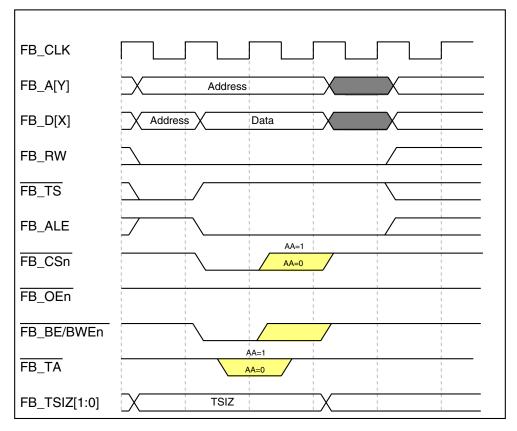


Figure 31-28. Basic Write-Bus Cycle

31.4.11.3 Bus Cycle Sizing

This section shows timing diagrams for various port size scenarios.

31.4.11.3.1 Bus Cycle Sizing—Byte Transfer, 8-bit Device, No Wait States

The following figure illustrates the basic byte read transfer to an 8-bit device with no wait states:

- The address is driven on the full FB_AD[31:8] bus in the first clock.
- The device tristates FB_AD[31:24] on the second clock and continues to drive address on FB_AD[23:0] throughout the bus cycle.
- The external device returns the read data on FB_AD[31:24] and may tristate the data line or continue driving the data one clock after FB_TA is sampled asserted.

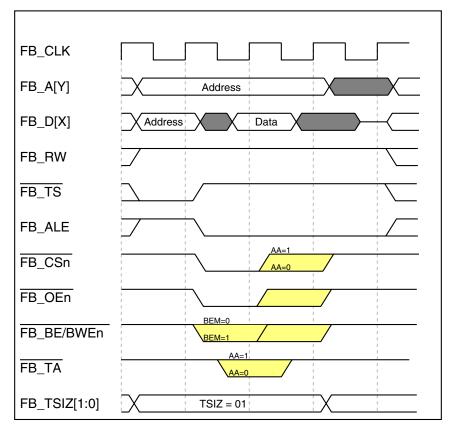


Figure 31-29. Single Byte-Read Transfer

The following figure shows the similar configuration for a write transfer. The data is driven from the second clock on FB_AD[31:24].

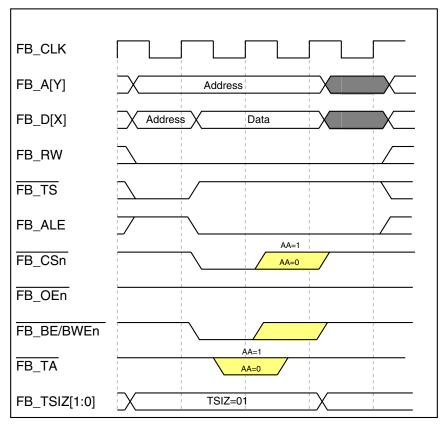


Figure 31-30. Single Byte-Write Transfer

31.4.11.3.2 Bus Cycle Sizing—Word Transfer, 16-bit Device, No Wait States

The following figure illustrates the basic word read transfer to a 16-bit device with no wait states.

- The address is driven on the full FB_AD[31:8] bus in the first clock.
- The device tristates FB_AD[31:16] on the second clock and continues to drive address on FB_AD[15:0] throughout the bus cycle.
- The external device returns the read data on FB_AD[31:16] and may tristate the data line or continue driving the data one clock after FB_TA is sampled asserted.

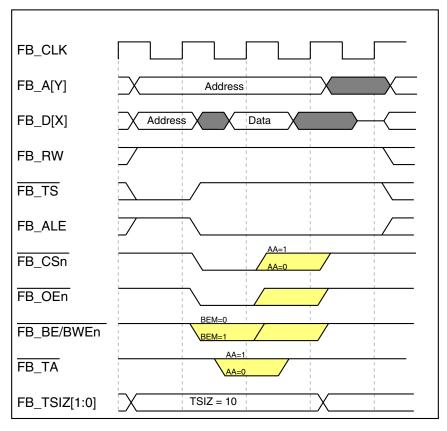


Figure 31-31. Single Word-Read Transfer

The following figure shows the similar configuration for a write transfer. The data is driven from the second clock on FB_AD[31:16].

Figure 31-32. Single Word-Write Transfer

31.4.11.3.3 Bus Cycle Sizing—Longword Transfer, 32-bit Device, No Wait States

The following figure depicts a longword read from a 32-bit device.

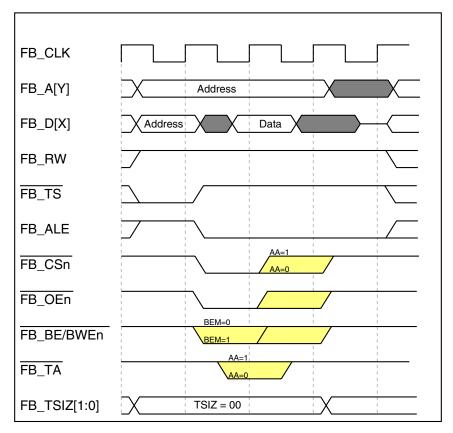


Figure 31-33. Longword-Read Transfer

The following figure illustrates the longword write to a 32-bit device.

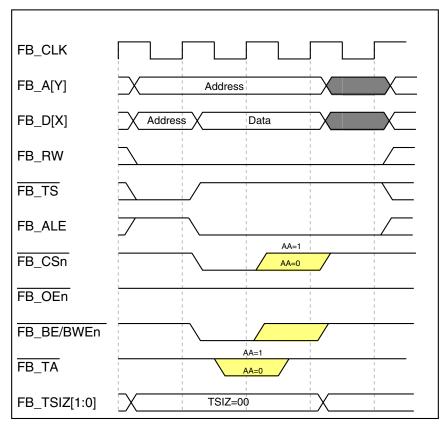


Figure 31-34. Longword-Write Transfer

31.4.11.4 Timing Variations

The FlexBus module has several features that can change the timing characteristics of a basic read- or write-bus cycle to provide additional address setup, address hold, and time for a device to provide or latch data.

31.4.11.4.1 Wait States

Wait states can be inserted before each beat of a transfer by programming the CSCR*n* registers. Wait states can give the peripheral or memory more time to return read data or sample write data.

The following figures show the basic read and write bus cycles (also shown in Figure 31-26 and Figure 31-31) with the default of no wait states respectively.

Functional description

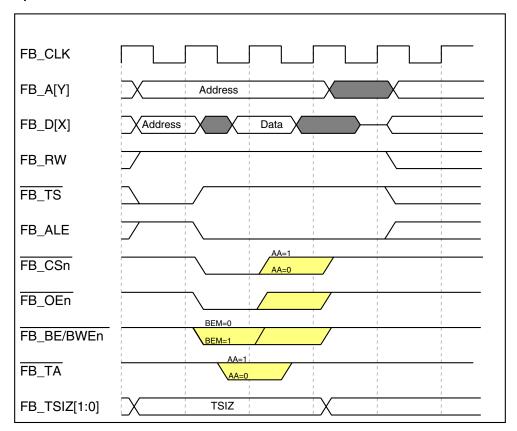


Figure 31-35. Basic Read-Bus Cycle (No Wait States)

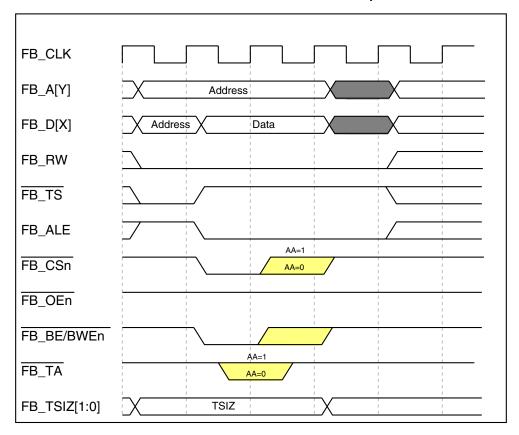


Figure 31-36. Basic Write-Bus Cycle (No Wait States)

If wait states are used, the S1 state repeats continuously until the chip-select auto-acknowledge unit asserts internal transfer acknowledge or the external FB_TA is recognized as asserted. The following figures show a read and write cycle with one wait state respectively.

Functional description

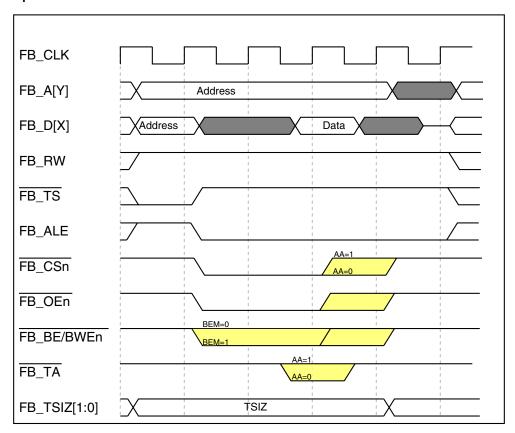


Figure 31-37. Read-Bus Cycle (One Wait State)

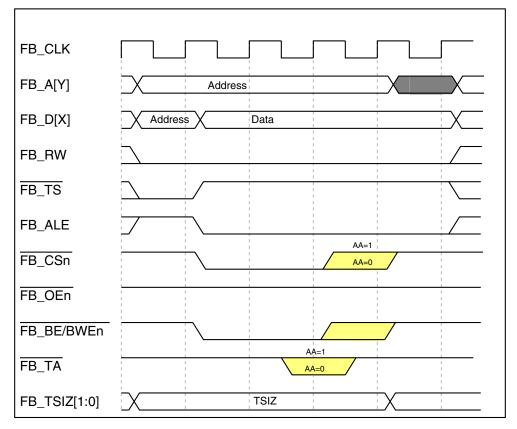


Figure 31-38. Write-Bus Cycle (One Wait State)

31.4.11.4.2 Address Setup and Hold

The timing of the assertion and negation of the chip selects, byte selects, and output enable can be programmed on a chip-select basis. Each chip-select can be programmed to assert one to four clocks after transfer start/address-latch enable (FB_TS/FB_ALE) is asserted. The following figures show read- and write-bus cycles with two clocks of address setup respectively.

Functional description

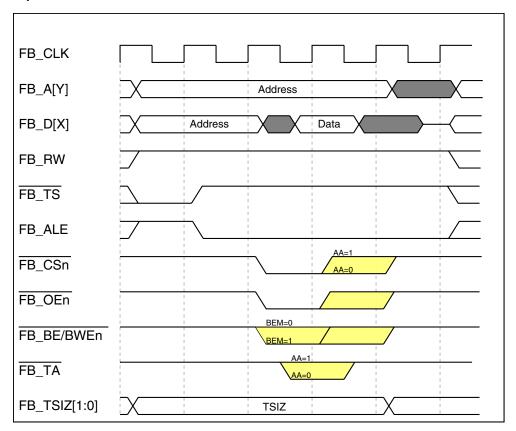


Figure 31-39. Read-Bus Cycle with Two-Clock Address Setup (No Wait States)

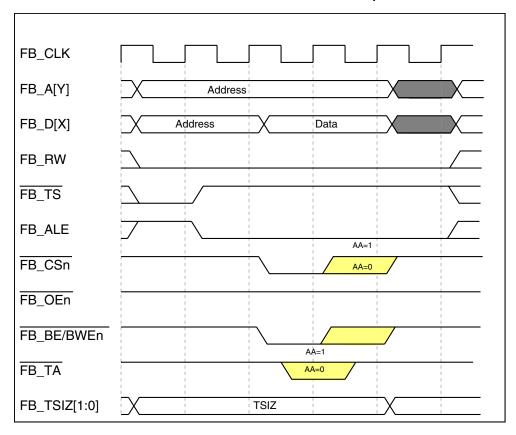


Figure 31-40. Write-Bus Cycle with Two Clock Address Setup (No Wait States)

In addition to address setup, a programmable address hold option for each chip select exists. Address and attributes can be held one to four clocks after chip-select, byte-selects, and output-enable negate. The following figures show read and write bus cycles with two clocks of address hold respectively.

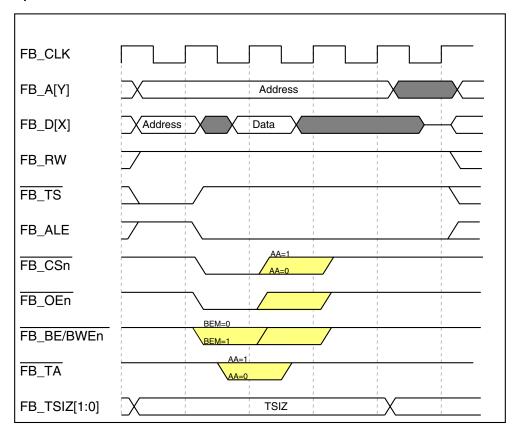


Figure 31-41. Read Cycle with Two-Clock Address Hold (No Wait States)

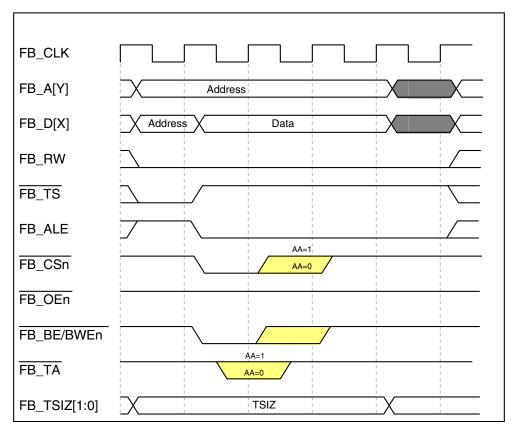


Figure 31-42. Write Cycle with Two-Clock Address Hold (No Wait States)

The following figure shows a bus cycle using address setup, wait states, and address hold.

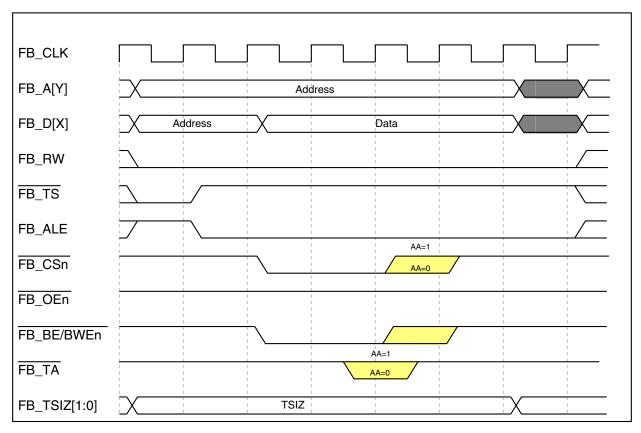


Figure 31-43. Write Cycle with Two-Clock Address Setup and Two-Clock Hold (One Wait State)

31.4.12 Burst cycles

The chip can be programmed to initiate burst cycles if its transfer size exceeds the port size of the selected destination. The initiation of a burst cycle is encoded on the transfer size pins (FB_TSIZ[1:0]). For burst transfers to smaller port sizes, FB_TSIZ[1:0] indicates the size of the entire transfer. For example, with bursting enabled, a 16-bit transfer to an 8-bit port takes two beats (two byte-sized transfers), for which FB_TSIZ[1:0] equals 10b throughout. A 32-bit transfer to an 8-bit port takes four beats (four byte-sized transfers), for which FB_TSIZ[1:0] equals 00b throughout.

31.4.12.1 Enabling and inhibiting burst

The CSCRn registers enable bursting for reads, writes, or both.

Memory spaces can be declared burst-inhibited for reads and writes by writing 0b to the appropriate CSCRn[BSTR] and CSCRn[BSTW] fields.

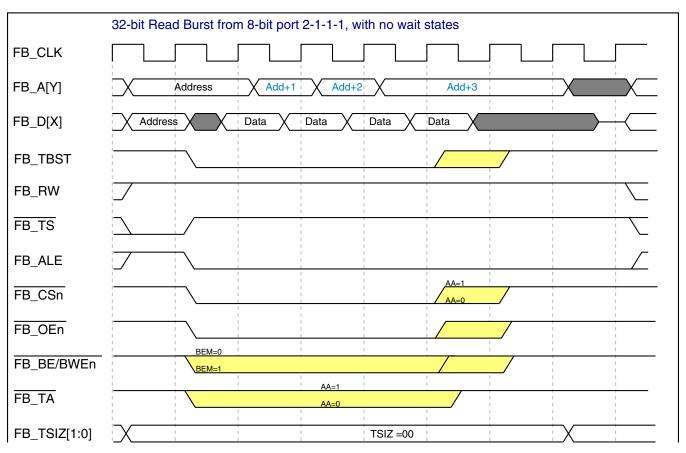
31.4.12.2 Transfer size and port size translation

With bursting disabled, any transfer larger than the port size breaks into multiple individual transfers (e.g. <Addr><Data><Addr+1><Data><Addr+2><Data>). With bursting enabled, any transfer larger than the port size results in a burst cycle of multiple beats (e.g. <Addr><Data><Data><Data>). The following table shows the result of such transfer translations.

Dout size DC[1:0]	Transfer size ED TSI7[1:0]	Burst-inhibited: Number of transfers					
Port size PS[1:0]	Transfer size FB_TSIZ[1:0]	Burst enabled: Number of beats					
01b (8 bit)	10b (16 bits)	2					
	00b (32 bits)	4					
	11b (16 bytes)	16					
1Xb (16 bit)	00b (32 bits)	2					
	11b (16 bytes)	8					
00b (32 bit)	11b (line)	4					

The FlexBus can support X-1-1-1 burst cycles to maximize system performance, where X is the primary number of wait states (max 63). Delaying termination of the cycle can add wait states. If internal termination is used, different wait state counters can be used for the first access and the following beats.

31.4.12.3 32-bit-Read burst from 8-Bit port 2-1-1-1 (no wait states)

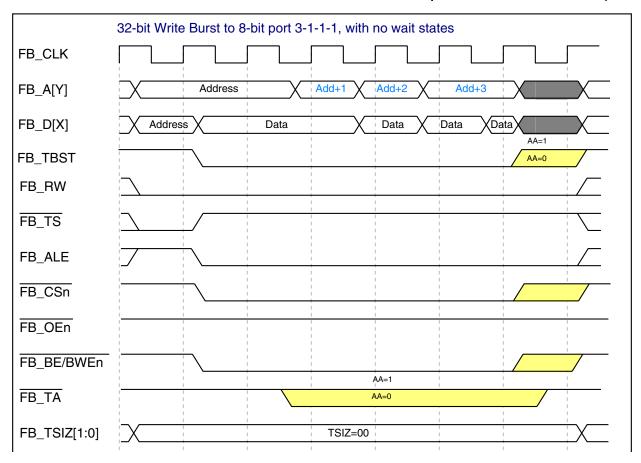

The following figure shows a 32-bit read to an 8-bit external chip programmed for burst enable. The transfer results in a 4-beat burst and the data is driven on FB_AD[31:24]. The transfer size is driven at 32-bit (00b) throughout the bus cycle.

Note

In non-multiplexed address/data mode, the address on FB_A increments only during internally-terminated burst cycles. The first address is driven throughout the entire burst for externally-terminated cycles.

In multiplexed address/data mode, the address is driven on FB_AD only during the first cycle for all terminated cycles.

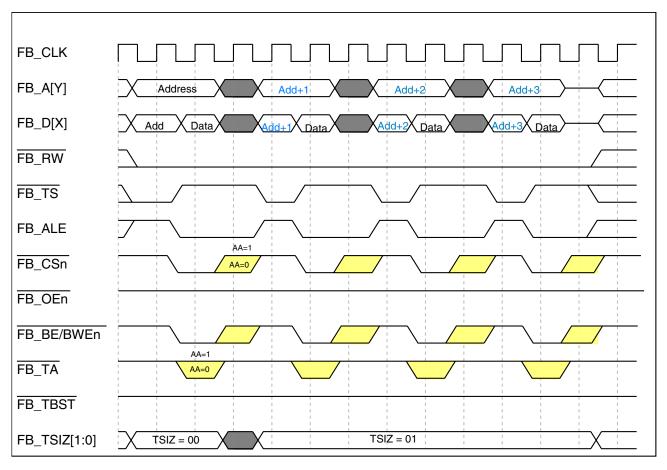
Functional description



31.4.12.4 32-bit-Write burst to 8-Bit port 3-1-1-1 (no wait states)

The following figure shows a 32-bit write to an 8-bit external chip with burst enabled. The transfer results in a 4-beat burst and the data is driven on FB_AD[31:24]. The transfer size is driven at 32-bit (00b) throughout the bus cycle.

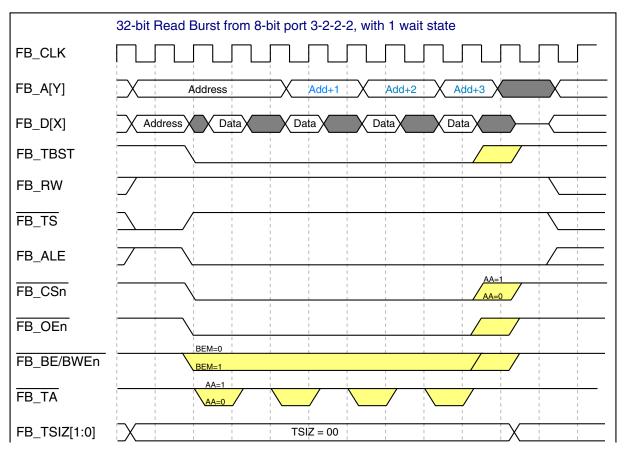
Note


The first beat of any write burst cycle has at least one wait state. If the bus cycle is programmed for zero wait states (CSCRn[WS] = 0b), one wait state is added. Otherwise, the programmed number of wait states are used.

31.4.12.5 32-bit-write burst-inhibited to 8-bit port (no wait states)

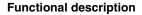
The following figure shows a 32-bit write to an 8-bit device with burst inhibited. The transfer results in four individual transfers. The transfer size is driven at 32-bit (00b) during the first transfer and at byte (01b) during the next three transfers.

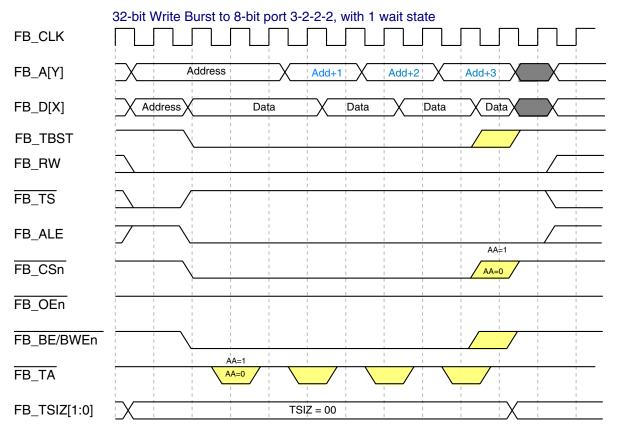
Functional description



31.4.12.6 32-bit-read burst from 8-bit port 3-2-2-2 (one wait state)

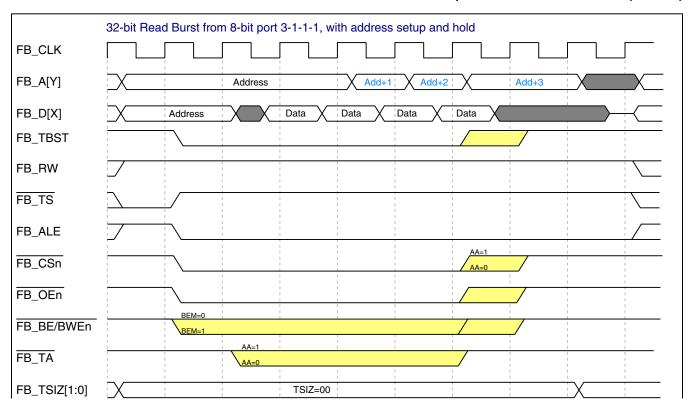
The following figure illustrates another read burst transfer, but in this case a wait state is added between individual beats.


Note


CSCRn[WS] determines the number of wait states in the first beat. However, for subsequent beats, the CSCRn[WS] (or CSCRn[SWS] if CSCRn[SWSEN] = 1b) determines the number of wait states.

31.4.12.7 32-bit-write burst to 8-bit port 3-2-2-2 (one wait state)

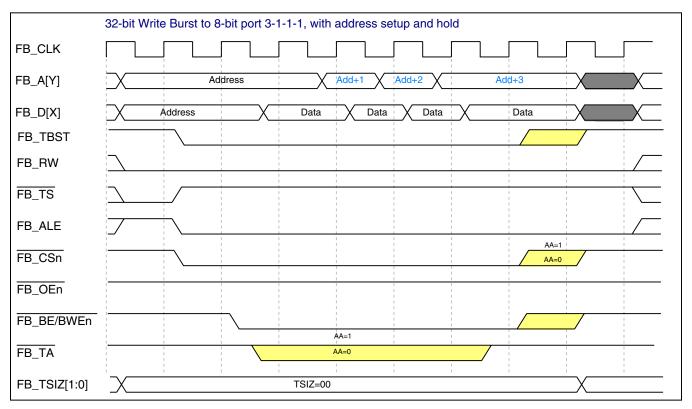
The following figure illustrates a write burst transfer with one wait state.


31.4.12.8 32-bit-read burst from 8-bit port 3-1-1-1 (address setup and hold)

If address setup and hold are used, only the first and last beat of the burst cycle are affected. The following figure shows a read cycle with one clock of address setup and address hold.

Note

In non-multiplexed address/data mode, the address on FB_A increments only during internally-terminated burst cycles (CSCRn[AA] = 1b). The attached device must be able to account for this, or a wait state must be added. The first address is driven throughout the entire burst for externally-terminated cycles.


In multiplexed address/data mode, the address is driven on FB_AD only during the first cycle for internally- and externally-terminated cycles.

31.4.12.9 32-bit-write burst to 8-bit port 3-1-1-1 (address setup and hold)

The following figure shows a write cycle with one clock of address setup and address hold.

Functional description

31.4.13 Extended Transfer Start/Address Latch Enable

The \overline{FB} _TS/FB_ALE signal indicates that a bus transaction has begun and the address and attributes are valid. By default, the \overline{FB} _TS/FB_ALE signal asserts for a single bus clock cycle. When CSCRn[EXTS] is set, the \overline{FB} _TS/FB_ALE signal asserts and remain asserted until the first positive clock edge after \overline{FB} _CSn asserts. See the following figure.

NOTE

When EXTS is set, CSCRn[WS] must be programmed to have at least one primary wait state.

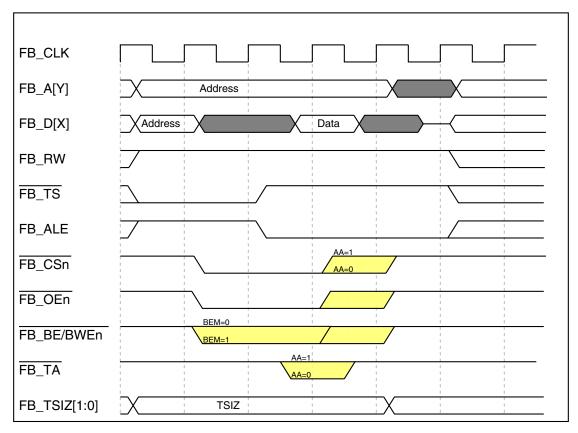


Figure 31-44. Read-Bus Cycle with CSCRn[EXTS] = 1 (One Wait State)

31.4.14 Bus errors

These types of accesses cause a transfer to terminate with a bus error:

- A write to a write-protected address range
- An access whose address is not in a range covered by a chip-select
- An access whose address is in a range covered by more than one chip-selects
- A write to a reserved address in the memory map
- A write to a reserved field in the CSPMCR
- Any FlexBus accesses when FlexBus is secure

If the auto-acknowledge feature is disabled (CSCR[AA] is 0) for an address that generates an error, the transfer can be terminated by asserting $\overline{FB_TA}$. If the processor must manage a bus error differently, asserting an interrupt to the core along with $\overline{FB_TA}$ when the bus error occurs can invoke an interrupt handler.

The device can hang if FlexBus is configured for external termination and the CSPMCR is not configured for $\overline{FB_TA}$.

31.5 Initialization/Application Information

31.5.1 Initializing a chip-select

To initialize a chip-select:

- 1. Write to the associated CSAR.
- 2. Write to the associated CSCR.
- 3. Write to the associated CSMR, including writing 1b to the Valid field (CSMRn[V]).

31.5.2 Reconfiguring a chip-select

To reconfigure a previously-used chip-select:

- 1. Invalidate the chip-select by writing 0b to the associated CSMR's Valid field (CSMRn[V]).
- 2. Write to the associated CSAR.
- 3. Write to the associated CSCR.
- 4. Write to the associated CSMR, including writing 1b to the Valid field (CSMRn[V]).

Chapter 32 Cyclic Redundancy Check (CRC)

32.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The cyclic redundancy check (CRC) module generates 16/32-bit CRC code for error detection.

The CRC module provides a programmable polynomial, WAS, and other parameters required to implement a 16-bit or 32-bit CRC standard.

The 16/32-bit code is calculated for 32 bits of data at a time.

32.1.1 Features

Features of the CRC module include:

- Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift register
- Programmable initial seed value and polynomial
- Option to transpose input data or output data (the CRC result) bitwise or bytewise. This option is required for certain CRC standards. A bytewise transpose operation is not possible when accessing the CRC data register via 8-bit accesses. In this case, the user's software must perform the bytewise transpose function.
- Option for inversion of final CRC result
- 32-bit CPU register programming interface

32.1.2 Block diagram

The following is a block diagram of the CRC.

Memory map and register descriptions

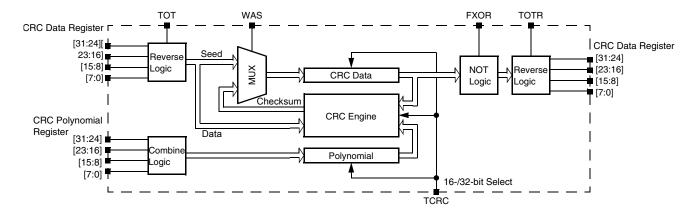


Figure 32-1. Programmable cyclic redundancy check (CRC) block diagram

32.1.3 Modes of operation

Various MCU modes affect the CRC module's functionality.

32.1.3.1 Run mode

This is the basic mode of operation.

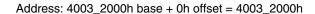
32.1.3.2 Low-power modes (Wait or Stop)

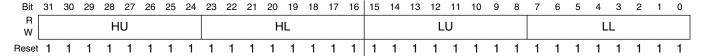
Any CRC calculation in progress stops when the MCU enters a low-power mode that disables the module clock. It resumes after the clock is enabled or via the system reset for exiting the low-power mode. Clock gating for this module is dependent on the MCU.

32.2 Memory map and register descriptions

CRC memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_2000	CRC Data register (CRC_DATA)	32	R/W	FFFF_FFFFh	32.2.1/739
4003_2004	CRC Polynomial register (CRC_GPOLY)	32	R/W	0000_1021h	32.2.2/740
4003_2008	CRC Control register (CRC_CTRL)	32	R/W	0000_0000h	32.2.3/740

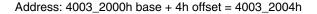

32.2.1 CRC Data register (CRC_DATA)


The CRC Data register contains the value of the seed, data, and checksum. When CTRL[WAS] is set, any write to the data register is regarded as the seed value. When CTRL[WAS] is cleared, any write to the data register is regarded as data for general CRC computation.

In 16-bit CRC mode, the HU and HL fields are not used for programming the seed value, and reads of these fields return an indeterminate value. In 32-bit CRC mode, all fields are used for programming the seed value.

When programming data values, the values can be written 8 bits, 16 bits, or 32 bits at a time, provided all bytes are contiguous; with MSB of data value written first.

After all data values are written, the CRC result can be read from this data register. In 16-bit CRC mode, the CRC result is available in the LU and LL fields. In 32-bit CRC mode, all fields contain the result. Reads of this register at any time return the intermediate CRC value, provided the CRC module is configured.



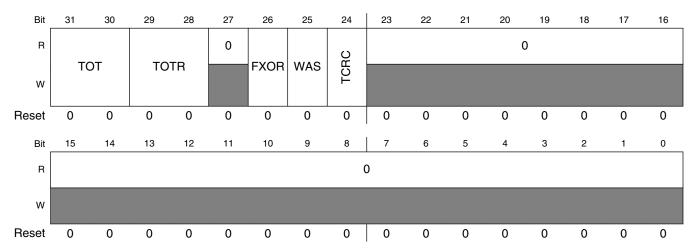
CRC_DATA field descriptions

Field	Description
31–24 HU	CRC High Upper Byte
	In 16-bit CRC mode (CTRL[TCRC] is 0), this field is not used for programming a seed value. In 32-bit CRC mode (CTRL[TCRC] is 1), values written to this field are part of the seed value when CTRL[WAS] is 1. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation in both 16-bit and 32-bit CRC modes.
23–16 HL	CRC High Lower Byte
1112	In 16-bit CRC mode (CTRL[TCRC] is 0), this field is not used for programming a seed value. In 32-bit CRC mode (CTRL[TCRC] is 1), values written to this field are part of the seed value when CTRL[WAS] is 1. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation in both 16-bit and 32-bit CRC modes.
15–8 LU	CRC Low Upper Byte
Lo	When CTRL[WAS] is 1, values written to this field are part of the seed value. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation.
7–0	CRC Low Lower Byte
LL	When CTRL[WAS] is 1, values written to this field are part of the seed value. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation.

32.2.2 CRC Polynomial register (CRC_GPOLY)

This register contains the value of the polynomial for the CRC calculation. The HIGH field contains the upper 16 bits of the CRC polynomial, which are used only in 32-bit CRC mode. Writes to the HIGH field are ignored in 16-bit CRC mode. The LOW field contains the lower 16 bits of the CRC polynomial, which are used in both 16- and 32-bit CRC modes.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								HI	C L															1.0	W							
W								ПІ	ЗΠ															LC	, v v							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1


CRC_GPOLY field descriptions

Field	Description
31–16 HIGH	High Polynominal Half-word
	Writable and readable in 32-bit CRC mode (CTRL[TCRC] is 1). This field is not writable in 16-bit CRC mode (CTRL[TCRC] is 0).
15–0 LOW	Low Polynominal Half-word
	Writable and readable in both 32-bit and 16-bit CRC modes.

32.2.3 CRC Control register (CRC_CTRL)

This register controls the configuration and working of the CRC module. Appropriate bits must be set before starting a new CRC calculation. A new CRC calculation is initialized by asserting CTRL[WAS] and then writing the seed into the CRC data register.

Address: 4003_2000h base + 8h offset = 4003_2008h

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

CRC_CTRL field descriptions

Field	Description
31–30 TOT	Type Of Transpose For Writes
	Defines the transpose configuration of the data written to the CRC data register. See the description of the transpose feature for the available transpose options.
	00 No transposition.
	01 Bits in bytes are transposed; bytes are not transposed.
	10 Both bits in bytes and bytes are transposed.
	11 Only bytes are transposed; no bits in a byte are transposed.
29–28 TOTR	Type Of Transpose For Read
	Identifies the transpose configuration of the value read from the CRC Data register. See the description of the transpose feature for the available transpose options.
	00 No transposition.
	01 Bits in bytes are transposed; bytes are not transposed.
	10 Both bits in bytes and bytes are transposed.
	11 Only bytes are transposed; no bits in a byte are transposed.
27 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
26	Complement Read Of CRC Data Register
FXOR	Complement nead of one bata negister
	Some CRC protocols require the final checksum to be XORed with 0xFFFFFFFF or 0xFFFF. Asserting this bit enables on the fly complementing of read data.
	0 No XOR on reading.
	Invert or complement the read value of the CRC Data register.
25 WAS	Write CRC Data Register As Seed
Wite	When asserted, a value written to the CRC data register is considered a seed value. When deasserted, a value written to the CRC data register is taken as data for CRC computation.
	Writes to the CRC data register are data values.
	Writes to the CRC data register are seed values.
24 TCRC	Width of CRC protocol.
10110	0 16-bit CRC protocol.
	1 32-bit CRC protocol.
23–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

32.3 Functional description

32.3.1 CRC initialization/reinitialization

To enable the CRC calculation, the user must program CRC_CTRL[WAS], CRC_GPOLY,necessary parameters for transposition and CRC result inversion in the applicable registers. Asserting CRC_CTRL[WAS] enables the programming of the seed value into the CRC_DATA register.

After a completed CRC calculation, the module can be reinitialized for a new CRC computation by reasserting CRC_CTRL[WAS] and programming a new, or previously used, seed value. All other parameters must be set before programming the seed value and subsequent data values.

32.3.2 CRC calculations

In 16-bit and 32-bit CRC modes, data values can be programmed 8 bits, 16 bits, or 32 bits at a time, provided all bytes are contiguous. Noncontiguous bytes can lead to an incorrect CRC computation.

32.3.2.1 16-bit CRC

To compute a 16-bit CRC:

- 1. Clear CRC_CTRL[TCRC] to enable 16-bit CRC mode.
- 2. Program the transpose and complement options in the CTRL register as required for the CRC calculation. See Transpose feature and CRC result complement for details.
- 3. Write a 16-bit polynomial to the CRC_GPOLY[LOW] field. The CRC_GPOLY[HIGH] field is not usable in 16-bit CRC mode.
- 4. Set CRC_CTRL[WAS] to program the seed value.
- 5. Write a 16-bit seed to CRC_DATA[LU:LL]. CRC_DATA[HU:HL] are not used.
- 6. Clear CRC_CTRL[WAS] to start writing data values.
- 7. Write data values into CRC_DATA[HU:HL:LU:LL]. A CRC is computed on every data value write, and the intermediate CRC result is stored back into CRC_DATA[LU:LL].
- 8. When all values have been written, read the final CRC result from CRC_DATA[LU:LL].

Transpose and complement operations are performed on the fly while reading or writing values. See Transpose feature and CRC result complement for details.

32.3.2.2 32-bit CRC

To compute a 32-bit CRC:

- 1. Set CRC_CTRL[TCRC] to enable 32-bit CRC mode.
- 2. Program the transpose and complement options in the CTRL register as required for the CRC calculation. See Transpose feature and CRC result complement for details.
- 3. Write a 32-bit polynomial to CRC_GPOLY[HIGH:LOW].
- 4. Set CRC_CTRL[WAS] to program the seed value.
- 5. Write a 32-bit seed to CRC_DATA[HU:HL:LU:LL].
- 6. Clear CRC_CTRL[WAS] to start writing data values.
- 7. Write data values into CRC_DATA[HU:HL:LU:LL]. A CRC is computed on every data value write, and the intermediate CRC result is stored back into CRC_DATA[HU:HL:LU:LL].
- 8. When all values have been written, read the final CRC result from CRC_DATA[HU:HL:LU:LL]. The CRC is calculated bytewise, and two clocks are required to complete one CRC calculation.

Transpose and complement operations are performed on the fly while reading or writing values. See Transpose feature and CRC result complement for details.

32.3.3 Transpose feature

By default, the transpose feature is not enabled. However, some CRC standards require the input data and/or the final checksum to be transposed. The user software has the option to configure each transpose operation separately, as desired by the CRC standard. The data is transposed on the fly while being read or written.

Some protocols use little endian format for the data stream to calculate a CRC. In this case, the transpose feature usefully flips the bits. This transpose option is one of the types supported by the CRC module.

32.3.3.1 Types of transpose

The CRC module provides several types of transpose functions to flip the bits and/or bytes, for both writing input data and reading the CRC result, separately using the CTRL[TOT] or CTRL[TOTR] fields, according to the CRC calculation being used.

The following types of transpose functions are available for writing to and reading from the CRC data register:

1. CTRL[TOT] or CTRL[TOTR] is 00.

Functional description

No transposition occurs.

2. CTRL[TOT] or CTRL[TOTR] is 01

Bits in a byte are transposed, while bytes are not transposed.

reg[31:0] becomes {reg[24:31], reg[16:23], reg[8:15], reg[0:7]}

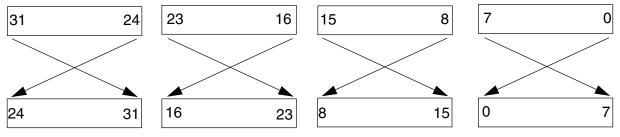


Figure 32-5. Transpose type 01

3. CTRL[TOT] or CTRL[TOTR] is 10.

Both bits in bytes and bytes are transposed.

reg[31:0] becomes = {reg[0:7], reg[8:15], reg[16:23], reg[24:31]}

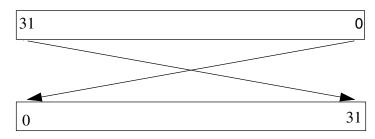


Figure 32-6. Transpose type 10

4. CTRL[TOT] or CTRL[TOTR] is 11.

Bytes are transposed, but bits are not transposed.

reg[31:0] becomes {reg[7:0], reg[15:8], reg[23:16], reg[31:24]}

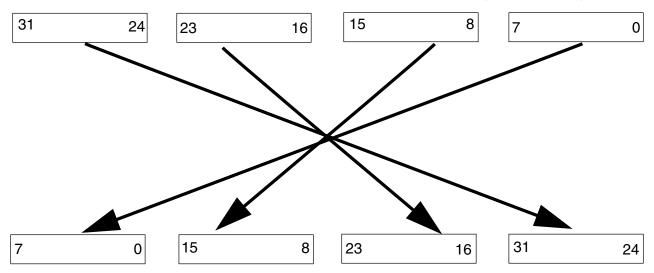


Figure 32-7. Transpose type 11

NOTE

For 8-bit and 16-bit write accesses to the CRC data register, the data is transposed with zeros on the unused byte or bytes (taking 32 bits as a whole), but the CRC is calculated on the valid byte(s) only. When reading the CRC data register for a 16-bit CRC result and using transpose options 10 and 11, the resulting value after transposition resides in the CRC[HU:HL] fields. The user software must account for this situation when reading the 16-bit CRC result, so reading 32 bits is preferred.

32.3.4 CRC result complement

When CTRL[FXOR] is set, the checksum is complemented. The CRC result complement function outputs the complement of the checksum value stored in the CRC data register every time the CRC data register is read. When CTRL[FXOR] is cleared, reading the CRC data register accesses the raw checksum value.

Functional description

Chapter 33 Random Number Generator Accelerator (RNGA)

33.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

This chapter describes the random-number-generator accelerator RNGA, including a programming model, functional description, and application information. Throughout this chapter, the terms "RNG" and "RNGA" are meant to be synonymous.

33.1.1 Overview

RNGA is a digital integrated circuit capable of generating 32-bit random numbers. The random bits are generated using shift registers with clocks derived from two free-running, independent ring oscillators. The configuration of the shift registers ensures statistically good data, that is, data that looks random. The oscillators, with their unknown frequencies and independent phases, provide the means of generating the required entropy needed to create random data. The random words generated by RNGA are loaded into an output register (OR). RNGA is designed to generate an error interrupt (if not masked), if OR is read and does not contain valid random data. OR contains valid random data if the LVL field in the status register (SR) is 1.

It is important to note there is no known cryptographic proof showing this is a secure method of generating random data. In fact, there may be an attack against this random number generator if its output is used directly in a cryptographic application. The attack is based on the linearity of the internal shift registers. Therefore, it is highly recommended that this random data produced by this module be used as an entropy source to provide an input seed to a NIST-approved pseudo-random-number generator based on DES or SHA-1 and defined in *NIST FIPS PUB 186-2 Appendix 3* and *NIST FIPS PUB SP 800-90*.

Modes of operation

The requirement is to maximize the entropy of this input seed. In order to do this, when data is extracted from RNGA as quickly as the hardware allows, there are about one or two bits of added entropy per 32-bit word. Any single bit of that word contains that entropy. Therefore, when used as an entropy source, a random number should be generated for each bit of entropy required, and the least significant bit (any bit would be equivalent) of each word retained. The remainder of each random number should then be discarded. Used this way, even with full knowledge of the internal state of RNGA and all prior random numbers, an attacker is not able to predict the values of the extracted bits.

Other sources of entropy can be used along with RNGA to generate the seed to the pseudorandom algorithm. The more random sources combined to create the seed, the better. The following is a list of sources that can be easily combined with the output of this module:

- Current time using highest precision possible
- Real-time system inputs that can be characterized as "random"
- Other entropy supplied directly by the user

33.2 Modes of operation

RNGA supports the following modes of operation.

Table 33-1. Modes of operation supported by RNGA

Mode	Description							
	The ring-oscillator clocks are active; RNGA generates entropy (randomness) from the clocks and stores it in shift registers.							
· ·	The ring-oscillator clocks are inactive; RNGA does not generate entropy.							

33.2.1 Entering Normal mode

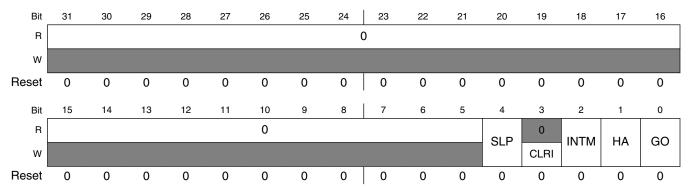
To enter Normal mode, write 0 to CR[SLP].

33.2.2 Entering Sleep mode

To enter Sleep mode, write 1 to CR[SLP].

33.3 Memory map and register definition

This section describes the RNGA registers.


RNG memory map

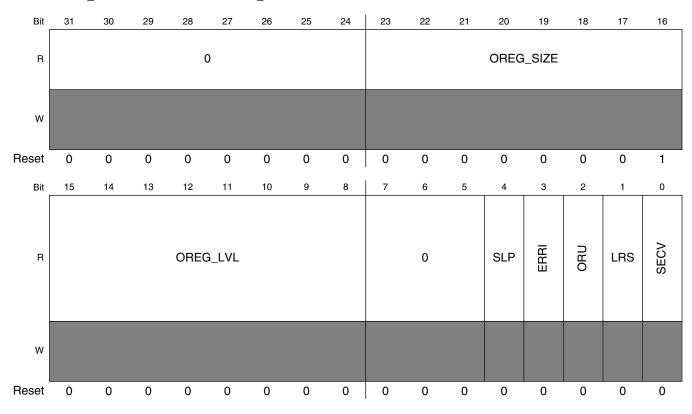
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_9000	RNGA Control Register (RNG_CR)	32	R/W	0000_0000h	33.3.1/749
4002_9004	RNGA Status Register (RNG_SR)	32	R	0001_0000h	33.3.2/751
4002_9008	RNGA Entropy Register (RNG_ER)	32	W (always reads 0)	0000_0000h	33.3.3/753
4002_900C	RNGA Output Register (RNG_OR)	32	R	0000_0000h	33.3.4/753

33.3.1 RNGA Control Register (RNG_CR)

Controls the operation of RNGA.

Address: 4002_9000h base + 0h offset = 4002_9000h

Memory map and register definition


RNG_CR field descriptions

Field	Description
31–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 SLP	Sleep
	Specifies whether RNGA is in Sleep or Normal mode.
	NOTE: You can also enter Sleep mode by asserting the DOZE signal.
	0 Normal mode
	1 Sleep (low-power) mode
3 CLRI	Clear Interrupt
OEI II	Clears the interrupt by resetting the error-interrupt indicator (SR[ERRI]).
	0 Do not clear the interrupt.
	1 Clear the interrupt. When you write 1 to this field, RNGA then resets the error-interrupt indicator (SR[ERRI]). This bit always reads as 0.
2	Interrupt Mask
INTM	Masks the triggering of an error interrupt to the interrupt controller when an OR underflow condition occurs.
	An OR underflow condition occurs when you read OR[RANDOUT] and SR[OREG_LVL]=0. See the Output Register (OR) description.
	0 Not masked
	1 Masked
1	High Assurance
HA	Enables notification of security violations (via SR[SECV]).
	A security violation occurs when you read OR[RANDOUT] and SR[OREG_LVL]=0.
	NOTE: This field is sticky. After enabling notification of security violations, you must reset RNGA to disable them again.
	0 Disabled
	1 Enabled
0 GO	Go
	Specifies whether random-data generation and loading (into OR[RANDOUT]) is enabled.
	NOTE: This field is sticky. You must reset RNGA to stop RNGA from loading OR[RANDOUT] with data.
	0 Disabled 1 Enabled

33.3.2 RNGA Status Register (RNG_SR)

Indicates the status of RNGA. This register is read-only.

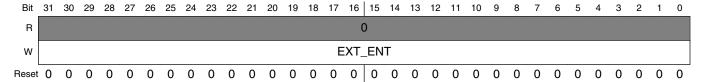
Address: 4002_9000h base + 4h offset = 4002_9004h

RNG_SR field descriptions

Field	Description
31–24	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
23–16 OREG_SIZE	Output Register Size
	Indicates the size of the Output (OR) register in terms of the number of 32-bit random-data words it can hold.
	1 One word (this value is fixed)
15–8 OREG_LVL	Output Register Level
ONLO_EVE	Indicates the number of random-data words that are in OR[RANDOUT], which indicates whether OR[RANDOUT] is valid.
	NOTE: If you read OR[RANDOUT] when SR[OREG_LVL] is not 0, then the contents of a random number contained in OR[RANDOUT] are returned, and RNGA writes 0 to both OR[RANDOUT] and SR[OREG_LVL].
	0 No words (empty)
	1 One word (valid)

Table continues on the next page...

Memory map and register definition

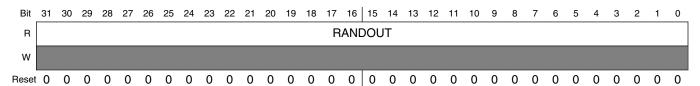

RNG_SR field descriptions (continued)

Field	Description
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 SLP	Sleep Specifies whether RNGA is in Sleep or Normal mode.
	NOTE: You can also enter Sleep mode by asserting the DOZE signal.
	0 Normal mode1 Sleep (low-power) mode
3 ERRI	Error Interrupt
	Indicates whether an OR underflow condition has occurred since you last cleared the error interrupt (CR[CLRI]) or RNGA was reset, regardless of whether the error interrupt is masked (CR[INTM]).
	An OR underflow condition occurs when you read OR[RANDOUT] and SR[OREG_LVL]=0.
	NOTE: After you reset the error-interrupt indicator (via CR[CLRI]), RNGA writes 0 to this field.
	No underflow Underflow
2 ORU	Output Register Underflow
ORU	Indicates whether an OR underflow condition has occurred since you last read this register (SR) or RNGA was reset, regardless of whether the error interrupt is masked (CR[INTM]).
	An OR underflow condition occurs when you read OR[RANDOUT] and SR[OREG_LVL]=0.
	NOTE: After you read this register, RNGA writes 0 to this field.
	0 No underflow 1 Underflow
1	Last Read Status
LRS	Indicates whether the most recent read of OR[RANDOUT] caused an OR underflow condition, regardless of whether the error interrupt is masked (CR[INTM]).
	An OR underflow condition occurs when you read OR[RANDOUT] and SR[OREG_LVL]=0.
	NOTE: After you read this register, RNGA writes 0 to this field.
	0 No underflow1 Underflow
0 SECV	Security Violation
SECV	Used only when high assurance is enabled (CR[HA]). Indicates that a security violation has occurred.
	NOTE: This field is sticky. To clear SR[SECV], you must reset RNGA.
	0 No security violation
	1 Security violation

33.3.3 RNGA Entropy Register (RNG_ER)

Specifies an entropy value that RNGA uses in addition to its ring oscillators to seed its pseudorandom algorithm. This is a write-only register; reads return all zeros.

Address: 4002_9000h base + 8h offset = 4002_9008h


RNG_ER field descriptions

Field	Description
31–0 EXT_ENT	External Entropy Specifies an entropy value that BNGA uses in addition to its ring oscillators to seed its pseudorandom
	Specifies an entropy value that RNGA uses in addition to its ring oscillators to seed its pseudorandom algorithm.
	NOTE: Specifying a value for this field is optional but recommended. You can write to this field at any time during operation.

33.3.4 RNGA Output Register (RNG_OR)

Stores a random-data word generated by RNGA.

Address: 4002_9000h base + Ch offset = 4002_900Ch

RNG_OR field descriptions

Field	Description	
31–0 RANDOUT	Random Output	
	Stores a random-data word generated by RNGA. This is a read-only field.	
	NOTE: Before reading RANDOUT, be sure it is valid (SR[OREG_LVL]=1).	

RNG_OR field descriptions (continued)

Field	Description		
	0	Invalid data (if you read this field when it is 0 and SR[OREG_LVL] is 0, RNGA then writes 1 to SR[ERRI], SR[ORU], and SR[LRS]; when the error interrupt is not masked (CR[INTM]=0), RNGA also asserts an error interrupt request to the interrupt controller).	
	All other values	Valid data (if you read this field when SR[OREG_LVL] is not 0, RNGA returns RANDOUT, and then writes 0 to this field and to SR[OREG_LVL]).	

33.4 Functional description

This is a block diagram of RNGA.

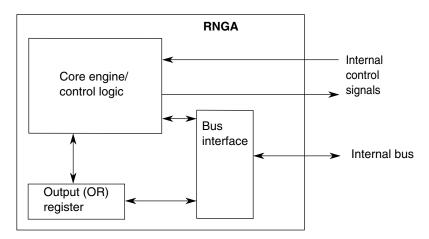


Figure 33-5. RNGA block diagram

33.4.1 Output (OR) register

The Output (OR) register provides temporary storage for random data generated by the core engine / control logic. The Status (SR) register allows the user to monitor the presence of valid random data in OR through SR[OREG_LVL].

If the OR is read while containing valid random data (as signaled by SR[OREG_LVL] = 1), the valid data is returned, then OR and SR[OREG_LVL] are both cleared. If the user reads from OR when it is empty, RNGA returns all zeros and, if the interrupt is enabled, RNGA drives a request to the interrupt controller. Polling SR[OREG_LVL] is very important to make sure random values are present before reading from OR.

33.4.2 Core engine / control logic

This block contains RNGA's control logic as well as its core engine used to generate random data.

33.4.2.1 Control logic

The control logic contains the address decoder, all addressable registers, and control state machines for RNGA. This block is responsible for communication with both the peripheral interface and the Output (OR) register interface. The block also controls the core engine to generate random data. The general functionality of the block is as follows:

After reset, RNGA operates in Normal mode as follows:

- 1. The core engine generates entropy and stores it in the shift registers.
- 2. After you enable random-data generation by loading CR[GO], every 256 clock cycles the core engine generates a new random-data word. If SR[OREG_LVL] = 0, then the control block loads the new random data into OR and set SR[OREG_LVL] = 1; else the new data is discarded.

33.4.2.2 Core engine

The core engine block contains the logic used to generate random data. The logic within the core engine contains the internal shift registers as well as the logic used to generate the two oscillator-based clocks. The control logic determines how the shift registers are configured as well as when the oscillator clocks are turned on.

33.5 Initialization/application information

The intended general operation of RNGA is as follows:

- 1. Reset/initialize.
- 2. Write 1 to CR[INTM], CR[HA], and CR[GO].
- 3. Poll SR[OREG_LVL] until it is not 0.
- 4. When SR[OREG_LVL] is not 0, read the available random data from OR[RANDOUT].
- 5. Repeat steps 3 and 4 as needed.

Chapter 34 Analog-to-Digital Converter (ADC)

34.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The 16-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within an integrated microcontroller system-on-chip.

NOTE

For the chip specific modes of operation, see the power management information of the device.

34.1.1 Features

Following are the features of the ADC module.

- Linear successive approximation algorithm with up to 16-bit resolution
- Up to four pairs of differential and 24 single-ended external analog inputs
- Output modes:
 - differential 16-bit, 13-bit, 11-bit, and 9-bit modes
 - single-ended 16-bit, 12-bit, 10-bit, and 8-bit modes
- Output format in 2's complement 16-bit sign extended for differential modes
- Output in right-justified unsigned format for single-ended
- Single or continuous conversion, that is, automatic return to idle after single conversion

Introduction

- Configurable sample time and conversion speed/power
- Conversion complete/hardware average complete flag and interrupt
- Input clock selectable from up to four sources
- Operation in low-power modes for lower noise
- Asynchronous clock source for lower noise operation with option to output the clock
- Selectable hardware conversion trigger with hardware channel select
- Automatic compare with interrupt for less-than, greater-than or equal-to, within range, or out-of-range, programmable value
- Temperature sensor
- Hardware average function
- Selectable voltage reference: external or alternate
- Self-Calibration mode

34.1.2 Block diagram

The following figure is the ADC module block diagram.

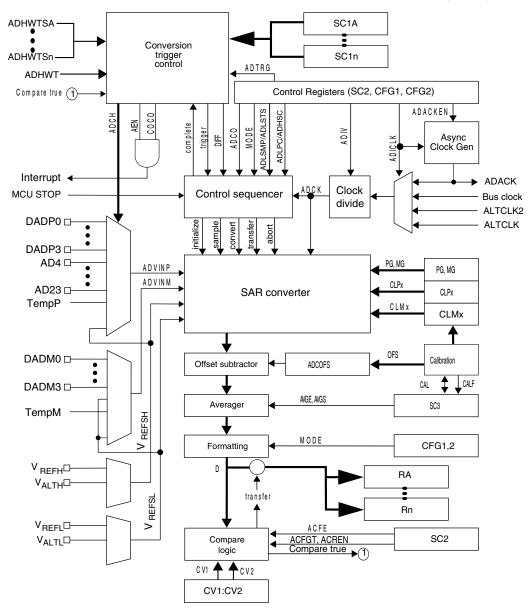


Figure 34-1. ADC block diagram

34.2 ADC signal descriptions

The ADC module supports up to 4 pairs of differential inputs and up to 24 single-ended inputs.

Each differential pair requires two inputs, DADPx and DADMx. The ADC also requires four supply/reference/ground connections.

NOTE

Refer to ADC configuration section in chip configuration chapter for the number of channels supported on this device.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Table 34-1. ADC signal descriptions

Signal	Description	I/O
DADP3-DADP0	Differential Analog Channel Inputs	I
DADM3-DADM0	Differential Analog Channel Inputs	I
AD <i>n</i>	Single-Ended Analog Channel Inputs	I
V _{REFSH}	Voltage Reference Select High	I
V _{REFSL}	Voltage Reference Select Low	I
V _{DDA}	Analog Power Supply	I
V _{SSA}	Analog Ground	I

34.2.1 Analog Power (V_{DDA})

The ADC analog portion uses V_{DDA} as its power connection. In some packages, V_{DDA} is connected internally to V_{DD} . If externally available, connect the V_{DDA} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDA} for good results.

34.2.2 Analog Ground (V_{SSA})

The ADC analog portion uses V_{SSA} as its ground connection. In some packages, V_{SSA} is connected internally to V_{SS} . If externally available, connect the V_{SSA} pin to the same voltage potential as V_{SS} .

34.2.3 Voltage Reference Select

V_{REFSH} and V_{REFSL} are the high and low reference voltages for the ADC module.

The ADC can be configured to accept one of two voltage reference pairs for V_{REFSH} and V_{REFSL} . Each pair contains a positive reference that must be between the minimum Ref Voltage High and V_{DDA} , and a ground reference that must be at the same potential as V_{SSA} . The two pairs are external (V_{REFH} and V_{REFL}) and alternate (V_{ALTH} and V_{ALTL}). These voltage references are selected using SC2[REFSEL]. The alternate V_{ALTH} and V_{ALTL} voltage reference pair may select additional external pins or internal sources depending on MCU configuration. See the chip configuration information on the Voltage References specific to this MCU.

In some packages, V_{REFH} is connected in the package to V_{DDA} and V_{REFL} to V_{SSA} . If externally available, the positive reference(s) may be connected to the same potential as V_{DDA} or may be driven by an external source to a level between the minimum Ref Voltage High and the V_{DDA} potential. V_{REFH} must never exceed V_{DDA} . Connect the ground references to the same voltage potential as V_{SSA} .

34.2.4 Analog Channel Inputs (ADx)

The ADC module supports up to 24 single-ended analog inputs. A single-ended input is selected for conversion through the SC1[ADCH] channel select bits when SC1n[DIFF] is low.

34.2.5 Differential Analog Channel Inputs (DADx)

The ADC module supports up to four differential analog channel inputs. Each differential analog input is a pair of external pins, DADPx and DADMx, referenced to each other to provide the most accurate analog to digital readings. A differential input is selected for conversion through SC1[ADCH] when SC1n[DIFF] is high. All DADPx inputs may be used as single-ended inputs if SC1n[DIFF] is low. In certain MCU configurations, some DADMx inputs may also be used as single-ended inputs if SC1n[DIFF] is low. See the chip configuration chapter for ADC connections specific to this MCU.

34.3 Memory map and register definitions

This section describes the ADC registers.

ADC memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_7000	ADC Status and Control Registers 1 (ADC1_SC1A)	32	R/W	0000_001Fh	34.3.1/763
4002_7004	ADC Status and Control Registers 1 (ADC1_SC1B)	32	R/W	0000_001Fh	34.3.1/763
4002_7008	ADC Configuration Register 1 (ADC1_CFG1)	32	R/W	0000_0000h	34.3.2/766
4002_700C	ADC Configuration Register 2 (ADC1_CFG2)	32	R/W	0000_0000h	34.3.3/768
4002_7010	ADC Data Result Register (ADC1_RA)	32	R	0000_0000h	34.3.4/769
4002_7014	ADC Data Result Register (ADC1_RB)	32	R	0000_0000h	34.3.4/769
4002_7018	Compare Value Registers (ADC1_CV1)	32	R/W	0000_0000h	34.3.5/770
4002_701C	Compare Value Registers (ADC1_CV2)	32	R/W	0000_0000h	34.3.5/770

ADC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_7020	Status and Control Register 2 (ADC1_SC2)	32	R/W	0000_0000h	34.3.6/771
4002_7024	Status and Control Register 3 (ADC1_SC3)	32	R/W	0000_0000h	34.3.7/773
4002_7028	ADC Offset Correction Register (ADC1_OFS)	32	R/W	0000_0004h	34.3.8/775
4002_702C	ADC Plus-Side Gain Register (ADC1_PG)	32	R/W	0000_8200h	34.3.9/775
4002_7030	ADC Minus-Side Gain Register (ADC1_MG)	32	R/W	0000_8200h	34.3.10/ 776
4002_7034	ADC Plus-Side General Calibration Value Register (ADC1_CLPD)	32	R/W	0000_000Ah	34.3.11/ 776
4002_7038	ADC Plus-Side General Calibration Value Register (ADC1_CLPS)	32	R/W	0000_0020h	34.3.12/ 777
4002_703C	ADC Plus-Side General Calibration Value Register (ADC1_CLP4)	32	R/W	0000_0200h	34.3.13/ 777
4002_7040	ADC Plus-Side General Calibration Value Register (ADC1_CLP3)	32	R/W	0000_0100h	34.3.14/ 778
4002_7044	ADC Plus-Side General Calibration Value Register (ADC1_CLP2)	32	R/W	0000_0080h	34.3.15/ 778
4002_7048	ADC Plus-Side General Calibration Value Register (ADC1_CLP1)	32	R/W	0000_0040h	34.3.16/ 779
4002_704C	ADC Plus-Side General Calibration Value Register (ADC1_CLP0)	32	R/W	0000_0020h	34.3.17/ 779
4002_7054	ADC Minus-Side General Calibration Value Register (ADC1_CLMD)	32	R/W	0000_000Ah	34.3.18/ 780
4002_7058	ADC Minus-Side General Calibration Value Register (ADC1_CLMS)	32	R/W	0000_0020h	34.3.19/ 780
4002_705C	ADC Minus-Side General Calibration Value Register (ADC1_CLM4)	32	R/W	0000_0200h	34.3.20/ 781
4002_7060	ADC Minus-Side General Calibration Value Register (ADC1_CLM3)	32	R/W	0000_0100h	34.3.21/ 781
4002_7064	ADC Minus-Side General Calibration Value Register (ADC1_CLM2)	32	R/W	0000_0080h	34.3.22/ 782
4002_7068	ADC Minus-Side General Calibration Value Register (ADC1_CLM1)	32	R/W	0000_0040h	34.3.23/ 782
4002_706C	ADC Minus-Side General Calibration Value Register (ADC1_CLM0)	32	R/W	0000_0020h	34.3.24/ 783
4003_B000	ADC Status and Control Registers 1 (ADC0_SC1A)	32	R/W	0000_001Fh	34.3.1/763
4003_B004	ADC Status and Control Registers 1 (ADC0_SC1B)	32	R/W	0000_001Fh	34.3.1/763
4003_B008	ADC Configuration Register 1 (ADC0_CFG1)	32	R/W	0000_0000h	34.3.2/766
4003_B00C	ADC Configuration Register 2 (ADC0_CFG2)	32	R/W	0000_0000h	34.3.3/768
4003_B010	ADC Data Result Register (ADC0_RA)	32	R	0000_0000h	34.3.4/769
4003_B014	ADC Data Result Register (ADC0_RB)	32	R	0000_0000h	34.3.4/769
4003_B018	Compare Value Registers (ADC0_CV1)	32	R/W	0000_0000h	34.3.5/770
4003_B01C	Compare Value Registers (ADC0_CV2)	32	R/W	0000_0000h	34.3.5/770

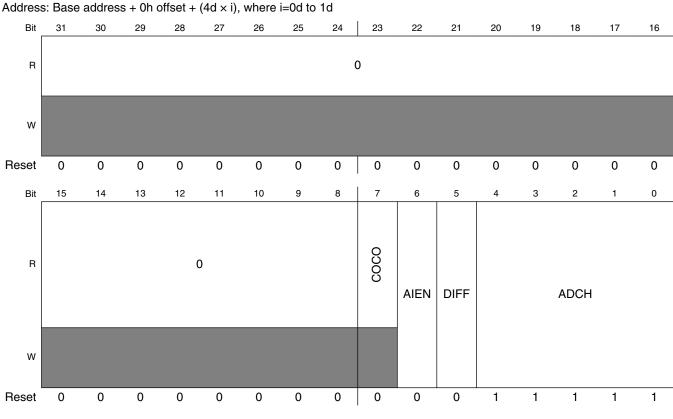
ADC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_B020	Status and Control Register 2 (ADC0_SC2)	32	R/W	0000_0000h	34.3.6/771
4003_B024	Status and Control Register 3 (ADC0_SC3)	32	R/W	0000_0000h	34.3.7/773
4003_B028	ADC Offset Correction Register (ADC0_OFS)	32	R/W	0000_0004h	34.3.8/775
4003_B02C	ADC Plus-Side Gain Register (ADC0_PG)	32	R/W	0000_8200h	34.3.9/775
4003_B030	ADC Minus-Side Gain Register (ADC0_MG)	32	R/W	0000_8200h	34.3.10/ 776
4003_B034	ADC Plus-Side General Calibration Value Register (ADC0_CLPD)	32	R/W	0000_000Ah	34.3.11/ 776
4003_B038	ADC Plus-Side General Calibration Value Register (ADC0_CLPS)	R/W	0000_0020h	34.3.12/ 777	
4003_B03C	ADC Plus-Side General Calibration Value Register (ADC0_CLP4)	32	R/W	0000_0200h	34.3.13/ 777
4003_B040	ADC Plus-Side General Calibration Value Register (ADC0_CLP3)	R/W	0000_0100h	34.3.14/ 778	
4003_B044	ADC Plus-Side General Calibration Value Register (ADC0_CLP2)	R/W	0000_0080h	34.3.15/ 778	
4003_B048	ADC Plus-Side General Calibration Value Register (ADC0_CLP1)	32	R/W	0000_0040h	34.3.16/ 779
4003_B04C	ADC Plus-Side General Calibration Value Register (ADC0_CLP0)	32	R/W	0000_0020h	34.3.17/ 779
4003_B054	ADC Minus-Side General Calibration Value Register (ADC0_CLMD)	32	R/W	0000_000Ah	34.3.18/ 780
4003_B058	ADC Minus-Side General Calibration Value Register (ADC0_CLMS)	32	R/W	0000_0020h	34.3.19/ 780
4003_B05C	ADC Minus-Side General Calibration Value Register (ADC0_CLM4)	32	R/W	0000_0200h	34.3.20/ 781
4003_B060	ADC Minus-Side General Calibration Value Register (ADC0_CLM3)	32	R/W	0000_0100h	34.3.21/ 781
4003_B064	ADC Minus-Side General Calibration Value Register (ADC0_CLM2)	32	R/W	0000_0080h	34.3.22/ 782
4003_B068	ADC Minus-Side General Calibration Value Register (ADC0_CLM1)	32	R/W	0000_0040h	34.3.23/ 782
4003_B06C	ADC Minus-Side General Calibration Value Register (ADC0_CLM0)	32	R/W	0000_0020h	34.3.24/ 783

34.3.1 ADC Status and Control Registers 1 (ADCx_SC1n)

SC1A is used for both software and hardware trigger modes of operation.

To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC can have more than one status and control register: one for each conversion. The SC1B–SC1n registers indicate potentially multiple SC1 registers for use only in hardware


Memory map and register definitions

trigger mode. See the chip configuration information about the number of SC1n registers specific to this device. The SC1n registers have identical fields, and are used in a "pingpong" approach to control ADC operation.

At any one point in time, only one of the SC1n registers is actively controlling ADC conversions. Updating SC1A while SC1n is actively controlling a conversion is allowed, and vice-versa for any of the SC1n registers specific to this MCU.

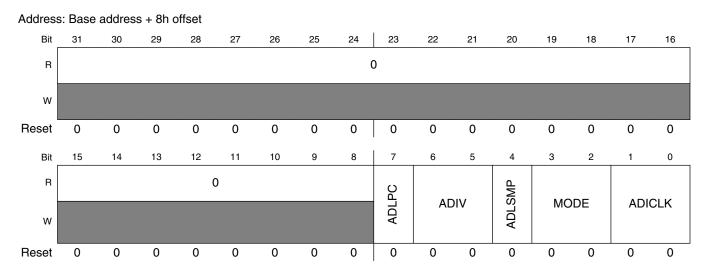
Writing SC1A while SC1A is actively controlling a conversion aborts the current conversion. In Software Trigger mode, when SC2[ADTRG]=0, writes to SC1A subsequently initiate a new conversion, if SC1[ADCH] contains a value other than all 1s.

Writing any of the SC1n registers while that specific SC1n register is actively controlling a conversion aborts the current conversion. None of the SC1B-SC1n registers are used for software trigger operation and therefore writes to the SC1B-SC1n registers do not initiate a new conversion.

ADCx_SC1n field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 COCO	Conversion Complete Flag

ADCx_SC1n field descriptions (continued)

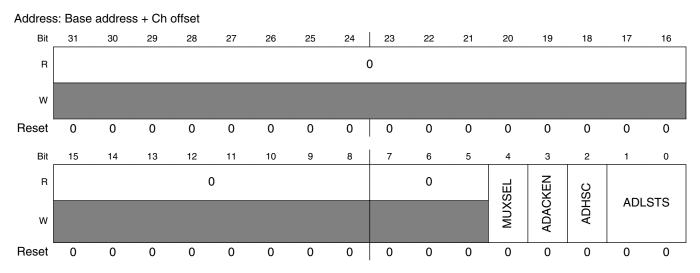

Field	Description
	This is a read-only field that is set each time a conversion is completed when the compare function is disabled, or SC2[ACFE]=0 and the hardware average function is disabled, or SC3[AVGE]=0. When the compare function is enabled, or SC2[ACFE]=1, COCO is set upon completion of a conversion only if the compare result is true. When the hardware average function is enabled, or SC3[AVGE]=1, COCO is set upon completion of the selected number of conversions (determined by AVGS). COCO in SC1A is also set at the completion of a calibration sequence. COCO is cleared when the respective SC1n register is written or when the respective Rn register is read.
	0 Conversion is not completed.1 Conversion is completed.
6 AIEN	Interrupt Enable Enables conversion complete interrupts. When COCO becomes set while the respective AIEN is high, an interrupt is asserted. O Conversion complete interrupt is disabled. 1 Conversion complete interrupt is enabled.
5	Differential Mode Enable
DIFF	Configures the ADC to operate in differential mode. When enabled, this mode automatically selects from the differential channels, and changes the conversion algorithm and the number of cycles to complete a conversion.
	0 Single-ended conversions and input channels are selected.
	1 Differential conversions and input channels are selected.
4–0 ADCH	Input channel select Selects one of the input channels. The input channel decode depends on the value of DIFF. DAD0-DAD3 are associated with the input pin pairs DADPx and DADMx.
	NOTE: Some of the input channel options in the bitfield-setting descriptions might not be available for your device. For the actual ADC channel assignments for your device, see the Chip Configuration details.
	The successive approximation converter subsystem is turned off when the channel select bits are all set, that is, ADCH = 11111. This feature allows explicit disabling of the ADC and isolation of the input channel from all sources. Terminating continuous conversions this way prevents an additional single conversion from being performed. It is not necessary to set ADCH to all 1s to place the ADC in a low-power state when continuous conversions are not enabled because the module automatically enters a low-power state when a conversion completes.
	When DIFF=0, DADP0 is selected as input; when DIFF=1, DAD0 is selected as input. When DIFF=0, DADP1 is selected as input; when DIFF=1, DAD1 is selected as input. When DIFF=0, DADP2 is selected as input; when DIFF=1, DAD2 is selected as input. When DIFF=0, DADP3 is selected as input; when DIFF=1, DAD3 is selected as input. When DIFF=0, AD4 is selected as input; when DIFF=1, it is reserved. When DIFF=0, AD5 is selected as input; when DIFF=1, it is reserved. When DIFF=0, AD6 is selected as input; when DIFF=1, it is reserved. When DIFF=0, AD7 is selected as input; when DIFF=1, it is reserved. When DIFF=0, AD8 is selected as input; when DIFF=1, it is reserved. When DIFF=0, AD8 is selected as input; when DIFF=1, it is reserved.
	01010 When DIFF=0, AD10 is selected as input; when DIFF=1, it is reserved.
I	01011 When DIFF=0, AD11 is selected as input; when DIFF=1, it is reserved.

ADCx_SC1n field descriptions (continued)

Field		Description
	01100	When DIFF=0, AD12 is selected as input; when DIFF=1, it is reserved.
	01101	When DIFF=0, AD13 is selected as input; when DIFF=1, it is reserved.
	01110	When DIFF=0, AD14 is selected as input; when DIFF=1, it is reserved.
	01111	When DIFF=0, AD15 is selected as input; when DIFF=1, it is reserved.
	10000	When DIFF=0, AD16 is selected as input; when DIFF=1, it is reserved.
	10001	When DIFF=0, AD17 is selected as input; when DIFF=1, it is reserved.
	10010	When DIFF=0, AD18 is selected as input; when DIFF=1, it is reserved.
	10011	When DIFF=0, AD19 is selected as input; when DIFF=1, it is reserved.
	10100	When DIFF=0, AD20 is selected as input; when DIFF=1, it is reserved.
	10101	When DIFF=0, AD21 is selected as input; when DIFF=1, it is reserved.
	10110	When DIFF=0, AD22 is selected as input; when DIFF=1, it is reserved.
	10111	When DIFF=0, AD23 is selected as input; when DIFF=1, it is reserved.
	11000	Reserved.
	11001	Reserved.
	11010	When DIFF=0, Temp Sensor (single-ended) is selected as input; when DIFF=1, Temp Sensor (differential) is selected as input.
	11011	When DIFF=0,Bandgap (single-ended) is selected as input; when DIFF=1, Bandgap (differential) is selected as input.
	11100	Reserved.
	11101	When DIFF=0,V _{REFSH} is selected as input; when DIFF=1, -V _{REFSH} (differential) is selected as input. Voltage reference selected is determined by SC2[REFSEL].
	11110	When DIFF=0,V _{REFSL} is selected as input; when DIFF=1, it is reserved. Voltage reference selected is determined by SC2[REFSEL].
	11111	Module is disabled.

34.3.2 ADC Configuration Register 1 (ADCx_CFG1)

The configuration Register 1 (CFG1) selects the mode of operation, clock source, clock divide, and configuration for low power or long sample time.



ADCx_CFG1 field descriptions

Field	Description										
31–8	This field is reserved.										
Reserved	This read-only field is reserved and always has the value 0.										
7	Low-Power Configuration										
ADLPC	Controls the power configuration of the successive approximation converter. This optimizes power consumption when higher sample rates are not required.										
	0 Normal power configuration.										
	1 Low-power configuration. The power is reduced at the expense of maximum clock speed.										
6–5	Clock Divide Select										
ADIV	Clock Divide Gelect										
	Selects the divide ratio used by the ADC to generate the internal clock ADCK.										
	00 The divide ratio is 1 and the clock rate is input clock.										
	01 The divide ratio is 2 and the clock rate is (input clock)/2.										
	10 The divide ratio is 4 and the clock rate is (input clock)/4.										
	11 The divide ratio is 8 and the clock rate is (input clock)/8.										
4	Sample Time Configuration										
ADLSMP	Selects between different sample times based on the conversion mode selected. This field adjusts the										
	sample period to allow higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption if continuous conversions are enabled and high conversion rates are not required. When ADLSMP=1, the long sample time select bits, (ADLSTS[1:0]), can select the extent of the long sample time.										
	0. Chart comple time										
	0 Short sample time.										
	1 Long sample time.										
3–2 MODE	Conversion mode selection										
MODE	Selects the ADC resolution mode.										
	00 When DIFF=0:It is single-ended 8-bit conversion; when DIFF=1, it is differential 9-bit conversion with 2's complement output.										
	01 When DIFF=0:It is single-ended 12-bit conversion; when DIFF=1, it is differential 13-bit conversion with 2's complement output.										
	10 When DIFF=0:It is single-ended 10-bit conversion.; when DIFF=1, it is differential 11-bit conversion with 2's complement output										
	When DIFF=0:It is single-ended 16-bit conversion; when DIFF=1, it is differential 16-bit conversion with 2's complement output										
1-0 ADICLK	Input Clock Select										
ADIOLIX	Selects the input clock source to generate the internal clock, ADCK. Note that when the ADACK clock source is selected, it is not required to be active prior to conversion start. When it is selected and it is not active prior to a conversion start, when CFG2[ADACKEN]=0, the asynchronous clock is activated at the start of a conversion and deactivated when conversions are terminated. In this case, there is an associated clock startup delay each time the clock source is re-activated.										
	00 Bus clock										
	01 Alternate clock 2 (ALTCLK2)										
	10 Alternate clock (ALTCLK)										

34.3.3 ADC Configuration Register 2 (ADCx_CFG2)

Configuration Register 2 (CFG2) selects the special high-speed configuration for very high speed conversions and selects the long sample time duration during long sample mode.

ADCx_CFG2 field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 MUXSEL	ADC Mux Select Changes the ADC mux setting to select between alternate sets of ADC channels. 0 ADxxa channels are selected.
	1 ADxxb channels are selected.
3 ADACKEN	Asynchronous Clock Output Enable Enables the asynchronous clock source and the clock source output regardless of the conversion and status of CFG1[ADICLK]. Based on MCU configuration, the asynchronous clock may be used by other modules. See chip configuration information. Setting this field allows the clock to be used even while the ADC is idle or operating from a different clock source. Also, latency of initiating a single or first-continuous conversion with the asynchronous clock selected is reduced because the ADACK clock is already operational.
	 Asynchronous clock output disabled; Asynchronous clock is enabled only if selected by ADICLK and a conversion is active. Asynchronous clock and clock output is enabled regardless of the state of the ADC.
2 ADHSC	High-Speed Configuration Configures the ADC for very high-speed operation. The conversion sequence is altered with 2 ADCK cycles added to the conversion time to allow higher speed conversion clocks.

ADCx_CFG2 field descriptions (continued)

Field	Description
	0 Normal conversion sequence selected.
	1 High-speed conversion sequence selected with 2 additional ADCK cycles to total conversion time.
1–0 ADLSTS	Long Sample Time Select
	Selects between the extended sample times when long sample time is selected, that is, when CFG1[ADLSMP]=1. This allows higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption when continuous conversions are enabled if high conversion rates are not required.
	00 Default longest sample time; 20 extra ADCK cycles; 24 ADCK cycles total.
	01 12 extra ADCK cycles; 16 ADCK cycles total sample time.
	10 6 extra ADCK cycles; 10 ADCK cycles total sample time.
	11 2 extra ADCK cycles; 6 ADCK cycles total sample time.

34.3.4 ADC Data Result Register (ADCx_Rn)

The data result registers (Rn) contain the result of an ADC conversion of the channel selected by the corresponding status and channel control register (SC1A:SC1n). For every status and channel control register, there is a corresponding data result register.

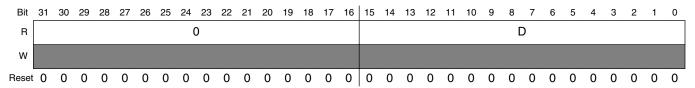
Unused bits in R n are cleared in unsigned right-aligned modes and carry the sign bit (MSB) in sign-extended 2's complement modes. For example, when configured for 10-bit single-ended mode, D[15:10] are cleared. When configured for 11-bit differential mode, D[15:10] carry the sign bit, that is, bit 10 extended through bit 15.

The following table describes the behavior of the data result registers in the different modes of operation.

Table 34-43. Data result register description

Conversion mode	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Format
16-bit differential	S	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Signed 2's complement
16-bit single- ended	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Unsigned right justified
13-bit differential	S	S	S	S	D	D	D	D	D	D	D	D	D	D	D	D	Sign-extended 2's complement
12-bit single- ended	0	0	0	0	D	D	D	D	D	D	D	D	D	D	D	D	Unsigned right- justified
11-bit differential	S	S	S	S	S	S	D	D	D	D	D	D	D	D	D	D	Sign-extended 2's complement
10-bit single- ended	0	0	0	0	0	0	D	D	D	D	D	D	D	D	D	D	Unsigned right- justified

Table 34-43. Data result register description (continued)


Conversion mode	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Format
9-bit differential	S	S	S	S	S	S	S	S	D	D	D	D	D	D	D		Sign-extended 2's complement
8-bit single- ended	0	0	0	0	0	0	0	0	D	D	D	D	D	D	D		Unsigned right- justified

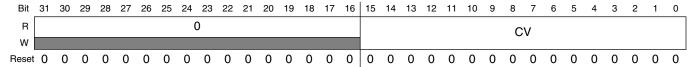
NOTE

S: Sign bit or sign bit extension;

D: Data, which is 2's complement data if indicated

Address: Base address + 10h offset + $(4d \times i)$, where i=0d to 1d

ADCx_Rn field descriptions

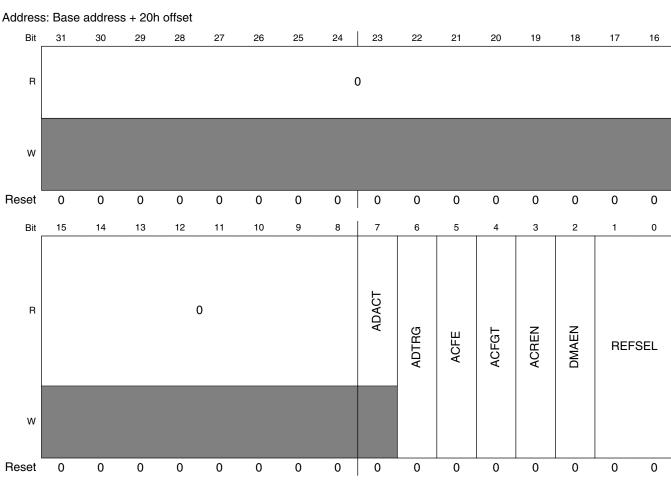

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 D	Data result

34.3.5 Compare Value Registers (ADCx_CVn)

The Compare Value Registers (CV1 and CV2) contain a compare value used to compare the conversion result when the compare function is enabled, that is, SC2[ACFE]=1. This register is formatted in the same way as the Rn registers in different modes of operation for both bit position definition and value format using unsigned or sign-extended 2's complement. Therefore, the compare function uses only the CVn fields that are related to the ADC mode of operation.

The compare value 2 register (CV2) is used only when the compare range function is enabled, that is, SC2[ACREN]=1.

Address: Base address + 18h offset + (4d × i), where i=0d to 1d



ADCx_CVn field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 CV	Compare Value.

34.3.6 Status and Control Register 2 (ADCx_SC2)

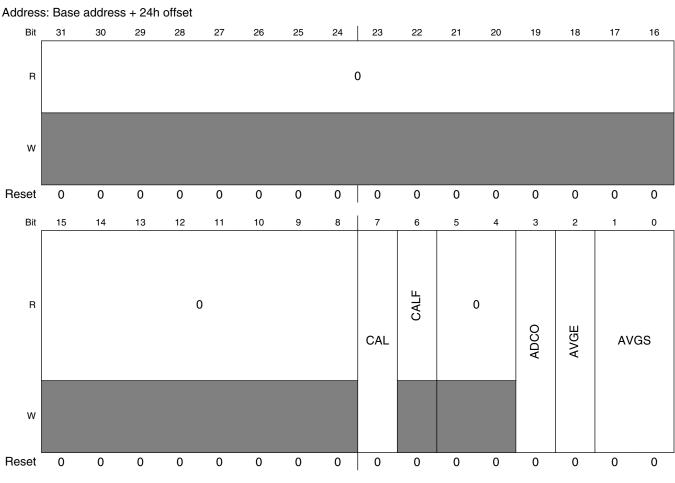
The status and control register 2 (SC2) contains the conversion active, hardware/software trigger select, compare function, and voltage reference select of the ADC module.

ADCx_SC2 field descriptions

Field	Description
	This field is reserved. This read-only field is reserved and always has the value 0.
7 ADACT	Conversion Active

Memory map and register definitions

ADCx_SC2 field descriptions (continued)


Field	Description
	Indicates that a conversion or hardware averaging is in progress. ADACT is set when a conversion is
	initiated and cleared when a conversion is completed or aborted.
	0 Conversion not in progress.
	1 Conversion in progress.
6 ADTRG	Conversion Trigger Select
	 Selects the type of trigger used for initiating a conversion. Two types of trigger are selectable: Software trigger: When software trigger is selected, a conversion is initiated following a write to SC1A. Hardware trigger: When hardware trigger is selected, a conversion is initiated following the assertion
	of the ADHWT input after a pulse of the ADHWTSn input.
	Software trigger selected. Hardware trigger selected.
5	Hardware trigger selected. Compare Function Enable
ACFE	Compare Function Enable
	Enables the compare function.
	0 Compare function disabled.
	1 Compare function enabled.
4	Compare Function Greater Than Enable
ACFGT	Configures the compare function to check the conversion result relative to the CV1 and CV2 based upon the value of ACREN. ACFE must be set for ACFGT to have any effect.
	O Configures less than threshold, outside range not inclusive and inside range not inclusive; functionality based on the values placed in CV1 and CV2.
	1 Configures greater than or equal to threshold, outside and inside ranges inclusive; functionality based on the values placed in CV1 and CV2.
3	Compare Function Range Enable
ACREN	Configures the compare function to check if the conversion result of the input being monitored is either between or outside the range formed by CV1 and CV2 determined by the value of ACFGT. ACFE must be set for ACFGT to have any effect.
	0 Range function disabled. Only CV1 is compared.
	1 Range function enabled. Both CV1 and CV2 are compared.
2 DMAEN	DMA Enable
	0 DMA is disabled.
	1 DMA is enabled and will assert the ADC DMA request during an ADC conversion complete event noted when any of the SC1n[COCO] flags is asserted.
1–0 REFSEL	Voltage Reference Selection
	Selects the voltage reference source used for conversions.
	00 Default voltage reference pin pair, that is, external pins V _{REFH} and V _{REFL}
	O1 Alternate reference pair, that is, V _{ALTH} and V _{ALTL} . This pair may be additional external pins or internal sources depending on the MCU configuration. See the chip configuration information for details specific to this MCU

ADCx_SC2 field descriptions (continued)

Field	Description
	10 Reserved
	11 Reserved

34.3.7 Status and Control Register 3 (ADCx_SC3)

The Status and Control Register 3 (SC3) controls the calibration, continuous convert, and hardware averaging functions of the ADC module.

ADCx_SC3 field descriptions

Field	Description
31–8	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7	Calibration
CAL	
	Begins the calibration sequence when set. This field stays set while the calibration is in progress and is cleared when the calibration sequence is completed. CALF must be checked to determine the result of the

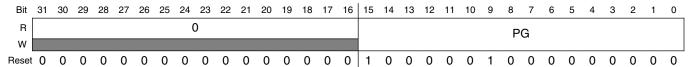
Memory map and register definitions


ADCx_SC3 field descriptions (continued)

Field	Description
	calibration sequence. Once started, the calibration routine cannot be interrupted by writes to the ADC registers or the results will be invalid and CALF will set. Setting CAL will abort any current conversion.
6 CALF	Calibration Failed Flag Displays the result of the calibration sequence. The calibration sequence will fail if SC2[ADTRG] = 1, any ADC register is written, or any stop mode is entered before the calibration sequence completes. Writing 1 to CALF clears it.
	 Calibration completed normally. Calibration failed. ADC accuracy specifications are not guaranteed.
5–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 ADCO	Continuous Conversion Enable Enables continuous conversions.
	One conversion or one set of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion.
	1 Continuous conversions or sets of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion.
2 AVGE	Hardware Average Enable Enables the hardware average function of the ADC.
	0 Hardware average function disabled.
	1 Hardware average function enabled.
1–0 AVGS	Hardware Average Select Determines how many ADC conversions will be averaged to create the ADC average result.
	00 4 samples averaged.
	01 8 samples averaged.
	10 16 samples averaged.
	11 32 samples averaged.

34.3.8 ADC Offset Correction Register (ADCx_OFS)

The ADC Offset Correction Register (OFS) contains the user-selected or calibration-generated offset error correction value. This register is a 2's complement, left-justified, 16-bit value. The value in OFS is subtracted from the conversion and the result is transferred into the result registers, Rn. If the result is greater than the maximum or less than the minimum result value, it is forced to the appropriate limit for the current mode of operation.

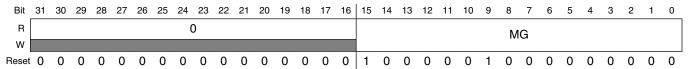

ADCx_OFS field descriptions

Field	Description
	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 OFS	Offset Error Correction Value

34.3.9 ADC Plus-Side Gain Register (ADCx_PG)

The Plus-Side Gain Register (PG) contains the gain error correction for the plus-side input in differential mode or the overall conversion in single-ended mode. PG, a 16-bit real number in binary format, is the gain adjustment factor, with the radix point fixed between ADPG15 and ADPG14. This register must be written by the user with the value described in the calibration procedure. Otherwise, the gain error specifications may not be met.

Address: Base address + 2Ch offset

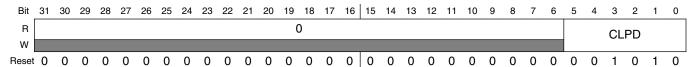

ADCx_PG field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 PG	Plus-Side Gain

34.3.10 ADC Minus-Side Gain Register (ADCx_MG)

The Minus-Side Gain Register (MG) contains the gain error correction for the minus-side input in differential mode. This register is ignored in single-ended mode. MG, a 16-bit real number in binary format, is the gain adjustment factor, with the radix point fixed between ADMG15 and ADMG14. This register must be written by the user with the value described in the calibration procedure. Otherwise, the gain error specifications may not be met.

Address: Base address + 30h offset

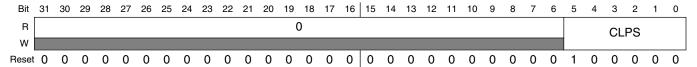

ADCx_MG field descriptions

Field	Description
	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 MG	Minus-Side Gain

34.3.11 ADC Plus-Side General Calibration Value Register (ADCx_CLPD)

The Plus-Side General Calibration Value Registers (CLPx) contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLP0[5:0], CLP1[6:0], CLP2[7:0], CLP3[8:0], CLP4[9:0], CLPS[5:0], and CLPD[5:0]. CLPx are automatically set when the self-calibration sequence is done, that is, CAL is cleared. If these registers are written by the user after calibration, the linearity error specifications may not be met.

Address: Base address + 34h offset

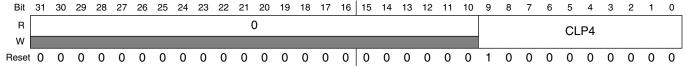

ADCx_CLPD field descriptions

Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLPD	Calibration Value Calibration Value

34.3.12 ADC Plus-Side General Calibration Value Register (ADCx_CLPS)

For more information, see CLPD register description.

Address: Base address + 38h offset


ADCx_CLPS field descriptions

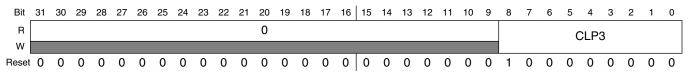
Field	Description
31–6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5–0 CLPS	Calibration Value
	Calibration Value

34.3.13 ADC Plus-Side General Calibration Value Register (ADCx_CLP4)

For more information, see CLPD register description.

Address: Base address + 3Ch offset

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

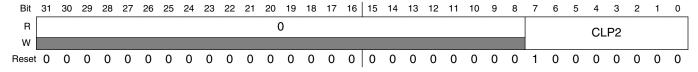

ADCx_CLP4 field descriptions

Field	Description
31–10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
9–0 CLP4	Calibration Value Calibration Value

34.3.14 ADC Plus-Side General Calibration Value Register (ADCx_CLP3)

For more information, see CLPD register description.

Address: Base address + 40h offset


ADCx_CLP3 field descriptions

Field	Description
31–9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
8-0 CLP3	Calibration Value Calibration Value

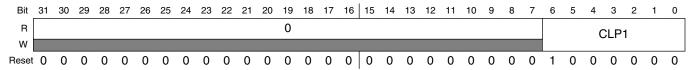
34.3.15 ADC Plus-Side General Calibration Value Register (ADCx_CLP2)

For more information, see CLPD register description.

Address: Base address + 44h offset

ADCx_CLP2 field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

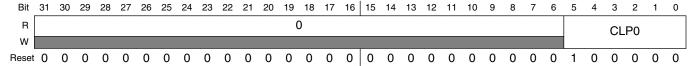

ADCx_CLP2 field descriptions (continued)

Field	Description
7–0 CLP2	Calibration Value
	Calibration Value

34.3.16 ADC Plus-Side General Calibration Value Register (ADCx_CLP1)

For more information, see CLPD register description.

Address: Base address + 48h offset

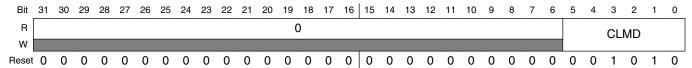

ADCx_CLP1 field descriptions

Field	Description
31–7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6–0 CLP1	Calibration Value Calibration Value

34.3.17 ADC Plus-Side General Calibration Value Register (ADCx_CLP0)

For more information, see CLPD register description.

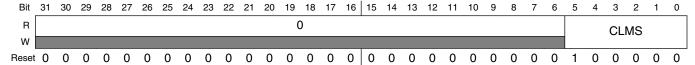
Address: Base address + 4Ch offset


ADCx_CLP0 field descriptions

Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLP0	Calibration Value Calibration Value

34.3.18 ADC Minus-Side General Calibration Value Register (ADCx_CLMD)

The Minus-Side General Calibration Value (CLMx) registers contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLM0[5:0], CLM1[6:0], CLM2[7:0], CLM3[8:0], CLM4[9:0], CLMS[5:0], and CLMD[5:0]. CLMx are automatically set when the self-calibration sequence is done, that is, CAL is cleared. If these registers are written by the user after calibration, the linearity error specifications may not be met.

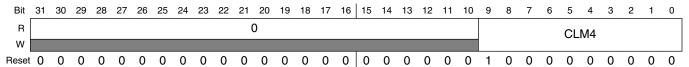

ADCx_CLMD field descriptions

Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLMD	Calibration Value Calibration Value

34.3.19 ADC Minus-Side General Calibration Value Register (ADCx_CLMS)

For more information, see CLMD register description.

Address: Base address + 58h offset

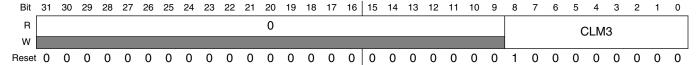

ADCx_CLMS field descriptions

Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLMS	Calibration Value Calibration Value

34.3.20 ADC Minus-Side General Calibration Value Register (ADCx_CLM4)

For more information, see CLMD register description.

Address: Base address + 5Ch offset

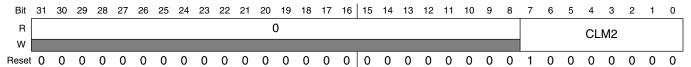

ADCx_CLM4 field descriptions

Field	Description
31–10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
9–0 CLM4	Calibration Value Calibration Value

34.3.21 ADC Minus-Side General Calibration Value Register (ADCx_CLM3)

For more information, see CLMD register description.

Address: Base address + 60h offset

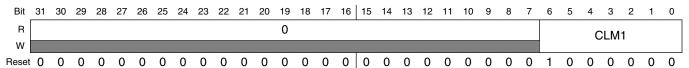

ADCx_CLM3 field descriptions

Field	Description
1	This field is reserved. This read-only field is reserved and always has the value 0.
8–0 CLM3	Calibration Value Calibration Value

34.3.22 ADC Minus-Side General Calibration Value Register (ADCx_CLM2)

For more information, see CLMD register description.

Address: Base address + 64h offset

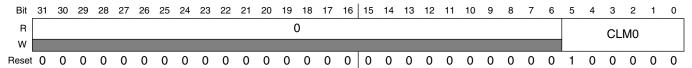

ADCx_CLM2 field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 CLM2	Calibration Value Calibration Value

34.3.23 ADC Minus-Side General Calibration Value Register (ADCx_CLM1)

For more information, see CLMD register description.

Address: Base address + 68h offset


ADCx_CLM1 field descriptions

Field	Description
31–7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6–0 CLM1	Calibration Value Calibration Value

34.3.24 ADC Minus-Side General Calibration Value Register (ADCx_CLM0)

For more information, see CLMD register description.

Address: Base address + 6Ch offset

ADCx_CLM0 field descriptions

Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLM0	Calibration Value Calibration Value

34.4 Functional description

The ADC module is disabled during reset, in Low-Power Stop mode, or when SC1n[ADCH] are all high; see the power management information for details. The module is idle when a conversion has completed and another conversion has not been initiated. When it is idle and the asynchronous clock output enable is disabled, or CFG2[ADACKEN]= 0, the module is in its lowest power state. The ADC can perform an analog-to-digital conversion on any of the software selectable channels. All modes perform conversion by a successive approximation algorithm.

To meet accuracy specifications, the ADC module must be calibrated using the on-chip calibration function.

See Calibration function for details on how to perform calibration.

When the conversion is completed, the result is placed in the Rn data registers. The respective SC1n[COCO] is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled, or, when SC1n[AIEN]=1.

The ADC module has the capability of automatically comparing the result of a conversion with the contents of the CV1 and CV2 registers. The compare function is enabled by setting SC2[ACFE] and operates in any of the conversion modes and configurations.

Functional description

The ADC module has the capability of automatically averaging the result of multiple conversions. The hardware average function is enabled by setting SC3[AVGE] and operates in any of the conversion modes and configurations.

NOTE

For the chip specific modes of operation, see the power management information of this MCU.

34.4.1 Clock select and divide control

One of four clock sources can be selected as the clock source for the ADC module.

This clock source is then divided by a configurable value to generate the input clock ADCK, to the module. The clock is selected from one of the following sources by means of CFG1[ADICLK].

- Bus clock. This is the default selection following reset.
- ALTCLK2: As defined for this MCU. See the chip configuration information. Conversions are possible using ALTCLK2 as the input clock source while the MCU is in Normal Stop mode.
- ALTCLK: As defined for this MCU. See the chip configuration information. Conversions are possible using ALTCLK as the input clock source while the MCU is in Normal Stop mode.
- Asynchronous clock (ADACK): This clock is generated from a clock source within the ADC module. When the ADACK clock source is selected, it is not required to be active prior to conversion start. When it is selected and it is not active prior to a conversion start CFG2[ADACKEN]=0, ADACK is activated at the start of a conversion and deactivated when conversions are terminated. In this case, there is an associated clock startup delay each time the clock source is re-activated. To avoid the conversion time variability and latency associated with the ADACK clock startup, set CFG2[ADACKEN]=1 and wait the worst-case startup time of 5 µs prior to initiating any conversions using the ADACK clock source. Conversions are possible using ADACK as the input clock source while the MCU is in Normal Stop mode. See Power Control for more information.

Whichever clock is selected, its frequency must fall within the specified frequency range for ADCK. If the available clocks are too slow, the ADC may not perform according to specifications. If the available clocks are too fast, the clock must be divided to the appropriate frequency. This divider is specified by CFG1[ADIV] and can be divide-by 1, 2, 4, or 8.

34.4.2 Voltage reference selection

The ADC can be configured to accept one of the two voltage reference pairs as the reference voltage (V_{REFSH} and V_{REFSL}) used for conversions.

Each pair contains a positive reference that must be between the minimum Ref Voltage High and V_{DDA} , and a ground reference that must be at the same potential as V_{SSA} . The two pairs are external (V_{REFH} and V_{REFL}) and alternate (V_{ALTH} and V_{ALTL}). These voltage references are selected using SC2[REFSEL]. The alternate (V_{ALTH} and V_{ALTL}) voltage reference pair may select additional external pins or internal sources depending on MCU configuration. See the chip configuration information on the voltage references specific to this MCU.

34.4.3 Hardware trigger and channel selects

The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled when SC2[ADTRG] is set and a hardware trigger select event, ADHWTSn, has occurred.

This source is not available on all MCUs. See the Chip Configuration chapter for information on the ADHWT source and the ADHWTSn configurations specific to this MCU.

When an ADHWT source is available and hardware trigger is enabled, that is SC2[ADTRG]=1, a conversion is initiated on the rising-edge of ADHWT after a hardware trigger select event, that is, ADHWTSn, has occurred. If a conversion is in progress when a rising-edge of a trigger occurs, the rising-edge is ignored. In continuous convert configuration, only the initial rising-edge to launch continuous conversions is observed, and until conversion is aborted, the ADC continues to do conversions on the same SCn register that initiated the conversion. The hardware trigger function operates in conjunction with any of the conversion modes and configurations.

The hardware trigger select event, ADHWTSn, must be set prior to the receipt of the ADHWT signal. If these conditions are not met, the converter may ignore the trigger or use the incorrect configuration. If a hardware trigger select event is asserted during a conversion, it must stay asserted until the end of current conversion and remain set until the receipt of the ADHWT signal to trigger a new conversion. The channel and status fields selected for the conversion depend on the active trigger select signal:

- ADHWTSA active selects SC1A.
- ADHWTSn active selects SC1n.

Note

Asserting more than one hardware trigger select signal (ADHWTSn) at the same time results in unknown results. To avoid this, select only one hardware trigger select signal (ADHWTSn) prior to the next intended conversion.

When the conversion is completed, the result is placed in the Rn registers associated with the ADHWTSn received. For example:

- ADHWTSA active selects RA register
- ADHWTSn active selects Rn register

The conversion complete flag associated with the ADHWTSn received, that is, SC1n[COCO], is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled, that is, SC1[AIEN]=1.

34.4.4 Conversion control

Conversions can be performed as determined by CFG1[MODE] and SC1n[DIFF] as shown in the description of CFG1[MODE].

Conversions can be initiated by a software or hardware trigger.

In addition, the ADC module can be configured for:

- Low-power operation
- Long sample time
- Continuous conversion
- Hardware average
- Automatic compare of the conversion result to a software determined compare value

34.4.4.1 Initiating conversions

A conversion is initiated:

- Following a write to SC1A, with SC1n[ADCH] not all 1's, if software triggered operation is selected, that is, when SC2[ADTRG]=0.
- Following a hardware trigger, or ADHWT event, if hardware triggered operation is selected, that is, SC2[ADTRG]=1, and a hardware trigger select event, ADHWTSn, has occurred. The channel and status fields selected depend on the active trigger select signal:
 - ADHWTSA active selects SC1A.

- ADHWTSn active selects SC1n.
- if neither is active, the off condition is selected

Note

Selecting more than one ADHWTSn prior to a conversion completion will result in unknown results. To avoid this, select only one ADHWTSn prior to a conversion completion.

• Following the transfer of the result to the data registers when continuous conversion is enabled, that is, when SC3[ADCO] = 1.

If continuous conversions are enabled, a new conversion is automatically initiated after the completion of the current conversion. In software triggered operation, that is, when SC2[ADTRG] = 0, continuous conversions begin after SC1A is written and continue until aborted. In hardware triggered operation, that is, when SC2[ADTRG] = 1 and one ADHWTSn event has occurred, continuous conversions begin after a hardware trigger event and continue until aborted.

If hardware averaging is enabled, a new conversion is automatically initiated after the completion of the current conversion until the correct number of conversions are completed. In software triggered operation, conversions begin after SC1A is written. In hardware triggered operation, conversions begin after a hardware trigger. If continuous conversions are also enabled, a new set of conversions to be averaged are initiated following the last of the selected number of conversions.

34.4.4.2 Completing conversions

A conversion is completed when the result of the conversion is transferred into the data result registers, Rn. If the compare functions are disabled, this is indicated by setting of SC1n[COCO]. If hardware averaging is enabled, the respective SC1n[COCO] sets only if the last of the selected number of conversions is completed. If the compare function is enabled, the respective SC1n[COCO] sets and conversion result data is transferred only if the compare condition is true. If both hardware averaging and compare functions are enabled, then the respective SC1n[COCO] sets only if the last of the selected number of conversions is completed and the compare condition is true. An interrupt is generated if the respective SC1n[AIEN] is high at the time that the respective SC1n[COCO] is set.

34.4.4.3 Aborting conversions

Any conversion in progress is aborted when:

- Writing to SC1A while it is actively controlling a conversion, aborts the current conversion. In Software Trigger mode, when SC2[ADTRG]=0, a write to SC1A initiates a new conversion if SC1A[ADCH] is equal to a value other than all 1s. Writing to any of the SC1B–SC1n registers while that specific SC1B–SC1n register is actively controlling a conversion aborts the current conversion. The SC1(B-n) registers are not used for software trigger operation and therefore writes to the SC1(B-n) registers do not initiate a new conversion.
- A write to any ADC register besides the SC1A-SC1n registers occurs. This indicates that a change in mode of operation has occurred and the current conversion is therefore invalid.
- The MCU is reset or enters Low-Power Stop modes.
- The MCU enters Normal Stop mode with ADACK or Alternate Clock Sources not enabled.

When a conversion is aborted, the contents of the data registers, Rn, are not altered. The data registers continue to be the values transferred after the completion of the last successful conversion. If the conversion was aborted by a reset or Low-Power Stop modes, RA and Rn return to their reset states.

34.4.4.4 Power control

The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the conversion clock source, but the asynchronous clock output is disabled, that is CFG2[ADACKEN]=0, the ADACK clock generator also remains in its idle state (disabled) until a conversion is initiated. If the asynchronous clock output is enabled, that is, CFG2[ADACKEN]=1, it remains active regardless of the state of the ADC or the MCU power mode.

Power consumption when the ADC is active can be reduced by setting CFG1[ADLPC]. This results in a lower maximum value for f_{ADCK} .

34.4.4.5 Sample time and total conversion time

For short sample, that is, when CFG1[ADLSMP]=0, there is a 2-cycle adder for first conversion over the base sample time of four ADCK cycles. For high-speed conversions, that is, when CFG2[ADHSC]=1, there is an additional 2-cycle adder on any conversion. The table below summarizes sample times for the possible ADC configurations.

ADC configuration		Sample time (ADCK cycles)	
CFG1[ADLSMP]	CFG2[ADLSTS]	CFG2[ADHSC]	First or Single	Subsequent
0	X	0	6	4
1	00	0	2	4
1	01	0	10	6
1	10	0	10	0
1	11	0	6	3
0	Х	1	8	6
1	00	1	2	6
1	01	1	18	8
1	10	1	1:	2
1	11	1	8	}

The total conversion time depends upon:

- The sample time as determined by CFG1[ADLSMP] and CFG2[ADLSTS]
- The MCU bus frequency
- The conversion mode, as determined by CFG1[MODE] and SC1n[DIFF]
- The high-speed configuration, that is, CFG2[ADHSC]
- The frequency of the conversion clock, that is, f_{ADCK}.

CFG2[ADHSC] is used to configure a higher clock input frequency. This will allow faster overall conversion times. To meet internal ADC timing requirements, CFG2[ADHSC] adds additional ADCK cycles. Conversions with CFG2[ADHSC]=1 take two more ADCK cycles. CFG2[ADHSC] must be used when the ADCLK exceeds the limit for CFG2[ADHSC]=0.

After the module becomes active, sampling of the input begins.

- 1. CFG1[ADLSMP] and CFG2[ADLSTS] select between sample times based on the conversion mode that is selected.
- 2. When sampling is completed, the converter is isolated from the input channel and a successive approximation algorithm is applied to determine the digital value of the analog signal.
- 3. The result of the conversion is transferred to Rn upon completion of the conversion algorithm.

Functional description

If the bus frequency is less than f_{ADCK} , precise sample time for continuous conversions cannot be guaranteed when short sample is enabled, that is, when CFG1[ADLSMP]=0.

The maximum total conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is selectable by CFG1[ADICLK], and the divide ratio is specified by CFG1[ADIV].

The maximum total conversion time for all configurations is summarized in the equation below. See the following tables for the variables referenced in the equation.

 $Conversion Time = SFCAdder + Average Num \times \big(BCT + LSTAdder + HSCAdder\big)$

Figure 34-92. Conversion time equation

Table 34-104. Single or first continuous time adder (SFCAdder)

CFG1[AD LSMP]	CFG2[AD ACKEN]	CFG1[ADICLK]	Single or first continuous time adder (SFCAdder)
1	х	0x, 10	3 ADCK cycles + 5 bus clock cycles
1	1	11	3 ADCK cycles + 5 bus clock cycles ¹
1	0	11	5 μs + 3 ADCK cycles + 5 bus clock cycles
0	х	0x, 10	5 ADCK cycles + 5 bus clock cycles
0	1	11	5 ADCK cycles + 5 bus clock cycles ¹
0	0	11	5 μs + 5 ADCK cycles + 5 bus clock cycles

1. To achieve this time, CFG2[ADACKEN] must be 1 for at least 5 µs prior to the conversion is initiated.

Table 34-105. Average number factor (AverageNum)

SC3[AVGE]	SC3[AVGS]	Average number factor (AverageNum)
0	xx	1
1	00	4
1	01	8
1	10	16
1	11	32

Table 34-106. Base conversion time (BCT)

Mode	Base conversion time (BCT)
8b single-ended	17 ADCK cycles
9b differential	27 ADCK cycles
10b single-ended	20 ADCK cycles
11b differential	30 ADCK cycles
12b single-ended	20 ADCK cycles
13b differential	30 ADCK cycles

Table 34-106. Base conversion time (BCT) (continued)

Mode	Base conversion time (BCT)
16b single-ended	25 ADCK cycles
16b differential	34 ADCK cycles

Table 34-107. Long sample time adder (LSTAdder)

CFG1[ADLSMP]	CFG2[ADLSTS]	Long sample time adder (LSTAdder)
0	xx	0 ADCK cycles
1	00	20 ADCK cycles
1	01	12 ADCK cycles
1	10	6 ADCK cycles
1	11	2 ADCK cycles

Table 34-108. High-speed conversion time adder (HSCAdder)

CFG2[ADHSC]	High-speed conversion time adder (HSCAdder)
0	0 ADCK cycles
1	2 ADCK cycles

Note

The ADCK frequency must be between f_{ADCK} minimum and f_{ADCK} maximum to meet ADC specifications.

34.4.4.6 Conversion time examples

The following examples use the Figure 34-92, and the information provided in Table 34-104 through Table 34-108.

34.4.4.6.1 Typical conversion time configuration

A typical configuration for ADC conversion is:

- 10-bit mode, with the bus clock selected as the input clock source
- The input clock divide-by-1 ratio selected
- Bus frequency of 8 MHz
- Long sample time disabled
- High-speed conversion disabled

Functional description

The conversion time for a single conversion is calculated by using the Figure 34-92, and the information provided in Table 34-104 through Table 34-108. The table below lists the variables of Figure 34-92.

Table 34-109. Typical conversion time

Variable	Time
SFCAdder	5 ADCK cycles + 5 bus clock cycles
AverageNum	1
BCT	20 ADCK cycles
LSTAdder	0
HSCAdder	0

The resulting conversion time is generated using the parameters listed in the preceding table. Therefore, for a bus clock and an ADCK frequency equal to 8 MHz, the resulting conversion time is $3.75 \, \mu s$.

34.4.4.6.2 Long conversion time configuration

A configuration for long ADC conversion is:

- 16-bit differential mode with the bus clock selected as the input clock source
- The input clock divide-by-8 ratio selected
- Bus frequency of 8 MHz
- Long sample time enabled
- Configured for longest adder
- High-speed conversion disabled
- Average enabled for 32 conversions

The conversion time for this conversion is calculated by using the Figure 34-92, and the information provided in Table 34-104 through Table 34-108. The following table lists the variables of the Figure 34-92.

Table 34-110. Typical conversion time

Variable	Time
SFCAdder	3 ADCK cycles + 5 bus clock cycles
AverageNum	32
ВСТ	34 ADCK cycles
LSTAdder	20 ADCK cycles
HSCAdder	0

The resulting conversion time is generated using the parameters listed in the preceding table. Therefore, for bus clock equal to 8 MHz and ADCK equal to 1 MHz, the resulting conversion time is $57.625~\mu s$, that is, AverageNum. This results in a total conversion time of 1.844~m s.

34.4.4.6.3 Short conversion time configuration

A configuration for short ADC conversion is:

- 8-bit Single-Ended mode with the bus clock selected as the input clock source
- The input clock divide-by-1 ratio selected
- Bus frequency of 20 MHz
- Long sample time disabled
- High-speed conversion enabled

The conversion time for this conversion is calculated by using the Figure 34-92, and the information provided in Table 34-104 through Table 34-108. The table below lists the variables of Figure 34-92.

Variable	Time
SFCAdder	5 ADCK cycles + 5 bus clock cycles
AverageNum	1
BCT	17 ADCK cycles
LSTAdder	0 ADCK cycles
HSCAdder	2

Table 34-111. Typical conversion time

The resulting conversion time is generated using the parameters listed in in the preceding table. Therefore, for bus clock and ADCK frequency equal to 20 MHz, the resulting conversion time is $1.45 \, \mu s$.

34.4.4.7 Hardware average function

The hardware average function can be enabled by setting SC3[AVGE]=1 to perform a hardware average of multiple conversions. The number of conversions is determined by the AVGS[1:0] bits, which can select 4, 8, 16, or 32 conversions to be averaged. While the hardware average function is in progress, SC2[ADACT] will be set.

After the selected input is sampled and converted, the result is placed in an accumulator from which an average is calculated once the selected number of conversions have been completed. When hardware averaging is selected, the completion of a single conversion will not set SC1n[COCO].

Functional description

If the compare function is either disabled or evaluates true, after the selected number of conversions are completed, the average conversion result is transferred into the data result registers, Rn, and SC1n[COCO] is set. An ADC interrupt is generated upon the setting of SC1n[COCO] if the respective ADC interrupt is enabled, that is, SC1n[AIEN]=1.

Note

The hardware average function can perform conversions on a channel while the MCU is in Wait or Normal Stop modes. The ADC interrupt wakes the MCU when the hardware average is completed if SC1n[AIEN] is set.

34.4.5 Automatic compare function

The compare function can be configured to check whether the result is less than or greater-than-or-equal-to a single compare value, or, if the result falls within or outside a range determined by two compare values.

The compare mode is determined by SC2[ACFGT], SC2[ACREN], and the values in the compare value registers, CV1 and CV2. After the input is sampled and converted, the compare values in CV1 and CV2 are used as described in the following table. There are six Compare modes as shown in the following table.

Table 34-112. Compare modes

SC2[AC FGT]	SC2[AC REN]	ADCCV1 relative to ADCCV2	Function	Compare mode description
0	0	_	Less than threshold	Compare true if the result is less than the CV1 registers.
1	0	_	Greater than or equal to threshold	Compare true if the result is greater than or equal to CV1 registers.
0	1	Less than or equal	Outside range, not inclusive	Compare true if the result is less than CV1 Or the result is greater than CV2.
0	1	Greater than	Inside range, not inclusive	Compare true if the result is less than CV1 And the result is greater than CV2.
1	1	Less than or equal	Inside range, inclusive	Compare true if the result is greater than or equal to CV1 And the result is less than or equal to CV2.
1	1	Greater than	Outside range, inclusive	Compare true if the result is greater than or equal to CV1 Or the result is less than or equal to CV2.

With SC2[ACREN] =1, and if the value of CV1 is less than or equal to the value of CV2, then setting SC2[ACFGT] will select a trigger-if-inside-compare-range inclusive-of-endpoints function. Clearing SC2[ACFGT] will select a trigger-if-outside-compare-range, not-inclusive-of-endpoints function.

If CV1 is greater than CV2, setting SC2[ACFGT] will select a trigger-if-outside-compare-range, inclusive-of-endpoints function. Clearing SC2[ACFGT] will select a trigger-if-inside-compare-range, not-inclusive-of-endpoints function.

If the condition selected evaluates true, SC1n[COCO] is set.

Upon completion of a conversion while the compare function is enabled, if the compare condition is not true, SC1n[COCO] is not set and the conversion result data will not be transferred to the result register, Rn. If the hardware averaging function is enabled, the compare function compares the averaged result to the compare values. The same compare function definitions apply. An ADC interrupt is generated when SC1n[COCO] is set and the respective ADC interrupt is enabled, that is, SC1n[AIEN]=1.

Note

The compare function can monitor the voltage on a channel while the MCU is in Wait or Normal Stop modes. The ADC interrupt wakes the MCU when the compare condition is met.

34.4.6 Calibration function

>The ADC contains a self-calibration function that is required to achieve the specified accuracy.

Calibration must be run, or valid calibration values written, after any reset and before a conversion is initiated. The calibration function sets the offset calibration value, the minus-side calibration values, and the plus-side calibration values. The offset calibration value is automatically stored in the ADC offset correction register (OFS), and the plus-side and minus-side calibration values are automatically stored in the ADC plus-side and minus-side calibration registers, CLPx and CLMx. The user must configure the ADC correctly prior to calibration, and must generate the plus-side and minus-side gain calibration results and store them in the ADC plus-side gain register (PG) after the calibration function completes.

Prior to calibration, the user must configure the ADC's clock source and frequency, low power configuration, voltage reference selection, sample time, and high speed configuration according to the application's clock source availability and needs. If the

Functional description

application uses the ADC in a wide variety of configurations, the configuration for which the highest accuracy is required should be selected, or multiple calibrations can be done for the different configurations. For best calibration results:

- Set hardware averaging to maximum, that is, SC3[AVGE]=1 and SC3[AVGS]=11 for an average of 32
- Set ADC clock frequency f_{ADCK} less than or equal to 4 MHz
- $V_{REFH}=V_{DDA}$
- Calibrate at nominal voltage and temperature

The input channel, conversion mode continuous function, compare function, resolution mode, and differential/single-ended mode are all ignored during the calibration function.

To initiate calibration, the user sets SC3[CAL] and the calibration will automatically begin if the SC2[ADTRG] is 0. If SC2[ADTRG] is 1, SC3[CAL] will not get set and SC3[CALF] will be set. While calibration is active, no ADC register can be written and no stop mode may be entered, or the calibration routine will be aborted causing SC3[CAL] to clear and SC3[CALF] to set. At the end of a calibration sequence, SC1n[COCO] will be set. SC1n[AIEN] can be used to allow an interrupt to occur at the end of a calibration sequence. At the end of the calibration routine, if SC3[CALF] is not set, the automatic calibration routine is completed successfully.

To complete calibration, the user must generate the gain calibration values using the following procedure:

- 1. Initialize or clear a 16-bit variable in RAM.
- 2. Add the plus-side calibration results CLP0, CLP1, CLP2, CLP3, CLP4, and CLPS to the variable.
- 3. Divide the variable by two.
- 4. Set the MSB of the variable.
- 5. The previous two steps can be achieved by setting the carry bit, rotating to the right through the carry bit on the high byte and again on the low byte.
- 6. Store the value in the plus-side gain calibration register PG.
- 7. Repeat the procedure for the minus-side gain calibration value.

When calibration is complete, the user may reconfigure and use the ADC as desired. A second calibration may also be performed, if desired, by clearing and again setting SC3[CAL].

Overall, the calibration routine may take as many as 14k ADCK cycles and 100 bus cycles, depending on the results and the clock source chosen. For an 8 MHz clock source, this length amounts to about 1.7 ms. To reduce this latency, the calibration values, which are offset, plus-side and minus-side gain, and plus-side and minus-side calibration values, may be stored in flash memory after an initial calibration and recovered prior to the first ADC conversion. This method can reduce the calibration latency to 20 register store operations on all subsequent power, reset, or Low-Power Stop mode recoveries.

Further information on the calibration procedure can be found in the Calibration section of AN3949: ADC16 Calibration Procedure and Programmable Delay Block Synchronization.

34.4.7 User-defined offset function

OFS contains the user-selected or calibration-generated offset error correction value.

This register is a 2's complement, left-justified. The value in OFS is subtracted from the conversion and the result is transferred into the result registers, Rn. If the result is greater than the maximum or less than the minimum result value, it is forced to the appropriate limit for the current mode of operation.

The formatting of the OFS is different from the data result register, Rn, to preserve the resolution of the calibration value regardless of the conversion mode selected. Lower order bits are ignored in lower resolution modes. For example, in 8-bit single-ended mode, OFS[14:7] are subtracted from D[7:0]; OFS[15] indicates the sign (negative numbers are effectively added to the result) and OFS[6:0] are ignored. The same bits are used in 9-bit differential mode because OFS[15] indicates the sign bit, which maps to D[8]. For 16-bit differential mode, OFS[15:0] are directly subtracted from the conversion result data D[15:0]. In 16-bit single-ended mode, there is no field in the OFS corresponding to the least significant result D[0], so odd values, such as -1 or +1, cannot be subtracted from the result.

OFS is automatically set according to calibration requirements once the self-calibration sequence is done, that is, SC3[CAL] is cleared. The user may write to OFS to override the calibration result if desired. If the OFS is written by the user to a value that is different from the calibration value, the ADC error specifications may not be met. Storing the value generated by the calibration function in memory before overwriting with a user-specified value is recommended.

Note

There is an effective limit to the values of offset that can be set by the user. If the magnitude of the offset is too high, the results of the conversions will cap off at the limits.

The offset calibration function may be employed by the user to remove application offsets or DC bias values. OFS may be written with a number in 2's complement format and this offset will be subtracted from the result, or hardware averaged value. To add an offset, store the negative offset in 2's complement format and the effect will be an addition. An offset correction that results in an out-of-range value will be forced to the minimum or maximum value. The minimum value for single-ended conversions is 0x0000; for a differential conversion it is 0x8000.

To preserve accuracy, the calibrated offset value initially stored in OFS must be added to the user-defined offset. For applications that may change the offset repeatedly during operation, store the initial offset calibration value in flash so it can be recovered and added to any user offset adjustment value and the sum stored in OFS.

34.4.8 Temperature sensor

The ADC module includes a temperature sensor whose output is connected to one of the ADC analog channel inputs.

The following equation provides an approximate transfer function of the temperature sensor.

Temp =
$$25 - ((V_{TEMP} - V_{TEMP25}) \div m)$$

Figure 34-93. Approximate transfer function of the temperature sensor

where:

- V_{TEMP} is the voltage of the temperature sensor channel at the ambient temperature.
- V_{TEMP25} is the voltage of the temperature sensor channel at 25 °C.
- m is referred as temperature sensor slope in the device data sheet. It is the hot or cold voltage versus temperature slope in V/°C.

For temperature calculations, use the V_{TEMP25} and temperature sensor slope values from the ADC Electricals table.

In application code, the user reads the temperature sensor channel, calculates V_{TEMP} , and compares to V_{TEMP25} . If V_{TEMP} is greater than V_{TEMP25} the cold slope value is applied in the preceding equation. If V_{TEMP} is less than V_{TEMP25} , the hot slope value is applied in the preceding equation. ADC Electricals table may only specify one temperature sensor slope value. In that case, the user could use the same slope for the calculation across the operational temperature range.

For more information on using the temperature sensor, see the application note titled *Temperature Sensor for the HCS08 Microcontroller Family* (document AN3031).

34.4.9 MCU wait mode operation

Wait mode is a lower-power consumption Standby mode from which recovery is fast because the clock sources remain active.

If a conversion is in progress when the MCU enters Wait mode, it continues until completion. Conversions can be initiated while the MCU is in Wait mode by means of the hardware trigger or if continuous conversions are enabled.

The bus clock, ADACK, and Alternate Clock sources are available as conversion clock sources while in Wait mode. The use of ALTCLK as the conversion clock source in Wait is dependent on the definition of ALTCLK for this MCU. See the Chip Configuration information on ALTCLK specific to this MCU.

If the compare and hardware averaging functions are disabled, a conversion complete event sets SC1n[COCO] and generates an ADC interrupt to wake the MCU from Wait mode if the respective ADC interrupt is enabled, that is, when SC1n[AIEN]=1. If the hardware averaging function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, when the selected number of conversions are completed. If the compare function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, only if the compare conditions are met. If a single conversion is selected and the compare trigger is not met, the ADC will return to its idle state and cannot wake the MCU from Wait mode unless a new conversion is initiated by the hardware trigger.

34.4.10 MCU Normal Stop mode operation

Stop mode is a low-power consumption Standby mode during which most or all clock sources on the MCU are disabled.

34.4.10.1 Normal Stop mode with Bus Clock selected

If the Bus Clock is selected as the conversion clock, executing a stop instruction aborts the current conversion and places the ADC in its Idle state. The contents of the ADC registers, including Rn, are unaffected by Normal Stop mode. After exiting from Normal Stop mode, a software or hardware trigger is required to resume conversions.

34.4.10.2 Normal Stop mode with ADACK or Alternate clock sources enabled

If ADACK or an Alternate clock sourse is selected as the conversion clock, the ADC continues operation during Normal Stop mode. See the chip configuration chapter for configuration information for this MCU.

If a conversion is in progress when the MCU enters Normal Stop mode, it continues until completion. Conversions can be initiated while the MCU is in Normal Stop mode by means of the hardware trigger or if continuous conversions are enabled.

If the compare and hardware averaging functions are disabled, a conversion complete event sets SC1n[COCO] and generates an ADC interrupt to wake the MCU from Normal Stop mode if the respective ADC interrupt is enabled, that is, when SC1n[AIEN]=1. The result register, Rn, will contain the data from the first completed conversion that occurred during Normal Stop mode. If the hardware averaging function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, when the selected number of conversions are completed. If the compare function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, only if the compare conditions are met. If a single conversion is selected and the compare is not true, the ADC will return to its Idle state and cannot wake the MCU from Normal Stop mode unless a new conversion is initiated by another hardware trigger.

34.4.11 MCU Low-Power Stop mode operation

The ADC module is automatically disabled when the MCU enters Low-Power Stop mode.

All module registers contain their reset values following exit from Low-Power Stop mode. Therefore, the module must be re-enabled and re-configured following exit from Low-Power Stop mode.

NOTE

For the chip specific modes of operation, see the power management information for the device.

34.5 Initialization information

This section gives an example that provides some basic direction on how to initialize and configure the ADC module.

The user can configure the module for 16-bit, 12-bit, 10-bit, or 8-bit single-ended resolution or 16-bit, 13-bit, 11-bit, or 9-bit differential resolution, single or continuous conversion, and a polled or interrupt approach, among many other options. For information used in this example, refer to Table 34-107, Table 34-108, and Table 34-109.

Note

Hexadecimal values are designated by a preceding 0x, binary values designated by a preceding %, and decimal values have no preceding character.

34.5.1 ADC module initialization example

34.5.1.1 Initialization sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be performed. A typical sequence is:

- 1. Calibrate the ADC by following the calibration instructions in Calibration function.
- 2. Update CFG to select the input clock source and the divide ratio used to generate ADCK. This register is also used for selecting sample time and low-power configuration.
- 3. Update SC2 to select the conversion trigger, hardware or software, and compare function options, if enabled.
- 4. Update SC3 to select whether conversions will be continuous or completed only once (ADCO) and whether to perform hardware averaging.
- 5. Update SC1:SC1n registers to select whether conversions will be single-ended or differential and to enable or disable conversion complete interrupts. Also, select the input channel which can be used to perform conversions.

34.5.1.2 Pseudo-code example

In this example, the ADC module is set up with interrupts enabled to perform a single 10-bit conversion at low-power with a long sample time on input channel 1, where ADCK is derived from the bus clock divided by 1.

CFG1 = 0x98 (% 10011000)

```
Bit 7 ADLPC 1 Configures for low power, lowers maximum clock speed.

Bit 6:5 ADIV 00 Sets the ADCK to the input clock ÷ 1.

Bit 4 ADLSMP 1 Configures for long sample time.

Bit 3:2 MODE 10 Selects the single-ended 10-bit conversion, differential 11-bit conversion.

Bit 1:0 ADICLK 00 Selects the bus clock.
```

SC2 = 0x00 (%00000000)

```
Bit 7
                              Flag indicates if a conversion is in progress.
               ADACT
                       0
       Bit 6
              ADTRG 0
                              Software trigger selected.
                              Compare function disabled.
       Bit 5
              ACFE
       Bit 4
             ACFGT 0
                              Not used in this example.
             ACREN 0 Compare range disabled.
       Bit 3
Bit 2 DMAEN 0 DMA request disabled.
       Bit 1:0 REFSEL 00
                             Selects default voltage reference pin pair (External pins VREFH
and V_{REFL}).
```

SC1A = 0x41 (%01000001)

```
Bit 7 COCO 0 Read-only flag which is set when a conversion completes.
Bit 6 AIEN 1 Conversion complete interrupt enabled.
Bit 5 DIFF 0 Single-ended conversion selected.
Bit 4:0 ADCH 00001 Input channel 1 selected as ADC input channel.
```

RA = 0xxx

Holds results of conversion.

CV = 0xxx

Holds compare value when compare function enabled.

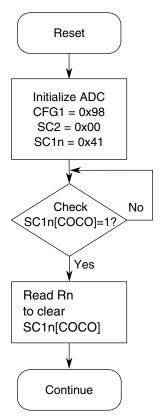


Figure 34-94. Initialization flowchart example

34.6 Application information

The ADC has been designed to be integrated into a microcontroller for use in embedded control applications requiring an ADC.

For guidance on selecting optimum external component values and converter parameters see AN4373: Cookbook for SAR ADC Measurements.

34.6.1 External pins and routing

34.6.1.1 Analog supply pins

Depending on the device, the analog power and ground supplies, V_{DDA} and V_{SSA} , of the ADC module are available as:

Application information

- V_{DDA} and V_{SSA} available as separate pins—When available on a separate pin, both V_{DDA} and V_{SSA} must be connected to the same voltage potential as their corresponding MCU digital supply, V_{DD} and V_{SS}, and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.
- V_{SSA} is shared on the same pin as the MCU digital V_{SS} .
- V_{SSA} and V_{DDA} are shared with the MCU digital supply pins—In these cases, there are separate pads for the analog supplies bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

If separate power supplies are used for analog and digital power, the ground connection between these supplies must be at the V_{SSA} pin. This must be the only ground connection between these supplies, if possible. V_{SSA} makes a good single point ground location.

34.6.1.2 Analog voltage reference pins

In addition to the analog supplies, the ADC module has connections for two reference voltage inputs used by the converter:

- V_{REFSH} is the high reference voltage for the converter.
- V_{REFSL} is the low reference voltage for the converter.

The ADC can be configured to accept one of two voltage reference pairs for V_{REFSH} and V_{REFSL} . Each pair contains a positive reference and a ground reference. The two pairs are external, V_{REFH} and V_{REFL} and alternate, V_{ALTH} and V_{ALTL} . These voltage references are selected using SC2[REFSEL]. The alternate voltage reference pair, V_{ALTH} and V_{ALTL} , may select additional external pins or internal sources based on MCU configuration. See the chip configuration information on the voltage references specific to this MCU.

In some packages, the external or alternate pairs are connected in the package to V_{DDA} and V_{SSA} , respectively. One of these positive references may be shared on the same pin as V_{DDA} on some devices. One of these ground references may be shared on the same pin as V_{SSA} on some devices.

If externally available, the positive reference may be connected to the same potential as V_{DDA} or may be driven by an external source to a level between the minimum Ref Voltage High and the V_{DDA} potential. The positive reference must never exceed V_{DDA} . If externally available, the ground reference must be connected to the same voltage potential as V_{SSA} . The voltage reference pairs must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the V_{REFH} and V_{REFL} loop. The best external component to meet this current demand is a 0.1 μ F capacitor with good

high-frequency characteristics. This capacitor is connected between V_{REFH} and V_{REFL} and must be placed as near as possible to the package pins. Resistance in the path is not recommended because the current causes a voltage drop that could result in conversion errors. Inductance in this path must be minimum, that is, parasitic only.

34.6.1.3 Analog input pins

The external analog inputs are typically shared with digital I/O pins on MCU devices.

Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise or when the source impedance is high. Use of 0.01 μ F capacitors with good high-frequency characteristics is sufficient. These capacitors are not necessary in all cases, but when used, they must be placed as near as possible to the package pins and be referenced to V_{SSA} .

For proper conversion, the input voltage must fall between V_{REFH} and V_{REFL} . If the input is equal to or exceeds V_{REFH} , the converter circuit converts the signal to 0xFFF, which is full scale 12-bit representation, 0x3FF, which is full scale 10-bit representation, or 0xFF, which is full scale 8-bit representation. If the input is equal to or less than V_{REFL} , the converter circuit converts it to 0x000. Input voltages between V_{REFH} and V_{REFL} are straight-line linear conversions. There is a brief current associated with V_{REFL} when the sampling capacitor is charging.

For minimal loss of accuracy due to current injection, pins adjacent to the analog input pins must not be transitioning during conversions.

34.6.2 Sources of error

34.6.2.1 Sampling error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy.

RAS + RADIN =SC / (FMAX * NUMTAU * CADIN)

Figure 34-95. Sampling equation

Where:

RAS = External analog source resistance

SC = Number of ADCK cycles used during sample window

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Application information

CADIN = Internal ADC input capacitance

 $NUMTAU = -ln(LSBERR / 2^{N})$

LSBERR = value of acceptable sampling error in LSBs

N = 8 in 8-bit mode, 10 in 10-bit mode, 12 in 12-bit mode or 16 in 16-bit mode

Higher source resistances or higher-accuracy sampling is possible by setting CFG1[ADLSMP] and changing CFG2[ADLSTS] to increase the sample window, or decreasing ADCK frequency to increase sample time.

34.6.2.2 Pin leakage error

Leakage on the I/O pins can cause conversion error if the external analog source resistance, R_{AS} , is high. If this error cannot be tolerated by the application, keep R_{AS} lower than V_{REFH} / (4 × I_{LEAK} × 2^N) for less than 1/4 LSB leakage error, where N=8 in 8-bit mode, 10 in 10-bit mode, 12 in 12-bit mode, or 16 in 16-bit mode.

34.6.2.3 Noise-induced errors

System noise that occurs during the sample or conversion process can affect the accuracy of the conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are met:

- There is a 0.1 μF low-ESR capacitor from V_{REFH} to V_{REFL} .
- There is a 0.1 μ F low-ESR capacitor from V_{DDA} to V_{SSA} .
- If inductive isolation is used from the primary supply, an additional 1 μ F capacitor is placed from V_{DDA} to V_{SSA} .
- V_{SSA} , and V_{REFL} , if connected, is connected to V_{SS} at a quiet point in the ground plane.
- Operate the MCU in Wait or Normal Stop mode before initiating (hardware-triggered conversions) or immediately after initiating (hardware- or software-triggered conversions) the ADC conversion.

- For software triggered conversions, immediately follow the write to SC1 with a Wait instruction or Stop instruction.
- For Normal Stop mode operation, select ADACK or an Alternate clock as the clock source. Operation in Normal Stop reduces V_{DD} noise but increases effective conversion time due to stop recovery.
- There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or excessive V_{DD} noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in Wait or Normal Stop mode, or I/O activity cannot be halted, the following actions may reduce the effect of noise on the accuracy:

- Place a 0.01 µF capacitor (C_{AS}) on the selected input channel to V_{REFL} or V_{SSA}. This
 improves noise issues, but affects the sample rate based on the external analog source
 resistance.
- Average the result by converting the analog input many times in succession and dividing the sum of the results. Four samples are required to eliminate the effect of a 1 LSB, one-time error.
- Reduce the effect of synchronous noise by operating off the asynchronous clock, that is, ADACK, and averaging. Noise that is synchronous to ADCK cannot be averaged out.

34.6.2.4 Code width and quantization error

The ADC quantizes the ideal straight-line transfer function into 65536 steps in the 16-bit mode). Each step ideally has the same height, that is, 1 code, and width. The width is defined as the delta between the transition points to one code and the next. The ideal code width for an N-bit converter, where N can be 16, 12, 10, or 8, defined as 1 LSB, is:

$$1LSB = (V_{REFH})/2^N$$

Figure 34-96. Ideal code width for an N-bit converter

There is an inherent quantization error due to the digitization of the result. For 8-bit, 10-bit, or 12-bit conversions, the code transitions when the voltage is at the midpoint between the points where the straight line transfer function is exactly represented by the actual transfer function. Therefore, the quantization error will be \pm 1/2 LSB in 8-bit, 10-bit, or 12-bit modes. As a consequence, however, the code width of the first (0x000) conversion is only 1/2 LSB and the code width of the last (0xFF or 0x3FF) is 1.5 LSB.

Application information

For 16-bit conversions, the code transitions only after the full code width is present, so the quantization error is -1 LSB to 0 LSB and the code width of each step is 1 LSB.

34.6.2.5 Linearity errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these errors, but the system designers must be aware of these errors because they affect overall accuracy:

- Zero-scale error (E_{ZS}), sometimes called offset: This error is defined as the difference between the actual code width of the first conversion and the ideal code width. This is 1/2 LSB in 8-bit, 10-bit, or 12-bit modes and 1 LSB in 16-bit mode. If the first conversion is 0x001, the difference between the actual 0x001 code width and its ideal (1 LSB) is used.
- Full-scale error (E_{FS}): This error is defined as the difference between the actual code width of the last conversion and the ideal code width. This is 1.5 LSB in 8-bit, 10-bit, or 12-bit modes and 1 LSB in 16-bit mode. If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its ideal (1 LSB) is used.
- Differential non-linearity (DNL): This error is defined as the worst-case difference between the actual code width and the ideal code width for all conversions.
- Integral non-linearity (INL): This error is defined as the highest-value or absolute value that the running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
- Total unadjusted error (TUE): This error is defined as the difference between the actual transfer function and the ideal straight-line transfer function and includes all forms of error.

34.6.2.6 Code jitter, non-monotonicity, and missing codes

Analog-to-digital converters are susceptible to three special forms of error:

• Code jitter: Code jitter is when, at certain points, a given input voltage converts to one of the two values when sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the converter yields the lower code, and vice-versa. However, even small amounts of system noise can cause the converter to be indeterminate, between two codes, for a range of input voltages around the transition voltage.

This error may be reduced by repeatedly sampling the input and averaging the result. Additionally, the techniques discussed in Noise-induced errors reduces this error.

- Non-monotonicity: Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a higher input voltage.
- Missing codes: Missing codes are those values never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.

Application information

Chapter 35 Comparator (CMP)

35.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The comparator (CMP) module provides a circuit for comparing two analog input voltages. The comparator circuit is designed to operate across the full range of the supply voltage, known as rail-to-rail operation.

The Analog MUX (ANMUX) provides a circuit for selecting an analog input signal from eight channels. One signal is provided by the 6-bit digital-to-analog converter (DAC). The mux circuit is designed to operate across the full range of the supply voltage.

The 6-bit DAC is 64-tap resistor ladder network which provides a selectable voltage reference for applications where voltage reference is needed. The 64-tap resistor ladder network divides the supply reference V_{in} into 64 voltage levels. A 6-bit digital signal input selects the output voltage level, which varies from V_{in} to V_{in} /64. V_{in} can be selected from two voltage sources, V_{in1} and V_{in2} . The 6-bit DAC from a comparator is available as an on-chip internal signal only and is not available externally to a pin.

35.1.1 CMP features

The CMP has the following features:

- Operational over the entire supply range
- Inputs may range from rail to rail
- Programmable hysteresis control

Introduction

- Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output
- Selectable inversion on comparator output
- Capability to produce a wide range of outputs such as:
 - Sampled
 - Windowed, which is ideal for certain PWM zero-crossing-detection applications
 - Digitally filtered:
 - Filter can be bypassed
 - Can be clocked via external SAMPLE signal or scaled bus clock
- External hysteresis can be used at the same time that the output filter is used for internal functions
- Two software selectable performance levels:
 - Shorter propagation delay at the expense of higher power
 - Low power, with longer propagation delay
- DMA transfer support
 - A comparison event can be selected to trigger a DMA transfer
- Functional in all modes of operation except VLLS0
- The window and filter functions are not available in the following modes:
 - Stop
 - VLPS
 - LLS
 - VLLSx

35.1.2 6-bit DAC key features

- 6-bit resolution
- Selectable supply reference source
- Power Down mode to conserve power when not in use
- Option to route the output to internal comparator input

35.1.3 ANMUX key features

- Two 8-to-1 channel mux
- Operational over the entire supply range

35.1.4 CMP, DAC and ANMUX diagram

The following figure shows the block diagram for the High-Speed Comparator, DAC, and ANMUX modules.

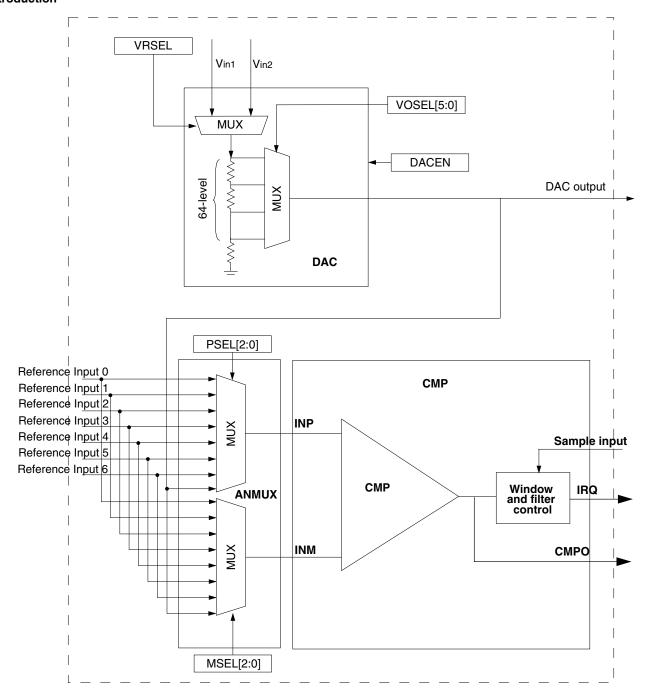


Figure 35-1. CMP, DAC and ANMUX block diagram

35.1.5 CMP block diagram

The following figure shows the block diagram for the CMP module.

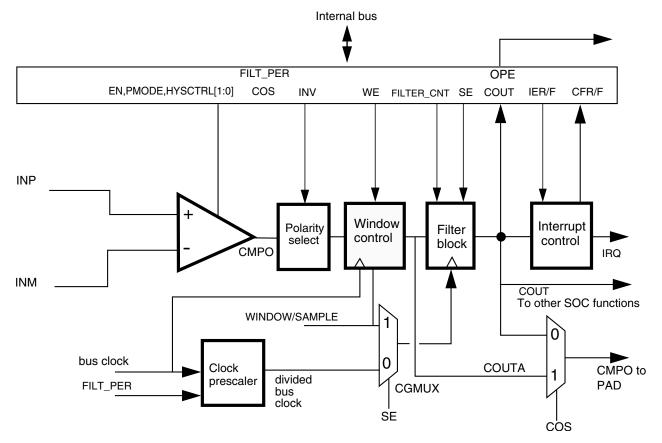


Figure 35-2. Comparator module block diagram

In the CMP block diagram:

- The Window Control block is bypassed when CR1[WE] = 0
- If CR1[WE] = 1, the comparator output will be sampled on every bus clock when WINDOW=1 to generate COUTA. Sampling does NOT occur when WINDOW = 0.
- The Filter block is bypassed when not in use.
- The Filter block acts as a simple sampler if the filter is bypassed and CR0[FILTER_CNT] is set to 0x01.
- The Filter block filters based on multiple samples when the filter is bypassed and CR0[FILTER_CNT] is set greater than 0x01.
 - If CR1[SE] = 1, the external SAMPLE input is used as sampling clock
 - If CR1[SE] = 0, the divided bus clock is used as sampling clock

Memory map/register definitions

- If enabled, the Filter block will incur up to one bus clock additional latency penalty on COUT due to the fact that COUT, which is crossing clock domain boundaries, must be resynchronized to the bus clock.
- CR1[WE] and CR1[SE] are mutually exclusive.

35.2 Memory map/register definitions

CMP memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_3000	CMP Control Register 0 (CMP0_CR0)	8	R/W	00h	35.2.1/816
4007_3001	CMP Control Register 1 (CMP0_CR1)	8	R/W	00h	35.2.2/817
4007_3002	CMP Filter Period Register (CMP0_FPR)	8	R/W	00h	35.2.3/819
4007_3003	CMP Status and Control Register (CMP0_SCR)	8	R/W	00h	35.2.4/819
4007_3004	DAC Control Register (CMP0_DACCR)	8	R/W	00h	35.2.5/820
4007_3005	MUX Control Register (CMP0_MUXCR)	8	R/W	00h	35.2.6/821
4007_3008	CMP Control Register 0 (CMP1_CR0)	8	R/W	00h	35.2.1/816
4007_3009	CMP Control Register 1 (CMP1_CR1)	8	R/W	00h	35.2.2/817
4007_300A	CMP Filter Period Register (CMP1_FPR)	8	R/W	00h	35.2.3/819
4007_300B	CMP Status and Control Register (CMP1_SCR)	8	R/W	00h	35.2.4/819
4007_300C	DAC Control Register (CMP1_DACCR)	8	R/W	00h	35.2.5/820
4007_300D	MUX Control Register (CMP1_MUXCR)	8	R/W	00h	35.2.6/821

35.2.1 CMP Control Register 0 (CMPx_CR0)

Address: Base address + 0h offset

CMPx_CR0 field descriptions

Field	Description			
7	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
6–4	Filter Sample Count			
FILTER_CNT				

Table continues on the next page...

CMPx_CR0 field descriptions (continued)

Field	Description					
	Represents the number of consecutive samples that must agree prior to the comparator outut filter accepting a new output state. For information regarding filter programming and latency, see the Functional description.					
	000 Filter is disabled. If SE = 1, then COUT is a logic 0. This is not a legal state, and is not recommended. If SE = 0, COUT = COUTA.					
	One sample must agree. The comparator output is simply sampled.					
	010 2 consecutive samples must agree.					
	011 3 consecutive samples must agree.					
	100 4 consecutive samples must agree.					
	101 5 consecutive samples must agree.					
	110 6 consecutive samples must agree.					
	111 7 consecutive samples must agree.					
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
2	This field is reserved.					
Reserved	This read-only field is reserved and always has the value 0.					
1–0 HYSTCTR	Comparator hard block hysteresis control					
	Defines the programmable hysteresis level. The hysteresis values associated with each level are device-specific. See the Data Sheet of the device for the exact values.					
	00 Level 0					
	01 Level 1					
	10 Level 2					
	11 Level 3					

35.2.2 CMP Control Register 1 (CMPx_CR1)

Address: Base address + 1h offset

Bit	7	6	5	4	3	2	1	0
Read Write	SE	WE	TRIGM	PMODE	INV	cos	OPE	EN
Reset	0	0	0	0	0	0	0	0

CMPx_CR1 field descriptions

Field	Description
7	Sample Enable
SE	At any given time, either SE or WE can be set. If a write to this register attempts to set both, then SE is set and WE is cleared. However, avoid writing 1s to both field locations because this "11" case is reserved and may change in future implementations.
	0 Sampling mode is not selected.
	1 Sampling mode is selected.
6 WE	Windowing Enable

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Memory map/register definitions

CMPx_CR1 field descriptions (continued)

Field	Description
	At any given time, either SE or WE can be set. If a write to this register attempts to set both, then SE is set and WE is cleared. However, avoid writing 1s to both field locations because this "11" case is reserved and may change in future implementations.
	0 Windowing mode is not selected.1 Windowing mode is selected.
5	Trigger Mode Enable
TRIGM	CMP and DAC are configured to CMP Trigger mode when CMP_CR1[TRIGM] is set to 1. In addition, the CMP should be enabled. If the DAC is to be used as a reference to the CMP, it should also be enabled.
	CMP Trigger mode depends on an external timer resource to periodically enable the CMP and 6-bit DAC in order to generate a triggered compare.
	Upon setting TRIGM, the CMP and DAC are placed in a standby state until an external timer resource trigger is received.
	See the chip configuration for details about the external timer resource.
	0 Trigger mode is disabled.
	1 Trigger mode is enabled.
4 PMODE	Power Mode Select
PIVIODE	See the electrical specifications table in the device Data Sheet for details.
	0 Low-Speed (LS) Comparison mode selected. In this mode, CMP has slower output propagation delay and lower current consumption.
	1 High-Speed (HS) Comparison mode selected. In this mode, CMP has faster output propagation delay and higher current consumption.
3 INV	Comparator INVERT
IIIV	Allows selection of the polarity of the analog comparator function. It is also driven to the COUT output, on both the device pin and as SCR[COUT], when OPE=0.
	0 Does not invert the comparator output.
	1 Inverts the comparator output.
2 COS	Comparator Output Select
003	0 Set the filtered comparator output (CMPO) to equal COUT.
	1 Set the unfiltered comparator output (CMPO) to equal COUTA.
1 OPE	Comparator Output Pin Enable
012	O CMPO is not available on the associated CMPO output pin. If the comparator does not own the pin, this field has no effect.
	1 CMPO is available on the associated CMPO output pin.
	The comparator output (CMPO) is driven out on the associated CMPO output pin if the comparator owns the pin. If the comparator does not own the field, this bit has no effect.
0	Comparator Module Enable
EN	Enables the Analog Comparator module. When the module is not enabled, it remains in the off state, and consumes no power. When the user selects the same input from analog mux to the positive and negative port, the comparator is disabled automatically.

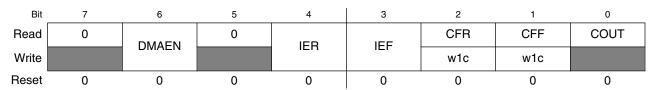
Table continues on the next page...

CMPx_CR1 field descriptions (continued)

Field	Description			
	0 Analog Comparator is disabled.			
	1 Analog Comparator is enabled.			

35.2.3 CMP Filter Period Register (CMPx_FPR)

Address: Base address + 2h offset


Bit	7	6	5	4	3	2	1	0
Read Write				FILT_	_PER			
Reset	0	0	0	0	0	0	0	0

CMPx_FPR field descriptions

Field	Description
7–0 FILT_PER	Filter Sample Period Specifies the sampling period, in bus clock cycles, of the comparator output filter, when CR1[SE]=0. Setting FILT_PER to 0x0 disables the filter. Filter programming and latency details appear in the Functional description.
	This field has no effect when CR1[SE]=1. In that case, the external SAMPLE signal is used to determine the sampling period.

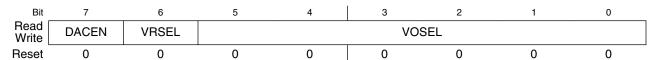
35.2.4 CMP Status and Control Register (CMPx_SCR)

Address: Base address + 3h offset

CMPx_SCR field descriptions

Field	Description
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 DMAEN	DMA Enable Control Enables the DMA transfer triggered from the CMP module. When this field is set, a DMA request is asserted when CFR or CFF is set. 0 DMA is disabled.
	1 DMA is enabled.

Table continues on the next page...


Memory map/register definitions

CMPx_SCR field descriptions (continued)

Field	Description						
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.						
4 IER	Comparator Interrupt Enable Rising Enables the CFR interrupt from the CMP. When this field is set, an interrupt will be asserted when CFR is set.						
	0 Interrupt is disabled.1 Interrupt is enabled.						
3 IEF	Comparator Interrupt Enable Falling Enables the CFF interrupt from the CMP. When this field is set, an interrupt will be asserted when CFF is set.						
	0 Interrupt is disabled.1 Interrupt is enabled.						
2 CFR	Analog Comparator Flag Rising Detects a rising-edge on COUT, when set, during normal operation. CFR is cleared by writing 1 to it. During Stop modes, CFR is level sensitive. Rising-edge on COUT has not been detected. Rising-edge on COUT has occurred.						
1 CFF	Analog Comparator Flag Falling Detects a falling-edge on COUT, when set, during normal operation. CFF is cleared by writing 1 to it. During Stop modes, CFF is level sensitive. 0 Falling-edge on COUT has not been detected. 1 Falling-edge on COUT has occurred.						
0 COUT	Analog Comparator Output Returns the current value of the Analog Comparator output, when read. The field is reset to 0 and will read as CR1[INV] when the Analog Comparator module is disabled, that is, when CR1[EN] = 0. Writes to this field are ignored.						

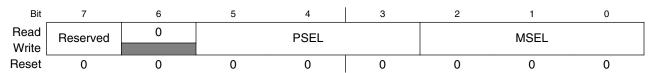
35.2.5 DAC Control Register (CMPx_DACCR)

Address: Base address + 4h offset

CMPx_DACCR field descriptions

Field	Description
7 DACEN	DAC Enable
	Enables the DAC. When the DAC is disabled, it is powered down to conserve power.


Table continues on the next page...


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

CMPx_DACCR field descriptions (continued)

Field	Description					
	0 DAC is disabled.					
	1 DAC is enabled.					
6 VRSEL	Supply Voltage Reference Source Select					
	0 V _{in1} is selected as resistor ladder network supply reference.					
	1 V _{in2} is selected as resistor ladder network supply reference.					
5–0	DAC Output Voltage Select					
VOSEL	Selects an output voltage from one of 64 distinct levels.					
	DACO = $(V_{in} / 64) * (VOSEL[5:0] + 1)$, so the DACO range is from $V_{in} / 64$ to V_{in} .					

35.2.6 MUX Control Register (CMPx_MUXCR)

CMPx_MUXCR field descriptions

Field	Description						
7	Bit can be programmed to zero only .						
Reserved	This field is reserved.						
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.						
5–3 PSEL	Plus Input Mux Control Determines which input is selected for the plus input of the comparator. For INx inputs, see CMP, DAC and ANMUX block diagrams.						
	NOTE: When an inappropriate operation selects the same input for both muxes, the comparator automatically shuts down to prevent itself from becoming a noise generator.						
	000 IN0						
	001 IN1 010 IN2						
	011 IN3 100 IN4						
	101 IN5 110 IN6						
	111 IN7						
2–0 MSEL	Minus Input Mux Control Determines which input is selected for the minus input of the comparator. For INx inputs, see CMP, DAC, and ANMUX block diagrams.						

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

CMPx_MUXCR field descriptions (continued)

Field	Description						
	NOTE: When an inappropriate operation selects the same input for both muxes, the comparator						
	automatically shuts down to prevent itself from becoming a noise generator.						
	000 IN0						
	001 IN1						
	010 IN2						
	011 IN3						
	100 IN4						
	101 IN5						
	110 IN6						
	111 IN7						

35.3 Functional description

The CMP module can be used to compare two analog input voltages applied to INP and INM.

CMPO is high when the non-inverting input is greater than the inverting input, and is low when the non-inverting input is less than the inverting input. This signal can be selectively inverted by setting CR1[INV] = 1.

SCR[IER] and SCR[IEF] are used to select the condition which will cause the CMP module to assert an interrupt to the processor. SCR[CFF] is set on a falling-edge and SCR[CFR] is set on rising-edge of the comparator output. The optionally filtered CMPO can be read directly through SCR[COUT].

35.3.1 CMP functional modes

There are the following main sub-blocks to the CMP module:

- The comparator itself
- The window function
- The filter function

The filter, CR0[FILTER_CNT], can be clocked from an internal or external clock source. The filter is programmable with respect to the number of samples that must agree before a change in the output is registered. In the simplest case, only one sample must agree. In this case, the filter acts as a simple sampler.

The external sample input is enabled using CR1[SE]. When set, the output of the comparator is sampled only on rising edges of the sample input.

The "windowing mode" is enabled by setting CR1[WE]. When set, the comparator output is sampled only when WINDOW=1. This feature can be used to ignore the comparator output during time periods in which the input voltages are not valid. This is especially useful when implementing zero-crossing-detection for certain PWM applications.

The comparator filter and sampling features can be combined as shown in the following table. Individual modes are discussed below.

Table 35-22. Comparator sample/filter controls

Mode #	CR1[EN]	CR1[WE]	CR1[SE]	CR0[FILTER_C NT]	FPR[FILT_PER]	Operation	
1	0	Х	Х	Х	Х	Disabled	
						See the Disabled mode (# 1).	
2A	1	0	0	0x00	X	Continuous Mode	
2B	1	0	0	Х	0x00	See the Continuous mode (#s 2A & 2B).	
3A	1	0	1	0x01	X	Sampled, Non-Filtered mode	
3B	1	0	0	0x01	> 0x00	See the Sampled, Non-Filtered mode (#s 3A & 3B).	
4A	1	0	1	> 0x01	Х	Sampled, Filtered mode	
4B	1	0	0	> 0x01	> 0x00	See the Sampled, Filtered mode (#s 4A & 4B).	
5A	1	1	0	0x00	X	Windowed mode	
5B	1	1	0	Х	0x00	Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA.	
						See the Windowed mode (#s 5A & 5B).	
6	1	1	0	0x01	0x01-0xFF	Windowed/Resampled mode	
						Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA, which is then resampled on an interval determined by FILT_PER to generate COUT.	
						See the Windowed/Resampled mode (# 6).	
7	1	1	0	> 0x01	0x01-0xFF	Windowed/Filtered mode	
						Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA, which is then resampled and filtered to generate COUT.	
						See the Windowed/Filtered mode (#7).	
All	All other combinations of CR1[EN], CR1[WE], CR1[SE], CR0[FILTER_CNT], and FPR[FILT_PER] are illegal.						

Functional description

For cases where a comparator is used to drive a fault input, for example, for a motor-control module such as FTM, it must be configured to operate in Continuous mode so that an external fault can immediately pass through the comparator to the target fault circuitry.

Note

Filtering and sampling settings must be changed only after setting CR1[SE]=0 and CR0[FILTER_CNT]=0x00. This resets the filter to a known state.

35.3.1.1 Disabled mode (# 1)

In Disabled mode, the analog comparator is non-functional and consumes no power. CMPO is 0 in this mode.

35.3.1.2 Continuous mode (#s 2A & 2B)

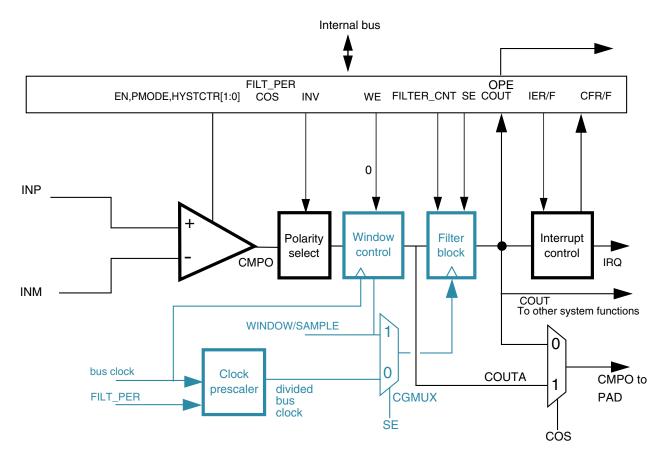


Figure 35-21. Comparator operation in Continuous mode

NOTE

See the chip configuration section for the source of sample/ window input.

The analog comparator block is powered and active. CMPO may be optionally inverted, but is not subject to external sampling or filtering. Both window control and filter blocks are completely bypassed. SCR[COUT] is updated continuously. The path from comparator input pins to output pin is operating in combinational unclocked mode. COUT and COUTA are identical.

For control configurations which result in disabling the filter block, see the Filter Block Bypass Logic diagram.

35.3.1.3 Sampled, Non-Filtered mode (#s 3A & 3B)

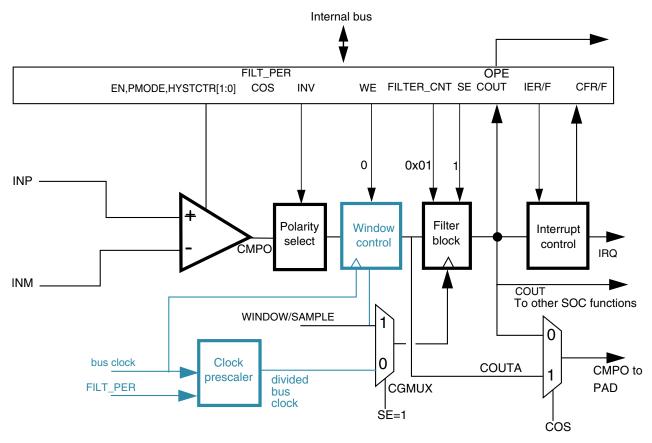


Figure 35-22. Sampled, Non-Filtered (# 3A): sampling point externally driven

In Sampled, Non-Filtered mode, the analog comparator block is powered and active. The path from analog inputs to COUTA is combinational unclocked. Windowing control is completely bypassed. COUTA is sampled whenever a rising-edge is detected on the filter block clock input.

Functional description

The only difference in operation between Sampled, Non-Filtered (# 3A) and Sampled, Non-Filtered (# 3B) is in how the clock to the filter block is derived. In #3A, the clock to filter block is externally derived while in #3B, the clock to filter block is internally derived.

The comparator filter has no other function than sample/hold of the comparator output in this mode (# 3B).

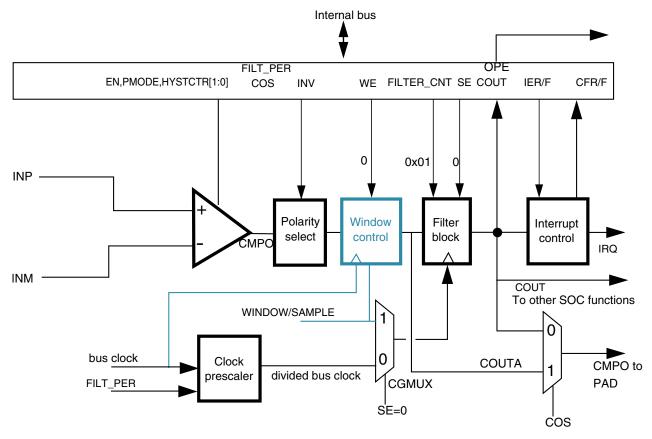


Figure 35-23. Sampled, Non-Filtered (# 3B): sampling interval internally derived

35.3.1.4 Sampled, Filtered mode (#s 4A & 4B)

In Sampled, Filtered mode, the analog comparator block is powered and active. The path from analog inputs to COUTA is combinational unclocked. Windowing control is completely bypassed. COUTA is sampled whenever a rising edge is detected on the filter block clock input.

The only difference in operation between Sampled, Non-Filtered (# 3A) and Sampled, Filtered (# 4A) is that, now, CR0[FILTER_CNT]>1, which activates filter operation.

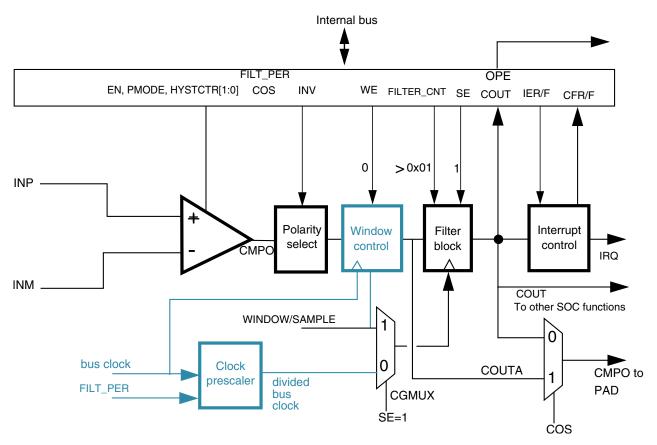


Figure 35-24. Sampled, Filtered (# 4A): sampling point externally driven

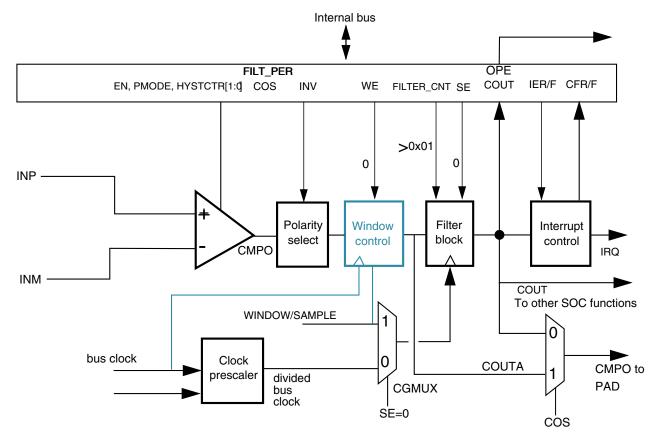


Figure 35-25. Sampled, Filtered (# 4B): sampling point internally derived

The only difference in operation between Sampled, Non-Filtered (# 3B) and Sampled, Filtered (# 4B) is that now, CR0[FILTER_CNT]>1, which activates filter operation.

35.3.1.5 Windowed mode (#s 5A & 5B)

The following figure illustrates comparator operation in the Windowed mode, ignoring latency of the analog comparator, polarity select, and window control block. It also assumes that the polarity select is set to non-inverting state.

NOTE

The analog comparator output is passed to COUTA only when the WINDOW signal is high.

In actual operation, COUTA may lag the analog inputs by up to one bus clock cycle plus the combinational path delay through the comparator and polarity select logic.

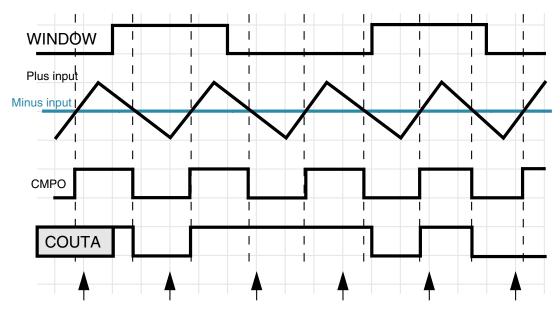


Figure 35-26. Windowed mode operation

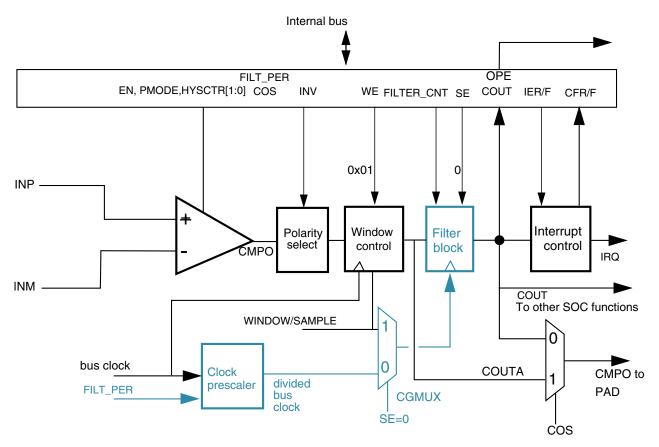


Figure 35-27. Windowed mode

For control configurations which result in disabling the filter block, see Filter Block Bypass Logic diagram.

Functional description

When any windowed mode is active, COUTA is clocked by the bus clock whenever WINDOW = 1. The last latched value is held when WINDOW = 0.

35.3.1.6 Windowed/Resampled mode (# 6)

The following figure uses the same input stimulus shown in Figure 35-26, and adds resampling of COUTA to generate COUT. Samples are taken at the time points indicated by the arrows in the figure. Again, prop delays and latency are ignored for the sake of clarity.

This example was generated solely to demonstrate operation of the comparator in windowed/resampled mode, and does not reflect any specific application. Depending upon the sampling rate and window placement, COUT may not see zero-crossing events detected by the analog comparator. Sampling period and/or window placement must be carefully considered for a given application.

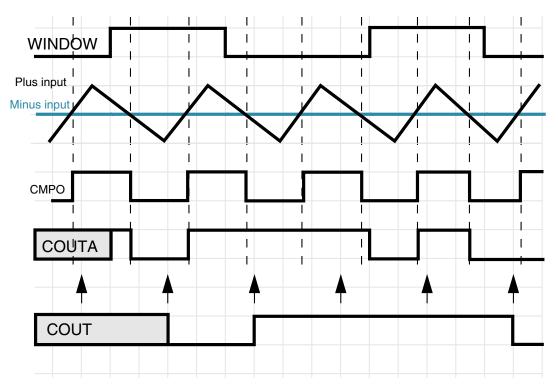


Figure 35-28. Windowed/resampled mode operation

This mode of operation results in an unfiltered string of comparator samples where the interval between the samples is determined by FPR[FILT_PER] and the bus clock rate. Configuration for this mode is virtually identical to that for the Windowed/Filtered Mode shown in the next section. The only difference is that the value of CR0[FILTER_CNT] must be 1.

35.3.1.7 Windowed/Filtered mode (#7)

This is the most complex mode of operation for the comparator block, as it uses both windowing and filtering features. It also has the highest latency of any of the modes. This can be approximated: up to 1 bus clock synchronization in the window function + ((CR0[FILTER_CNT] * FPR[FILT_PER]) + 1) * bus clock for the filter function.

When any windowed mode is active, COUTA is clocked by the bus clock whenever WINDOW = 1. The last latched value is held when WINDOW = 0.

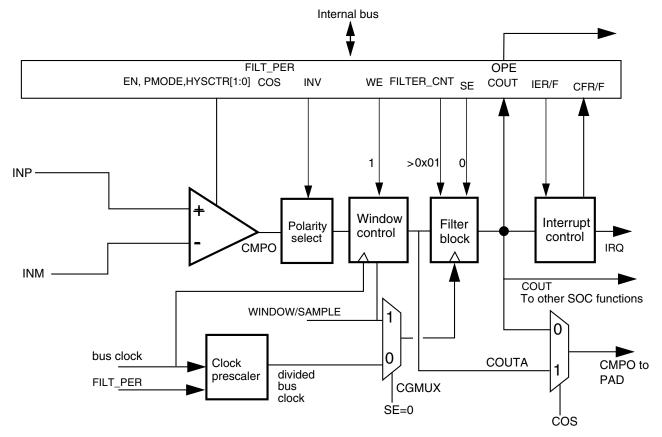


Figure 35-29. Windowed/Filtered mode

35.3.2 Power modes

35.3.2.1 Wait mode operation

During Wait and VLPW modes, the CMP, if enabled, continues to operate normally and a CMP interrupt can wake the MCU.

35.3.2.2 Stop mode operation

Depending on clock restrictions related to the MCU core or core peripherals, the MCU is brought out of stop when a compare event occurs and the corresponding interrupt is enabled. Similarly, if CR1[OPE] is enabled, the comparator output operates as in the normal operating mode and comparator output is placed onto the external pin. In Stop modes, the comparator can be operational in both:

- High-Speed (HS) Comparison mode when CR1[PMODE] = 1
- Low-Speed (LS) Comparison mode when CR1[PMODE] = 0

It is recommended to use the LS mode to minimize power consumption.

If stop is exited with a reset, all comparator registers are put into their reset state.

35.3.2.3 Low-Leakage mode operation

When the chip is in Low-Leakage modes:

- The CMP module is partially functional and is limited to Low-Speed mode, regardless of CR1[PMODE] setting
- Windowed, Sampled, and Filtered modes are not supported
- The CMP output pin is latched and does not reflect the compare output state.

The positive- and negative-input voltage can be supplied from external pins or the DAC output. The MCU can be brought out of the Low-Leakage mode if a compare event occurs and the CMP interrupt is enabled. After wakeup from low-leakage modes, the CMP module is in the reset state except for SCR[CFF] and SCR[CFR].

35.3.3 Startup and operation

A typical startup sequence is listed here.

- The time required to stabilize COUT will be the power-on delay of the comparators plus the largest propagation delay from a selected analog source through the analog comparator, windowing function and filter. See the Data Sheets for power-on delays of the comparators. The windowing function has a maximum of one bus clock period delay. The filter delay is specified in the Low-pass filter.
- During operation, the propagation delay of the selected data paths must always be considered. It may take many bus clock cycles for COUT and SCR[CFR]/SCR[CFF]

- to reflect an input change or a configuration change to one of the components involved in the data path.
- When programmed for filtering modes, COUT will initially be equal to 0, until sufficient clock cycles have elapsed to fill all stages of the filter. This occurs even if COUTA is at a logic 1.

35.3.4 Low-pass filter

The low-pass filter operates on the unfiltered and unsynchronized and optionally inverted comparator output COUTA and generates the filtered and synchronized output COUT.

Both COUTA and COUT can be configured as module outputs and are used for different purposes within the system.

Synchronization and edge detection are always used to determine status register bit values. They also apply to COUT for all sampling and windowed modes. Filtering can be performed using an internal timebase defined by FPR[FILT_PER], or using an external SAMPLE input to determine sample time.

The need for digital filtering and the amount of filtering is dependent on user requirements. Filtering can become more useful in the absence of an external hysteresis circuit. Without external hysteresis, high-frequency oscillations can be generated at COUTA when the selected INM and INP input voltages differ by less than the offset voltage of the differential comparator.

35.3.4.1 Enabling filter modes

Filter modes can be enabled by:

- Setting CR0[FILTER_CNT] > 0x01 and
- Setting FPR[FILT_PER] to a nonzero value or setting CR1[SE]=1

If using the divided bus clock to drive the filter, it will take samples of COUTA every FPR[FILT_PER] bus clock cycles.

The filter output will be at logic 0 when first initalized, and will subsequently change when all the consecutive CR0[FILTER_CNT] samples agree that the output value has changed. In other words, SCR[COUT] will be 0 for some initial period, even when COUTA is at logic 1.

Setting both CR1[SE] and FPR[FILT_PER] to 0 disables the filter and eliminates switching current associated with the filtering process.

Note

Always switch to this setting prior to making any changes in filter parameters. This resets the filter to a known state. Switching CR0[FILTER_CNT] on the fly without this intermediate step can result in unexpected behavior.

If CR1[SE]=1, the filter takes samples of COUTA on each positive transition of the sample input. The output state of the filter changes when all the consecutive CR0[FILTER_CNT] samples agree that the output value has changed.

35.3.4.2 Latency issues

The value of FPR[FILT_PER] or SAMPLE period must be set such that the sampling period is just longer than the period of the expected noise. This way a noise spike will corrupt only one sample. The value of CR0[FILTER_CNT] must be chosen to reduce the probability of noisy samples causing an incorrect transition to be recognized. The probability of an incorrect transition is defined as the probability of an incorrect sample raised to the power of CR0[FILTER_CNT].

The values of FPR[FILT_PER] or SAMPLE period and CR0[FILTER_CNT] must also be traded off against the desire for minimal latency in recognizing actual comparator output transitions. The probability of detecting an actual output change within the nominal latency is the probability of a correct sample raised to the power of CR0[FILTER_CNT].

The following table summarizes maximum latency values for the various modes of operation *in the absence of noise*. Filtering latency is restarted each time an actual output transition is masked by noise.

Mode #	CR1[EN]	CR1[WE]	CR1[SE]	CR0[FILTER _CNT]	FPR[FILT_P ER]	Operation	Maximum latency ¹
1	0	Х	Х	Х	Х	Disabled	N/A
2A	1	0	0	0x00	Х	Continuous Mode	T _{PD}
2B	1	0	0	Х	0x00		
ЗА	1	0	1	0x01	Х	Sampled, Non-Filtered mode	T _{PD} + T _{SAMPLE} + T _{per}
3B	1	0	0	0x01	> 0x00		T_{PD} + (FPR[FILT_PER] * T_{per}) + T_{per}
4A	1	0	1	> 0x01	Х	Sampled, Filtered mode	T _{PD} + (CR0[FILTER_CNT] * T _{SAMPLE}) + T _{per}
4B	1	0	0	> 0x01	> 0x00		T _{PD} + (CR0[FILTER_CNT] * FPR[FILT_PER] x T _{per}) + T _{per}

Table 35-23. Comparator sample/filter maximum latencies

Table continues on the next page...

 $2T_{\text{per}} \\$

CR1[CR1[CR1[CR0[FILTER FPR[FILT_P Mode # Operation Maximum latency¹ EN] WE] SE] CNT] ER] 1 1 Х 5A 0 0x00 Windowed mode $T_{PD} + T_{per}$ 5B 1 0 Χ 0x00 $T_{PD} + T_{per}$ 6 1 1 0 0x01 0x01 - 0xFF Windowed / Resampled $T_{PD} + (FPR[FILT_PER] *$ mode T_{per}) + $2T_{per}$ 7 T_{PD} + (CR0[FILTER_CNT] * 0x01 - 0xFF Windowed / Filtered mode 0 > 0x01FPR[FILT_PER] x T_{per}) +

Table 35-23. Comparator sample/filter maximum latencies (continued)

35.4 CMP interrupts

The CMP module is capable of generating an interrupt on either the rising- or fallingedge of the comparator output, or both.

The following table gives the conditions in which the interrupt request is asserted and deasserted.

When	Then
SCR[IER] and SCR[CFR] are set	The interrupt request is asserted
SCR[IEF] and SCR[CFF] are set	The interrupt request is asserted
SCR[IER] and SCR[CFR] are cleared for a rising-edge interrupt	The interrupt request is deasserted
SCR[IEF] and SCR[CFF] are cleared for a falling-edge interrupt	The interrupt request is deasserted

35.5 DMA support

Normally, the CMP generates a CPU interrupt if there is a change on the COUT. When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request rather than a CPU interrupt instead. When the DMA has completed the transfer, it sends a transfer completing indicator that deasserts the DMA transfer request and clears the flag to allow a subsequent change on comparator output to occur and force another DMA request.

The comparator can remain functional in STOP modes.

T_{PD} represents the intrinsic delay of the analog component plus the polarity select logic. T_{SAMPLE} is the clock period of the external sample clock. T_{per} is the period of the bus clock.

CMP Asynchronous DMA support

When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request to wake up the system from STOP modes. After the data transfer has finished, system will go back to STOP modes. Refer to DMA chapters in the device reference manual for the asynchronous DMA function for details.

35.6 CMP Asynchronous DMA support

The comparator can remain functional in STOP modes.

When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request to wake up the system from STOP modes. After the data transfer has finished, system will go back to STOP modes. Refer to DMA chapters in the device reference manual for the asynchronous DMA function for details.

35.7 Digital-to-analog converter

The figure found here shows the block diagram of the DAC module.

It contains a 64-tap resistor ladder network and a 64-to-1 multiplexer, which selects an output voltage from one of 64 distinct levels that outputs from DACO. It is controlled through the DAC Control Register (DACCR). Its supply reference source can be selected from two sources V_{in1} and V_{in2} . The module can be powered down or disabled when not in use. When in Disabled mode, DACO is connected to the analog ground.

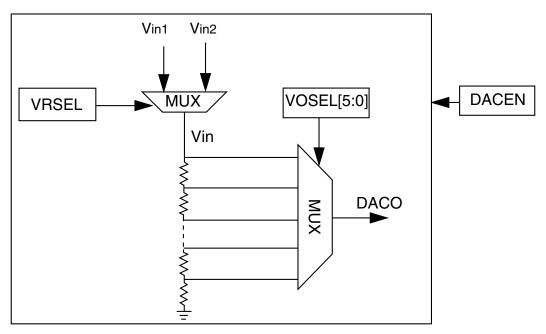


Figure 35-30. 6-bit DAC block diagram

35.8 DAC functional description

This section provides DAC functional description information.

35.8.1 Voltage reference source select

- \bullet V_{in1} connects to the primary voltage source as supply reference of 64 tap resistor ladder
- V_{in2} connects to an alternate voltage source

35.9 DAC resets

This module has a single reset input, corresponding to the chip-wide peripheral reset.

35.10 DAC clocks

This module has a single clock input, the bus clock.

35.11 DAC interrupts

This module has no interrupts.

Chapter 36 12-bit Digital-to-Analog Converter (DAC)

36.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator, op-amps, or ADC.

36.2 Features

The features of the DAC module include:

- On-chip programmable reference generator output. The voltage output range is from $1/4096 \, V_{in}$ to V_{in} , and the step is $1/4096 \, V_{in}$, where V_{in} is the input voltage.
- V_{in} can be selected from two reference sources
- Static operation in Normal Stop mode
- 16-word data buffer supported with configurable watermark and multiple operation modes
- DMA support

36.3 Block diagram

The block diagram of the DAC module is as follows:

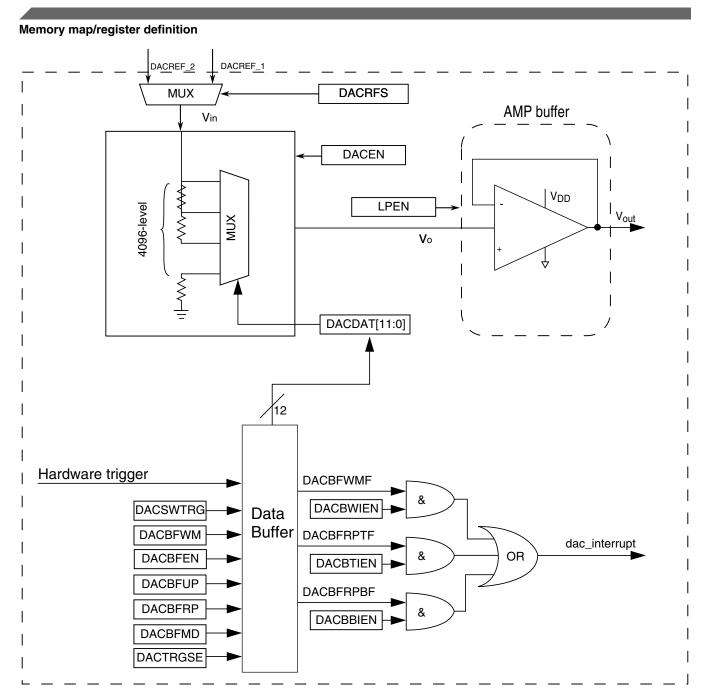


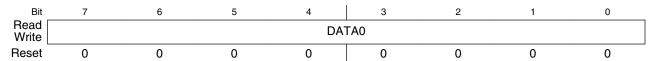
Figure 36-1. DAC block diagram

36.4 Memory map/register definition

The DAC has registers to control analog comparator and programmable voltage divider to perform the digital-to-analog functions.

DAC memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_8000	DAC Data Low Register (DAC1_DAT0L)	8	R/W	00h	36.4.1/843
4002_8001	DAC Data High Register (DAC1_DAT0H)	8	R/W	00h	36.4.2/843
4002_8002	DAC Data Low Register (DAC1_DAT1L)	8	R/W	00h	36.4.1/843
4002_8003	DAC Data High Register (DAC1_DAT1H)	8	R/W	00h	36.4.2/843
4002_8004	DAC Data Low Register (DAC1_DAT2L)	8	R/W	00h	36.4.1/843
4002_8005	DAC Data High Register (DAC1_DAT2H)	8	R/W	00h	36.4.2/843
4002_8006	DAC Data Low Register (DAC1_DAT3L)	8	R/W	00h	36.4.1/843
4002_8007	DAC Data High Register (DAC1_DAT3H)	8	R/W	00h	36.4.2/843
4002_8008	DAC Data Low Register (DAC1_DAT4L)	8	R/W	00h	36.4.1/843
4002_8009	DAC Data High Register (DAC1_DAT4H)	8	R/W	00h	36.4.2/843
4002_800A	DAC Data Low Register (DAC1_DAT5L)	8	R/W	00h	36.4.1/843
4002_800B	DAC Data High Register (DAC1_DAT5H)	8	R/W	00h	36.4.2/843
4002_800C	DAC Data Low Register (DAC1_DAT6L)	8	R/W	00h	36.4.1/843
4002_800D	DAC Data High Register (DAC1_DAT6H)	8	R/W	00h	36.4.2/843
4002_800E	DAC Data Low Register (DAC1_DAT7L)	8	R/W	00h	36.4.1/843
4002_800F	DAC Data High Register (DAC1_DAT7H)	8	R/W	00h	36.4.2/843
4002_8010	DAC Data Low Register (DAC1_DAT8L)	8	R/W	00h	36.4.1/843
4002_8011	DAC Data High Register (DAC1_DAT8H)	8	R/W	00h	36.4.2/843
4002_8012	DAC Data Low Register (DAC1_DAT9L)	8	R/W	00h	36.4.1/843
4002_8013	DAC Data High Register (DAC1_DAT9H)	8	R/W	00h	36.4.2/843
4002_8014	DAC Data Low Register (DAC1_DAT10L)	8	R/W	00h	36.4.1/843
4002_8015	DAC Data High Register (DAC1_DAT10H)	8	R/W	00h	36.4.2/843
4002_8016	DAC Data Low Register (DAC1_DAT11L)	8	R/W	00h	36.4.1/843
4002_8017	DAC Data High Register (DAC1_DAT11H)	8	R/W	00h	36.4.2/843
4002_8018	DAC Data Low Register (DAC1_DAT12L)	8	R/W	00h	36.4.1/843
4002_8019	DAC Data High Register (DAC1_DAT12H)	8	R/W	00h	36.4.2/843
4002_801A	DAC Data Low Register (DAC1_DAT13L)	8	R/W	00h	36.4.1/843
4002_801B	DAC Data High Register (DAC1_DAT13H)	8	R/W	00h	36.4.2/843
4002_801C	DAC Data Low Register (DAC1_DAT14L)	8	R/W	00h	36.4.1/843
4002_801D	DAC Data High Register (DAC1_DAT14H)	8	R/W	00h	36.4.2/843
4002_801E	DAC Data Low Register (DAC1_DAT15L)	8	R/W	00h	36.4.1/843
4002_801F	DAC Data High Register (DAC1_DAT15H)	8	R/W	00h	36.4.2/843
4002_8020	DAC Status Register (DAC1_SR)	8	R/W	02h	36.4.3/844
4002_8021	DAC Control Register (DAC1_C0)	8	R/W	00h	36.4.4/845
4002_8022	DAC Control Register 1 (DAC1_C1)	8	R/W	00h	36.4.5/846
4002_8023	DAC Control Register 2 (DAC1_C2)	8	R/W	0Fh	36.4.6/847
4003_F000	DAC Data Low Register (DAC0_DAT0L)	8	R/W	00h	36.4.1/843
4003_F001	DAC Data High Register (DAC0_DAT0H)	8	R/W	00h	36.4.2/843

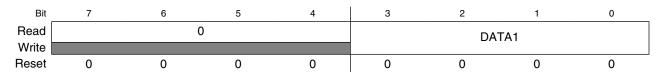

Table continues on the next page...

DAC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_F002	DAC Data Low Register (DAC0_DAT1L)	8	R/W	00h	36.4.1/843
4003_F003	DAC Data High Register (DAC0_DAT1H)	8	R/W	00h	36.4.2/843
4003_F004	DAC Data Low Register (DAC0_DAT2L)	8	R/W	00h	36.4.1/843
4003_F005	DAC Data High Register (DAC0_DAT2H)	8	R/W	00h	36.4.2/843
4003_F006	DAC Data Low Register (DAC0_DAT3L)	8	R/W	00h	36.4.1/843
4003_F007	DAC Data High Register (DAC0_DAT3H)	8	R/W	00h	36.4.2/843
4003_F008	DAC Data Low Register (DAC0_DAT4L)	8	R/W	00h	36.4.1/843
4003_F009	DAC Data High Register (DAC0_DAT4H)	8	R/W	00h	36.4.2/843
4003_F00A	DAC Data Low Register (DAC0_DAT5L)	8	R/W	00h	36.4.1/843
4003_F00B	DAC Data High Register (DAC0_DAT5H)	8	R/W	00h	36.4.2/843
4003_F00C	DAC Data Low Register (DAC0_DAT6L)	8	R/W	00h	36.4.1/843
4003_F00D	DAC Data High Register (DAC0_DAT6H)	8	R/W	00h	36.4.2/843
4003_F00E	DAC Data Low Register (DAC0_DAT7L)	8	R/W	00h	36.4.1/843
4003_F00F	DAC Data High Register (DAC0_DAT7H)	8	R/W	00h	36.4.2/843
4003_F010	DAC Data Low Register (DAC0_DAT8L)	8	R/W	00h	36.4.1/843
4003_F011	DAC Data High Register (DAC0_DAT8H)	8	R/W	00h	36.4.2/843
4003_F012	DAC Data Low Register (DAC0_DAT9L)	8	R/W	00h	36.4.1/843
4003_F013	DAC Data High Register (DAC0_DAT9H)	8	R/W	00h	36.4.2/843
4003_F014	DAC Data Low Register (DAC0_DAT10L)	8	R/W	00h	36.4.1/843
4003_F015	DAC Data High Register (DAC0_DAT10H)	8	R/W	00h	36.4.2/843
4003_F016	DAC Data Low Register (DAC0_DAT11L)	8	R/W	00h	36.4.1/843
4003_F017	DAC Data High Register (DAC0_DAT11H)	8	R/W	00h	36.4.2/843
4003_F018	DAC Data Low Register (DAC0_DAT12L)	8	R/W	00h	36.4.1/843
4003_F019	DAC Data High Register (DAC0_DAT12H)	8	R/W	00h	36.4.2/843
4003_F01A	DAC Data Low Register (DAC0_DAT13L)	8	R/W	00h	36.4.1/843
4003_F01B	DAC Data High Register (DAC0_DAT13H)	8	R/W	00h	36.4.2/843
4003_F01C	DAC Data Low Register (DAC0_DAT14L)	8	R/W	00h	36.4.1/843
4003_F01D	DAC Data High Register (DAC0_DAT14H)	8	R/W	00h	36.4.2/843
4003_F01E	DAC Data Low Register (DAC0_DAT15L)	8	R/W	00h	36.4.1/843
4003_F01F	DAC Data High Register (DAC0_DAT15H)	8	R/W	00h	36.4.2/843
4003_F020	DAC Status Register (DAC0_SR)	8	R/W	02h	36.4.3/844
4003_F021	DAC Control Register (DAC0_C0)	8	R/W	00h	36.4.4/845
4003_F022	DAC Control Register 1 (DAC0_C1)	8	R/W	00h	36.4.5/846
4003_F023	DAC Control Register 2 (DAC0_C2)	8	R/W	0Fh	36.4.6/847

36.4.1 DAC Data Low Register (DACx_DATnL)

Address: Base address + 0h offset + $(2d \times i)$, where i=0d to 15d

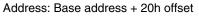


DACx_DATnL field descriptions

Field	Description
	DATA0 When the DAC buffer is not enabled, DATA[11:0] controls the output voltage based on the following formula: V _{out} = V _{in} * (1 + DACDAT0[11:0])/4096 When the DAC buffer is enabled, DATA is mapped to the 16-word buffer.

36.4.2 DAC Data High Register (DACx_DATnH)

Address: Base address + 1h offset + (2d \times i), where i=0d to 15d



DACx_DATnH field descriptions

Field	Description
7–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
	DATA1 When the DAC Buffer is not enabled, DATA[11:0] controls the output voltage based on the following formula. V _{out} = V _{in} * (1 + DACDAT0[11:0])/4096 When the DAC buffer is enabled, DATA[11:0] is mapped to the 16-word buffer.

36.4.3 DAC Status Register (DACx_SR)

If DMA is enabled, the flags can be cleared automatically by DMA when the DMA request is done. Writing 0 to a field clears it whereas writing 1 has no effect. After reset, DACBFRPTF is set and can be cleared by software, if needed. The flags are set only when the data buffer status is changed.

DACx_SR field descriptions

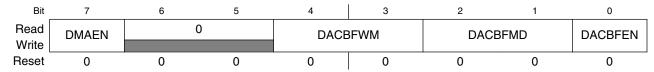
Field	Description
7–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 DACBFWMF	DAC Buffer Watermark Flag
	This bit is set if the remaining FIFO data is less than the watermark setting. It is cleared automatically by writing data into FIFO by DMA or CPU. Write to this bit is ignored in FIFO mode.
	0 The DAC buffer read pointer has not reached the watermark level.
	1 The DAC buffer read pointer has reached the watermark level.
1 DACBFRPTF	DAC Buffer Read Pointer Top Position Flag
	In FIFO mode, it is FIFO nearly empty flag. It is set when only one data remains in FIFO. Any DAC trigger does not increase the Read Pointer if this bit is set to avoid any possible glitch or abrupt change at DAC output. It is cleared automatically if FIFO is not empty.
	0 The DAC buffer read pointer is not zero.
	1 The DAC buffer read pointer is zero.
0 DACBFRPBF	DAC Buffer Read Pointer Bottom Position Flag
	In FIFO mode, it is FIFO FULL status bit. It means FIFO read pointer equals Write Pointer because of Write Pointer increase. If this bit is set, any write to FIFO from either DMA or CPU is ignored by DAC. It is cleared if there is any DAC trigger making the DAC read pointer increase. Write to this bit is ignored in FIFO mode.
	0 The DAC buffer read pointer is not equal to C2[DACBFUP].
	1 The DAC buffer read pointer is equal to C2[DACBFUP].

36.4.4 DAC Control Register (DACx_C0)

Address: Base address + 21h offset

DACx_C0 field descriptions

Field	Description
7	DAC Enable
DACEN	Starts the Programmable Reference Generator operation.
	0 The DAC system is disabled.
	1 The DAC system is enabled.
6 DACRFS	DAC Reference Select
	0 The DAC selects DACREF_1 as the reference voltage.
	1 The DAC selects DACREF_2 as the reference voltage.
5 DACTRGSEL	DAC Trigger Select
	0 The DAC hardware trigger is selected.
	1 The DAC software trigger is selected.
4 DACSWTRG	DAC Software Trigger
	Active high. This is a write-only field, which always reads 0. If DAC software trigger is selected and buffer is enabled, writing 1 to this field will advance the buffer read pointer once.
	0 The DAC soft trigger is not valid.
	1 The DAC soft trigger is valid.
3 LPEN	DAC Low Power Control
	NOTE: See the 12-bit DAC electrical characteristics of the device data sheet for details on the impact of the modes below.
	0 High-Power mode
	1 Low-Power mode
2 DACBWIEN	DAC Buffer Watermark Interrupt Enable
	0 The DAC buffer watermark interrupt is disabled.
	1 The DAC buffer watermark interrupt is enabled.
1 DACBTIEN	DAC Buffer Read Pointer Top Flag Interrupt Enable
	0 The DAC buffer read pointer top flag interrupt is disabled.
	1 The DAC buffer read pointer top flag interrupt is enabled.
0 DACBBIEN	DAC Buffer Read Pointer Bottom Flag Interrupt Enable

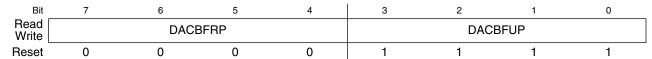

Table continues on the next page...

DACx_C0 field descriptions (continued)

Field	Description		
	The DAC buffer read pointer bottom flag interrupt is disabled.		
	The DAC buffer read pointer bottom flag interrupt is enabled.		

36.4.5 DAC Control Register 1 (DACx_C1)

Address: Base address + 22h offset



DACx_C1 field descriptions

Field	Description
7 DMAEN	DMA Enable Select
	0 DMA is disabled.
	1 DMA is enabled. When DMA is enabled, the DMA request will be generated by original interrupts. The interrupts will not be presented on this module at the same time.
6–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4–3 DACBFWM	DAC Buffer Watermark Select
	In normal mode it controls when SR[DACBFWMF] is set. When the DAC buffer read pointer reaches the word defined by this field, which is 1–4 words away from the upper limit (DACBUP), SR[DACBFWMF] will be set. This allows user configuration of the watermark interrupt. In FIFO mode, it is FIFO watermark select field.
	00 In normal mode, 1 word . In FIFO mode, 2 or less than 2 data remaining in FIFO will set watermark status bit.
	01 In normal mode, 2 words . In FIFO mode, Max/4 or less than Max/4 data remaining in FIFO will set watermark status bit.
	10 In normal mode, 3 words . In FIFO mode, Max/2 or less than Max/2 data remaining in FIFO will set watermark status bit.
	11 In normal mode, 4 words . In FIFO mode, Max-2 or less than Max-2 data remaining in FIFO will set watermark status bit.
2–1 DACBFMD	DAC Buffer Work Mode Select
	00 Normal mode
	01 Swing mode
	10 One-Time Scan mode
	11 FIFO mode
0 DACBFEN	DAC Buffer Enable
	0 Buffer read pointer is disabled. The converted data is always the first word of the buffer.
	1 Buffer read pointer is enabled. The converted data is the word that the read pointer points to. It means converted data can be from any word of the buffer.

36.4.6 DAC Control Register 2 (DACx_C2)

Address: Base address + 23h offset

DACx_C2 field descriptions

Field	Description
7–4	DAC Buffer Read Pointer
DACBFRP	
	In normal mode it keeps the current value of the buffer read pointer. FIFO mode, it is the FIFO read pointer. It is writable in FIFO mode. User can configure it to same address to reset FIFO as empty.
3–0	DAC Buffer Upper Limit
DACBFUP	
	In normal mode it selects the upper limit of the DAC buffer. The buffer read pointer cannot exceed it. In
	FIFO mode it is the FIFO write pointer. User cannot set Buffer Up limit in FIFO mode. In Normal mode its reset value is MAX. When IP is configured to FIFO mode, this register becomes Write_Pointer, and its value is initially set to equal READ_POINTER automatically, and the FIFO status is empty. It is writable and user can configure it to the same address to reset FIFO as empty.

36.5 Functional description

The 12-bit DAC module can select one of the two reference inputs—DACREF_1 and DACREF_2 as the DAC reference voltage, V_{in} by C0[DACRFS]. See the module introduction for information on the source for DACREF_1 and DACREF_2.

When the DAC is enabled, it converts the data in DACDAT0[11:0] or the data from the DAC data buffer to a stepped analog output voltage. The output voltage range is from V_{in} /4096, and the step is V_{in} /4096.

36.5.1 DAC data buffer operation

When the DAC is enabled and the buffer is not enabled, the DAC module always converts the data in DAT0 to analog output voltage.

When both the DAC and the buffer are enabled, the DAC converts the data in the data buffer to analog output voltage. The data buffer read pointer advances to the next word whenever any hardware or software trigger event occurs.

Functional description

The data buffer can be configured to operate in Normal mode, Swing mode, One-Time Scan mode or FIFO mode. When the buffer operation is switched from one mode to another, the read pointer does not change. The read pointer can be set to any value between 0 and C2[DACBFUP] by writing C2[DACBFRP].

36.5.1.1 DAC data buffer interrupts

There are several interrupts and associated flags that can be configured for the DAC buffer. SR[DACBFRPBF] is set when the DAC buffer read pointer reaches the DAC buffer upper limit, that is, C2[DACBFRP] = C2[DACBFUP]. SR[DACBFRPTF] is set when the DAC read pointer is equal to the start position, 0. Finally, SR[DACBFWMF] is set when the DAC buffer read pointer has reached the position defined by C1[DACBFWM]. C1[DACBFWM] can be used to generate an interrupt when the DAC buffer read pointer is between 1 to 4 words from C2[DACBFUP].

36.5.1.2 Modes of DAC data buffer operation

The following table describes the different modes of data buffer operation for the DAC module.

Table 36-118. Modes of DAC data buffer operation

Modes	Description
Buffer Normal mode	This is the default mode. The buffer works as a circular buffer. The read pointer increases by one, every time the trigger occurs. When the read pointer reaches the upper limit, it goes to 0 directly in the next trigger event.
Buffer Swing mode	This mode is similar to the normal mode. However, when the read pointer reaches the upper limit, it does not go to 0. It will descend by 1 in the next trigger events until 0 is reached.
Buffer One-time Scan mode	The read pointer increases by 1 every time the trigger occurs. When it reaches the upper limit, it stops there. If read pointer is reset to the address other than the upper limit, it will increase to the upper address and stop there again. NOTE: If the software set the read pointer to the upper limit, the read pointer will not advance in this mode.

Table continues on the next page...

Table 36-118. Modes of DAC data buffer operation (continued)

Modes	Description		
	In FIFO mode, the buffer is organized as a FIFO. For a valid write to any DACDATx, the data is put into the FIFO, and the write pointer is automatically incremented. The module is connected internally to a 32bit interface. For any 16bit or 8bit FIFO access, address bit[1] needs to be 0; otherwise, the write is ignored. For any 32bit FIFO access, the Write_Pointer needs to be an EVEN number; otherwise, the write is ignored.		
FIFO Mode	NOTE: A successful 32bit FIFO write will increase the write pointer by 2. Any write will cause the FIFO over-flow will be ignored, the cases includes: 1.FIFO is full, the write will be ignored. 2.FIFO is nearly full (FIFO_SIZE-1), 32bit write will be ignored. NOTE: For 8bit write, address bit[0] determine which byte lane will be written to the FIFO according to little endian alignment. Only both byte lanes are written will the write pointer increase. User need to make sure 8bit access happened in pair and both upper & lower bytes are written. There is no requirement on which byte write first. In FIFO mode, there is no change to read access of DACDATx (from normal mode), read to DACDATx will return the DATA addressed by the access address to the data buffer, and both write pointer and read pointer in FIFO mode will NOT be changed by read access. FIFO write can be happened when DAC is not enabled for 1st data conversion enable. But FIFO mode need to work at buffer Enabled at DACC1[DACBFEN].		
	In FIFO mode, the DATA BUF will be organized as FIFO.		

36.5.2 DMA operation

When DMA is enabled, DMA requests are generated instead of interrupt requests. The DMA Done signal clears the DMA request.

The status register flags are still set and are cleared automatically when the DMA completes.

36.5.3 Resets

During reset, the DAC is configured in the default mode and is disabled.

36.5.4 Low-Power mode operation

The following table shows the wait mode and the stop mode operation of the DAC module.

Table 36-119. Modes of operation

Modes of operation	Description	
Wait mode	The DAC will operate normally, if enabled.	
Stop mode	If enabled, the DAC module continues to operate in Normal Stop mode and the output voltage will hold the value before stop. In low-power stop modes, the DAC is fully	
	shut down.	

NOTE

The assignment of module modes to core modes is chipspecific. For module-to-core mode assignments, see the chapter that describes how modules are configured.

Chapter 37 Voltage Reference (VREFV1)

37.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Voltage Reference(VREF) is intended to supply an accurate voltage output that can be trimmed in 0.5 mV steps. The VREF can be used in applications to provide a reference voltage to external devices or used internally as a reference to analog peripherals such as the ADC, DAC, or CMP. The voltage reference has three operating modes that provide different levels of supply rejection and power consumption..

The following figure is a block diagram of the Voltage Reference.

Introduction

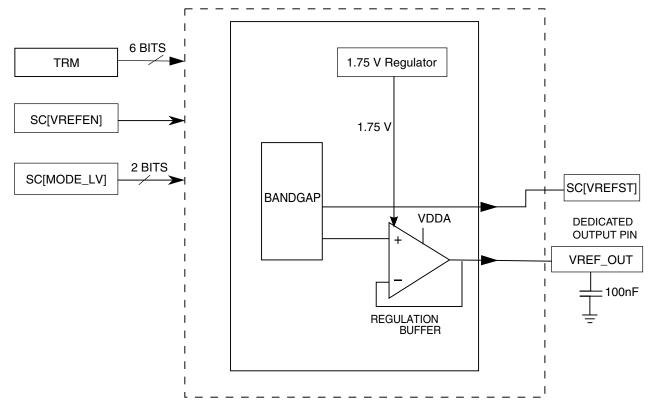


Figure 37-1. Voltage reference block diagram

37.1.1 Overview

The Voltage Reference provides a buffered reference voltage for use as an external reference. In addition, the buffered reference is available internally for use with on chip peripherals such as ADCs and DACs. Refer to the chip configuration details for a description of these options. The reference voltage is output on a dedicated output pin when the VREF is enabled. The Voltage Reference output can be trimmed with a resolution of 0.5mV by means of the TRM register TRIM[5:0] bitfield.

37.1.2 Features

The Voltage Reference has the following features:

- Programmable trim register with 0.5 mV steps, automatically loaded with factory trimmed value upon reset
- Programmable buffer mode selection:
 - Off

- Bandgap enabled/standby (output buffer disabled)
- Low power buffer mode (output buffer enabled)
- High power buffer mode (output buffer enabled)
- 1.2 V output at room temperature
- Dedicated output pin, VREF_OUT

37.1.3 Modes of Operation

The Voltage Reference continues normal operation in Run, Wait, and Stop modes. The Voltage Reference can also run in Very Low Power Run (VLPR), Very Low Power Wait (VLPW) and Very Low Power Stop (VLPS). If it is desired to use the VREF regulator and/or the chop oscillator in the very low power modes, the system reference voltage (also referred to as the bandgap voltage reference) must be enabled in these modes. Refer to the chip configuration details for information on enabling this mode of operation. Having the VREF regulator enabled does increase current consumption. In very low power modes it may be desirable to disable the VREF regulator to minimize current consumption. Note however that the accuracy of the output voltage will be reduced (by as much as several mVs) when the VREF regulator is not used.

NOTE

The assignment of module modes to core modes is chipspecific. For module-to-core mode assignments, see the chapter that describes how modules are configured.

37.1.4 VREF Signal Descriptions

The following table shows the Voltage Reference signals properties.

Table 37-1. VREF Signal Descriptions

Signal	Description	1/0
VREF_OUT	Internally-generated Voltage Reference output	0

NOTE

When the VREF output buffer is disabled, the status of the VREF_OUT signal is high-impedence.

37.2 Memory Map and Register Definition

VREF memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_4000	VREF Trim Register (VREF_TRM)	8	R/W	See section	37.2.1/854
4007_4001	VREF Status and Control Register (VREF_SC)	8	R/W	00h	37.2.2/855

37.2.1 VREF Trim Register (VREF_TRM)

This register contains bits that contain the trim data for the Voltage Reference.

Address: 4007_4000h base + 0h offset = 4007_4000h

Bit	7	6	5	4	3	2	1	0
Read Write	Reserved	CHOPEN	TRIM					
Reset	x*	0	x *	x *	x*	X *	x *	X*

^{*} Notes:

VREF_TRM field descriptions

Field	Description
7 Reserved	This field is reserved. Upon reset this value is loaded with a factory trim value.
6 CHOPEN	Chop oscillator enable. When set, internal chopping operation is enabled and the internal analog offset will be minimized.
	This bit is set during factory trimming of the VREF voltage. This bit should be written to 1 to achieve the performance stated in the data sheet.
	If the internal voltage regulator is being used (REGEN bit is set to 1), the chop oscillator must also be enabled.
	If the chop oscillator is to be used in very low power modes, the system (bandgap) voltage reference must also be enabled. See the chip-specific VREF information (also known as "chip configuration" details) for a description of how this can be achieved.
	0 Chop oscillator is disabled.
	1 Chop oscillator is enabled.
5–0	Trim bits
TRIM	These bits change the resulting VREF by approximately \pm 0.5 mV for each step.
	NOTE: Min = minimum and max = maximum voltage reference output. For minimum and maximum voltage reference output values, refer to the Data Sheet for this chip.

Table continues on the next page...

[•] x = Undefined at reset.

VREF_TRM field descriptions (continued)

Field		Description
	000000	Min
	111111	Max

37.2.2 VREF Status and Control Register (VREF_SC)

This register contains the control bits used to enable the internal voltage reference and to select the buffer mode to be used.

Address: 4007_4000h base + 1h offset = 4007_4001h

VREF_SC field descriptions

Field	Description				
7	Internal Voltage Reference enable				
VREFEN	This bit is used to enable the bandgap reference within the Voltage Reference module.				
	NOTE: After the VREF is enabled, turning off the clock to the VREF module via the corresponding clock gate register will not disable the VREF. VREF must be disabled via this VREFEN bit.				
	0 The module is disabled.				
	1 The module is enabled.				
6 REGEN	Regulator enable This bit is used to enable the internal 1.75 V regulator to produce a constant internal voltage supply in order to reduce the sensitivity to external supply noise and variation. If it is desired to keep the regulator				
	enabled in very low power modes, refer to the Chip Configuration details for a description on how this ca be achieved.				
	This bit should be written to 1 to achieve the performance stated in the data sheet.				
	NOTE: See section "Internal voltage regulator" for details on the required sequence to enable the internal regulator.				
	0 Internal 1.75 V regulator is disabled.				
	1 Internal 1.75 V regulator is enabled.				
5 ICOMPEN	Second order curvature compensation enable				
	This bit should be written to 1 to achieve the performance stated in the data sheet.				

Table continues on the next page...

VREF_SC field descriptions (continued)

Field	Description				
	0 Disabled				
	1 Enabled				
4	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				
3	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				
2 VREFST	Internal Voltage Reference stable				
VIILIOI	This bit indicates that the bandgap reference within the Voltage Reference module has completed its startup and stabilization.				
	NOTE: This bit is valid only when the chop oscillator is not being used.				
	0 The module is disabled or not stable.				
	1 The module is stable.				
1-0	Buffer Mode selection				
MODE_LV	These bits select the buffer modes for the Voltage Reference module.				
	00 Bandgap on only, for stabilization and startup				
	01 High power buffer mode enabled				
	10 Low-power buffer mode enabled				
	11 Reserved				

37.3 Functional Description

The Voltage Reference is a bandgap buffer system. Unity gain amplifiers are used.

The VREF_OUT signal can be used by both internal and external peripherals in low and high power buffer mode. A 100 nF capacitor must always be connected between VREF_OUT and VSSA if the VREF is being used.

The following table shows all possible function configurations of the Voltage Reference.

Table 37-5. Voltage Reference function configurations

SC[VREFEN]	SC[MODE_LV]	Configuration	Functionality
0	X	Voltage Reference disabled	Off
1	00	Voltage Reference enabled, bandgap on only	Startup and standby
1	01	Voltage Reference enabled, high-power buffer on	VREF_OUT available for internal and external use. 100 nF capacitor is required.
1	10	Voltage Reference enabled, low power buffer on	VREF_OUT available for internal and external use. 100 nF capacitor is required.
1	11	Reserved	Reserved

37.3.1 Voltage Reference Disabled, SC[VREFEN] = 0

When SC[VREFEN] = 0, the Voltage Reference is disabled, the VREF bandgap and the output buffers are disabled. The Voltage Reference is in off mode.

37.3.2 Voltage Reference Enabled, SC[VREFEN] = 1

When SC[VREFEN] = 1, the Voltage Reference is enabled, and different modes should be set by the SC[MODE_LV] bits.

37.3.2.1 SC[MODE_LV]=00

The internal VREF bandgap is enabled to generate an accurate 1.2 V output that can be trimmed with the TRM register's TRIM[5:0] bitfield. The bandgap requires some time for startup and stabilization. SC[VREFST] can be monitored to determine if the stabilization and startup is complete when the chop oscillator is not enabled.

If the chop oscillator is being used, the internal bandgap reference voltage settles within the chop oscillator start up time, Tchop_osc_stup.

The output buffer is disabled in this mode, and there is no buffered voltage output. The Voltage Reference is in standby mode. If this mode is first selected and the low power or high power buffer mode is subsequently enabled, there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet.

$37.3.2.2 SC[MODE_LV] = 01$

The internal VREF bandgap is on. The high power buffer is enabled to generate a buffered 1.2 V voltage to VREF_OUT. It can also be used as a reference to internal analog peripherals such as an ADC channel or analog comparator input.

If this mode is entered from the standby mode (SC[MODE_LV] = 00, SC[VREFEN] = 1) there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet. If this mode is entered when the VREF module is enabled then you must wait the longer of

Functional Description

Tstup or until SC[VREFST] = 1 when the chop oscillator is not enabled. If the chop oscillator is being used, you must wait the time specified by Tchop_osc_stup (chop oscillator start up time) to ensure the VREF output has stabilized.

In this mode, a 100 nF capacitor is required to connect between the VREF_OUT pin and VSSA.

37.3.2.3 SC[MODE_LV] = 10

The internal VREF bandgap is on. The low power buffer is enabled to generate a buffered 1.2 V voltage to VREF_OUT. It can also be used as a reference to internal analog peripherals such as an ADC channel or analog comparator input.

If this mode is entered from the standby mode (SC[MODE_LV] = 00, SC[VREFEN] = 1) there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet. If this mode is entered when the VREF module is enabled then you must wait the longer of Tstup or until SC[VREFST] = 1 when the chop oscillator is not enabled. If the chop oscillator is being used, you must wait the time specified by Tchop_osc_stup (chop oscillator start up time) to ensure the VREF output has stabilized.

In this mode, a 100 nF capacitor is required to connect between the VREF_OUT pin and VSSA.

37.3.2.4 SC[MODE_LV] = 11

Reserved

37.3.3 Internal voltage regulator

The VREF module contains an internal voltage regulator that can be enabled to provide additional supply noise rejection. It is recommended that when possible, this regulator be enabled to provide the optimum VREF performance.

If the internal voltage regulator is being used, the chop oscillator must also be enabled. A specific sequence must be followed when enabling the internal regulator as follows:

- 1. Enable the chop oscillator (VREF_TRM[CHOPEN] = 1)
- 2. Configure the VREF_SC register to the desired settings with the internal regulator disabled, VREF_SC[REGEN] = 0
- 3. Wait > 300 ns

4. Enable the internal regulator by setting VREF_SC[REGEN] to 1

37.4 Initialization/Application Information

The Voltage Reference requires some time for startup and stabilization. After SC[VREFEN] = 1, SC[VREFST] can be monitored to determine if the stabilization and startup is completed when the chop oscillator is not enabled. When the chop oscillator is enabled, the settling time of the internal bandgap reference is defined by Tchop_osc_stup (chop oscillator start up time). You must wait this time (Tchop_osc_stup) after the internal bandgap has been enabled to ensure the VREF internal reference voltage has stabilized.

When the Voltage Reference is already enabled and stabilized, changing SC[MODE_LV] will not clear SC[VREFST] but there will be some startup time before the output voltage at the VREF_OUT pin has settled. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet. Also, there will be some settling time when a step change of the load current is applied to the VREF_OUT pin. When the 1.75V VREF regulator is disabled, the VREF_OUT voltage will be more sensitive to supply voltage variation. It is recommended to use this regulator to achieve optimum VREF_OUT performance.

The TRM[CHOPEN], SC[REGEN] and SC[ICOMPEN] bits must be written to 1 to achieve the performance stated in the device data sheet.

NOTE

See section "Internal voltage regulator" for details on the required sequence to enable the internal regulator.

Initialization/Application Information

Chapter 38 Programmable Delay Block (PDB)

38.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Programmable Delay Block (PDB) provides controllable delays from either an internal or an external trigger, or a programmable interval tick, to the hardware trigger inputs of ADCs and/or generates the interval triggers to DACs, so that the precise timing between ADC conversions and/or DAC updates can be achieved. The PDB can optionally provide pulse outputs (Pulse-Out's) that are used as the sample window in the CMP block.

38.1.1 Features

- Up to 15 trigger input sources and one software trigger source
- Up to 8 configurable PDB channels for ADC hardware trigger
 - One PDB channel is associated with one ADC
 - One trigger output for ADC hardware trigger and up to 8 pre-trigger outputs for ADC trigger select per PDB channel
 - Trigger outputs can be enabled or disabled independently
 - One 16-bit delay register per pre-trigger output
 - Optional bypass of the delay registers of the pre-trigger outputs
 - Operation in One-Shot or Continuous modes

Introduction

- Optional back-to-back mode operation, which enables the ADC conversions complete to trigger the next PDB channel
- One programmable delay interrupt
- One sequence error interrupt
- One channel flag and one sequence error flag per pre-trigger
- DMA support
- Up to 8 pulse outputs (pulse-out's)
 - Pulse-out's can be enabled or disabled independently
 - Programmable pulse width

NOTE

The number of PDB input and output triggers are chip-specific. See the chip-specific PDB information for details.

38.1.2 Implementation

In this section, the following letters refer to the number of output triggers:

- N—Total available number of PDB channels.
- n—PDB channel number, valid from 0 to *N*-1.
- M—Total available pre-trigger per PDB channel.
- m—Pre-trigger number, valid from 0 to *M*-1.
- X—Total number of DAC interval triggers.
- x—DAC interval trigger output number, valid from 0 to *X*-1.
- Y—Total number of Pulse-Out's.
- y—Pulse-Out number, valid value is from 0 to Y-1.

NOTE

The number of module output triggers to core is chip-specific. For module to core output triggers implementation, see the chip configuration information.

38.1.3 Back-to-back acknowledgment connections

PDB back-to-back operation acknowledgment connections are chip-specific. For implementation, see the chip configuration information.

38.1.4 DAC External Trigger Input Connections

The implementation of DAC external trigger inputs is chip-specific. See the chip configuration information for details.

38.1.5 Block diagram

This diagram illustrates the major components of the PDB.

Introduction

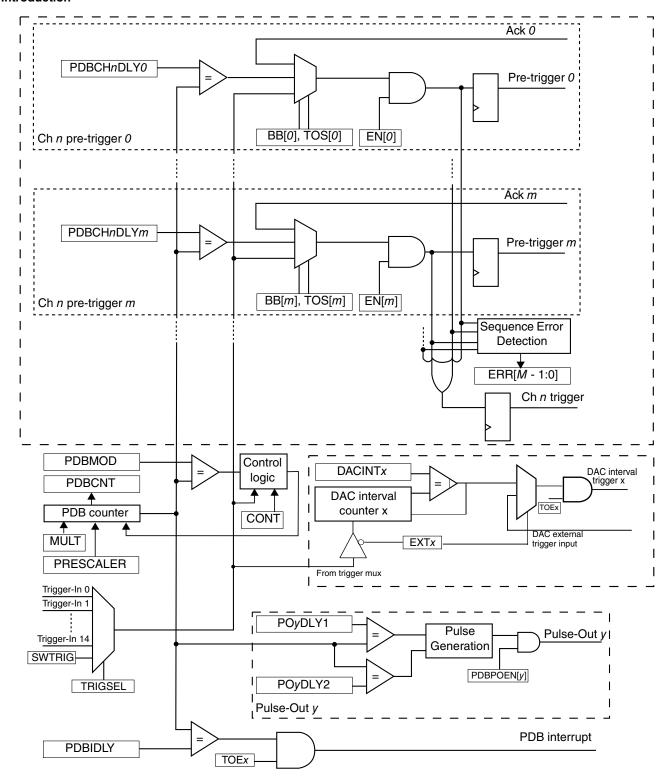


Figure 38-1. PDB block diagram

In this diagram, only one PDB channel *n*, one DAC interval trigger *x*, and one Pulse-Out *y* are shown. The PDB-enabled control logic and the sequence error interrupt logic are not shown.

38.1.6 Modes of operation

PDB ADC trigger operates in the following modes:

- Disabled—Counter is off, all pre-trigger and trigger outputs are low if PDB is not in back-to-back operation of Bypass mode.
- Debug—Counter is paused when processor is in Debug mode, and the counter for the DAC trigger is also paused in Debug mode.
- Enabled One-Shot—Counter is enabled and restarted at count zero upon receiving a positive edge on the selected trigger input source or software trigger is selected and SC[SWTRIG] is written with 1. In each PDB channel, an enabled pre-trigger asserts once per trigger input event. The trigger output asserts whenever any of the pre-triggers is asserted.
- Enabled Continuous—Counter is enabled and restarted at count zero. The counter is rolled over to zero again when the count reaches the value specified in the modulus register, and the counting is restarted. This enables a continuous stream of pretriggers/trigger outputs as a result of a single trigger input event.
- Enabled Bypassed—The pre-trigger and trigger outputs assert immediately after a positive edge on the selected trigger input source or software trigger is selected and SC[SWTRIG] is written with 1, that is the delay registers are bypassed. It is possible to bypass any one or more of the delay registers; therefore, this mode can be used in conjunction with One-Shot or Continuous mode.

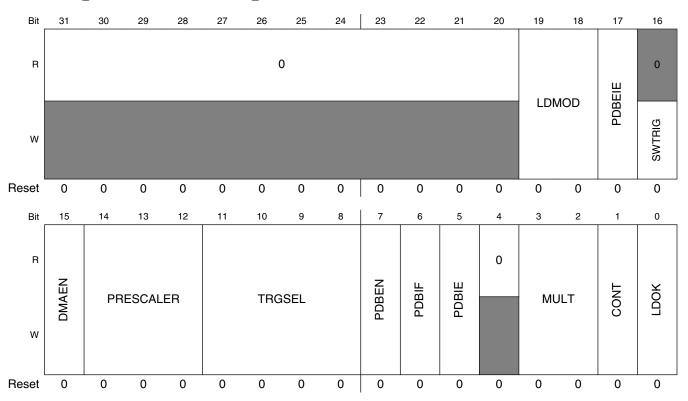
38.2 PDB signal descriptions

This table shows the detailed description of the external signal.

Table 38-1. PDB signal descriptions

Signal	Description	I/O
EXTRG	External Trigger Input Source	I
	If the PDB is enabled and external trigger input source is selected, a positive edge on the EXTRG signal resets and starts the counter.	

38.3 Memory map and register definition


Memory map and register definition

PDB memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_6000	Status and Control register (PDB0_SC)	32	R/W	0000_0000h	38.3.1/867
4003_6004	Modulus register (PDB0_MOD)	32	R/W	0000_FFFFh	38.3.2/869
4003_6008	Counter register (PDB0_CNT)	32	R	0000_0000h	38.3.3/870
4003_600C	Interrupt Delay register (PDB0_IDLY)	32	R/W	0000_FFFFh	38.3.4/870
4003_6010	Channel n Control register 1 (PDB0_CH0C1)	32	R/W	0000_0000h	38.3.5/871
4003_6014	Channel n Status register (PDB0_CH0S)	32	R/W	0000_0000h	38.3.6/872
4003_6018	Channel n Delay 0 register (PDB0_CH0DLY0)	32	R/W	0000_0000h	38.3.7/872
4003_601C	Channel n Delay 1 register (PDB0_CH0DLY1)	32	R/W	0000_0000h	38.3.8/873
4003_6038	Channel n Control register 1 (PDB0_CH1C1)	32	R/W	0000_0000h	38.3.5/871
4003_603C	Channel n Status register (PDB0_CH1S)	32	R/W	0000_0000h	38.3.6/872
4003_6040	Channel n Delay 0 register (PDB0_CH1DLY0)	32	R/W	0000_0000h	38.3.7/872
4003_6044	Channel n Delay 1 register (PDB0_CH1DLY1)	32	R/W	0000_0000h	38.3.8/873
4003_6150	DAC Interval Trigger n Control register (PDB0_DACINTC0)	32	R/W	0000_0000h	38.3.9/873
4003_6154	DAC Interval n register (PDB0_DACINT0)	32	R/W	0000_0000h	38.3.10/ 874
4003_6158	DAC Interval Trigger n Control register (PDB0_DACINTC1)	32	R/W	0000_0000h	38.3.9/873
4003_615C	DAC Interval n register (PDB0_DACINT1)	32	R/W	0000_0000h	38.3.10/ 874
4003_6190	Pulse-Out n Enable register (PDB0_POEN)	32	R/W	0000_0000h	38.3.11/ 874
4003_6194	Pulse-Out n Delay register (PDB0_PO0DLY)	32	R/W	0000_0000h	38.3.12/ 875
4003_6198	Pulse-Out n Delay register (PDB0_PO1DLY)	32	R/W	0000_0000h	38.3.12/ 875

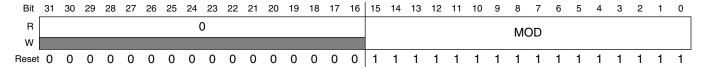
38.3.1 Status and Control register (PDBx_SC)

Address: 4003_6000h base + 0h offset = 4003_6000h

PDBx_SC field descriptions

Field	Description
31–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–18 LDMOD	Load Mode Select Selects the mode to load the MOD, IDLY, CHnDLYm, INTx, and POyDLY registers, after 1 is written to LDOK.
	 The internal registers are loaded with the values from their buffers immediately after 1 is written to LDOK. The internal registers are loaded with the values from their buffers when the PDB counter reaches the MOD register value after 1 is written to LDOK.
	The internal registers are loaded with the values from their buffers when a trigger input event is detected after 1 is written to LDOK.
	11 The internal registers are loaded with the values from their buffers when either the PDB counter reaches the MOD register value or a trigger input event is detected, after 1 is written to LDOK.
17 PDBEIE	PDB Sequence Error Interrupt Enable Enables the PDB sequence error interrupt. When this field is set, any of the PDB channel sequence error flags generates a PDB sequence error interrupt.

PDBx_SC field descriptions (continued)


Field	Description		
	PDB sequence error interrupt disabled.		
	1 PDB sequence error interrupt enabled.		
16 SWTRIG	Software Trigger		
	When PDB is enabled and the software trigger is selected as the trigger input source, writing 1 to this field resets and restarts the counter. Writing 0 to this field has no effect. Reading this field results 0.		
15 DMAEN	DMA Enable		
	When DMA is enabled, the PDBIF flag generates a DMA request instead of an interrupt.		
	0 DMA disabled.		
	1 DMA enabled.		
14–12 PRESCALER	Prescaler Divider Select		
	000 Counting uses the peripheral clock divided by multiplication factor selected by MULT.		
	001 Counting uses the peripheral clock divided by twice of the multiplication factor selected by MULT.		
	O10 Counting uses the peripheral clock divided by four times of the multiplication factor selected by MULT.		
	O11 Counting uses the peripheral clock divided by eight times of the multiplication factor selected by MULT.		
	100 Counting uses the peripheral clock divided by 16 times of the multiplication factor selected by MULT.		
	101 Counting uses the peripheral clock divided by 32 times of the multiplication factor selected by MULT.		
	110 Counting uses the peripheral clock divided by 64 times of the multiplication factor selected by MULT.		
	111 Counting uses the peripheral clock divided by 128 times of the multiplication factor selected by MULT.		
11–8	Trigger Input Source Select		
TRGSEL			
	Selects the trigger input source for the PDB. The trigger input source can be internal or external (EXTRG pin), or the software trigger. Refer to chip configuration details for the actual PDB input trigger connections.		
	CONTROLLONS.		
	0000 Trigger-In 0 is selected.		
	0001 Trigger-In 1 is selected.		
	0010 Trigger-In 2 is selected.		
	0011 Trigger-In 3 is selected.		
	0100 Trigger-In 4 is selected.		
	0101 Trigger-In 5 is selected.		
	0110 Trigger-In 6 is selected.		
	0111 Trigger-In 7 is selected.		
	1000 Trigger-In 8 is selected.		
	1001 Trigger-In 9 is selected.		
	1010 Trigger-In 10 is selected.		
	1011 Trigger-In 11 is selected.		
	1100 Trigger-In 12 is selected.		
	1101 Trigger-In 13 is selected.		
	1110 Trigger-In 14 is selected.		
	1111 Software trigger is selected.		

PDBx_SC field descriptions (continued)

Field	Description
7 PDBEN	PDB Enable 0 PDB disabled. Counter is off. 1 PDB enabled.
6 PDBIF	PDB Interrupt Flag This field is set when the counter value is equal to the IDLY register. Writing zero clears this field.
5 PDBIE	PDB Interrupt Enable Enables the PDB interrupt. When this field is set and DMAEN is cleared, PDBIF generates a PDB interrupt. 0 PDB interrupt disabled. 1 PDB interrupt enabled.
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–2 MULT	Multiplication Factor Select for Prescaler Selects the multiplication factor of the prescaler divider for the counter clock. 00 Multiplication factor is 1. 01 Multiplication factor is 10. 10 Multiplication factor is 20. 11 Multiplication factor is 40.
1 CONT	11 Multiplication factor is 40. Continuous Mode Enable Enables the PDB operation in Continuous mode. 0 PDB operation in One-Shot mode 1 PDB operation in Continuous mode
0 LDOK	Uriting 1 to this bit updates the internal registers of MOD, IDLY, CHnDLYm, DACINTx, and POyDLY with the values written to their buffers. The MOD, IDLY, CHnDLYm, DACINTx, and POyDLY will take effect according to the LDMOD. After 1 is written to the LDOK field, the values in the buffers of above registers are not effective and the buffers cannot be written until the values in buffers are loaded into their internal registers. LDOK can be written only when PDBEN is set or it can be written at the same time with PDBEN being written to 1. It is automatically cleared when the values in buffers are loaded into the internal registers or the PDBEN is cleared. Writing 0 to it has no effect.

38.3.2 Modulus register (PDBx_MOD)

Address: 4003_6000h base + 4h offset = 4003_6004h

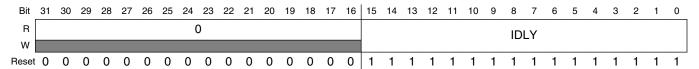
K22F Sub-Family Reference Manual, Rev. 3, 7/2014

PDBx_MOD field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 MOD	PDB Modulus Specifies the period of the counter. When the counter reaches this value, it will be reset back to zero. If the PDB is in Continuous mode, the count begins anew. Reading this field returns the value of the internal register that is effective for the current cycle of PDB.

38.3.3 Counter register (PDBx_CNT)

Address: 4003_6000h base + 8h offset = 4003_6008h



PDBx_CNT field descriptions

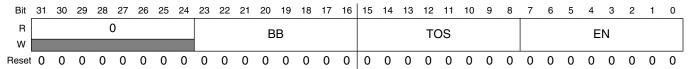
Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 CNT	PDB Counter Contains the current value of the counter.

38.3.4 Interrupt Delay register (PDBx_IDLY)

Address: 4003_6000h base + Ch offset = 4003_600Ch

PDBx_IDLY field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
IDLY	PDB Interrupt Delay Specifies the delay value to schedule the PDB interrupt. It can be used to schedule an independent interrupt at some point in the PDB cycle. If enabled, a PDB interrupt is generated, when the counter is

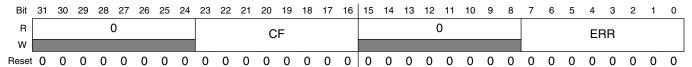

PDBx_IDLY field descriptions (continued)

Field	Description
	equal to the IDLY. Reading this field returns the value of internal register that is effective for the current cycle of the PDB.

38.3.5 Channel n Control register 1 (PDBx_CHnC1)

Each PDB channel has one control register, CHnC1. The bits in this register control the functionality of each PDB channel operation.

Address: 4003_{6000h} base + 10h offset + $(40d \times i)$, where i=0d to 1d

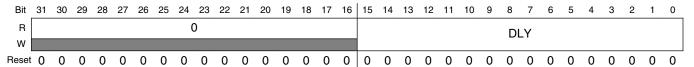


PDBx_CHnC1 field descriptions

Field	Description
31–24	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
23–16 BB	PDB Channel Pre-Trigger Back-to-Back Operation Enable
	These bits enable the PDB ADC pre-trigger operation as back-to-back mode. Only lower M pre-trigger bits are implemented in this MCU. Back-to-back operation enables the ADC conversions complete to trigger the next PDB channel pre-trigger and trigger output, so that the ADC conversions can be triggered on next set of configuration and results registers. Application code must only enable the back-to-back operation of the PDB pre-triggers at the leading of the back-to-back connection chain.
	PDB channel's corresponding pre-trigger back-to-back operation disabled.
	1 PDB channel's corresponding pre-trigger back-to-back operation enabled.
15–8 TOS	PDB Channel Pre-Trigger Output Select Selects the PDB ADC pre-trigger outputs. Only lower M pre-trigger fields are implemented in this MCU.
	O PDB channel's corresponding pre-trigger is in bypassed mode. The pre-trigger asserts one peripheral clock cycle after a rising edge is detected on selected trigger input source or software trigger is selected and SWTRIG is written with 1.
	1 PDB channel's corresponding pre-trigger asserts when the counter reaches the channel delay register and one peripheral clock cycle after a rising edge is detected on selected trigger input source or software trigger is selected and SETRIG is written with 1.
7–0	PDB Channel Pre-Trigger Enable
EN	These bits enable the PDB ADC pre-trigger outputs. Only lower M pre-trigger bits are implemented in this MCU.
	0 PDB channel's corresponding pre-trigger disabled.
	1 PDB channel's corresponding pre-trigger enabled.

38.3.6 Channel n Status register (PDBx_CHnS)

Address: 4003_{6000h} base + 14h offset + ($40d \times i$), where i=0d to 1d

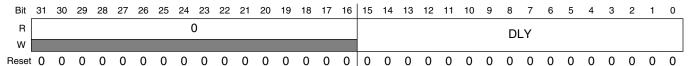


PDBx CHnS field descriptions

Field	Description
31–24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23–16 CF	PDB Channel Flags The CF[m] bit is set when the PDB counter matches the CHnDLYm. Write 0 to clear these bits.
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 ERR	PDB Channel Sequence Error Flags Only the lower M bits are implemented in this MCU. Sequence error not detected on PDB channel's corresponding pre-trigger. Sequence error detected on PDB channel's corresponding pre-trigger. ADCn block can be triggered for a conversion by one pre-trigger from PDB channel n. When one conversion, which is triggered by one of the pre-triggers from PDB channel n, is in progress, new trigger from PDB channel's corresponding pre-trigger m cannot be accepted by ADCn, and ERR[m] is set. Writing 0's to clear the

38.3.7 Channel n Delay 0 register (PDBx_CHnDLY0)

Address: 4003_{6000h} base + 18h offset + $(40d \times i)$, where i=0d to 1d

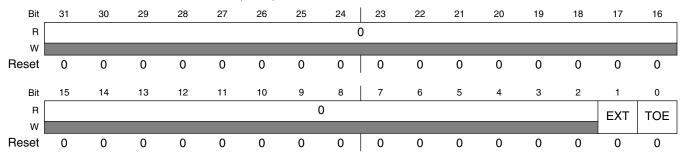


PDBx_CHnDLY0 field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 DLY	PDB Channel Delay
	Specifies the delay value for the channel's corresponding pre-trigger. The pre-trigger asserts when the counter is equal to DLY. Reading this field returns the value of internal register that is effective for the current PDB cycle.

38.3.8 Channel n Delay 1 register (PDBx_CHnDLY1)

Address: 4003_{6000h} base + 1Ch offset + $(40d \times i)$, where i=0d to 1d



PDBx_CHnDLY1 field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 DLY	PDB Channel Delay These bits specify the delay value for the channel's corresponding pre-trigger. The pre-trigger asserts
	when the counter is equal to DLY. Reading these bits returns the value of internal register that is effective for the current PDB cycle.

38.3.9 DAC Interval Trigger n Control register (PDBx_DACINTCn)

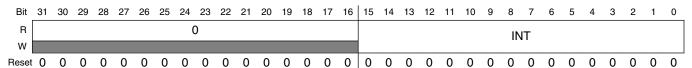
Address: 4003_{6000h} base + 150h offset + (8d × i), where i=0d to 1d

PDBx_DACINTCn field descriptions

Field	Description
31–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 EXT	 DAC External Trigger Input Enable Enables the external trigger for DAC interval counter. DAC external trigger input disabled. DAC interval counter is reset and counting starts when a rising edge is detected on selected trigger input source or software trigger is selected and SWTRIG is written with 1. DAC external trigger input enabled. DAC interval counter is bypassed and DAC external trigger input triggers the DAC interval trigger.
0 TOE	DAC Interval Trigger Enable

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

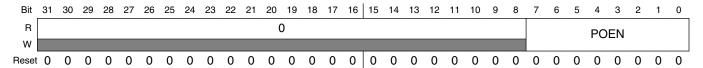

Memory map and register definition

PDBx_DACINTCn field descriptions (continued)

Field	Description						
	This bit enables the DAC interval trigger.						
	0 DAC interval trigger disabled.						
	1 DAC interval trigger enabled.						

38.3.10 DAC Interval n register (PDBx_DACINTn)

Address: 4003_{6000h} base + 154h offset + (8d × i), where i=0d to 1d



PDBx_DACINTn field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 INT	DAC Interval Specifies the interval value for DAC interval trigger. DAC interval trigger triggers DAC[1:0] update when the DAC interval counter is equal to the DACINT. Reading this field returns the value of internal register that is effective for the current PDB cycle.

38.3.11 Pulse-Out n Enable register (PDBx_POEN)

Address: 4003_6000h base + 190h offset = 4003_6190h

PDBx_POEN field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 POEN	PDB Pulse-Out Enable Enables the pulse output. Only lower Y bits are implemented in this MCU.
	0 PDB Pulse-Out disabled1 PDB Pulse-Out enabled

38.3.12 Pulse-Out n Delay register (PDBx_POnDLY)

Address: 4003_{6000h} base + 194h offset + $(4d \times i)$, where i=0d to 1d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								DL	V1															DI	V٦							
W								DL	. 1 1															DL	12							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PDBx_POnDLY field descriptions

Field	Description
31–16 DLY1	PDB Pulse-Out Delay 1
	Specifies the delay 1 value for the PDB Pulse-Out. Pulse-Out goes high when the PDB counter is equal to the DLY1. Reading this field returns the value of internal register that is effective for the current PDB cycle.
15–0 DLY2	PDB Pulse-Out Delay 2
	Specifies the delay 2 value for the PDB Pulse-Out. Pulse-Out goes low when the PDB counter is equal to the DLY2. Reading this field returns the value of internal register that is effective for the current PDB cycle.

38.4 Functional description

38.4.1 PDB pre-trigger and trigger outputs

The PDB contains a counter whose output is compared to several different digital values. If the PDB is enabled, then a trigger input event will reset the counter and make it start to count. A trigger input event is defined as a rising edge being detected on a selected trigger input source, or if a software trigger is selected and SC[SWTRIG] is written with 1. For each channel, a delay *m* determines the time between assertion of the trigger input event to the time at which changes in the pre-trigger *m* output signal are started. The time is defined as:

- Trigger input event to pre-trigger m = (prescaler X multiplication factor X delay <math>m) + 2 peripheral clock cycles
- Add 1 additional peripheral clock cycle to determine the time when the channel trigger output changes.

Each channel is associated with 1 ADC block. PDB channel n pre-trigger outputs 0 to M; each pre-trigger output is connected to ADC hardware trigger select and hardware trigger inputs. The pre-triggers are used to precondition the ADC block before the actual trigger

Functional description

occurs. When the ADC receives the rising edge of the trigger, the ADC will start the conversion according to the precondition determined by the pre-triggers. The ADC contains M sets of configuration and result registers, allowing it to alternate conversions between M different analog sources (like a ping-pong game). The pre-trigger outputs are used to specify which signal will be sampled next. When a pre-trigger m is asserted, the ADC conversion is triggered with set m of the configuration and result registers.

The waveforms shown in the following diagram show the pre-trigger and trigger outputs of PDB channel n. The delays can be independently set using the CHnDLYm registers, and the pre-triggers can be enabled or disabled in CHnC1[EN[m]].

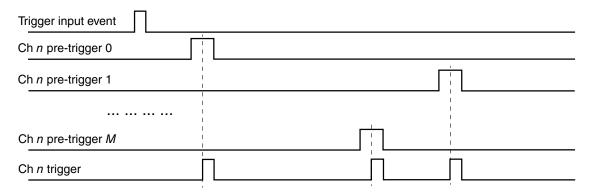


Figure 38-54. Pre-trigger and trigger outputs

The delay in CHnDLYm register can be optionally bypassed, if CHnC1[TOS[m]] is cleared. In this case, when the trigger input event occurs, the pre-trigger m is asserted after 2 peripheral clock cycles.

The PDB can be configured for back-to-back operation. Back-to-back operation enables the ADC conversion completions to trigger the next PDB channel pre-trigger and trigger outputs, so that the ADC conversions can be triggered on the next set of configuration and results registers. When back-to-back operation is enabled by setting CHnC1[BB[m]], then the delay m is ignored and the pre-trigger m is asserted 2 peripheral cycles after the acknowledgment m is received. The acknowledgment connections in this MCU are described in Back-to-back acknowledgment connections.

When a pre-trigger from a PDB channel *n* is asserted, the associated lock of the pre-trigger becomes active. The associated lock is released by the rising edge of the corresponding ADC*n*SC1[COCO]; the ADC*n*SC1[COCO] should be cleared after the conversion result is read, so that the next rising edge of ADC*n*SC1[COCO] can be generated to clear the lock later. The lock becomes inactive when:

- the rising edge of corresponding ADCnSC1[COCO] occurs,
- or the corresponding PDB pre-trigger is disabled,
- or the PDB is disabled

The channel n trigger output is suppressed when any of the locks of the pre-triggers in channel n is active. If a new pre-trigger m asserts when there is active lock in the PDB channel n, then a register flag bit CHnS[ERR[m]] (associated with the pre-trigger m) is set. If SC[PDBEIE] is set, then the sequence error interrupt is generated. A sequence error typically happens because the delay m is set too short and the pre-trigger m asserts before the previously triggered ADC conversion finishes.

When the PDB counter reaches the value set in IDLY register, the SC[PDBIF] flag is set. A PDB interrupt can be generated if SC[PDBIE] is set and SC[DMAEN] is cleared. If SC[DMAEN] is set, then the PDB requests a DMA transfer when the SC[PDBIF] flag is set.

The modulus value in the MOD register is used to reset the counter back to zero at the end of the count. If SC[CONT] is set, then the counter will then resume a new count; otherwise, the counter operation will stop until the next trigger input event occurs.

38.4.2 PDB trigger input source selection

The PDB has up to 15 trigger input sources, namely Trigger-In 14. They are connected to on-chip or off-chip event sources. The PDB can be triggered by software through SC[SWTRIG]. SC[TRIGSEL] selects the active trigger input source or software trigger.

For the trigger input sources implemented in this MCU, see chip configuration information.

38.4.3 Pulse-Out's

PDB can generate pulse outputs of configurable width. When PDB counter reaches the value set in POyDLY[DLY1], the Pulse-Out goes high; when the counter reaches POyDLY[DLY2], it goes low. POyDLY[DLY2] can be set either greater or less than POyDLY[DLY1].

ADC pre-trigger/trigger outputs and Pulse-Out generation have the same time base, because they both share the PDB counter.

The pulse-out connections implemented in this MCU are described in the device's chip configuration details.

38.4.4 Updating the delay registers

The following registers control the timing of the PDB operation; and in some of the applications, they may need to become effective at the same time.

- PDB Modulus register (MOD)
- PDB Interrupt Delay register (IDLY)
- PDB Channel *n* Delay *m* register (CH*n*DLY*m*)
- DAC Interval x register (DACINTx)
- PDB Pulse-Out y Delay register (POyDLY)

The internal registers of them are buffered and any values written to them are written first to their buffers. The circumstances that cause their internal registers to be updated with the values from the buffers are summarized as shown in the table below.

Table 38-56. Circumstances of update to the delay registers

SC[LDMOD]	Update to the delay registers
00	The internal registers are loaded with the values from their buffers immediately after 1 is written to SC[LDOK].
01	The PDB counter reaches the MOD register value after 1 is written to SC[LDOK].
10	A trigger input event is detected after 1 is written to SC[LDOK].
11	Either the PDB counter reaches the MOD register value, or a trigger input event is detected, after 1 is written to SC[LDOK].

After 1 is written to SC[LDOK], the buffers cannot be written until the values in buffers are loaded into their internal registers. SC[LDOK] is self-cleared when the internal registers are loaded, so the application code can read it to determine the updates to the internal registers.

The following diagrams show the cases of the internal registers being updated with SC[LDMOD] is 00 and x1.

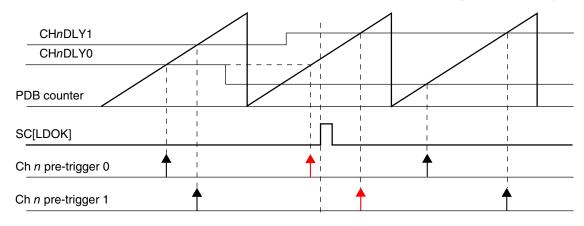


Figure 38-55. Registers update with SC[LDMOD] = 00

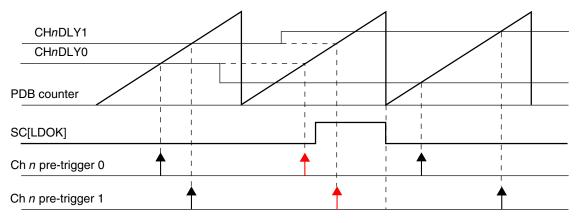


Figure 38-56. Registers update with SC[LDMOD] = x1

38.4.5 Interrupts

PDB can generate two interrupts: PDB interrupt and PDB sequence error interrupt. The following table summarizes the interrupts.

Table 38-57. PDB interrupt summary

Interrupt	Flags	Enable bit
PDB Interrupt	SC[PDBIF]	SC[PDBIE] = 1 and SC[DMAEN] = 0
PDB Sequence Error Interrupt	CHnS[ERRm]	SC[PDBEIE] = 1

38.4.6 DMA

If SC[DMAEN] is set, PDB can generate a DMA transfer request when SC[PDBIF] is set. When DMA is enabled, the PDB interrupt is not issued.

38.5 Application information

38.5.1 Impact of using the prescaler and multiplication factor on timing resolution

Use of prescaler and multiplication factor greater than 1 limits the count/delay accuracy in terms of peripheral clock cycles (to the modulus of the prescaler X multiplication factor). If the multiplication factor is set to 1 and the prescaler is set to 2 then the only values of total peripheral clocks that can be detected are even values; if prescaler is set to 4 then the only values of total peripheral clocks that can be decoded as detected are mod(4) and so forth. If the applications need a really long delay value and use a prescaler set to 128, then the resolution would be limited to 128 peripheral clock cycles.

Therefore, use the lowest possible prescaler and multiplication factor for a given application.

Chapter 39 FlexTimer Module (FTM)

39.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The FlexTimer module (FTM) is a two-to-eight channel timer that supports input capture, output compare, and the generation of PWM signals to control electric motor and power management applications. The FTM time reference is a 16-bit counter that can be used as an unsigned or signed counter.

39.1.1 FlexTimer philosophy

The FlexTimer is built upon a simple timer, the HCS08 Timer PWM Module – TPM, used for many years on Freescale's 8-bit microcontrollers. The FlexTimer extends the functionality to meet the demands of motor control, digital lighting solutions, and power conversion, while providing low cost and backwards compatibility with the TPM module.

Several key enhancements are made:

- Signed up counter
- Deadtime insertion hardware
- Fault control inputs
- Enhanced triggering functionality
- Initialization and polarity control

All of the features common with the TPM have fully backwards compatible register assignments. The FlexTimer can also use code on the same core platform without change to perform the same functions.

Introduction

Motor control and power conversion features have been added through a dedicated set of registers and defaults turn off all new features. The new features, such as hardware deadtime insertion, polarity, fault control, and output forcing and masking, greatly reduce loading on the execution software and are usually each controlled by a group of registers.

FlexTimer input triggers can be from comparators, ADC, or other submodules to initiate timer functions automatically. These triggers can be linked in a variety of ways during integration of the sub modules so please note the options available for used FlexTimer configuration.

More than one FlexTimers may be synchronized to provide a larger timer with their counters incrementing in unison, assuming the initialization, the input clocks, the initial and final counting values are the same in each FlexTimer.

All main user access registers are buffered to ease the load on the executing software. A number of trigger options exist to determine which registers are updated with this user defined data.

39.1.2 Features

The FTM features include:

- FTM source clock is selectable
 - Source clock can be the system clock, the fixed frequency clock, or an external clock
 - Fixed frequency clock is an additional clock input to allow the selection of an on chip clock source other than the system clock
 - Selecting external clock connects FTM clock to a chip level input pin therefore allowing to synchronize the FTM counter with an off chip clock source
- Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128
- 16-bit counter
 - It can be a free-running counter or a counter with initial and final value
 - The counting can be up or up-down
- Each channel can be configured for input capture, output compare, or edge-aligned PWM mode
- In Input Capture mode:

- The capture can occur on rising edges, falling edges or both edges
- An input filter can be selected for some channels
- In Output Compare mode the output signal can be set, cleared, or toggled on match
- All channels can be configured for center-aligned PWM mode
- Each pair of channels can be combined to generate a PWM signal with independent control of both edges of PWM signal
- The FTM channels can operate as pairs with equal outputs, pairs with complementary outputs, or independent channels with independent outputs
- The deadtime insertion is available for each complementary pair
- Generation of match triggers
- Software control of PWM outputs
- Up to 4 fault inputs for global fault control
- The polarity of each channel is configurable
- The generation of an interrupt per channel
- The generation of an interrupt when the counter overflows
- The generation of an interrupt when the fault condition is detected
- Synchronized loading of write buffered FTM registers
- Write protection for critical registers
- Backwards compatible with TPM
- Testing of input captures for a stuck at zero and one conditions
- Dual edge capture for pulse and period width measurement
- Quadrature decoder with input filters, relative position counting, and interrupt on position count or capture of position count on external event

39.1.3 Modes of operation

When the MCU is in an active BDM mode, the FTM temporarily suspends all counting until the MCU returns to normal user operating mode. During Stop mode, all FTM input clocks are stopped, so the FTM is effectively disabled until clocks resume. During Wait mode, the FTM continues to operate normally. If the FTM does not need to produce a

Introduction

real time reference or provide the interrupt sources needed to wake the MCU from Wait mode, the power can then be saved by disabling FTM functions before entering Wait mode.

39.1.4 Block diagram

The FTM uses one input/output (I/O) pin per channel, CHn (FTM channel (n)) where n is the channel number (0–7).

The following figure shows the FTM structure. The central component of the FTM is the 16-bit counter with programmable initial and final values and its counting can be up or up-down.

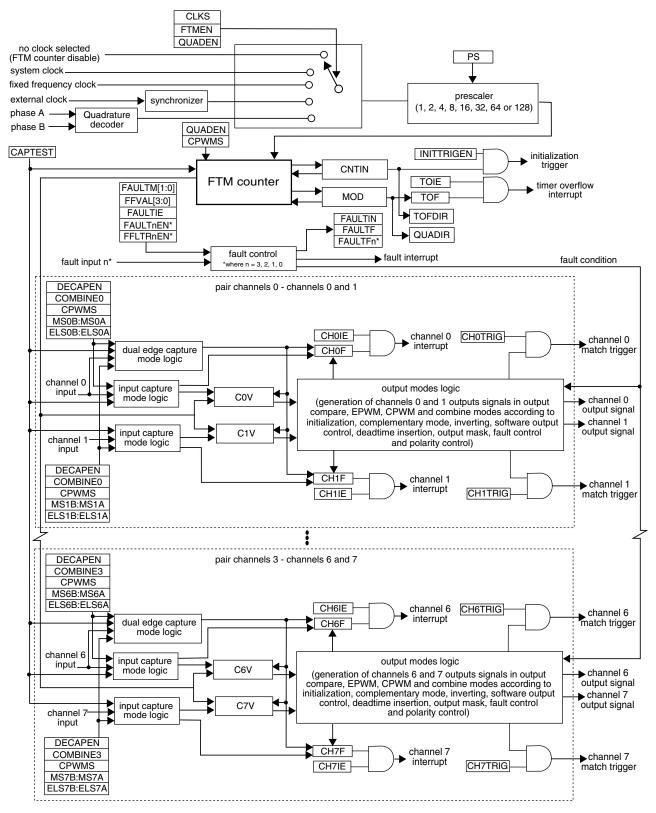


Figure 39-1. FTM block diagram

39.2 FTM signal descriptions

Table 39-1 shows the user-accessible signals for the FTM.

Table 39-1. FTM signal descriptions

Signal	Description	I/O	Function
EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I	The external clock input signal is used as the FTM counter clock if selected by CLKS[1:0] bits in the SC register. This clock signal must not exceed 1/4 of system clock frequency. The FTM counter prescaler selection and settings are also used when an external clock is selected.
CHn	FTM channel (n), where n can be 7-0	I/O	Each FTM channel can be configured to operate either as input or output. The direction associated with each channel, input or output, is selected according to the mode assigned for that channel.
FAULTj	Fault input (j), where j can be 3-0	l	The fault input signals are used to control the CHn channel output state. If a fault is detected, the FAULTj signal is asserted and the channel output is put in a safe state. The behavior of the fault logic is defined by the FAULTM[1:0] control bits in the MODE register and FAULTEN bit in the COMBINEm register. Note that each FAULTj input may affect all channels selectively since FAULTM[1:0] and FAULTEN control bits are defined for each pair of channels. Because there are several FAULTj inputs, maximum of 4 for the FTM module, each one of these inputs is activated by the FAULTjEN bit in the FLTCTRL register.
PHA	Quadrature decoder phase A input. Input pin associated with quadrature decoder phase A.	I	The quadrature decoder phase A input is used as the Quadrature Decoder mode is selected. The phase A input signal is one of the signals that control the FTM counter increment or decrement in the Quadrature Decoder mode.
РНВ	Quadrature decoder phase B input. Input pin associated with quadrature decoder phase B.	I	The quadrature decoder phase B input is used as the Quadrature Decoder mode is selected. The phase B input signal is one of the signals that control the FTM counter increment or decrement in the Quadrature Decoder mode.

39.3 Memory map and register definition

39.3.1 Memory map

This section presents a high-level summary of the FTM registers and how they are mapped.

The registers and bits of an unavailable function in the FTM remain in the memory map and in the reset value, but they have no active function.

Note

Do not write in the region from the CNTIN register through the PWMLOAD register when FTMEN = 0.

39.3.2 Register descriptions

Accesses to reserved addresses result in transfer errors. Registers for absent channels are considered reserved.

FTM memory map

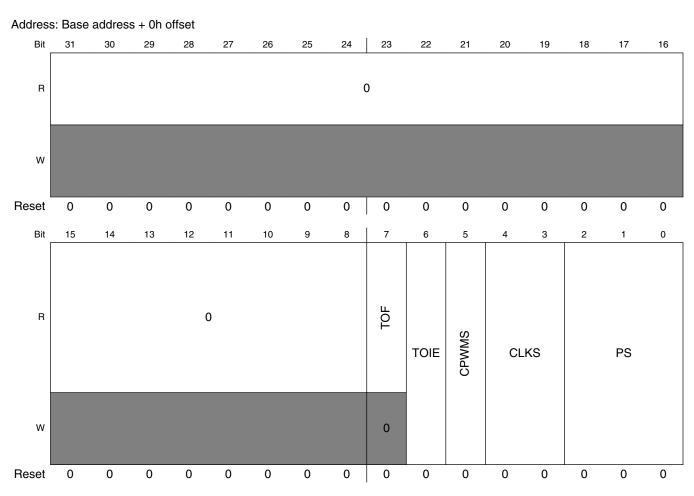
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_6000	Status And Control (FTM3_SC)	32	R/W	0000_0000h	39.3.3/893
4002_6004	Counter (FTM3_CNT)	32	R/W	0000_0000h	39.3.4/894
4002_6008	Modulo (FTM3_MOD)	32	R/W	0000_0000h	39.3.5/895
4002_600C	Channel (n) Status And Control (FTM3_C0SC)	32	R/W	0000_0000h	39.3.6/896
4002_6010	Channel (n) Value (FTM3_C0V)	32	R/W	0000_0000h	39.3.7/899
4002_6014	Channel (n) Status And Control (FTM3_C1SC)	32	R/W	0000_0000h	39.3.6/896
4002_6018	Channel (n) Value (FTM3_C1V)	32	R/W	0000_0000h	39.3.7/899
4002_601C	Channel (n) Status And Control (FTM3_C2SC)	32	R/W	0000_0000h	39.3.6/896
4002_6020	Channel (n) Value (FTM3_C2V)	32	R/W	0000_0000h	39.3.7/899
4002_6024	Channel (n) Status And Control (FTM3_C3SC)	32	R/W	0000_0000h	39.3.6/896
4002_6028	Channel (n) Value (FTM3_C3V)	32	R/W	0000_0000h	39.3.7/899
4002_602C	Channel (n) Status And Control (FTM3_C4SC)	32	R/W	0000_0000h	39.3.6/896
4002_6030	Channel (n) Value (FTM3_C4V)	32	R/W	0000_0000h	39.3.7/899
4002_6034	Channel (n) Status And Control (FTM3_C5SC)	32	R/W	0000_0000h	39.3.6/896
4002_6038	Channel (n) Value (FTM3_C5V)	32	R/W	0000_0000h	39.3.7/899
4002_603C	Channel (n) Status And Control (FTM3_C6SC)	32	R/W	0000_0000h	39.3.6/896
4002_6040	Channel (n) Value (FTM3_C6V)	32	R/W	0000_0000h	39.3.7/899
4002_6044	Channel (n) Status And Control (FTM3_C7SC)	32	R/W	0000_0000h	39.3.6/896
4002_6048	Channel (n) Value (FTM3_C7V)	32	R/W	0000_0000h	39.3.7/899
4002_604C	Counter Initial Value (FTM3_CNTIN)	32	R/W	0000_0000h	39.3.8/899
4002_6050	Capture And Compare Status (FTM3_STATUS)	32	R/W	0000_0000h	39.3.9/900
4002_6054	Features Mode Selection (FTM3_MODE)	32	R/W	0000_0004h	39.3.10/ 902
4002_6058	Synchronization (FTM3_SYNC)	32	R/W	0000_0000h	39.3.11/ 904
4002_605C	Initial State For Channels Output (FTM3_OUTINIT)	32	R/W	0000_0000h	39.3.12/ 906
4002_6060	Output Mask (FTM3_OUTMASK)	32	R/W	0000_0000h	39.3.13/ 907

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_6064	Function For Linked Channels (FTM3_COMBINE)	32	R/W	0000_0000h	39.3.14/ 909
4002_6068	Deadtime Insertion Control (FTM3_DEADTIME)	32	R/W	0000_0000h	39.3.15/ 914
4002_606C	FTM External Trigger (FTM3_EXTTRIG)	32	R/W	0000_0000h	39.3.16/ 915
4002_6070	Channels Polarity (FTM3_POL)	32	R/W	0000_0000h	39.3.17/ 917
4002_6074	Fault Mode Status (FTM3_FMS)	32	R/W	0000_0000h	39.3.18/ 919
4002_6078	Input Capture Filter Control (FTM3_FILTER)	32	R/W	0000_0000h	39.3.19/ 921
4002_607C	Fault Control (FTM3_FLTCTRL)	32	R/W	0000_0000h	39.3.20/ 922
4002_6080	Quadrature Decoder Control And Status (FTM3_QDCTRL)	32	R/W	0000_0000h	39.3.21/ 925
4002_6084	Configuration (FTM3_CONF)	32	R/W	0000_0000h	39.3.22/ 927
4002_6088	FTM Fault Input Polarity (FTM3_FLTPOL)	32	R/W	0000_0000h	39.3.23/ 928
4002_608C	Synchronization Configuration (FTM3_SYNCONF)	32	R/W	0000_0000h	39.3.24/ 929
4002_6090	FTM Inverting Control (FTM3_INVCTRL)	32	R/W	0000_0000h	39.3.25/ 931
4002_6094	FTM Software Output Control (FTM3_SWOCTRL)	32	R/W	0000_0000h	39.3.26/ 932
4002_6098	FTM PWM Load (FTM3_PWMLOAD)	32	R/W	0000_0000h	39.3.27/ 935
4003_8000	Status And Control (FTM0_SC)	32	R/W	0000_0000h	39.3.3/893
4003_8004	Counter (FTM0_CNT)	32	R/W	0000_0000h	39.3.4/894
4003_8008	Modulo (FTM0_MOD)	32	R/W	0000_0000h	39.3.5/895
4003_800C	Channel (n) Status And Control (FTM0_C0SC)	32	R/W	0000_0000h	39.3.6/896
4003_8010	Channel (n) Value (FTM0_C0V)	32	R/W	0000_0000h	39.3.7/899
4003_8014	Channel (n) Status And Control (FTM0_C1SC)	32	R/W	0000_0000h	39.3.6/896
4003_8018	Channel (n) Value (FTM0_C1V)	32	R/W	0000_0000h	39.3.7/899
4003_801C	Channel (n) Status And Control (FTM0_C2SC)	32	R/W	0000_0000h	39.3.6/896
4003_8020	Channel (n) Value (FTM0_C2V)	32	R/W	0000_0000h	39.3.7/899
4003_8024	Channel (n) Status And Control (FTM0_C3SC)	32	R/W	0000_0000h	39.3.6/896
4003_8028	Channel (n) Value (FTM0_C3V)	32	R/W	0000_0000h	39.3.7/899
4003_802C	Channel (n) Status And Control (FTM0_C4SC)	32	R/W	0000_0000h	39.3.6/896
4003_8030	Channel (n) Value (FTM0_C4V)	32	R/W	0000_0000h	39.3.7/899
4003_8034	Channel (n) Status And Control (FTM0_C5SC)	32	R/W	0000_0000h	39.3.6/896

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4003_8038	Channel (n) Value (FTM0_C5V)	32	R/W	0000_0000h	39.3.7/899
4003_803C	Channel (n) Status And Control (FTM0_C6SC)	32	R/W	0000_0000h	39.3.6/896
4003_8040	Channel (n) Value (FTM0_C6V)	32	R/W	0000_0000h	39.3.7/899
4003_8044	Channel (n) Status And Control (FTM0_C7SC)	32	R/W	0000_0000h	39.3.6/896
4003_8048	Channel (n) Value (FTM0_C7V)	32	R/W	0000_0000h	39.3.7/899
4003_804C	Counter Initial Value (FTM0_CNTIN)	32	R/W	0000_0000h	39.3.8/899
4003_8050	Capture And Compare Status (FTM0_STATUS)	32	R/W	0000_0000h	39.3.9/900
4003_8054	Features Mode Selection (FTM0_MODE)	32	R/W	0000_0004h	39.3.10/ 902
4003_8058	Synchronization (FTM0_SYNC)	32	R/W	0000_0000h	39.3.11/ 904
4003_805C	Initial State For Channels Output (FTM0_OUTINIT)	32	R/W	0000_0000h	39.3.12/ 906
4003_8060	Output Mask (FTM0_OUTMASK)	32	R/W	0000_0000h	39.3.13/ 907
4003_8064	Function For Linked Channels (FTM0_COMBINE)	32	R/W	0000_0000h	39.3.14/ 909
4003_8068	Deadtime Insertion Control (FTM0_DEADTIME)	32	R/W	0000_0000h	39.3.15/ 914
4003_806C	FTM External Trigger (FTM0_EXTTRIG)	32	R/W	0000_0000h	39.3.16/ 915
4003_8070	Channels Polarity (FTM0_POL)	32	R/W	0000_0000h	39.3.17/ 917
4003_8074	Fault Mode Status (FTM0_FMS)	32	R/W	0000_0000h	39.3.18/ 919
4003_8078	Input Capture Filter Control (FTM0_FILTER)	32	R/W	0000_0000h	39.3.19/ 921
4003_807C	Fault Control (FTM0_FLTCTRL)	32	R/W	0000_0000h	39.3.20/ 922
4003_8080	Quadrature Decoder Control And Status (FTM0_QDCTRL)	32	R/W	0000_0000h	39.3.21/ 925
4003_8084	Configuration (FTM0_CONF)	32	R/W	0000_0000h	39.3.22/ 927
4003_8088	FTM Fault Input Polarity (FTM0_FLTPOL)	32	R/W	0000_0000h	39.3.23/ 928
4003_808C	Synchronization Configuration (FTM0_SYNCONF)	32	R/W	0000_0000h	39.3.24/ 929
4003_8090	FTM Inverting Control (FTM0_INVCTRL)	32	R/W	0000_0000h	39.3.25/ 931
4003_8094	FTM Software Output Control (FTM0_SWOCTRL)	32	R/W	0000_0000h	39.3.26/ 932
4003_8098	FTM PWM Load (FTM0_PWMLOAD)	32	R/W	0000_0000h	39.3.27/ 935

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4003_9000	Status And Control (FTM1_SC)	32	R/W	0000_0000h	39.3.3/893
4003_9004	Counter (FTM1_CNT)	32	R/W	0000_0000h	39.3.4/894
4003_9008	Modulo (FTM1_MOD)	32	R/W	0000_0000h	39.3.5/895
4003_900C	Channel (n) Status And Control (FTM1_C0SC)	32	R/W	0000_0000h	39.3.6/896
4003_9010	Channel (n) Value (FTM1_C0V)	32	R/W	0000_0000h	39.3.7/899
4003_9014	Channel (n) Status And Control (FTM1_C1SC)	32	R/W	0000_0000h	39.3.6/896
4003_9018	Channel (n) Value (FTM1_C1V)	32	R/W	0000_0000h	39.3.7/899
4003_901C	Channel (n) Status And Control (FTM1_C2SC)	32	R/W	0000_0000h	39.3.6/896
4003_9020	Channel (n) Value (FTM1_C2V)	32	R/W	0000_0000h	39.3.7/899
4003_9024	Channel (n) Status And Control (FTM1_C3SC)	32	R/W	0000_0000h	39.3.6/896
4003_9028	Channel (n) Value (FTM1_C3V)	32	R/W	0000_0000h	39.3.7/899
4003_902C	Channel (n) Status And Control (FTM1_C4SC)	32	R/W	0000_0000h	39.3.6/896
4003_9030	Channel (n) Value (FTM1_C4V)	32	R/W	0000_0000h	39.3.7/899
4003_9034	Channel (n) Status And Control (FTM1_C5SC)	32	R/W	0000_0000h	39.3.6/896
4003_9038	Channel (n) Value (FTM1_C5V)	32	R/W	0000_0000h	39.3.7/899
4003_903C	Channel (n) Status And Control (FTM1_C6SC)	32	R/W	0000_0000h	39.3.6/896
4003_9040	Channel (n) Value (FTM1_C6V)	32	R/W	0000_0000h	39.3.7/899
4003_9044	Channel (n) Status And Control (FTM1_C7SC)	32	R/W	0000_0000h	39.3.6/896
4003_9048	Channel (n) Value (FTM1_C7V)	32	R/W	0000_0000h	39.3.7/899
4003_904C	Counter Initial Value (FTM1_CNTIN)	32	R/W	0000_0000h	39.3.8/899
4003_9050	Capture And Compare Status (FTM1_STATUS)	32	R/W	0000_0000h	39.3.9/900
4003_9054	Features Mode Selection (FTM1_MODE)	32	R/W	0000_0004h	39.3.10/ 902
4003_9058	Synchronization (FTM1_SYNC)	32	R/W	0000_0000h	39.3.11/ 904
4003_905C	Initial State For Channels Output (FTM1_OUTINIT)	32	R/W	0000_0000h	39.3.12/ 906
4003_9060	Output Mask (FTM1_OUTMASK)	32	R/W	0000_0000h	39.3.13/ 907
4003_9064	Function For Linked Channels (FTM1_COMBINE)	32	R/W	0000_0000h	39.3.14/ 909
4003_9068	Deadtime Insertion Control (FTM1_DEADTIME)	32	R/W	0000_0000h	39.3.15/ 914
4003_906C	FTM External Trigger (FTM1_EXTTRIG)	32	R/W	0000_0000h	39.3.16/ 915
4003_9070	Channels Polarity (FTM1_POL)	32	R/W	0000_0000h	39.3.17/ 917
4003_9074	Fault Mode Status (FTM1_FMS)	32	R/W	0000_0000h	39.3.18/ 919
4003_9078	Input Capture Filter Control (FTM1_FILTER)	32	R/W	0000_0000h	39.3.19/ 921

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4003_907C	Fault Control (FTM1_FLTCTRL)	32	R/W	0000_0000h	39.3.20/ 922
4003_9080	Quadrature Decoder Control And Status (FTM1_QDCTRL)	32	R/W	0000_0000h	39.3.21/ 925
4003_9084	Configuration (FTM1_CONF)	32	R/W	0000_0000h	39.3.22/ 927
4003_9088	FTM Fault Input Polarity (FTM1_FLTPOL)	32	R/W	0000_0000h	39.3.23/ 928
4003_908C	Synchronization Configuration (FTM1_SYNCONF)	32	R/W	0000_0000h	39.3.24/ 929
4003_9090	FTM Inverting Control (FTM1_INVCTRL)	32	R/W	0000_0000h	39.3.25/ 931
4003_9094	FTM Software Output Control (FTM1_SWOCTRL)	32	R/W	0000_0000h	39.3.26/ 932
4003_9098	FTM PWM Load (FTM1_PWMLOAD)	32	R/W	0000_0000h	39.3.27/ 935
4003_A000	Status And Control (FTM2_SC)	32	R/W	0000_0000h	39.3.3/893
4003_A004	Counter (FTM2_CNT)	32	R/W	0000_0000h	39.3.4/894
4003_A008	Modulo (FTM2_MOD)	32	R/W	0000_0000h	39.3.5/895
4003_A00C	Channel (n) Status And Control (FTM2_C0SC)	32	R/W	0000_0000h	39.3.6/896
4003_A010	Channel (n) Value (FTM2_C0V)	32	R/W	0000_0000h	39.3.7/899
4003_A014	Channel (n) Status And Control (FTM2_C1SC)	32	R/W	0000_0000h	39.3.6/896
4003_A018	Channel (n) Value (FTM2_C1V)	32	R/W	0000_0000h	39.3.7/899
4003_A01C	Channel (n) Status And Control (FTM2_C2SC)	32	R/W	0000_0000h	39.3.6/896
4003_A020	Channel (n) Value (FTM2_C2V)	32	R/W	0000_0000h	39.3.7/899
4003_A024	Channel (n) Status And Control (FTM2_C3SC)	32	R/W	0000_0000h	39.3.6/896
4003_A028	Channel (n) Value (FTM2_C3V)	32	R/W	0000_0000h	39.3.7/899
4003_A02C	Channel (n) Status And Control (FTM2_C4SC)	32	R/W	0000_0000h	39.3.6/896
4003_A030	Channel (n) Value (FTM2_C4V)	32	R/W	0000_0000h	39.3.7/899
4003_A034	Channel (n) Status And Control (FTM2_C5SC)	32	R/W	0000_0000h	39.3.6/896
4003_A038	Channel (n) Value (FTM2_C5V)	32	R/W	0000_0000h	39.3.7/899
4003_A03C	Channel (n) Status And Control (FTM2_C6SC)	32	R/W	0000_0000h	39.3.6/896
4003_A040	Channel (n) Value (FTM2_C6V)	32	R/W	0000_0000h	39.3.7/899
4003_A044	Channel (n) Status And Control (FTM2_C7SC)	32	R/W	0000_0000h 39.3.6/8	
4003_A048	Channel (n) Value (FTM2_C7V)	32	R/W	0000_0000h	39.3.7/899
4003_A04C	Counter Initial Value (FTM2_CNTIN)	32	R/W	0000_0000h	39.3.8/899
4003_A050	Capture And Compare Status (FTM2_STATUS)	ompare Status (FTM2_STATUS) 32 R/W 0000_0000h 39.3		39.3.9/900	
4003_A054	Features Mode Selection (FTM2_MODE)	32	R/W	0000_0004h	39.3.10/ 902
4003_A058	Synchronization (FTM2_SYNC)	32	R/W	0000_0000h	39.3.11/ 904


Memory map and register definition

FTM memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_A05C	Initial State For Channels Output (FTM2_OUTINIT)	32	R/W	0000_0000h	39.3.12/ 906
4003_A060	Output Mask (FTM2_OUTMASK)	32	R/W	0000_0000h	39.3.13/ 907
4003_A064	Function For Linked Channels (FTM2_COMBINE)	32	R/W	0000_0000h	39.3.14/ 909
4003_A068	Deadtime Insertion Control (FTM2_DEADTIME)	32	R/W	0000_0000h	39.3.15/ 914
4003_A06C	FTM External Trigger (FTM2_EXTTRIG)	32	R/W	0000_0000h	39.3.16/ 915
4003_A070	Channels Polarity (FTM2_POL)	32	R/W	0000_0000h	39.3.17/ 917
4003_A074	Fault Mode Status (FTM2_FMS)	32	R/W	0000_0000h	39.3.18/ 919
4003_A078	Input Capture Filter Control (FTM2_FILTER)	32	R/W	0000_0000h	39.3.19/ 921
4003_A07C	Fault Control (FTM2_FLTCTRL)	32	R/W	0000_0000h	39.3.20/ 922
4003_A080	Quadrature Decoder Control And Status (FTM2_QDCTRL)	32	R/W	0000_0000h	39.3.21/ 925
4003_A084	Configuration (FTM2_CONF)	32	R/W	0000_0000h	39.3.22/ 927
4003_A088	FTM Fault Input Polarity (FTM2_FLTPOL)	32	R/W	0000_0000h	39.3.23/ 928
4003_A08C	Synchronization Configuration (FTM2_SYNCONF)	32	R/W	0000_0000h	39.3.24/ 929
4003_A090	FTM Inverting Control (FTM2_INVCTRL)	32	R/W	0000_0000h	39.3.25/ 931
4003_A094	FTM Software Output Control (FTM2_SWOCTRL)	32	R/W	0000_0000h	39.3.26/ 932
4003_A098	FTM PWM Load (FTM2_PWMLOAD)	32	R/W	0000_0000h	39.3.27/ 935

39.3.3 Status And Control (FTMx_SC)

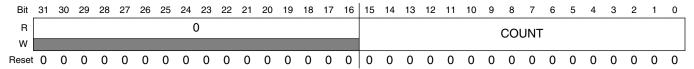
SC contains the overflow status flag and control bits used to configure the interrupt enable, FTM configuration, clock source, and prescaler factor. These controls relate to all channels within this module.

FTMx_SC field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 TOF	Timer Overflow Flag Set by hardware when the FTM counter passes the value in the MOD register. The TOF bit is cleared by reading the SC register while TOF is set and then writing a 0 to TOF bit. Writing a 1 to TOF has no effect.
	If another FTM overflow occurs between the read and write operations, the write operation has no effect; therefore, TOF remains set indicating an overflow has occurred. In this case, a TOF interrupt request is not lost due to the clearing sequence for a previous TOF.
	0 FTM counter has not overflowed.1 FTM counter has overflowed.

FTMx_SC field descriptions (continued)

Field	Description
6 TOIE	Timer Overflow Interrupt Enable Enables FTM overflow interrupts.
	· ·
	0 Disable TOF interrupts. Use software polling.1 Enable TOF interrupts. An interrupt is generated when TOF equals one.
5	Enable TOF interrupts. An interrupt is generated when TOF equals one. Center-Aligned PWM Select
CPWMS	
	Selects CPWM mode. This mode configures the FTM to operate in Up-Down Counting mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 FTM counter operates in Up Counting mode.
	1 FTM counter operates in Up-Down Counting mode.
4–3	Clock Source Selection
CLKS	Selects one of the three FTM counter clock sources.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	00 No clock selected. This in effect disables the FTM counter.
	01 System clock
	10 Fixed frequency clock
	11 External clock
2–0 PS	Prescale Factor Selection
	Selects one of 8 division factors for the clock source selected by CLKS. The new prescaler factor affects the clock source on the next system clock cycle after the new value is updated into the register bits.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	000 Divide by 1
	001 Divide by 2
	010 Divide by 4
	011 Divide by 8
	100 Divide by 16
	101 Divide by 32
	110 Divide by 64 111 Divide by 128
	TTT Divide by 120


39.3.4 Counter (FTMx_CNT)

The CNT register contains the FTM counter value.

Reset clears the CNT register. Writing any value to COUNT updates the counter with its initial value, CNTIN.

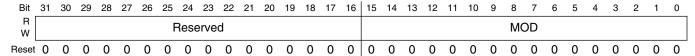
When BDM is active, the FTM counter is frozen. This is the value that you may read.

Address: Base address + 4h offset

FTMx_CNT field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 COUNT	Counter Value

39.3.5 Modulo (FTMx_MOD)


The Modulo register contains the modulo value for the FTM counter. After the FTM counter reaches the modulo value, the overflow flag (TOF) becomes set at the next clock, and the next value of FTM counter depends on the selected counting method; see Counter.

Writing to the MOD register latches the value into a buffer. The MOD register is updated with the value of its write buffer according to Registers updated from write buffers.

If FTMEN = 0, this write coherency mechanism may be manually reset by writing to the SC register whether BDM is active or not.

Initialize the FTM counter, by writing to CNT, before writing to the MOD register to avoid confusion about when the first counter overflow will occur.

Address: Base address + 8h offset

FTMx_MOD field descriptions

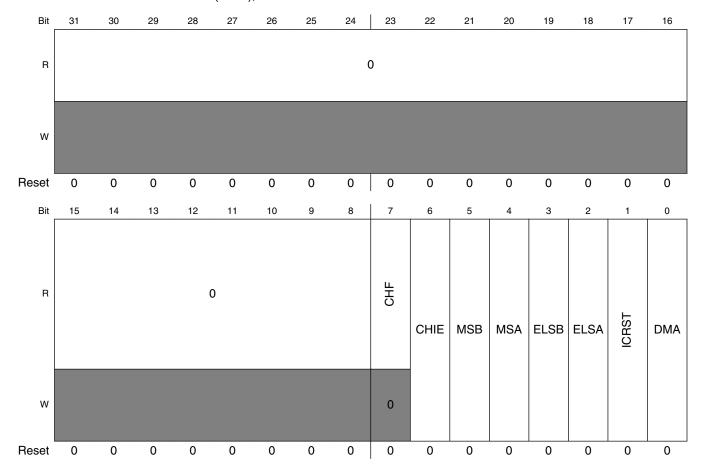
Field	Description
31–16 Reserved	This field is reserved.
15–0 MOD	Modulo Value

39.3.6 Channel (n) Status And Control (FTMx_CnSC)

CnSC contains the channel-interrupt-status flag and control bits used to configure the interrupt enable, channel configuration, and pin function.

Table 39-67. Mode, edge, and level selection

DECAPEN	COMBINE	CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration
Х	Х	Х	XX	00	channel pin to ge	FTM—revert the eneral purpose I/O oheral control
0	0	0	00	01	Input Capture	Capture on Rising Edge Only
				10		Capture on Falling Edge Only
				11		Capture on Rising or Falling Edge
			01	01	Output Compare	Toggle Output on match
				10		Clear Output on match
				11		Set Output on match
			1X	10	Edge-Aligned PWM	High-true pulses (clear Output on match)
				X1		Low-true pulses (set Output on match)
		1	XX	10	Center-Aligned PWM	High-true pulses (clear Output on match-up)
				X1		Low-true pulses (set Output on match-up)
	1	0	xx	10	Combine PWM	High-true pulses (set on channel (n) match, and clear on channel (n+1) match)
				X1		Low-true pulses (clear on channel (n) match, and set on channel (n +1) match)


Table 39-67. Mode, edge, and level selection (continued)

DECAPEN	COMBINE	CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration
1	0	0	X0	See the following table	Dual Edge Capture	One-Shot Capture mode
			X1	(Table 39-8).		Continuous Capture mode

Table 39-68. Dual Edge Capture mode — edge polarity selection

ELSnB	ELSnA	Channel Port Enable	Detected Edges
0	0	Disabled	No edge
0	1	Enabled	Rising edge
1	0	Enabled	Falling edge
1	1	Enabled	Rising and falling edges

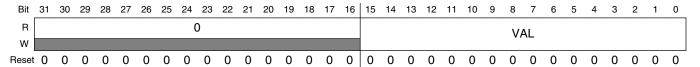
Address: Base address + Ch offset + (8d \times i), where i=0d to 7d

Memory map and register definition

FTMx_CnSC field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7	Channel Flag
CHF	Set by hardware when an event occurs on the channel. CHF is cleared by reading the CSC register while CHnF is set and then writing a 0 to the CHF bit. Writing a 1 to CHF has no effect.
	If another event occurs between the read and write operations, the write operation has no effect; therefore, CHF remains set indicating an event has occurred. In this case a CHF interrupt request is not lost due to the clearing sequence for a previous CHF.
	0 No channel event has occurred.
	1 A channel event has occurred.
6	Channel Interrupt Enable
CHIE	Enables channel interrupts.
	0 Disable channel interrupts. Use software polling.
	1 Enable channel interrupts.
5 MSB	Channel Mode Select
IVIOD	Used for further selections in the channel logic. Its functionality is dependent on the channel mode. See Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
4	Channel Mode Select
MSA	Used for further selections in the channel logic. Its functionality is dependent on the channel mode. See Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
3	Edge or Level Select
ELSB	The functionality of ELSB and ELSA depends on the channel mode. See Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
2	Edge or Level Select
ELSA	The functionality of ELSB and ELSA depends on the channel mode. See Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
1	FTM counter reset by the selected input capture event.
ICRST	FTM counter reset is driven by the selected event of the channel (n) in the Input Capture mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 FTM counter is not reset when the selected channel (n) input event is detected. 1 FTM counter is reset when the selected channel (n) input event is detected.
0	DMA Enable
DMA	Enables DMA transfers for the channel.
	0 Disable DMA transfers.
	1 Enable DMA transfers.

39.3.7 Channel (n) Value (FTMx_CnV)


These registers contain the captured FTM counter value for the input modes or the match value for the output modes.

In Input Capture, Capture Test, and Dual Edge Capture modes, any write to a CnV register is ignored.

In output modes, writing to a CnV register latches the value into a buffer. A CnV register is updated with the value of its write buffer according to Registers updated from write buffers.

If FTMEN = 0, this write coherency mechanism may be manually reset by writing to the CnSC register whether BDM mode is active or not.

FTMx_CnV field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 VAL	Channel Value Captured FTM counter value of the input modes or the match value for the output modes

39.3.8 Counter Initial Value (FTMx_CNTIN)

The Counter Initial Value register contains the initial value for the FTM counter.

Writing to the CNTIN register latches the value into a buffer. The CNTIN register is updated with the value of its write buffer according to Registers updated from write buffers.

When the FTM clock is initially selected, by writing a non-zero value to the CLKS bits, the FTM counter starts with the value 0x0000. To avoid this behavior, before the first write to select the FTM clock, write the new value to the the CNTIN register and then initialize the FTM counter by writing any value to the CNT register.

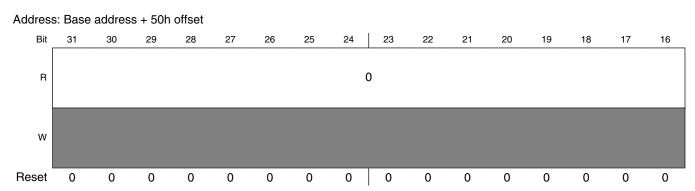
Memory map and register definition

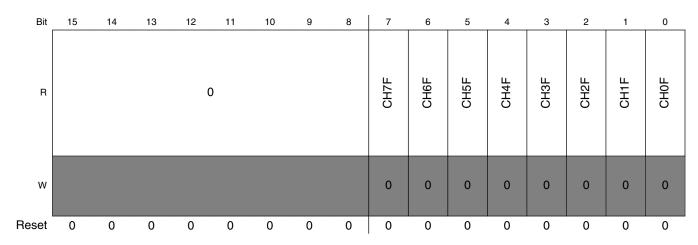
Address: Base address + 4Ch offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W							F	Rese	erve	d														IN	IT							
W	_			_	_			_								_	_		0													

FTMx_CNTIN field descriptions

Field	Description
31–16 Reserved	This field is reserved.
15–0 INIT	Initial Value Of The FTM Counter


39.3.9 Capture And Compare Status (FTMx_STATUS)


The STATUS register contains a copy of the status flag CHnF bit in CnSC for each FTM channel for software convenience.

Each CHnF bit in STATUS is a mirror of CHnF bit in CnSC. All CHnF bits can be checked using only one read of STATUS. All CHnF bits can be cleared by reading STATUS followed by writing 0x00 to STATUS.

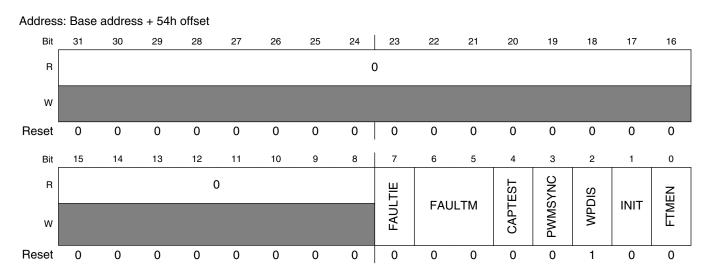
Hardware sets the individual channel flags when an event occurs on the channel. CHnF is cleared by reading STATUS while CHnF is set and then writing a 0 to the CHnF bit. Writing a 1 to CHnF has no effect.

If another event occurs between the read and write operations, the write operation has no effect; therefore, CHnF remains set indicating an event has occurred. In this case, a CHnF interrupt request is not lost due to the clearing sequence for a previous CHnF.

FTMx_STATUS field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 CH7F	Channel 7 Flag
	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.
6 CH6F	Channel 6 Flag
Crior	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.
5 CH5F	Channel 5 Flag
	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.
4 CH4F	Channel 4 Flag
CH4F	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.
3 CH3F	Channel 3 Flag
	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.
2 CH2F	Channel 2 Flag
	See the register description.

FTMx_STATUS field descriptions (continued)


Field	Description
	0 No channel event has occurred.
	1 A channel event has occurred.
1 CH1F	Channel 1 Flag
	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.
0 CH0F	Channel 0 Flag
	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.

39.3.10 Features Mode Selection (FTMx_MODE)

This register contains the global enable bit for FTM-specific features and the control bits used to configure:

- Fault control mode and interrupt
- Capture Test mode
- PWM synchronization
- Write protection
- Channel output initialization

These controls relate to all channels within this module.

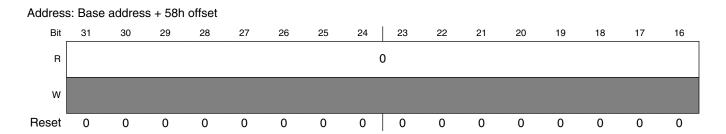
FTMx_MODE field descriptions

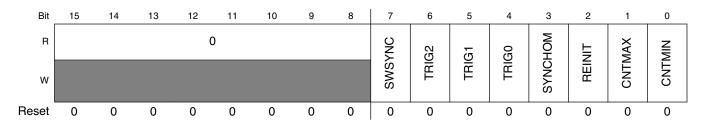
Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7	Fault Interrupt Enable
FAULTIE	Enables the generation of an interrupt when a fault is detected by FTM and the FTM fault control is enabled.
	Fault control interrupt is disabled.Fault control interrupt is enabled.
6–5	Fault Control Mode
FAULTM	Defines the FTM fault control mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	00 Fault control is disabled for all channels.
	Fault control is enabled for even channels only (channels 0, 2, 4, and 6), and the selected mode is the manual fault clearing.
	10 Fault control is enabled for all channels, and the selected mode is the manual fault clearing.
	11 Fault control is enabled for all channels, and the selected mode is the automatic fault clearing.
4 CAPTEST	Capture Test Mode Enable Enables the capture test mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Capture test mode is disabled.1 Capture test mode is enabled.
3	PWM Synchronization Mode
PWMSYNC	Selects which triggers can be used by MOD, CnV, OUTMASK, and FTM counter synchronization. See PWM synchronization. The PWMSYNC bit configures the synchronization when SYNCMODE is 0.
	0 No restrictions. Software and hardware triggers can be used by MOD, CnV, OUTMASK, and FTM counter synchronization.
	1 Software trigger can only be used by MOD and CnV synchronization, and hardware triggers can only be used by OUTMASK and FTM counter synchronization.
2	Write Protection Disable
WPDIS	When write protection is enabled (WPDIS = 0), write protected bits cannot be written. When write protection is disabled (WPDIS = 1), write protected bits can be written. The WPDIS bit is the negation of the WPEN bit. WPDIS is cleared when 1 is written to WPEN. WPDIS is set when WPEN bit is read as a 1 and then 1 is written to WPDIS. Writing 0 to WPDIS has no effect.
	0 Write protection is enabled.
	1 Write protection is disabled.
1	Initialize The Channels Output
INIT	When a 1 is written to INIT bit the channels output is initialized according to the state of their corresponding bit in the OUTINIT register. Writing a 0 to INIT bit has no effect.
	The INIT bit is always read as 0.
00	FTM Enable
FTMEN	This field is write protected. It can be written only when MODE[WPDIS] = 1.

Field	Description
	TPM compatibility. Free running counter and synchronization compatible with TPM.
	1 Free running counter and synchronization are different from TPM behavior.

39.3.11 Synchronization (FTMx_SYNC)

This register configures the PWM synchronization.

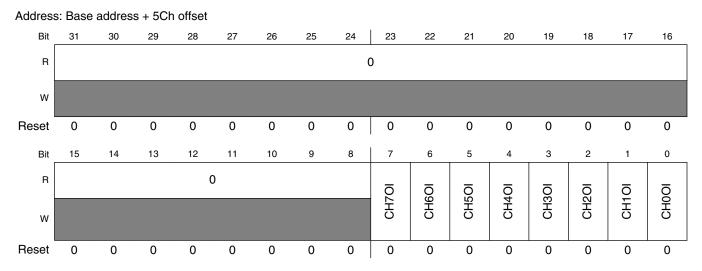

A synchronization event can perform the synchronized update of MOD, CV, and OUTMASK registers with the value of their write buffer and the FTM counter initialization.


NOTE

The software trigger, SWSYNC bit, and hardware triggers TRIG0, TRIG1, and TRIG2 bits have a potential conflict if used together when SYNCMODE = 0. Use only hardware or software triggers but not both at the same time, otherwise unpredictable behavior is likely to happen.

The selection of the loading point, CNTMAX and CNTMIN bits, is intended to provide the update of MOD, CNTIN, and CnV registers across all enabled channels simultaneously. The use of the loading point selection together with SYNCMODE = 0 and hardware trigger selection, TRIG0, TRIG1, or TRIG2 bits, is likely to result in unpredictable behavior.

The synchronization event selection also depends on the PWMSYNC (MODE register) and SYNCMODE (SYNCONF register) bits. See PWM synchronization.


FTMx_SYNC field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7	PWM Synchronization Software Trigger
SWSYNC	Selects the software trigger as the PWM synchronization trigger. The software trigger happens when a 1 is written to SWSYNC bit.
	0 Software trigger is not selected.
	1 Software trigger is selected.
6 TRIG2	PWM Synchronization Hardware Trigger 2
	Enables hardware trigger 2 to the PWM synchronization. Hardware trigger 2 happens when a rising edge is detected at the trigger 2 input signal.
	0 Trigger is disabled.
	1 Trigger is enabled.
5 TRIG1	PWM Synchronization Hardware Trigger 1
	Enables hardware trigger 1 to the PWM synchronization. Hardware trigger 1 happens when a rising edge is detected at the trigger 1 input signal.
	0 Trigger is disabled.
	1 Trigger is enabled.
4 TRIG0	PWM Synchronization Hardware Trigger 0
111100	Enables hardware trigger 0 to the PWM synchronization. Hardware trigger 0 occurs when a rising edge is detected at the trigger 0 input signal.
	0 Trigger is disabled.
	1 Trigger is enabled.
3 SYNCHOM	Output Mask Synchronization
	Selects when the OUTMASK register is updated with the value of its buffer.
	0 OUTMASK register is updated with the value of its buffer in all rising edges of the system clock.
	1 OUTMASK register is updated with the value of its buffer only by the PWM synchronization.
2 REINIT	FTM Counter Reinitialization By Synchronization (FTM counter synchronization)
	Determines if the FTM counter is reinitialized when the selected trigger for the synchronization is detected. The REINIT bit configures the synchronization when SYNCMODE is zero.
	0 FTM counter continues to count normally.
	1 FTM counter is updated with its initial value when the selected trigger is detected.

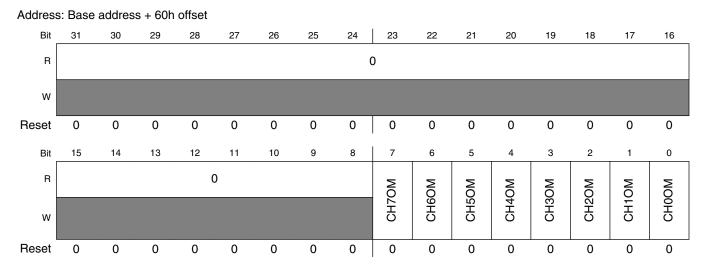
FTMx_SYNC field descriptions (continued)

Field	Description
1 CNTMAX	Maximum Loading Point Enable
	Selects the maximum loading point to PWM synchronization. See Boundary cycle and loading points. If CNTMAX is 1, the selected loading point is when the FTM counter reaches its maximum value (MOD register).
	0 The maximum loading point is disabled.
	1 The maximum loading point is enabled.
0 CNTMIN	Minimum Loading Point Enable
CIVIIIIII	Selects the minimum loading point to PWM synchronization. See Boundary cycle and loading points. If CNTMIN is one, the selected loading point is when the FTM counter reaches its minimum value (CNTIN register).
	0 The minimum loading point is disabled.
	1 The minimum loading point is enabled.

39.3.12 Initial State For Channels Output (FTMx_OUTINIT)

FTMx_OUTINIT field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 CH7OI	Channel 7 Output Initialization Value Selects the value that is forced into the channel output when the initialization occurs. The initialization value is 0. The initialization value is 1.
6 CH6OI	Channel 6 Output Initialization Value


Field	Description
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
5 CH5OI	Channel 5 Output Initialization Value
0.1001	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
4 CH4OI	Channel 4 Output Initialization Value
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
3 CH3OI	Channel 3 Output Initialization Value
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
2 CH2OI	Channel 2 Output Initialization Value
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
1 CH1OI	Channel 1 Output Initialization Value
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
0 CH0OI	Channel 0 Output Initialization Value
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.

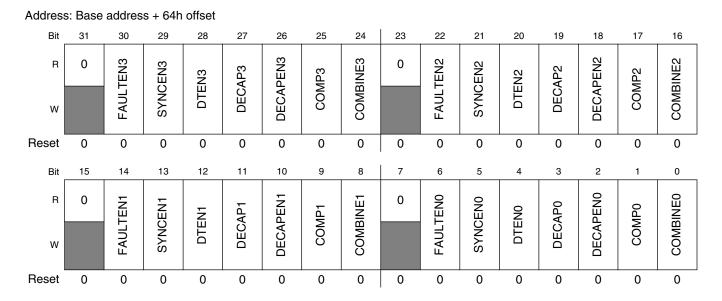
39.3.13 Output Mask (FTMx_OUTMASK)

This register provides a mask for each FTM channel. The mask of a channel determines if its output responds, that is, it is masked or not, when a match occurs. This feature is used for BLDC control where the PWM signal is presented to an electric motor at specific times to provide electronic commutation.

Memory map and register definition

Any write to the OUTMASK register, stores the value in its write buffer. The register is updated with the value of its write buffer according to PWM synchronization.

FTMx_OUTMASK field descriptions


Field	Description
31–8	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7 CH7OM	Channel 7 Output Mask
	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
6 CH6OM	Channel 6 Output Mask
	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
5 CH5OM	Channel 5 Output Mask
	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
4 CH4OM	Channel 4 Output Mask
	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
3	Channel 3 Output Mask
CH3OM	Defines if the channel output is masked or unmasked.

FTMx_OUTMASK field descriptions (continued)

Field	Description
	Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
2 CH2OM	Channel 2 Output Mask
SS	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
1 CH1OM	Channel 1 Output Mask
OTTOM	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
0 CH0OM	Channel 0 Output Mask
	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.

39.3.14 Function For Linked Channels (FTMx_COMBINE)

This register contains the control bits used to configure the fault control, synchronization, deadtime insertion, Dual Edge Capture mode, Complementary, and Combine mode for each pair of channels (n) and (n+1), where n equals 0, 2, 4, and 6.

FTMx_COMBINE field descriptions

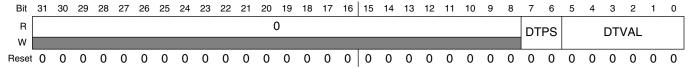
Field	Description
31 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
30	Fault Control Enable For n = 6
FAULTEN3	Enables the fault control in channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	 The fault control in this pair of channels is disabled. The fault control in this pair of channels is enabled.
29 SYNCEN3	Synchronization Enable For n = 6
STINCEINS	Enables PWM synchronization of registers C(n)V and C(n+1)V.
	0 The PWM synchronization in this pair of channels is disabled.
	1 The PWM synchronization in this pair of channels is enabled.
28 DTEN3	Deadtime Enable For n = 6
DIENS	Enables the deadtime insertion in the channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The deadtime insertion in this pair of channels is disabled.
	1 The deadtime insertion in this pair of channels is enabled.
27 DECAP3	Dual Edge Capture Mode Captures For n = 6
DECAPS	Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.
	This field applies only when DECAPEN = 1.
	DECAP bit is cleared automatically by hardware if dual edge capture – one-shot mode is selected and when the capture of channel (n+1) event is made.
	O The dual edge captures are inactive. The dual edge captures are active.
26	The dual edge captures are active. Dual Edge Capture Mode Enable For n = 6
DECAPEN3	
	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function of MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The Dual Edge Capture mode in this pair of channels is disabled.
	1 The Dual Edge Capture mode in this pair of channels is enabled.
25 COMP3	Complement Of Channel (n) for n = 6
COIVIFS	Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The channel (n+1) output is the same as the channel (n) output.
	1 The channel (n+1) output is the complement of the channel (n) output.

Field	Description
24	Combine Channels For n = 6
COMBINE3	Enables the combine feature for channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Channels (n) and (n+1) are independent.
	1 Channels (n) and (n+1) are combined.
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22 FAULTEN2	Fault Control Enable For n = 4
FAULTEN2	Enables the fault control in channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault control in this pair of channels is disabled.
	1 The fault control in this pair of channels is enabled.
21 SYNCEN2	Synchronization Enable For n = 4
STINCEINZ	Enables PWM synchronization of registers C(n)V and C(n+1)V.
	0 The PWM synchronization in this pair of channels is disabled.
	1 The PWM synchronization in this pair of channels is enabled.
20 DTEN2	Deadtime Enable For n = 4
BILINZ	Enables the deadtime insertion in the channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	The deadtime insertion in this pair of channels is disabled.The deadtime insertion in this pair of channels is enabled.
19	Dual Edge Capture Mode Captures For n = 4
DECAP2	Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.
	This field applies only when DECAPEN = 1.
	DECAP bit is cleared automatically by hardware if dual edge capture – one-shot mode is selected and when the capture of channel (n+1) event is made.
	0 The dual edge captures are inactive.
	1 The dual edge captures are active.
18 DECAPEN2	Dual Edge Capture Mode Enable For n = 4
	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function of MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The Dual Edge Capture mode in this pair of channels is disabled.
	1 The Dual Edge Capture mode in this pair of channels is enabled.
17 COMP2	Complement Of Channel (n) For n = 4

Field	Description												
	Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.												
	This field is write protected. It can be written only when MODE[WPDIS] = 1.												
	The channel (n+1) output is the same as the channel (n) output.												
	1 The channel (n+1) output is the complement of the channel (n) output.												
16 COMBINE2	Combine Channels For n = 4												
00111211122	Enables the combine feature for channels (n) and (n+1).												
	This field is write protected. It can be written only when MODE[WPDIS] = 1.												
	0 Channels (n) and (n+1) are independent.												
	1 Channels (n) and (n+1) are combined.												
15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.												
14	Fault Control Enable For n = 2												
FAULTEN1	Enables the fault central in channels (n) and (n, 1)												
	Enables the fault control in channels (n) and (n+1).												
	This field is write protected. It can be written only when MODE[WPDIS] = 1.												
	0 The fault control in this pair of channels is disabled.												
	1 The fault control in this pair of channels is enabled.												
13 SYNCEN1	Synchronization Enable For n = 2												
STINCEINT	Enables PWM synchronization of registers C(n)V and C(n+1)V.												
	0 The PWM synchronization in this pair of channels is disabled.												
	1 The PWM synchronization in this pair of channels is enabled.												
12 DTEN1	Deadtime Enable For n = 2												
DIENI	Enables the deadtime insertion in the channels (n) and (n+1).												
	This field is write protected. It can be written only when MODE[WPDIS] = 1.												
	0 The deadtime insertion in this pair of channels is disabled.												
	1 The deadtime insertion in this pair of channels is enabled.												
11	Dual Edge Capture Mode Captures For n = 2												
DECAP1	Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.												
	This field applies only when DECAPEN = 1.												
	DECAP bit is cleared automatically by hardware if Dual Edge Capture – One-Shot mode is selected and when the capture of channel (n+1) event is made.												
	0 The dual edge captures are inactive.												
	1 The dual edge captures are active.												
10 DECAPEN1	Dual Edge Capture Mode Enable For n = 2												
DECAPENT	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function of MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 39-7.												
•													

Field	Description										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	0 The Dual Edge Capture mode in this pair of channels is disabled.										
	1 The Dual Edge Capture mode in this pair of channels is enabled.										
9 COMP1	Complement Of Channel (n) For n = 2 Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	 The channel (n+1) output is the same as the channel (n) output. The channel (n+1) output is the complement of the channel (n) output. 										
8	Combine Channels For n = 2										
COMBINE1											
	Enables the combine feature for channels (n) and (n+1).										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	0 Channels (n) and (n+1) are independent.										
	1 Channels (n) and (n+1) are combined.										
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.										
6	Fault Control Enable For n = 0										
FAULTEN0	Enables the fault control in channels (n) and (n+1).										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	0 The fault control in this pair of channels is disabled.										
	1 The fault control in this pair of channels is enabled.										
5	Synchronization Enable For n = 0										
SYNCEN0	Enables PWM synchronization of registers C(n)V and C(n+1)V.										
	0 The PWM synchronization in this pair of channels is disabled.										
	1 The PWM synchronization in this pair of channels is enabled.										
4 DTEN0	Deadtime Enable For n = 0										
DILINO	Enables the deadtime insertion in the channels (n) and (n+1).										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	0 The deadtime insertion in this pair of channels is disabled.										
	1 The deadtime insertion in this pair of channels is enabled.										
3 DECAP0	Dual Edge Capture Mode Captures For n = 0										
	Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.										
	This field applies only when DECAPEN = 1.										
	DECAP bit is cleared automatically by hardware if dual edge capture – one-shot mode is selected and when the capture of channel (n+1) event is made.										
	0 The dual edge captures are inactive.										
	1 The dual edge captures are active.										

Table continues on the next page...


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Field	Description
2	Dual Edge Capture Mode Enable For n = 0
DECAPENO	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function of MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The Dual Edge Capture mode in this pair of channels is disabled.
	1 The Dual Edge Capture mode in this pair of channels is enabled.
1 COMP0	Complement Of Channel (n) For n = 0
	Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The channel (n+1) output is the same as the channel (n) output.
	1 The channel (n+1) output is the complement of the channel (n) output.
0	Combine Channels For n = 0
COMBINE0	Enables the combine feature for channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Channels (n) and (n+1) are independent.
	1 Channels (n) and (n+1) are combined.

39.3.15 Deadtime Insertion Control (FTMx_DEADTIME)

This register selects the deadtime prescaler factor and deadtime value. All FTM channels use this clock prescaler and this deadtime value for the deadtime insertion.

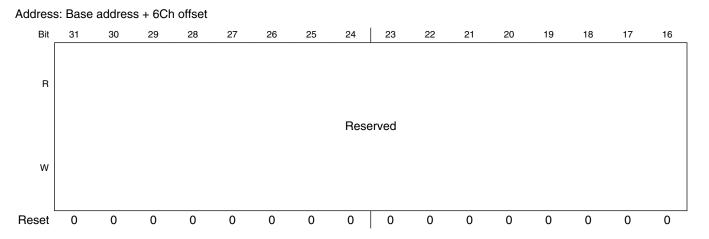
Address: Base address + 68h offset

FTMx_DEADTIME field descriptions

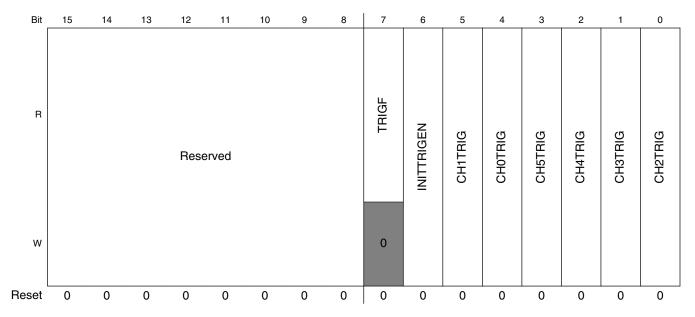
Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–6 DTPS	Deadtime Prescaler Value Selects the division factor of the system clock. This prescaled clock is used by the deadtime counter. This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0x Divide the system clock by 1.

FTMx_DEADTIME field descriptions (continued)

Field	Description
	10 Divide the system clock by 4.
	11 Divide the system clock by 16.
5–0	Deadtime Value
DTVAL	Selects the deadtime insertion value for the deadtime counter. The deadtime counter is clocked by a scaled version of the system clock. See the description of DTPS.
	Deadtime insert value = (DTPS × DTVAL).
	DTVAL selects the number of deadtime counts inserted as follows:
	When DTVAL is 0, no counts are inserted.
	When DTVAL is 1, 1 count is inserted.
	When DTVAL is 2, 2 counts are inserted.
	This pattern continues up to a possible 63 counts.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.


39.3.16 FTM External Trigger (FTMx_EXTTRIG)

This register:


- Indicates when a channel trigger was generated
- Enables the generation of a trigger when the FTM counter is equal to its initial value
- Selects which channels are used in the generation of the channel triggers

Several channels can be selected to generate multiple triggers in one PWM period.

Channels 6 and 7 are not used to generate channel triggers.

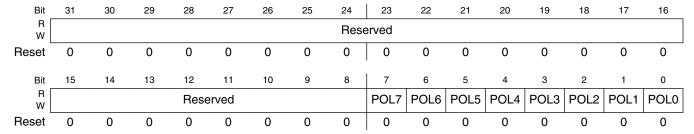
Memory map and register definition

FTMx_EXTTRIG field descriptions

Field	Description
31–8 Reserved	This field is reserved.
7 TRIGF	Channel Trigger Flag Set by hardware when a channel trigger is generated. Clear TRIGF by reading EXTTRIG while TRIGF is set and then writing a 0 to TRIGF. Writing a 1 to TRIGF has no effect.
	If another channel trigger is generated before the clearing sequence is completed, the sequence is reset so TRIGF remains set after the clear sequence is completed for the earlier TRIGF.
	No channel trigger was generated.A channel trigger was generated.
6 INITTRIGEN	Initialization Trigger Enable Enables the generation of the trigger when the FTM counter is equal to the CNTIN register.
	The generation of initialization trigger is disabled.The generation of initialization trigger is enabled.
5 CH1TRIG	Channel 1 Trigger Enable Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	The generation of the channel trigger is disabled.The generation of the channel trigger is enabled.
4 CH0TRIG	Channel 0 Trigger Enable Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	The generation of the channel trigger is disabled.The generation of the channel trigger is enabled.
3 CH5TRIG	Channel 5 Trigger Enable

FTMx_EXTTRIG field descriptions (continued)

Field	Description
	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.
2 CH4TRIG	Channel 4 Trigger Enable
	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.
1 CH3TRIG	Channel 3 Trigger Enable
Chainid	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.
0 CH2TRIG	Channel 2 Trigger Enable
011211110	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.

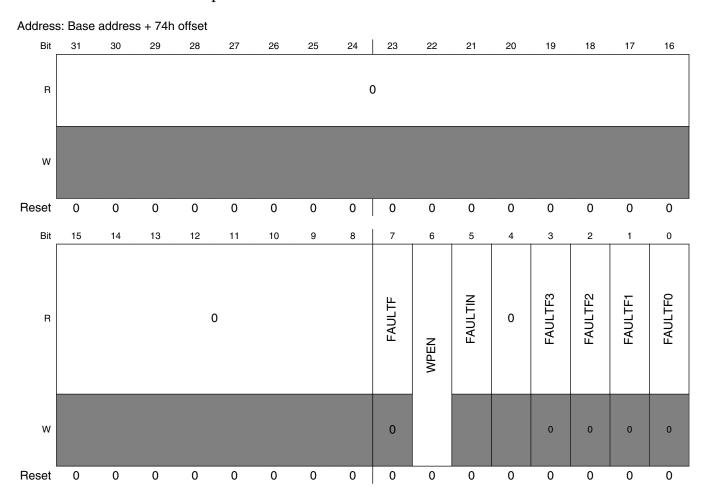

39.3.17 Channels Polarity (FTMx_POL)

This register defines the output polarity of the FTM channels.

NOTE

The safe value that is driven in a channel output when the fault control is enabled and a fault condition is detected is the inactive state of the channel. That is, the safe value of a channel is the value of its POL bit.

Address: Base address + 70h offset


FTMx_POL field descriptions

Field	Description											
31–8 Reserved	This field is reserved.											
7	Channel 7 Polarity											
POL7	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	The channel polarity is active high.											
	The channel polarity is active low.											
6	Channel 6 Polarity											
POL6	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
5 POL5	Channel 5 Polarity											
1 023	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
4 POL4	Channel 4 Polarity											
	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	O The channel polarity is active high.											
3	The channel polarity is active low. Channel 3 Polarity											
POL3	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	The channel polarity is active high.The channel polarity is active low.											
2	Channel 2 Polarity											
POL2	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
1 POL1	Channel 1 Polarity											
FULI	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											

Field	Description												
	0 The channel polarity is active high.												
	1 The channel polarity is active low.												
0	Channel 0 Polarity												
POL0	Defines the polarity of the channel output.												
	This field is write protected. It can be written only when MODE[WPDIS] = 1.												
	0 The channel polarity is active high.												
	1 The channel polarity is active low.												

39.3.18 Fault Mode Status (FTMx_FMS)

This register contains the fault detection flags, write protection enable bit, and the logic OR of the enabled fault inputs.

FTMx_FMS field descriptions

Field	Description										
31–8	This field is reserved.										
Reserved	This read-only field is reserved and always has the value 0.										
7 FAULTF	Fault Detection Flag										
FAULIF	Represents the logic OR of the individual FAULTFj bits where j = 3, 2, 1, 0. Clear FAULTF by reading the FMS register while FAULTF is set and then writing a 0 to FAULTF while there is no existing fault conditional at the enabled fault inputs. Writing a 1 to FAULTF has no effect.										
	If another fault condition is detected in an enabled fault input before the clearing sequence is completed, the sequence is reset so FAULTF remains set after the clearing sequence is completed for the earlier fault condition. FAULTF is also cleared when FAULTFj bits are cleared individually.										
	0 No fault condition was detected.										
	1 A fault condition was detected.										
6	Write Protection Enable										
WPEN	White I Total and Lindblo										
	The WPEN bit is the negation of the WPDIS bit. WPEN is set when 1 is written to it. WPEN is cleared when WPEN bit is read as a 1 and then 1 is written to WPDIS. Writing 0 to WPEN has no effect.										
	0 Write protection is disabled. Write protected bits can be written.										
	1 Write protection is enabled. Write protected bits cannot be written.										
5 FAULTIN	Fault Inputs										
	Represents the logic OR of the enabled fault inputs after their filter (if their filter is enabled) when fault control is enabled.										
	0 The logic OR of the enabled fault inputs is 0.										
	1 The logic OR of the enabled fault inputs is 1.										
4	This field is reserved.										
Reserved	This read-only field is reserved and always has the value 0.										
3	Fault Detection Flag 3										
FAULTF3	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.										
	Clear FAULTF3 by reading the FMS register while FAULTF3 is set and then writing a 0 to FAULTF3 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF3 has no effect. FAULTF3 bit is also cleared when FAULTF bit is cleared.										
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF3 remains set after the clearing sequence is completed for the earlier fault condition.										
	0 No fault condition was detected at the fault input.										
	1 A fault condition was detected at the fault input.										
2	Fault Detection Flag 2										
FAULTF2	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.										
	Clear FAULTF2 by reading the FMS register while FAULTF2 is set and then writing a 0 to FAULTF2 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF2 has no effect. FAULTF2 bit is also cleared when FAULTF bit is cleared.										

Field	Description										
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF2 remains set after the clearing sequence is completed for the earlier fault condition.										
	0 No fault condition was detected at the fault input.										
	1 A fault condition was detected at the fault input.										
1	Fault Detection Flag 1										
FAULTF1	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.										
	Clear FAULTF1 by reading the FMS register while FAULTF1 is set and then writing a 0 to FAULTF1 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF1 has no effect. FAULTF1 bit is also cleared when FAULTF bit is cleared.										
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF1 remains set after the clearing sequence is completed for the earlier fault condition.										
	0 No fault condition was detected at the fault input.										
	1 A fault condition was detected at the fault input.										
0	Fault Detection Flag 0										
FAULTF0	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.										
	Clear FAULTF0 by reading the FMS register while FAULTF0 is set and then writing a 0 to FAULTF0 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF0 has no effect. FAULTF0 bit is also cleared when FAULTF bit is cleared.										
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF0 remains set after the clearing sequence is completed for the earlier fault condition.										
	0 No fault condition was detected at the fault input.										
	1 A fault condition was detected at the fault input.										

39.3.19 Input Capture Filter Control (FTMx_FILTER)

This register selects the filter value for the inputs of channels.

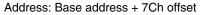
Channels 4, 5, 6 and 7 do not have an input filter.

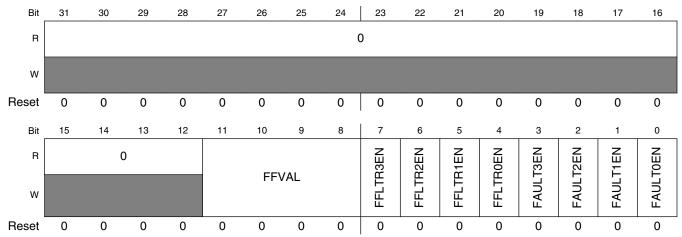
NOTE

Writing to the FILTER register has immediate effect and must be done only when the channels 0, 1, 2, and 3 are not in input modes. Failure to do this could result in a missing valid signal.

Memory map and register definition

Address: Base address + 78h offset


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W		Reserved									CH3FVAL			CH2FVAL				CH1FVAL				CH0FVAL										
Recet	Λ					$\overline{}$				$\overline{}$	Λ			$\overline{}$		$\overline{}$	0	$\overline{}$			$\overline{}$		Λ	$\overline{}$	Λ	Λ	$\overline{}$	$\overline{}$		<u> </u>		_


FTMx_FILTER field descriptions

Field	Description
31–16 Reserved	This field is reserved.
15–12 CH3FVAL	Channel 3 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.
11–8 CH2FVAL	Channel 2 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.
7–4 CH1FVAL	Channel 1 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.
3–0 CH0FVAL	Channel 0 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.

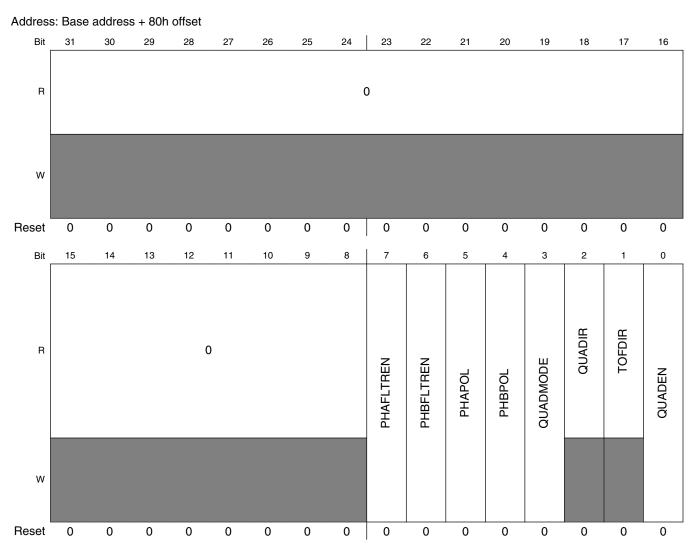
39.3.20 Fault Control (FTMx_FLTCTRL)

This register selects the filter value for the fault inputs, enables the fault inputs and the fault inputs filter.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

FTMx_FLTCTRL field descriptions

Field	Description
31–12 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
11–8	Fault Input Filter
FFVAL	Selects the filter value for the fault inputs.
	The fault filter is disabled when the value is zero.
	NOTE: Writing to this field has immediate effect and must be done only when the fault control or all fault inputs are disabled. Failure to do this could result in a missing fault detection.
7	Fault Input 3 Filter Enable
FFLTR3EN	Enables the filter for the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input filter is disabled.1 Fault input filter is enabled.
6	Fault Input 2 Filter Enable
FFLTR2EN	Enables the filter for the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input filter is disabled.
	1 Fault input filter is enabled.
5	Fault Input 1 Filter Enable
FFLTR1EN	Enables the filter for the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input filter is disabled.
	1 Fault input filter is enabled.
4 551 TD05N	Fault Input 0 Filter Enable
FFLTR0EN	Enables the filter for the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input filter is disabled.
	1 Fault input filter is enabled.
3 FAULT3EN	Fault Input 3 Enable
FAULISEN	Enables the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input is disabled.
	1 Fault input is enabled.
2 FAULT2EN	Fault Input 2 Enable
	Enables the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input is disabled.
	1 Fault input is enabled.


Memory map and register definition

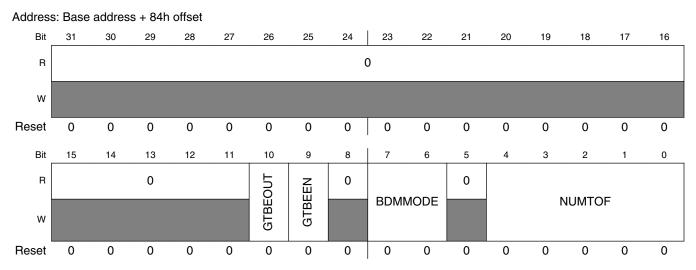
FTMx_FLTCTRL field descriptions (continued)

Field	Description
11	Fault Input 1 Enable
FAULT1EN	Enables the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input is disabled.
	1 Fault input is enabled.
0	Fault Input 0 Enable
FAULT0EN	Enables the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Fault input is disabled.
	1 Fault input is enabled.

39.3.21 Quadrature Decoder Control And Status (FTMx_QDCTRL)

This register has the control and status bits for the Quadrature Decoder mode.

FTMx_QDCTRL field descriptions

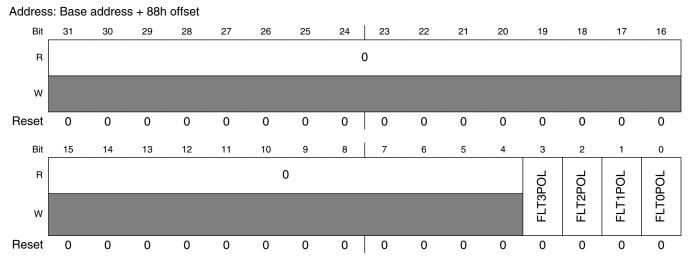

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 PHAFLTREN	Phase A Input Filter Enable Enables the filter for the quadrature decoder phase A input. The filter value for the phase A input is defined by the CH0FVAL field of FILTER. The phase A filter is also disabled when CH0FVAL is zero. O Phase A input filter is disabled. 1 Phase A input filter is enabled.

FTMx_QDCTRL field descriptions (continued)

Field	Description
6	Phase B Input Filter Enable
PHBFLTREN	Enables the filter for the quadrature decoder phase B input. The filter value for the phase B input is defined by the CH1FVAL field of FILTER. The phase B filter is also disabled when CH1FVAL is zero.
	0 Phase B input filter is disabled.
	1 Phase B input filter is enabled.
5 PHAPOL	Phase A Input Polarity
TTING OL	Selects the polarity for the quadrature decoder phase A input.
	0 Normal polarity. Phase A input signal is not inverted before identifying the rising and falling edges of this signal.
	1 Inverted polarity. Phase A input signal is inverted before identifying the rising and falling edges of this signal.
4 PHBPOL	Phase B Input Polarity
11151 02	Selects the polarity for the quadrature decoder phase B input.
	0 Normal polarity. Phase B input signal is not inverted before identifying the rising and falling edges of this signal.
	1 Inverted polarity. Phase B input signal is inverted before identifying the rising and falling edges of this signal.
3 QUADMODE	Quadrature Decoder Mode
QONDMODE	Selects the encoding mode used in the Quadrature Decoder mode.
	0 Phase A and phase B encoding mode.
	1 Count and direction encoding mode.
2 QUADIR	FTM Counter Direction In Quadrature Decoder Mode
	Indicates the counting direction.
	0 Counting direction is decreasing (FTM counter decrement).
	1 Counting direction is increasing (FTM counter increment).
1 TOFDIR	Timer Overflow Direction In Quadrature Decoder Mode
	Indicates if the TOF bit was set on the top or the bottom of counting.
	O TOF bit was set on the bottom of counting. There was an FTM counter decrement and FTM counter changes from its minimum value (CNTIN register) to its maximum value (MOD register).
	TOF bit was set on the top of counting. There was an FTM counter increment and FTM counter changes from its maximum value (MOD register) to its minimum value (CNTIN register).
0	Quadrature Decoder Mode Enable
QUADEN	Enables the Quadrature Decoder mode. In this mode, the phase A and B input signals control the FTM counter direction. The Quadrature Decoder mode has precedence over the other modes. See Table 39-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Quadrature Decoder mode is disabled.
	1 Quadrature Decoder mode is enabled.

39.3.22 Configuration (FTMx_CONF)

This register selects the number of times that the FTM counter overflow should occur before the TOF bit to be set, the FTM behavior in BDM modes, the use of an external global time base, and the global time base signal generation.


FTMx_CONF field descriptions

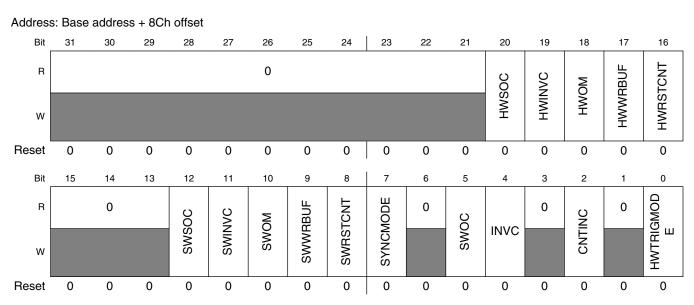
Field	Description
31–11 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
10 GTBEOUT	Global Time Base Output Enables the global time base signal generation to other FTMs.
	O A global time base signal generation is disabled.
	A global time base signal generation is enabled.
9 GTBEEN	Global Time Base Enable Configures the FTM to use an external global time base signal that is generated by another FTM. Use of an external global time base is disabled. Use of an external global time base is enabled.
8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–6 BDMMODE	BDM Mode Selects the FTM behavior in BDM mode. See BDM mode.
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

Field	Description
4-0	TOF Frequency
NUMTOF	Selects the ratio between the number of counter overflows to the number of times the TOF bit is set.
	NUMTOF = 0: The TOF bit is set for each counter overflow.
	NUMTOF = 1: The TOF bit is set for the first counter overflow but not for the next overflow.
	NUMTOF = 2: The TOF bit is set for the first counter overflow but not for the next 2 overflows.
	NUMTOF = 3: The TOF bit is set for the first counter overflow but not for the next 3 overflows.
	This pattern continues up to a maximum of 31.

39.3.23 FTM Fault Input Polarity (FTMx_FLTPOL)

This register defines the fault inputs polarity.

FTMx_FLTPOL field descriptions


Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	Fault Input 3 Polarity
FLT3POL	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.
2	Fault Input 2 Polarity
FLT2POL	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.

FTMx_FLTPOL field descriptions (continued)

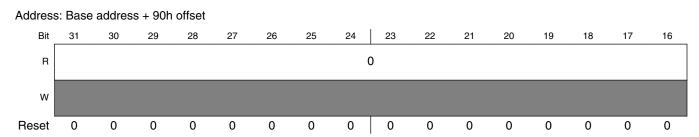
Field	Description
	The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.
1 FLT1POL	Fault Input 1 Polarity
	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.
0 FLT0POL	Fault Input 0 Polarity
12.0.02	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.

39.3.24 Synchronization Configuration (FTMx_SYNCONF)

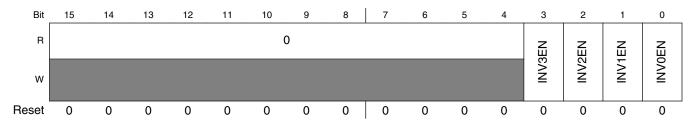
This register selects the PWM synchronization configuration, SWOCTRL, INVCTRL and CNTIN registers synchronization, if FTM clears the TRIGj bit, where j = 0, 1, 2, when the hardware trigger j is detected.

FTMx_SYNCONF field descriptions

Field	Description
31–21	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.


Field	Description
20 HWSOC	Software output control synchronization is activated by a hardware trigger.
	0 A hardware trigger does not activate the SWOCTRL register synchronization.
	A hardware trigger activates the SWOCTRL register synchronization.
19 HWINVC	Inverting control synchronization is activated by a hardware trigger.
	O A hardware trigger does not activate the INVCTRL register synchronization.
	1 A hardware trigger activates the INVCTRL register synchronization.
18 HWOM	Output mask synchronization is activated by a hardware trigger.
	A hardware trigger does not activate the OUTMASK register synchronization. A hardware trigger activates the OUTMASK register synchronization.
17	1 A hardware trigger activates the OUTMASK register synchronization.
17 HWWRBUF	MOD, CNTIN, and CV registers synchronization is activated by a hardware trigger.
	0 A hardware trigger does not activate MOD, CNTIN, and CV registers synchronization.
	1 A hardware trigger activates MOD, CNTIN, and CV registers synchronization.
16 HWRSTCNT	FTM counter synchronization is activated by a hardware trigger.
	A hardware trigger does not activate the FTM counter synchronization.
	A hardware trigger activates the FTM counter synchronization.
15–13	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
12 SWSOC	Software output control synchronization is activated by the software trigger.
	 The software trigger does not activate the SWOCTRL register synchronization. The software trigger activates the SWOCTRL register synchronization.
11	Inverting control synchronization is activated by the software trigger.
SWINVC	The software trigger does not activate the INVCTRL register synchronization.
	1 The software trigger activates the INVCTRL register synchronization.
10	Output mask synchronization is activated by the software trigger.
SWOM	The software trigger does not activate the OUTMASK register synchronization.
	The software trigger activates the OUTMASK register synchronization.
9	MOD, CNTIN, and CV registers synchronization is activated by the software trigger.
SWWRBUF	The software trigger does not activate MOD, CNTIN, and CV registers synchronization.
	1 The software trigger activates MOD, CNTIN, and CV registers synchronization.
8 SWRSTCNT	FTM counter synchronization is activated by the software trigger.
	The software trigger does not activate the FTM counter synchronization.
	1 The software trigger activates the FTM counter synchronization.
7 SYNCMODE	Synchronization Mode
	Selects the PWM Synchronization mode.
	0 Legacy PWM synchronization is selected.
	1 Enhanced PWM synchronization is selected.

Field	Description
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 SWOC	SWOCTRL Register Synchronization
	 SWOCTRL register is updated with its buffer value at all rising edges of system clock. SWOCTRL register is updated with its buffer value by the PWM synchronization.
4 INVC	INVCTRL Register Synchronization
	 INVCTRL register is updated with its buffer value at all rising edges of system clock. INVCTRL register is updated with its buffer value by the PWM synchronization.
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 CNTINC	CNTIN Register Synchronization
	0 CNTIN register is updated with its buffer value at all rising edges of system clock.1 CNTIN register is updated with its buffer value by the PWM synchronization.
1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 HWTRIGMODE	Hardware Trigger Mode
	 FTM clears the TRIGj bit when the hardware trigger j is detected, where j = 0, 1,2. FTM does not clear the TRIGj bit when the hardware trigger j is detected, where j = 0, 1,2.


39.3.25 FTM Inverting Control (FTMx_INVCTRL)

This register controls when the channel (n) output becomes the channel (n+1) output, and channel (n+1) output becomes the channel (n) output. Each INVmEN bit enables the inverting operation for the corresponding pair channels m.

This register has a write buffer. The INVmEN bit is updated by the INVCTRL register synchronization.

Memory map and register definition

FTMx_INVCTRL field descriptions

Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3 INV3EN	Pair Channels 3 Inverting Enable
	0 Inverting is disabled.
	1 Inverting is enabled.
2 INV2EN	Pair Channels 2 Inverting Enable
	0 Inverting is disabled.
	1 Inverting is enabled.
1 INV1EN	Pair Channels 1 Inverting Enable
	0 Inverting is disabled.
	1 Inverting is enabled.
0 INV0EN	Pair Channels 0 Inverting Enable
INVOLIN	0 Inverting is disabled.
	1 Inverting is enabled.

39.3.26 FTM Software Output Control (FTMx_SWOCTRL)

This register enables software control of channel (n) output and defines the value forced to the channel (n) output:

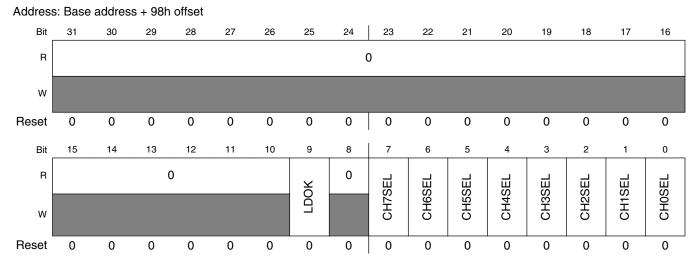
- The CHnOC bits enable the control of the corresponding channel (n) output by software.
- The CHnOCV bits select the value that is forced at the corresponding channel (n) output.

This register has a write buffer. The fields are updated by the SWOCTRL register synchronization.

Address: Base address + 94h offset Bit R W Reset Bit R CH60CV CH50CV CH3OCV CH20CV CH10CV CH70CV CH40CV CHOOCV CH70C CH6OC CH5OC CH40C CH3OC CH10C CHOOC CH2OC W Reset

FTMx_SWOCTRL field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15 CH7OCV	Channel 7 Software Output Control Value
	 The software output control forces 0 to the channel output. The software output control forces 1 to the channel output.
14 CH6OCV	Channel 6 Software Output Control Value
	 The software output control forces 0 to the channel output. The software output control forces 1 to the channel output.
13 CH5OCV	Channel 5 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
12 CH4OCV	Channel 4 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
11 CH3OCV	Channel 3 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
10 CH2OCV	Channel 2 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
9 CH1OCV	Channel 1 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
8 CH0OCV	Channel 0 Software Output Control Value


Memory map and register definition

FTMx_SWOCTRL field descriptions (continued)

Field	Description
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
7 CH7OC	Channel 7 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
6 CH6OC	Channel 6 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
5 CH5OC	Channel 5 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
4 CH4OC	Channel 4 Software Output Control Enable
	The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
3 CH3OC	Channel 3 Software Output Control Enable
	The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
2 CH2OC	Channel 2 Software Output Control Enable
	The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
1 CH1OC	Channel 1 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
0 CH0OC	Channel 0 Software Output Control Enable
	The channel output is not affected by software output control.
	1 The channel output is affected by software output control.

39.3.27 FTM PWM Load (FTMx_PWMLOAD)

Enables the loading of the MOD, CNTIN, C(n)V, and C(n+1)V registers with the values of their write buffers when the FTM counter changes from the MOD register value to its next value or when a channel (j) match occurs. A match occurs for the channel (j) when FTM counter = C(j)V.

FTMx_PWMLOAD field descriptions

Field	Description
31–10	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
9 LDOK	Load Enable
LDOK	Enables the loading of the MOD, CNTIN, and CV registers with the values of their write buffers.
	0 Loading updated values is disabled.
	1 Loading updated values is enabled.
8	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7 CH7SEL	Channel 7 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.
6 CH6SEL	Channel 6 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.
5 CH5SEL	Channel 5 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.

Functional description

FTMx_PWMLOAD field descriptions (continued)

Field	Description
4 CH4SEL	Channel 4 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.
3 CH3SEL	Channel 3 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.
2 CH2SEL	Channel 2 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.
1 CH1SEL	Channel 1 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.
0 CH0SEL	Channel 0 Select
	0 Do not include the channel in the matching process.
	1 Include the channel in the matching process.

39.4 Functional description

The notation used in this document to represent the counters and the generation of the signals is shown in the following figure.

FTM counting is up.
Channel (n) is in high-true EPWM mode.
PS[2:0] = 001
CNTIN = 0x0000
MOD = 0x0004

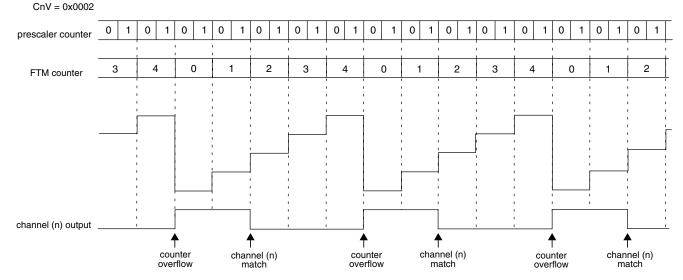


Figure 39-207. Notation used

39.4.1 Clock source

The FTM has only one clock domain: the system clock.

39.4.1.1 Counter clock source

The CLKS[1:0] bits in the SC register select one of three possible clock sources for the FTM counter or disable the FTM counter. After any MCU reset, CLKS[1:0] = 0:0 so no clock source is selected.

The CLKS[1:0] bits may be read or written at any time. Disabling the FTM counter by writing 0:0 to the CLKS[1:0] bits does not affect the FTM counter value or other registers.

The fixed frequency clock is an alternative clock source for the FTM counter that allows the selection of a clock other than the system clock or an external clock. This clock input is defined by chip integration. Refer to the chip specific documentation for further information. Due to FTM hardware implementation limitations, the frequency of the fixed frequency clock must not exceed 1/2 of the system clock frequency.

The external clock passes through a synchronizer clocked by the system clock to assure that counter transitions are properly aligned to system clock transitions. Therefore, to meet Nyquist criteria considering also jitter, the frequency of the external clock source must not exceed 1/4 of the system clock frequency.

39.4.2 Prescaler

The selected counter clock source passes through a prescaler that is a 7-bit counter. The value of the prescaler is selected by the PS[2:0] bits. The following figure shows an example of the prescaler counter and FTM counter.

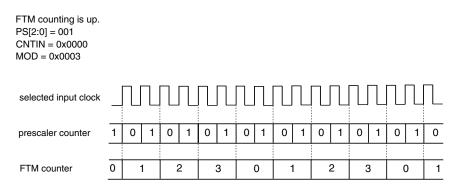


Figure 39-208. Example of the prescaler counter

39.4.3 Counter

The FTM has a 16-bit counter that is used by the channels either for input or output modes. The FTM counter clock is the selected clock divided by the prescaler.

The FTM counter has these modes of operation:

- Up counting
- Up-down counting
- Quadrature Decoder mode

39.4.3.1 Up counting

Up counting is selected when:

- QUADEN = 0, and
- CPWMS = 0

CNTIN defines the starting value of the count and MOD defines the final value of the count, see the following figure. The value of CNTIN is loaded into the FTM counter, and the counter increments until the value of MOD is reached, at which point the counter is reloaded with the value of CNTIN.

The FTM period when using up counting is $(MOD - CNTIN + 0x0001) \times period of the FTM counter clock.$

The TOF bit is set when the FTM counter changes from MOD to CNTIN.

FTM counting is up.

CNTIN = 0xFFFC (in two's complement is equal to -4)

MOD = 0x0004

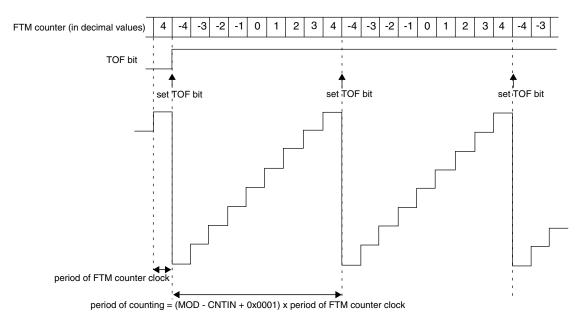


Figure 39-209. Example of FTM up and signed counting

Table 39-302. FTM counting based on CNTIN value

When	Then
CNTIN = 0x0000	The FTM counting is equivalent to TPM up counting, that is, up and unsigned counting. See the following figure.
CNTIN[15] = 1	The initial value of the FTM counter is a negative number in two's complement, so the FTM counting is up and signed.
CNTIN[15] = 0 and CNTIN ≠ 0x0000	The initial value of the FTM counter is a positive number, so the FTM counting is up and unsigned.

FTM counting is up CNTIN = 0x0000 MOD = 0x0004

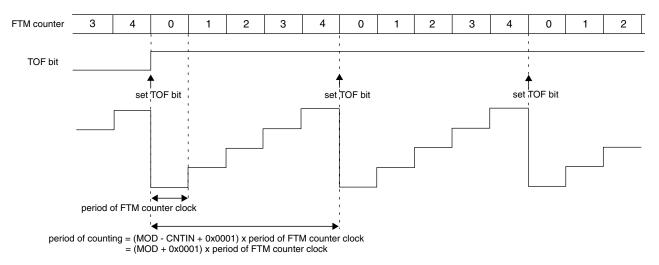


Figure 39-210. Example of FTM up counting with CNTIN = 0x0000

Note

- FTM operation is only valid when the value of the CNTIN register is less than the value of the MOD register, either in the unsigned counting or signed counting. It is the responsibility of the software to ensure that the values in the CNTIN and MOD registers meet this requirement. Any values of CNTIN and MOD that do not satisfy this criteria can result in unpredictable behavior.
- MOD = CNTIN is a redundant condition. In this case, the FTM counter is always equal to MOD and the TOF bit is set in each rising edge of the FTM counter clock.
- When MOD = 0x0000, CNTIN = 0x0000, for example after reset, and FTMEN = 1, the FTM counter remains stopped at 0x0000 until a non-zero value is written into the MOD or CNTIN registers.
- Setting CNTIN to be greater than the value of MOD is not recommended as this unusual setting may make the FTM operation difficult to comprehend. However, there is no restriction on this configuration, and an example is shown in the following figure.

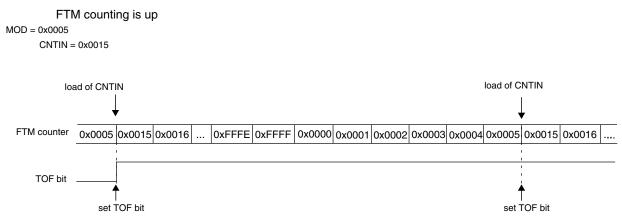


Figure 39-211. Example of up counting when the value of CNTIN is greater than the value of MOD

39.4.3.2 Up-down counting

Up-down counting is selected when:

- QUADEN = 0, and
- CPWMS = 1

CNTIN defines the starting value of the count and MOD defines the final value of the count. The value of CNTIN is loaded into the FTM counter, and the counter increments until the value of MOD is reached, at which point the counter is decremented until it returns to the value of CNTIN and the up-down counting restarts.

The FTM period when using up-down counting is $2 \times (MOD - CNTIN) \times period of the FTM counter clock.$

The TOF bit is set when the FTM counter changes from MOD to (MOD - 1).

If (CNTIN = 0x0000), the FTM counting is equivalent to TPM up-down counting, that is, up-down and unsigned counting. See the following figure.

FTM counting is up-down CNTIN = 0x0000 MOD = 0x0004

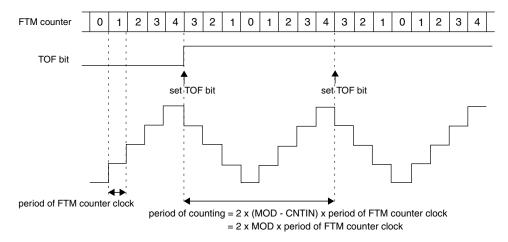


Figure 39-212. Example of up-down counting when CNTIN = 0x0000

Note

When CNTIN is different from zero in the up-down counting, a valid CPWM signal is generated:

- if CnV > CNTIN, or
- if CnV = 0 or if CnV[15] = 1. In this case, 0% CPWM is generated.

39.4.3.3 Free running counter

If (FTMEN = 0) and (MOD = 0x0000 or MOD = 0xFFFF), the FTM counter is a free running counter. In this case, the FTM counter runs free from 0x0000 through 0xFFFF and the TOF bit is set when the FTM counter changes from 0xFFFF to 0x0000. See the following figure.

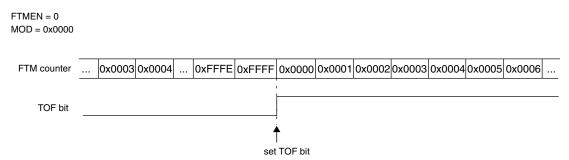


Figure 39-213. Example when the FTM counter is free running

The FTM counter is also a free running counter when:

- FTMEN = 1
- QUADEN = 0
- CPWMS = 0
- CNTIN = 0x0000, and
- MOD = 0xFFFF

39.4.3.4 Counter reset

Any one of the following cases resets the FTM counter to the value in the CNTIN register and the channels output to its initial value, except for channels in Output Compare mode.

- Any write to CNT.
- FTM counter synchronization.
- A channel in Input Capture mode with ICRST = 1 (FTM Counter Reset in Input Capture Mode).

39.4.3.5 When the TOF bit is set

The NUMTOF[4:0] bits define the number of times that the FTM counter overflow should occur before the TOF bit to be set. If NUMTOF[4:0] = 0x00, then the TOF bit is set at each FTM counter overflow.

Initialize the FTM counter, by writing to CNT, after writing to the NUMTOF[4:0] bits to avoid confusion about when the first counter overflow will occur.

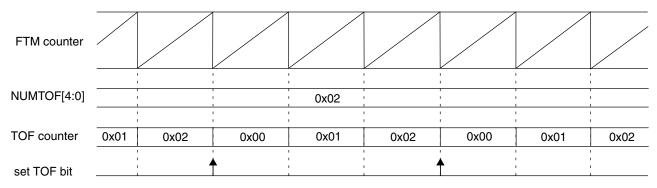


Figure 39-214. Periodic TOF when NUMTOF = 0x02

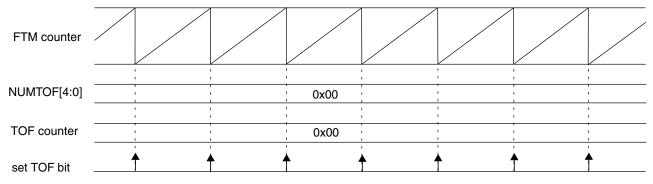


Figure 39-215. Periodic TOF when NUMTOF = 0x00

39.4.4 Input Capture mode

The Input Capture mode is selected when:

- DECAPEN = 0
- COMBINE = 0
- CPWMS = 0
- MSnB:MSnA = 0:0, and
- ELSnB:ELSnA \neq 0:0

When a selected edge occurs on the channel input, the current value of the FTM counter is captured into the CnV register, at the same time the CHnF bit is set and the channel interrupt is generated if enabled by CHnIE = 1. See the following figure.

When a channel is configured for input capture, the FTMxCHn pin is an edge-sensitive input. ELSnB:ELSnA control bits determine which edge, falling or rising, triggers input-capture event. Note that the maximum frequency for the channel input signal to be detected correctly is system clock divided by 4, which is required to meet Nyquist criteria for signal sampling.

Writes to the CnV register is ignored in Input Capture mode.

While in BDM, the input capture function works as configured. When a selected edge event occurs, the FTM counter value, which is frozen because of BDM, is captured into the CnV register and the CHnF bit is set.

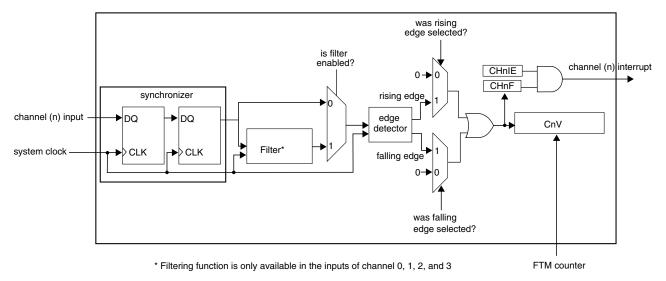


Figure 39-216. Input Capture mode

If the channel input does not have a filter enabled, then the input signal is always delayed 3 rising edges of the system clock, that is, two rising edges to the synchronizer plus one more rising edge to the edge detector. In other words, the CHnF bit is set on the third rising edge of the system clock after a valid edge occurs on the channel input.

39.4.4.1 Filter for Input Capture mode

The filter function is only available on channels 0, 1, 2, and 3.

First, the input signal is synchronized by the system clock. Following synchronization, the input signal enters the filter block. See the following figure.

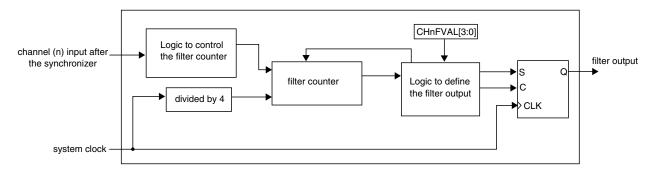


Figure 39-217. Channel input filter

When there is a state change in the input signal, the counter is reset and starts counting up. As long as the new state is stable on the input, the counter continues to increment. When the counter is equal to CHnFVAL[3:0], the state change of the input signal is validated. It is then transmitted as a pulse edge to the edge detector.

If the opposite edge appears on the input signal before it can be validated, the counter is reset. At the next input transition, the counter starts counting again. Any pulse that is shorter than the minimum value selected by CHnFVAL[3:0] (× 4 system clocks) is regarded as a glitch and is not passed on to the edge detector. A timing diagram of the input filter is shown in the following figure.

The filter function is disabled when CHnFVAL[3:0] bits are zero. In this case, the input signal is delayed 3 rising edges of the system clock. If (CHnFVAL[3:0] \neq 0000), then the input signal is delayed by the minimum pulse width (CHnFVAL[3:0] \times 4 system clocks) plus a further 4 rising edges of the system clock: two rising edges to the synchronizer, one rising edge to the filter output, plus one more to the edge detector. In other words, CHnF is set (4 + 4 \times CHnFVAL[3:0]) system clock periods after a valid edge occurs on the channel input.

The clock for the counter in the channel input filter is the system clock divided by 4.

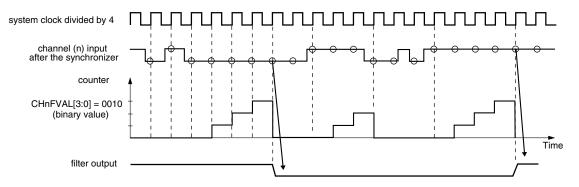


Figure 39-218. Channel input filter example

39.4.4.2 FTM Counter Reset in Input Capture Mode

If the channel (n) is in input capture mode and FTMx_CnSC [ICRST = 1], then when the selected input capture event occurs in the channel (n) input signal, the current value of the FTM counter is captured into the CnV register, the CHnF bit is set, the channel (n) interrupt is generated (if CHnIE = 1) and the FTM counter is reset to the CNTIN register value.

This allows the FTM to measure a period/pulse being applied to FTM_CHn (counts of the FTM clock input) without having to implement a subtraction calculation in software subsequent to the event occurring.

The figure below shows the FTM counter reset when the selected input capture event is detected in a channel in input capture mode with ICRST = 1.

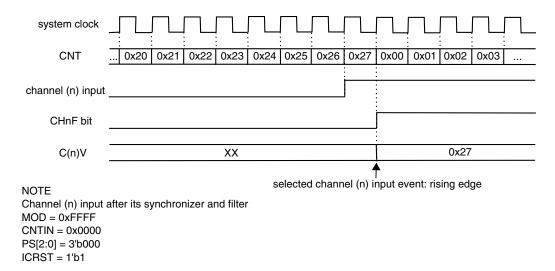


Figure 39-219. Example of the Input Capture mode with ICRST = 1

NOTE

- It is expected that the ICRST bit be set only when the channel is in input capture mode.
- In this case, if the FTM counter is reset, then the prescaler counter (Prescaler) and the TOF counter (When the TOF bit is set) also are reset.

39.4.5 Output Compare mode

The Output Compare mode is selected when:

- DECAPEN = 0
- COMBINE = 0
- CPWMS = 0, and
- MSnB:MSnA = 0:1

In Output Compare mode, the FTM can generate timed pulses with programmable position, polarity, duration, and frequency. When the counter matches the value in the CnV register of an output compare channel, the channel (n) output can be set, cleared, or toggled.

When a channel is initially configured to Toggle mode, the previous value of the channel output is held until the first output compare event occurs.

The CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1 at the channel (n) match (FTM counter = CnV).

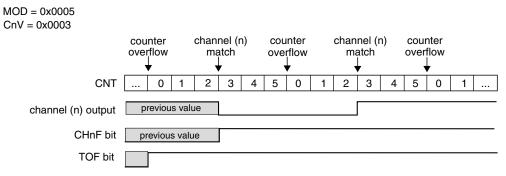


Figure 39-220. Example of the Output Compare mode when the match toggles the channel output

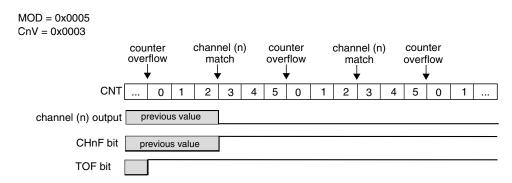


Figure 39-221. Example of the Output Compare mode when the match clears the channel output

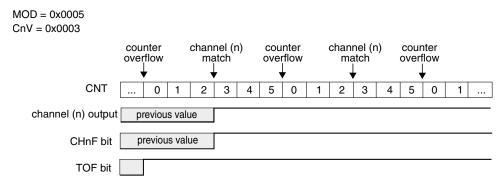


Figure 39-222. Example of the Output Compare mode when the match sets the channel output

If (ELSnB:ELSnA = 0:0) when the counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1, however the channel (n) output is not modified and controlled by FTM.

39.4.6 Edge-Aligned PWM (EPWM) mode

The Edge-Aligned mode is selected when:

• QUADEN = 0

- DECAPEN = 0
- COMBINE = 0
- CPWMS = 0, and
- MSnB = 1

The EPWM period is determined by (MOD - CNTIN + 0x0001) and the pulse width $(duty\ cycle)$ is determined by (CnV - CNTIN).

The CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1 at the channel (n) match (FTM counter = CnV), that is, at the end of the pulse width.

This type of PWM signal is called edge-aligned because the leading edges of all PWM signals are aligned with the beginning of the period, which is the same for all channels within an FTM.

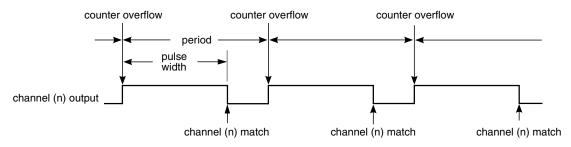


Figure 39-223. EPWM period and pulse width with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = 0:0) when the counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1, however the channel (n) output is not controlled by FTM.

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced high at the counter overflow when the CNTIN register value is loaded into the FTM counter, and it is forced low at the channel (n) match (FTM counter = CnV). See the following figure.

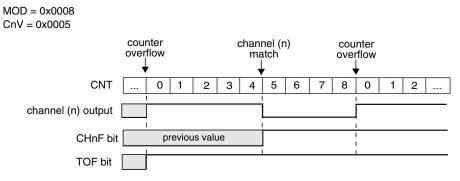


Figure 39-224. EPWM signal with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced low at the counter overflow when the CNTIN register value is loaded into the FTM counter, and it is forced high at the channel (n) match (FTM counter = CnV). See the following figure.

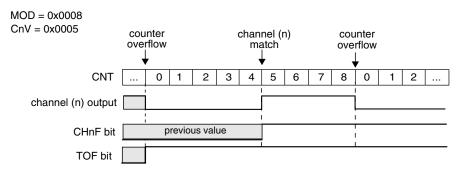


Figure 39-225. EPWM signal with ELSnB:ELSnA = X:1

If (CnV = 0x0000), then the channel (n) output is a 0% duty cycle EPWM signal and CHnF bit is not set even when there is the channel (n) match. If (CnV > MOD), then the channel (n) output is a 100% duty cycle EPWM signal and CHnF bit is not set even when there is the channel (n) match. Therefore, MOD must be less than 0xFFFF in order to get a 100% duty cycle EPWM signal.

Note

When CNTIN is different from zero the following EPWM signals can be generated:

- 0% EPWM signal if CnV = CNTIN,
- EPWM signal between 0% and 100% if CNTIN < CnV <= MOD.
- 100% EPWM signal when CNTIN > CnV or CnV > MOD.

39.4.7 Center-Aligned PWM (CPWM) mode

The Center-Aligned mode is selected when:

- QUADEN = 0
- DECAPEN = 0
- COMBINE = 0, and
- CPWMS = 1

The CPWM pulse width (duty cycle) is determined by $2 \times (CnV - CNTIN)$ and the period is determined by $2 \times (MOD - CNTIN)$. See the following figure. MOD must be kept in the range of 0x0001 to 0x7FFF because values outside this range can produce ambiguous results.

In the CPWM mode, the FTM counter counts up until it reaches MOD and then counts down until it reaches CNTIN.

The CHnF bit is set and channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (FTM counter = CnV) when the FTM counting is down (at the begin of the pulse width) and when the FTM counting is up (at the end of the pulse width).

This type of PWM signal is called center-aligned because the pulse width centers for all channels are aligned with the value of CNTIN.

The other channel modes are not compatible with the up-down counter (CPWMS = 1). Therefore, all FTM channels must be used in CPWM mode when (CPWMS = 1).

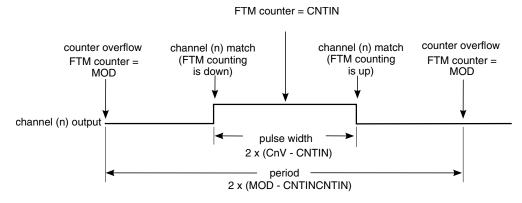


Figure 39-226. CPWM period and pulse width with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = 0:0) when the FTM counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1), however the channel (n) output is not controlled by FTM.

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced high at the channel (n) match (FTM counter = CnV) when counting down, and it is forced low at the channel (n) match when counting up. See the following figure.

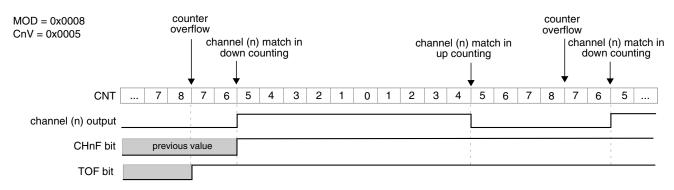


Figure 39-227. CPWM signal with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced low at the channel (n) match (FTM counter = CnV) when counting down, and it is forced high at the channel (n) match when counting up. See the following figure.

Functional description counter counter MOD = 0x0008overflow overflow CnV = 0x0005channel (n) match in channel (n) match in channel (n) match in down counting down counting up counting CNT 7 5 2 5 6 5 channel (n) output CHnF bit previous value TOF bit

Figure 39-228. CPWM signal with ELSnB:ELSnA = X:1

If (CnV = 0x0000) or CnV is a negative value, that is (CnV[15] = 1), then the channel (n) output is a 0% duty cycle CPWM signal and CHnF bit is not set even when there is the channel (n) match.

If CnV is a positive value, that is (CnV[15] = 0), $(CnV \ge MOD)$, and $(MOD \ne 0x0000)$, then the channel (n) output is a 100% duty cycle CPWM signal and CHnF bit is not set even when there is the channel (n) match. This implies that the usable range of periods set by MOD is 0x0001 through 0x7FFE, 0x7FFF if you do not need to generate a 100% duty cycle CPWM signal. This is not a significant limitation because the resulting period is much longer than required for normal applications.

The CPWM mode must not be used when the FTM counter is a free running counter.

39.4.8 Combine mode

The Combine mode is selected when:

- OUADEN = 0
- DECAPEN = 0
- COMBINE = 1, and
- CPWMS = 0

In Combine mode, an even channel (n) and adjacent odd channel (n+1) are combined to generate a PWM signal in the channel (n) output.

In the Combine mode, the PWM period is determined by (MOD - CNTIN + 0x0001) and the PWM pulse width (duty cycle) is determined by (|C(n+1)V - C(n)V|).

The CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (FTM counter = C(n)V). The CH(n+1)F bit is set and the channel (n +1) interrupt is generated, if CH(n+1)IE = 1, at the channel (n+1) match (FTM counter = C(n+1)V).

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced low at the beginning of the period (FTM counter = CNTIN) and at the channel (n+1) match (FTM counter = C(n + 1)V). It is forced high at the channel (n) match (FTM counter = C(n)V). See the following figure.

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced high at the beginning of the period (FTM counter = CNTIN) and at the channel (n+1) match (FTM counter = C(n+1)V). It is forced low at the channel (n) match (FTM counter = C(n)V). See the following figure.

In Combine mode, the ELS(n+1)B and ELS(n+1)A bits are not used in the generation of the channels (n) and (n+1) output. However, if (ELSnB:ELSnA = 0:0) then the channel (n) output is not controlled by FTM, and if (ELS(n+1)B:ELS(n+1)A = 0:0) then the channel (n+1) output is not controlled by FTM.

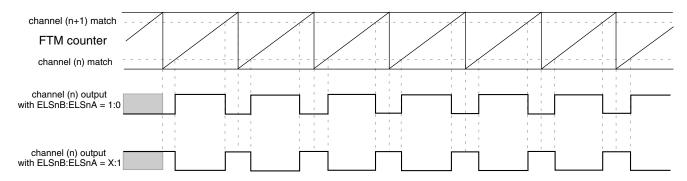


Figure 39-229. Combine mode

The following figures illustrate the PWM signals generation using Combine mode.

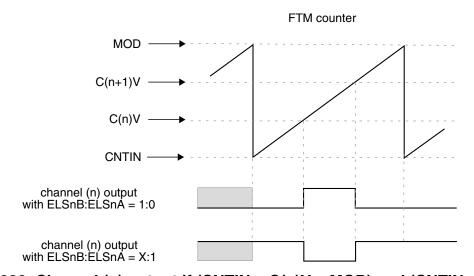


Figure 39-230. Channel (n) output if (CNTIN < C(n)V < MOD) and (CNTIN < C(n+1)V < MOD) and (C(n)V < C(n+1)V)

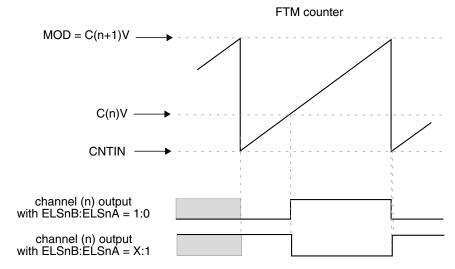


Figure 39-231. Channel (n) output if (CNTIN < C(n)V < MOD) and (C(n+1)V = MOD)

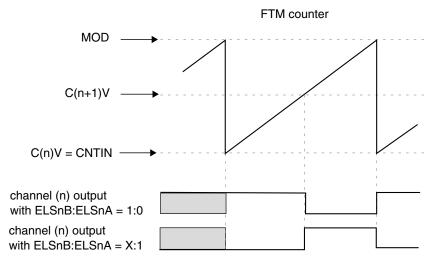


Figure 39-232. Channel (n) output if (C(n)V = CNTIN) and (CNTIN < C(n+1)V < MOD)

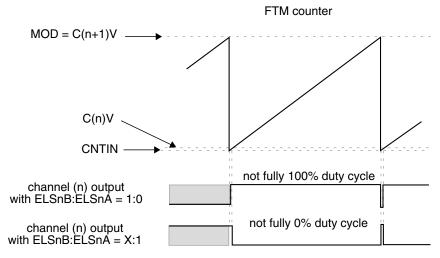


Figure 39-233. Channel (n) output if (CNTIN < C(n)V < MOD) and (C(n)V is Almost Equal to CNTIN) and (C(n+1)V = MOD)

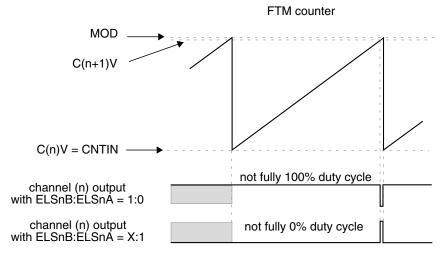


Figure 39-234. Channel (n) output if (C(n)V = CNTIN) and (CNTIN < C(n+1)V < MOD) and (C(n+1)V is Almost Equal to MOD)

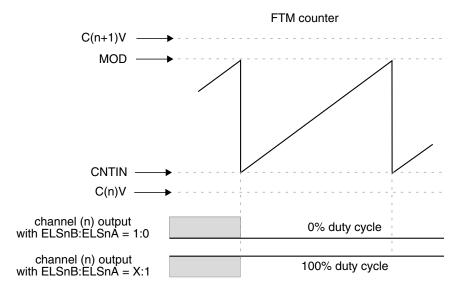


Figure 39-235. Channel (n) output if C(n)V and C(n+1)V are not between CNTIN and MOD

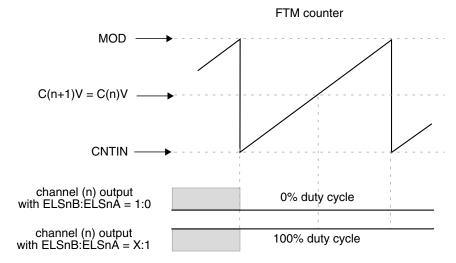


Figure 39-236. Channel (n) output if (CNTIN < C(n)V < MOD) and (CNTIN < C(n+1)V < MOD) and (C(n)V = C(n+1)V)

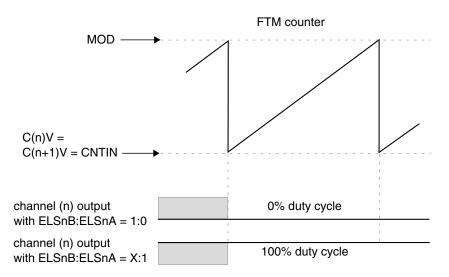


Figure 39-237. Channel (n) output if (C(n)V = C(n+1)V = CNTIN)

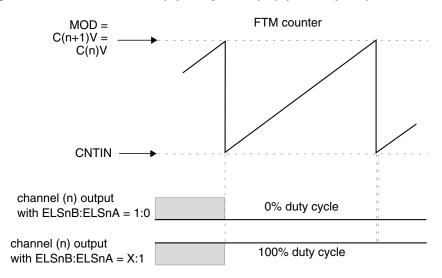


Figure 39-238. Channel (n) output if (C(n)V = C(n+1)V = MOD)

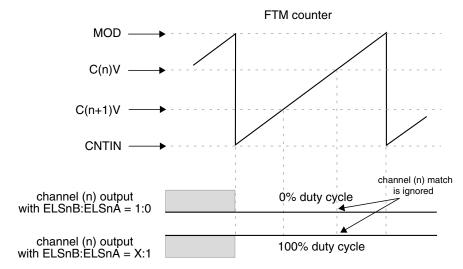


Figure 39-239. Channel (n) output if (CNTIN < C(n)V < MOD) and (CNTIN < C(n+1)V < MOD) and (C(n)V > C(n+1)V)

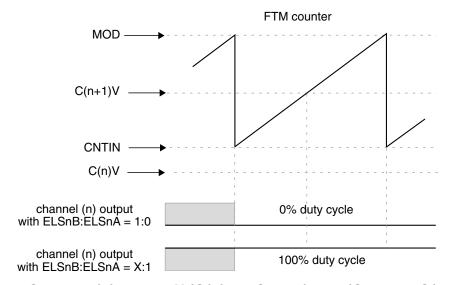


Figure 39-240. Channel (n) output if (C(n)V < CNTIN) and (CNTIN < C(n+1)V < MOD)

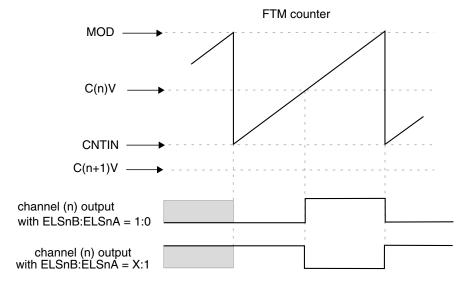


Figure 39-241. Channel (n) output if (C(n+1)V < CNTIN) and (CNTIN < C(n)V < MOD)

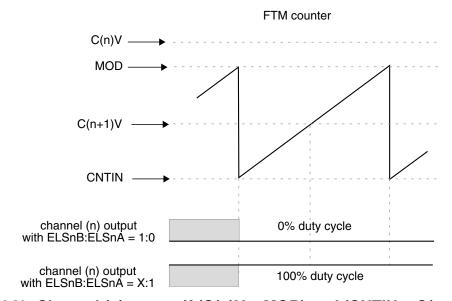


Figure 39-242. Channel (n) output if (C(n)V > MOD) and (CNTIN < C(n+1)V < MOD)

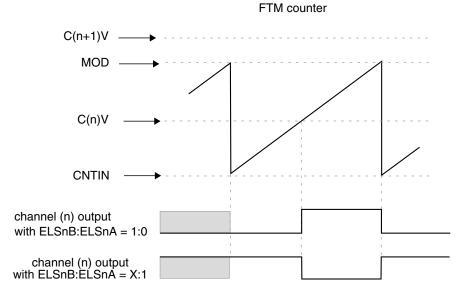


Figure 39-243. Channel (n) output if (C(n+1)V > MOD) and (CNTIN < C(n)V < MOD)

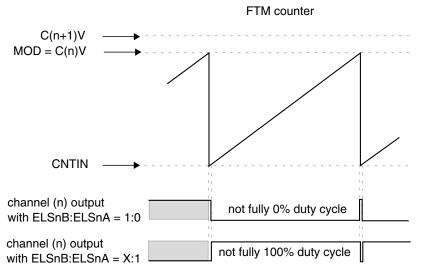


Figure 39-244. Channel (n) output if (C(n+1)V > MOD) and (CNTIN < C(n)V = MOD)

39.4.8.1 Asymmetrical PWM

In Combine mode, the control of the PWM signal first edge, when the channel (n) match occurs, that is, FTM counter = C(n)V, is independent of the control of the PWM signal second edge, when the channel (n+1) match occurs, that is, FTM counter = C(n+1)V. So, Combine mode allows the generation of asymmetrical PWM signals.

39.4.9 Complementary mode

The Complementary mode is selected when:

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

- QUADEN = 0
- DECAPEN = 0
- COMP = 1

In Complementary mode, the channel (n+1) output is the inverse of the channel (n) output.

So, the channel (n+1) output is the same as the channel (n) output when:

- QUADEN = 0
- DECAPEN = 0
- COMP = 0

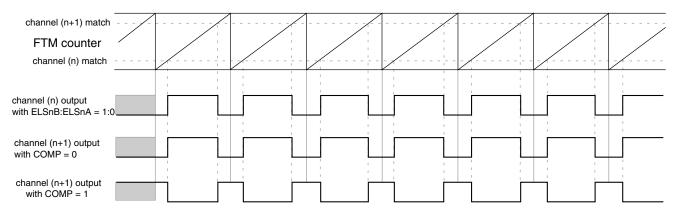


Figure 39-245. Channel (n+1) output in Complementary mode with (ELSnB:ELSnA = 1:0)

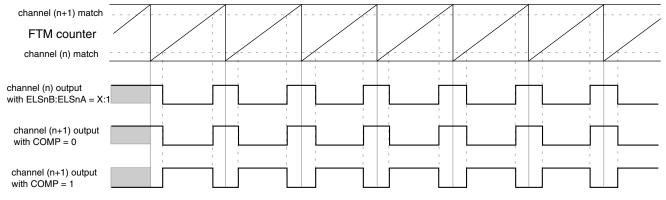


Figure 39-246. Channel (n+1) output in Complementary mode with (ELSnB:ELSnA = X:1)

NOTE

The complementary mode is not available in Output Compare mode.

39.4.10 Registers updated from write buffers

39.4.10.1 CNTIN register update

The following table describes when CNTIN register is updated:

Table 39-303. CNTIN register update

When	Then CNTIN register is updated
CLKS[1:0] = 0:0	When CNTIN register is written, independent of FTMEN bit.
• FTMEN = 0, or • CNTINC = 0	At the next system clock after CNTIN was written.
 FTMEN = 1, SYNCMODE = 1, and CNTINC = 1 	By the CNTIN register synchronization.

39.4.10.2 MOD register update

The following table describes when MOD register is updated:

Table 39-304. MOD register update

When	Then MOD register is updated
CLKS[1:0] = 0:0	When MOD register is written, independent of FTMEN bit.
 CLKS[1:0] ≠ 0:0, and FTMEN = 0 	According to the CPWMS bit, that is: • If the selected mode is not CPWM then MOD register is updated after MOD register was written and the FTM counter changes from MOD to CNTIN. If the FTM counter is at free-running counter mode then this update occurs when the FTM counter changes from 0xFFFF to 0x0000.
	 If the selected mode is CPWM then MOD register is updated after MOD register was written and the FTM counter changes from MOD to (MOD – 0x0001).
 CLKS[1:0] ≠ 0:0, and FTMEN = 1 	By the MOD register synchronization.

39.4.10.3 CnV register update

The following table describes when CnV register is updated:

Table 39-305. CnV register update

When	Then CnV register is updated
CLKS[1:0] = 0:0	When CnV register is written, independent of FTMEN bit.

Table continues on the next page...

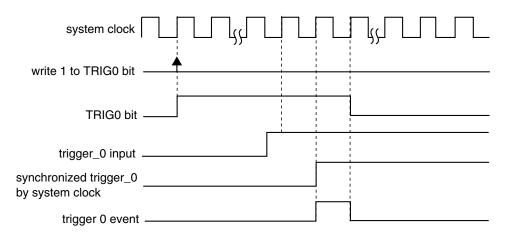
Table 39-305. CnV register update (continued)

When	Then CnV register is updated
 CLKS[1:0] ≠ 0:0, and FTMEN = 0 	According to the selected mode, that is: If the selected mode is Output Compare, then CnV register is updated on the next FTM counter change, end of the prescaler counting, after CnV register was written. If the selected mode is EPWM, then CnV register is updated after CnV register was written and the FTM counter changes from MOD to CNTIN. If the FTM counter is at free-running counter mode then this update occurs when the FTM counter changes from 0xFFFF to 0x0000. If the selected mode is CPWM, then CnV register is updated after CnV register was written and the FTM counter changes from MOD to (MOD – 0x0001).
 CLKS[1:0] ≠ 0:0, and FTMEN = 1 	According to the selected mode, that is: If the selected mode is output compare then CnV register is updated according to the SYNCEN bit. If (SYNCEN = 0) then CnV register is updated after CnV register was written at the next change of the FTM counter, the end of the prescaler counting. If (SYNCEN = 1) then CnV register is updated by the C(n)V and C(n+1)V register synchronization. If the selected mode is not output compare and (SYNCEN = 1) then CnV register is updated by the C(n)V and C(n+1)V register synchronization.

39.4.11 PWM synchronization

The PWM synchronization provides an opportunity to update the MOD, CNTIN, CnV, OUTMASK, INVCTRL and SWOCTRL registers with their buffered value and force the FTM counter to the CNTIN register value.

Note


The legacy PWM synchronization (SYNCMODE = 0) is a subset of the enhanced PWM synchronization (SYNCMODE = 1). Thus, only the enhanced PWM synchronization must be used.

39.4.11.1 Hardware trigger

Three hardware trigger signal inputs of the FTM module are enabled when TRIGn = 1, where n = 0, 1 or 2 corresponding to each one of the input signals, respectively. The hardware trigger input n is synchronized by the system clock. The PWM synchronization with hardware trigger is initiated when a rising edge is detected at the enabled hardware trigger inputs.

If (HWTRIGMODE = 0) then the TRIGn bit is cleared when 0 is written to it or when the trigger n event is detected.

In this case, if two or more hardware triggers are enabled (for example, TRIG0 and TRIG1 = 1) and only trigger 1 event occurs, then only TRIG1 bit is cleared. If a trigger n event occurs together with a write setting TRIGn bit, then the synchronization is initiated, but TRIGn bit remains set due to the write operation.

Note All hardware trigger inputs have the same behavior.

Figure 39-247. Hardware trigger event with HWTRIGMODE = 0

If HWTRIGMODE = 1, then the TRIGn bit is only cleared when 0 is written to it.

NOTE

The HWTRIGMODE bit must be 1 only with enhanced PWM synchronization (SYNCMODE = 1).

39.4.11.2 Software trigger

A software trigger event occurs when 1 is written to the SYNC[SWSYNC] bit. The SWSYNC bit is cleared when 0 is written to it or when the PWM synchronization, initiated by the software event, is completed.

If another software trigger event occurs (by writing another 1 to the SWSYNC bit) at the same time the PWM synchronization initiated by the previous software trigger event is ending, a new PWM synchronization is started and the SWSYNC bit remains equal to 1.

If SYNCMODE = 0 then the SWSYNC bit is also cleared by FTM according to PWMSYNC and REINIT bits. In this case if (PWMSYNC = 1) or (PWMSYNC = 0 and REINIT = 0) then SWSYNC bit is cleared at the next selected loading point after that the

software trigger event occurred; see Boundary cycle and loading points and the following figure. If (PWMSYNC = 0) and (REINIT = 1) then SWSYNC bit is cleared when the software trigger event occurs.

If SYNCMODE = 1 then the SWSYNC bit is also cleared by FTM according to the SWRSTCNT bit. If SWRSTCNT = 0 then SWSYNC bit is cleared at the next selected loading point after that the software trigger event occurred; see the following figure. If SWRSTCNT = 1 then SWSYNC bit is cleared when the software trigger event occurs.

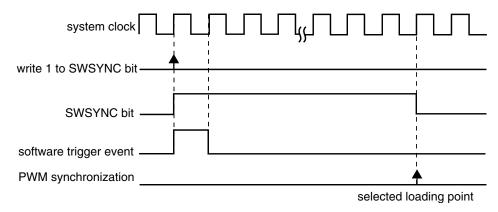


Figure 39-248. Software trigger event

39.4.11.3 Boundary cycle and loading points

The boundary cycle definition is important for the loading points for the registers MOD, CNTIN, and C(n)V.

In Up counting mode, the boundary cycle is defined as when the counter wraps to its initial value (CNTIN). If in Up-down counting mode, then the boundary cycle is defined as when the counter turns from down to up counting and when from up to down counting.

The following figure shows the boundary cycles and the loading points for the registers. In the Up Counting mode, the loading points are enabled if one of CNTMIN or CTMAX bits are 1. In the Up-Down Counting mode, the loading points are selected by CNTMIN and CNTMAX bits, as indicated in the figure. These loading points are safe places for register updates thus allowing a smooth transitions in PWM waveform generation.

For both counting modes, if neither CNTMIN nor CNTMAX are 1, then the boundary cycles are not used as loading points for registers updates. See the register synchronization descriptions in the following sections for details.

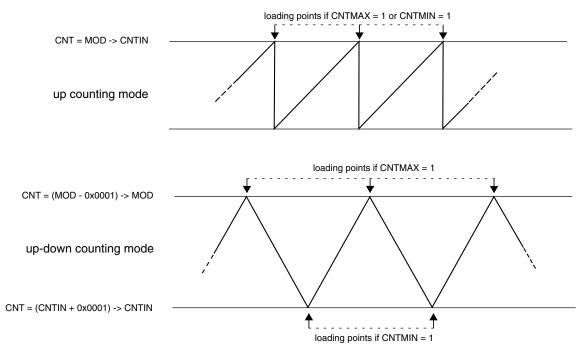


Figure 39-249. Boundary cycles and loading points

39.4.11.4 MOD register synchronization

The MOD register synchronization updates the MOD register with its buffer value. This synchronization is enabled if (FTMEN = 1).

The MOD register synchronization can be done by either the enhanced PWM synchronization (SYNCMODE = 1) or the legacy PWM synchronization (SYNCMODE = 0). However, it is expected that the MOD register be synchronized only by the enhanced PWM synchronization.

In the case of enhanced PWM synchronization, the MOD register synchronization depends on SWWRBUF, SWRSTCNT, HWWRBUF, and HWRSTCNT bits according to this flowchart:

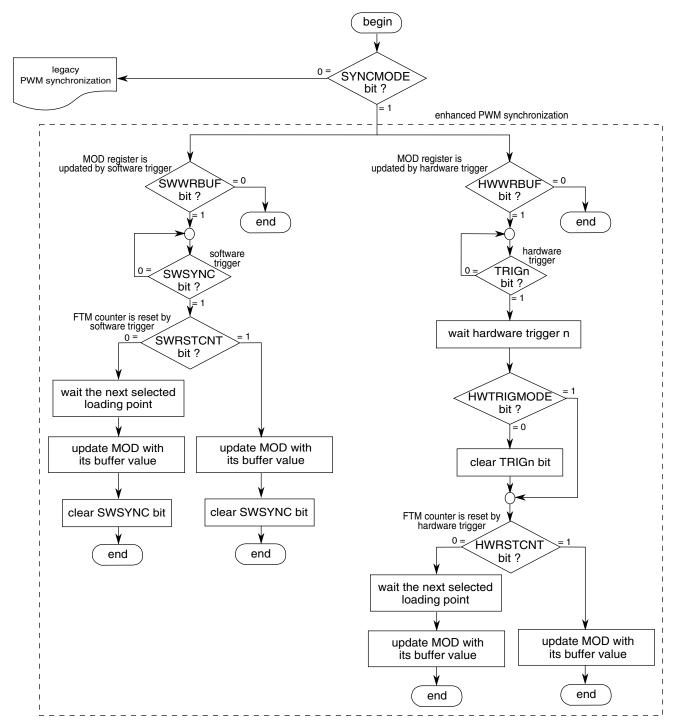


Figure 39-250. MOD register synchronization flowchart

In the case of legacy PWM synchronization, the MOD register synchronization depends on PWMSYNC and REINIT bits according to the following description.

If (SYNCMODE = 0), (PWMSYNC = 0), and (REINIT = 0), then this synchronization is made on the next selected loading point after an enabled trigger event takes place. If the trigger event was a software trigger, then the SWSYNC bit is cleared on the next selected

loading point. If the trigger event was a hardware trigger, then the trigger enable bit (TRIGn) is cleared according to Hardware trigger. Examples with software and hardware triggers follow.

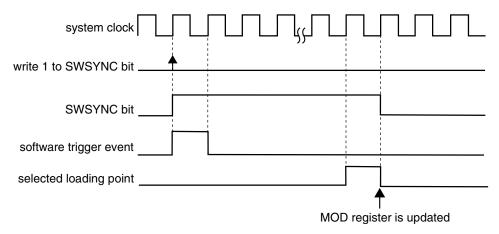


Figure 39-251. MOD synchronization with (SYNCMODE = 0), (PWMSYNC = 0), (REINIT = 0), and software trigger was used

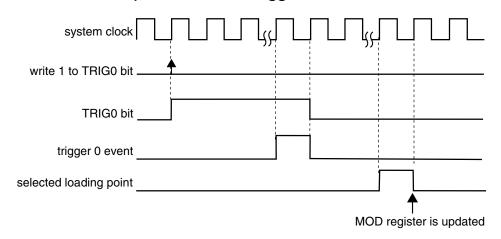


Figure 39-252. MOD synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (PWMSYNC = 0), (REINIT = 0), and a hardware trigger was used

If (SYNCMODE = 0), (PWMSYNC = 0), and (REINIT = 1), then this synchronization is made on the next enabled trigger event. If the trigger event was a software trigger, then the SWSYNC bit is cleared according to the following example. If the trigger event was a hardware trigger, then the TRIGn bit is cleared according to Hardware trigger. Examples with software and hardware triggers follow.

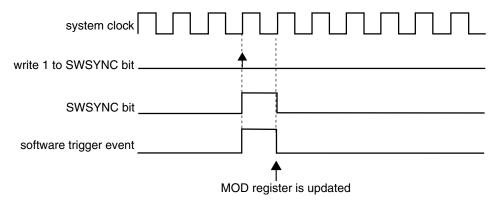


Figure 39-253. MOD synchronization with (SYNCMODE = 0), (PWMSYNC = 0), (REINIT = 1), and software trigger was used

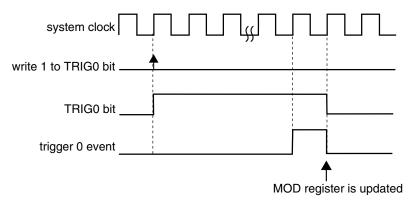


Figure 39-254. MOD synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (PWMSYNC = 0), (REINIT = 1), and a hardware trigger was used

If (SYNCMODE = 0) and (PWMSYNC = 1), then this synchronization is made on the next selected loading point after the software trigger event takes place. The SWSYNC bit is cleared on the next selected loading point:

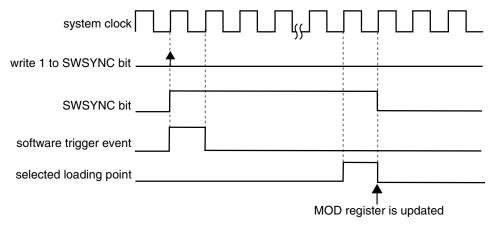


Figure 39-255. MOD synchronization with (SYNCMODE = 0) and (PWMSYNC = 1)

39.4.11.5 CNTIN register synchronization

The CNTIN register synchronization updates the CNTIN register with its buffer value.

This synchronization is enabled if (FTMEN = 1), (SYNCMODE = 1), and (CNTINC = 1). The CNTIN register synchronization can be done only by the enhanced PWM synchronization (SYNCMODE = 1). The synchronization mechanism is the same as the MOD register synchronization done by the enhanced PWM synchronization; see MOD register synchronization.

39.4.11.6 C(n)V and C(n+1)V register synchronization

The C(n)V and C(n+1)V registers synchronization updates the C(n)V and C(n+1)V registers with their buffer values.

This synchronization is enabled if (FTMEN = 1) and (SYNCEN = 1). The synchronization mechanism is the same as the MOD register synchronization. However, it is expected that the C(n)V and C(n+1)V registers be synchronized only by the enhanced PWM synchronization (SYNCMODE = 1).

39.4.11.7 OUTMASK register synchronization

The OUTMASK register synchronization updates the OUTMASK register with its buffer value.

The OUTMASK register can be updated at each rising edge of system clock (SYNCHOM = 0), by the enhanced PWM synchronization (SYNCHOM = 1 and SYNCMODE = 1) or by the legacy PWM synchronization (SYNCHOM = 1 and SYNCMODE = 0). However, it is expected that the OUTMASK register be synchronized only by the enhanced PWM synchronization.

In the case of enhanced PWM synchronization, the OUTMASK register synchronization depends on SWOM and HWOM bits. See the following flowchart:

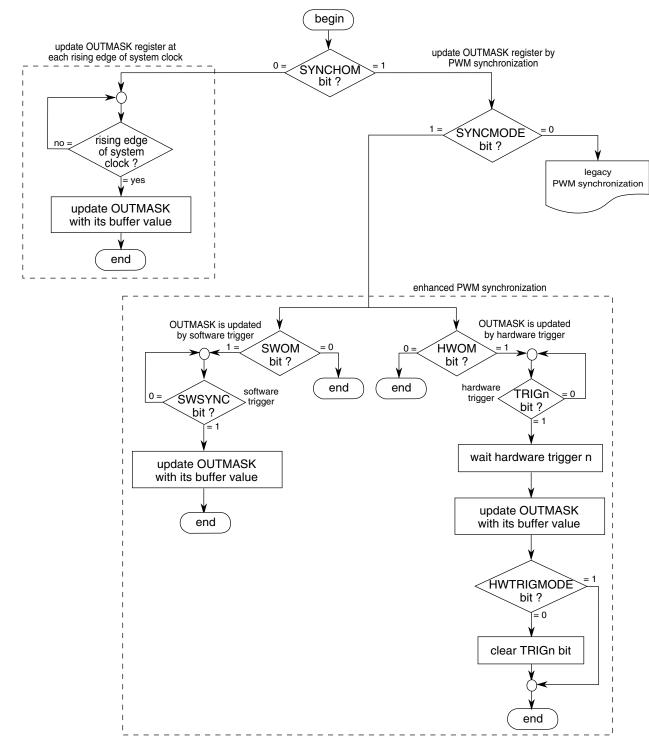


Figure 39-256. OUTMASK register synchronization flowchart

In the case of legacy PWM synchronization, the OUTMASK register synchronization depends on PWMSYNC bit according to the following description.

If (SYNCMODE = 0), (SYNCHOM = 1), and (PWMSYNC = 0), then this synchronization is done on the next enabled trigger event. If the trigger event was a software trigger, then the SWSYNC bit is cleared on the next selected loading point. If the trigger event was a hardware trigger, then the TRIGn bit is cleared according to Hardware trigger. Examples with software and hardware triggers follow.

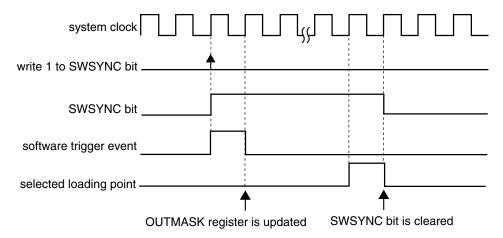


Figure 39-257. OUTMASK synchronization with (SYNCMODE = 0), (SYNCHOM = 1), (PWMSYNC = 0) and software trigger was used

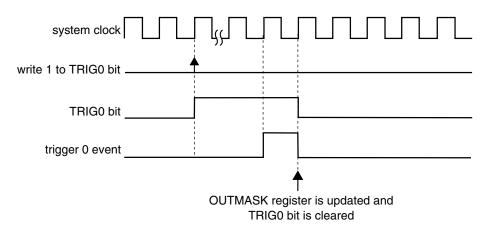


Figure 39-258. OUTMASK synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (SYNCHOM = 1), (PWMSYNC = 0), and a hardware trigger was used

If (SYNCMODE = 0), (SYNCHOM = 1), and (PWMSYNC = 1), then this synchronization is made on the next enabled hardware trigger. The TRIGn bit is cleared according to Hardware trigger. An example with a hardware trigger follows.

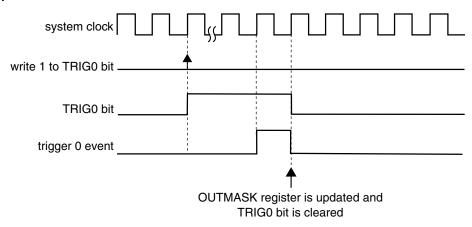


Figure 39-259. OUTMASK synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (SYNCHOM = 1), (PWMSYNC = 1), and a hardware trigger was used

39.4.11.8 INVCTRL register synchronization

The INVCTRL register synchronization updates the INVCTRL register with its buffer value.

The INVCTRL register can be updated at each rising edge of system clock (INVC = 0) or by the enhanced PWM synchronization (INVC = 1 and SYNCMODE = 1) according to the following flowchart.

In the case of enhanced PWM synchronization, the INVCTRL register synchronization depends on SWINVC and HWINVC bits.

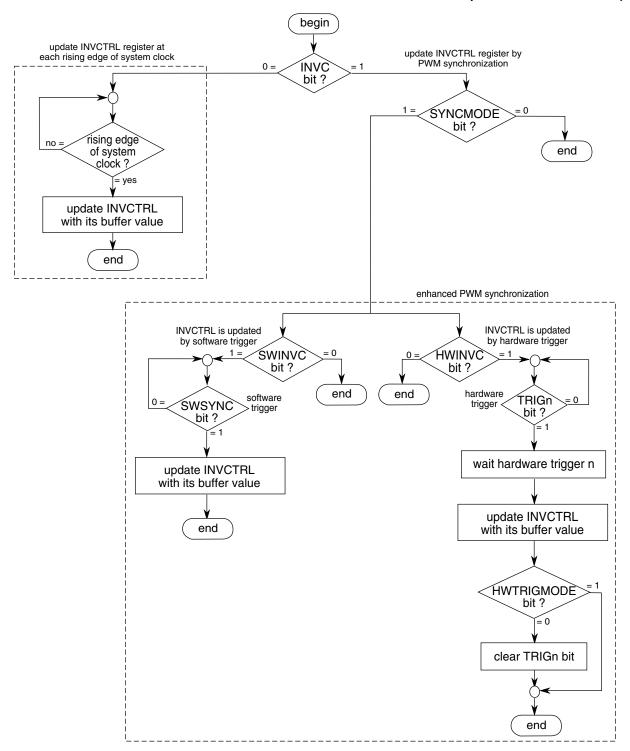


Figure 39-260. INVCTRL register synchronization flowchart

39.4.11.9 SWOCTRL register synchronization

The SWOCTRL register synchronization updates the SWOCTRL register with its buffer value.

The SWOCTRL register can be updated at each rising edge of system clock (SWOC = 0) or by the enhanced PWM synchronization (SWOC = 1 and SYNCMODE = 1) according to the following flowchart.

In the case of enhanced PWM synchronization, the SWOCTRL register synchronization depends on SWSOC and HWSOC bits.

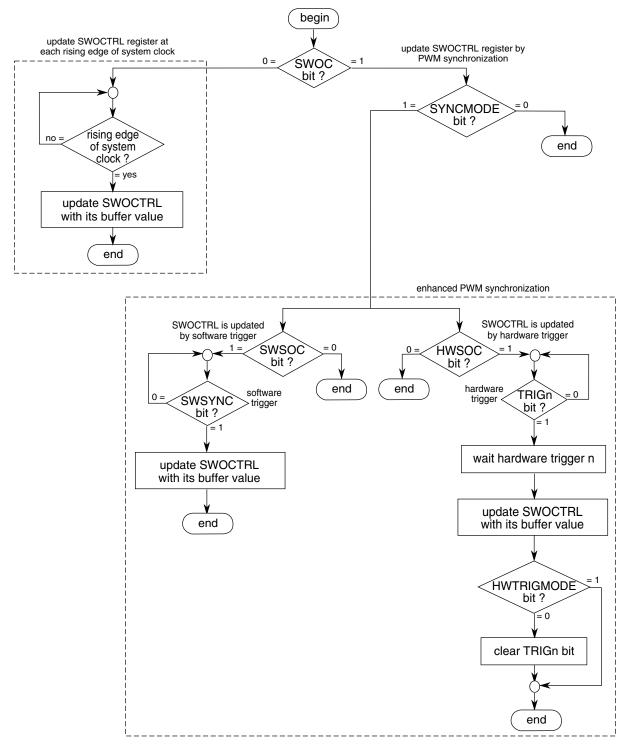


Figure 39-261. SWOCTRL register synchronization flowchart

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

39.4.11.10 FTM counter synchronization

The FTM counter synchronization is a mechanism that allows the FTM to restart the PWM generation at a certain point in the PWM period. The channels outputs are forced to their initial value, except for channels in Output Compare mode, and the FTM counter is forced to its initial counting value defined by CNTIN register.

The following figure shows the FTM counter synchronization. Note that after the synchronization event occurs, the channel (n) is set to its initial value and the channel (n +1) is not set to its initial value due to a specific timing of this figure in which the deadtime insertion prevents this channel output from transitioning to 1. If no deadtime insertion is selected, then the channel (n+1) transitions to logical value 1 immediately after the synchronization event occurs.

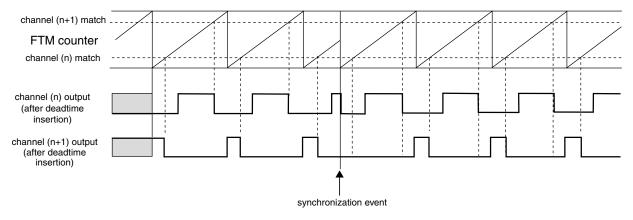


Figure 39-262. FTM counter synchronization

The FTM counter synchronization can be done by either the enhanced PWM synchronization (SYNCMODE = 1) or the legacy PWM synchronization (SYNCMODE = 0). However, the FTM counter must be synchronized only by the enhanced PWM synchronization.

In the case of enhanced PWM synchronization, the FTM counter synchronization depends on SWRSTCNT and HWRSTCNT bits according to the following flowchart.

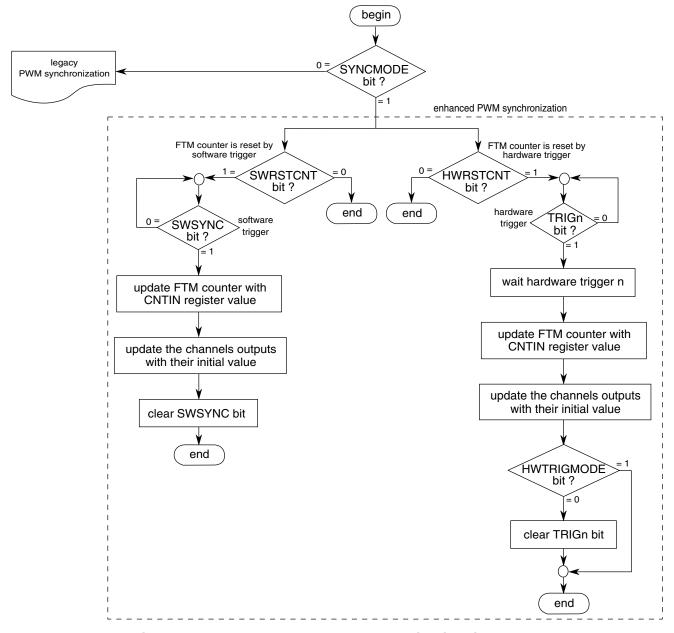


Figure 39-263. FTM counter synchronization flowchart

In the case of legacy PWM synchronization, the FTM counter synchronization depends on REINIT and PWMSYNC bits according to the following description.

If (SYNCMODE = 0), (REINIT = 1), and (PWMSYNC = 0) then this synchronization is made on the next enabled trigger event. If the trigger event was a software trigger then the SWSYNC bit is cleared according to the following example. If the trigger event was a hardware trigger then the TRIGn bit is cleared according to Hardware trigger. Examples with software and hardware triggers follow.

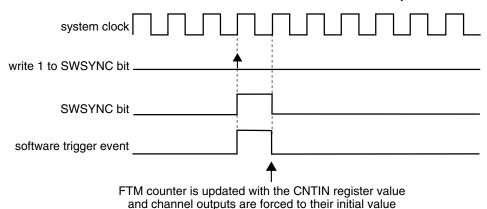


Figure 39-264. FTM counter synchronization with (SYNCMODE = 0), (REINIT = 1), (PWMSYNC = 0), and software trigger was used

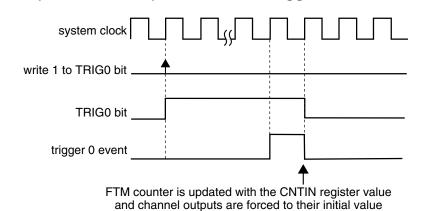


Figure 39-265. FTM counter synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (REINIT = 1), (PWMSYNC = 0), and a hardware trigger was used

If (SYNCMODE = 0), (REINIT = 1), and (PWMSYNC = 1) then this synchronization is made on the next enabled hardware trigger. The TRIGn bit is cleared according to Hardware trigger.

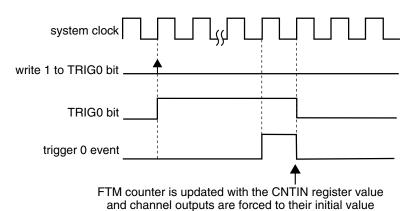


Figure 39-266. FTM counter synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (REINIT = 1), (PWMSYNC = 1), and a hardware trigger was used

39.4.12 Inverting

The invert functionality swaps the signals between channel (n) and channel (n+1) outputs. The inverting operation is selected when:

- QUADEN = 0
- DECAPEN = 0
- COMP = 1, and
- INVm = 1 (where m represents a channel pair)

INV(m) bit selects the inverting to the pair channels (n) and (n+1).

The INVm bit in INVCTRL register is updated with its buffer value according to INVCTRL register synchronization

In High-True (ELSnB:ELSnA = 1:0) Combine mode, the channel (n) output is forced low at the beginning of the period (FTM counter = CNTIN), forced high at the channel (n) match and forced low at the channel (n+1) match. If the inverting is selected, the channel (n) output behavior is changed to force high at the beginning of the PWM period, force low at the channel (n) match and force high at the channel (n+1) match. See the following figure.

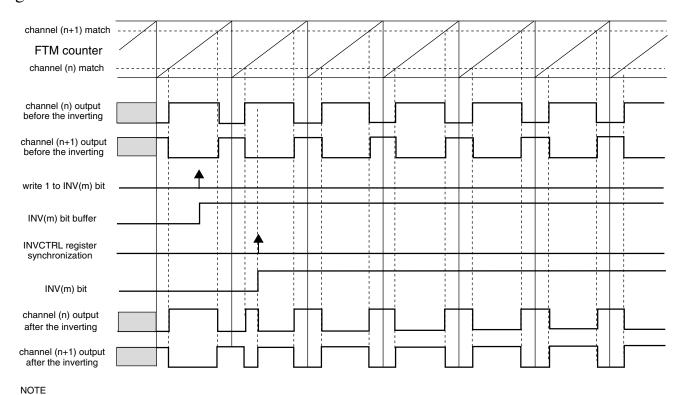


Figure 39-267. Channels (n) and (n+1) outputs after the inverting in High-True (ELSnB:ELSnA = 1:0) Combine mode

Note that the ELSnB:ELSnA bits value should be considered because they define the active state of the channels outputs. In Low-True (ELSnB:ELSnA = X:1) Combine mode, the channel (n) output is forced high at the beginning of the period, forced low at the channel (n) match and forced high at the channel (n+1) match. When inverting is selected, the channels (n) and (n+1) present waveforms as shown in the following figure.

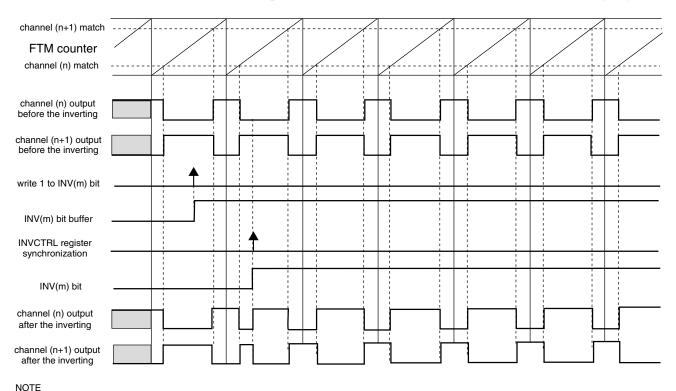


Figure 39-268. Channels (n) and (n+1) outputs after the inverting in Low-True (ELSnB:ELSnA = X:1) Combine mode

Note

The inverting feature is not available in Output Compare mode.

39.4.13 Software output control

INV(m) bit selects the inverting to the pair channels (n) and (n+1).

The software output control forces the channel output according to software defined values at a specific time in the PWM generation.

The software output control is selected when:

- QUADEN = 0
- DECAPEN = 0, and
- CHnOC = 1

The CHnOC bit enables the software output control for a specific channel output and the CHnOCV selects the value that is forced to this channel output.

Both CHnOC and CHnOCV bits in SWOCTRL register are buffered and updated with their buffer value according to SWOCTRL register synchronization.

The following figure shows the channels (n) and (n+1) outputs signals when the software output control is used. In this case the channels (n) and (n+1) are set to Combine and Complementary mode.

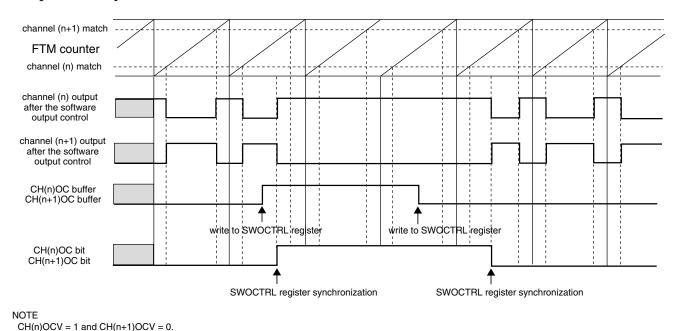


Figure 39-269. Example of software output control in Combine and Complementary mode

Software output control forces the following values on channels (n) and (n+1) when the COMP bit is zero.

Channel (n+1) Output CH(n)OC CH(n+1)OC CH(n)OCV CH(n+1)OCV Channel (n) Output Χ Χ 0 0 is not modified by SWOC is not modified by SWOC 1 1 0 0 is forced to zero is forced to zero 1 1 0 1 is forced to zero is forced to one 1 0 1 1 is forced to one is forced to zero 1 1 1 1 is forced to one is forced to one

Table 39-306. Software ouput control behavior when (COMP = 0)

Software output control forces the following values on channels (n) and (n+1) when the COMP bit is one.

Table 39-307. Software ouput control behavior when (COMP = 1)

CH(n)OC	CH(n+1)OC	CH(n)OCV	CH(n+1)OCV	Channel (n) Output	Channel (n+1) Output
0	0	Х	X	is not modified by SWOC	is not modified by SWOC
1	1	0	0	is forced to zero	is forced to zero
1	1	0	1	is forced to zero	is forced to one
1	1	1	0	is forced to one	is forced to zero
1	1	1	1	is forced to one	is forced to zero

Note

- The CH(n)OC and CH(n+1)OC bits should be equal.
- The COMP bit must not be modified when software output control is enabled, that is, CH(n)OC = 1 and/or CH(n +1)OC = 1.
- Software output control has the same behavior with disabled or enabled FTM counter (see the CLKS field description in the Status and Control register).

39.4.14 Deadtime insertion

The deadtime insertion is enabled when (DTEN = 1) and (DTVAL[5:0] is non-zero).

DEADTIME register defines the deadtime delay that can be used for all FTM channels. The DTPS[1:0] bits define the prescaler for the system clock and the DTVAL[5:0] bits define the deadtime modulo, that is, the number of the deadtime prescaler clocks.

The deadtime delay insertion ensures that no two complementary signals (channels (n) and (n+1)) drive the active state at the same time.

If POL(n) = 0, POL(n+1) = 0, and the deadtime is enabled, then when the channel (n) match (FTM counter = C(n)V) occurs, the channel (n) output remains at the low value until the end of the deadtime delay when the channel (n) output is set. Similarly, when the channel (n+1) match (FTM counter = C(n+1)V) occurs, the channel (n+1) output remains at the low value until the end of the deadtime delay when the channel (n+1) output is set. See the following figures.

If POL(n) = 1, POL(n+1) = 1, and the deadtime is enabled, then when the channel (n) match (FTM counter = C(n)V) occurs, the channel (n) output remains at the high value until the end of the deadtime delay when the channel (n) output is cleared. Similarly,

when the channel (n+1) match (FTM counter = C(n+1)V) occurs, the channel (n+1) output remains at the high value until the end of the deadtime delay when the channel (n+1) output is cleared.

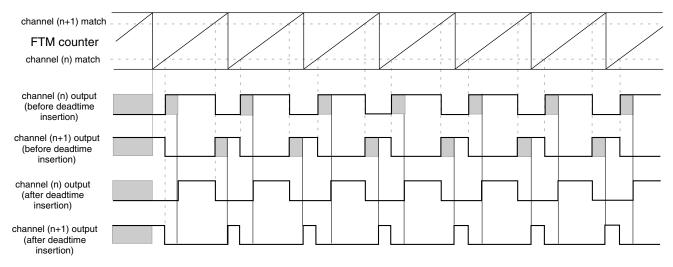


Figure 39-270. Deadtime insertion with ELSnB:ELSnA = 1:0, POL(n) = 0, and POL(n+1) = 0

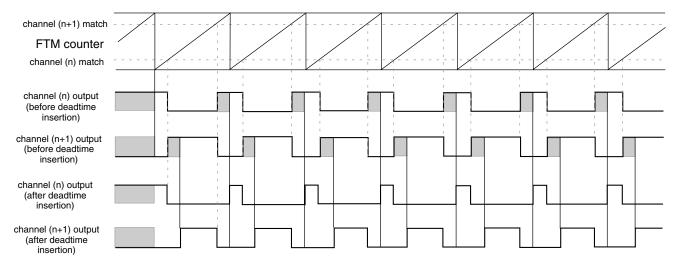


Figure 39-271. Deadtime insertion with ELSnB:ELSnA = X:1, POL(n) = 0, and POL(n+1) = 0

NOTE

- The deadtime feature must be used only in Complementary mode.
- The deadtime feature is not available in Output Compare mode.

39.4.14.1 Deadtime insertion corner cases

If (PS[2:0] is cleared), (DTPS[1:0] = 0:0 or DTPS[1:0] = 0:1):

- and the deadtime delay is greater than or equal to the channel (n) duty cycle ((C(n + 1)V C(n)V) × system clock), then the channel (n) output is always the inactive value (POL(n) bit value).
- and the deadtime delay is greater than or equal to the channel (n+1) duty cycle $((MOD CNTIN + 1 (C(n+1)V C(n)V)) \times system clock)$, then the channel (n+1) output is always the inactive value (POL(n+1)) bit value).

Although, in most cases the deadtime delay is not comparable to channels (n) and (n+1) duty cycle, the following figures show examples where the deadtime delay is comparable to the duty cycle.

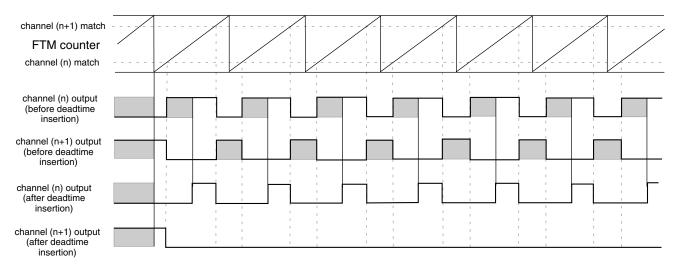


Figure 39-272. Example of the deadtime insertion (ELSnB:ELSnA = 1:0, POL(n) = 0, and POL(n+1) = 0) when the deadtime delay is comparable to channel (n+1) duty cycle

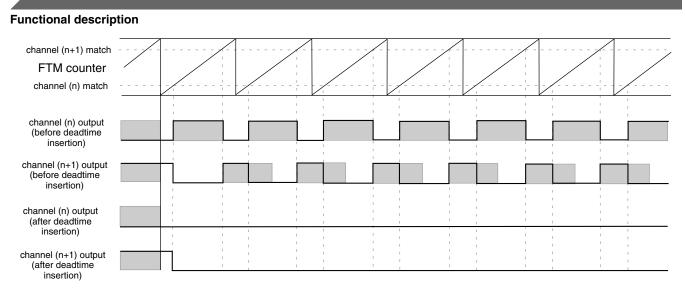


Figure 39-273. Example of the deadtime insertion (ELSnB:ELSnA = 1:0, POL(n) = 0, and POL(n+1) = 0) when the deadtime delay is comparable to channels (n) and (n+1) duty cycle

39.4.15 Output mask

The output mask can be used to force channels output to their inactive state through software. For example: to control a BLDC motor.

Any write to the OUTMASK register updates its write buffer. The OUTMASK register is updated with its buffer value by PWM synchronization; see OUTMASK register synchronization.

If CHnOM = 1, then the channel (n) output is forced to its inactive state (POLn bit value). If CHnOM = 0, then the channel (n) output is unaffected by the output mask. See the following figure.

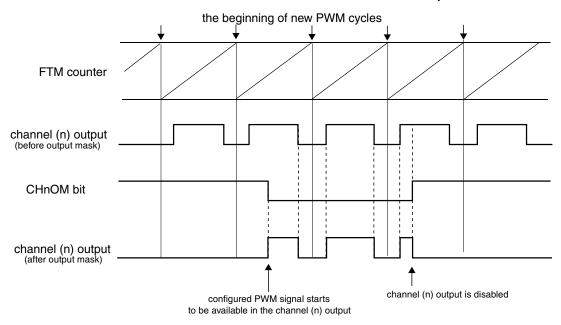


Figure 39-274. Output mask with POLn = 0

The following table shows the output mask result before the polarity control.

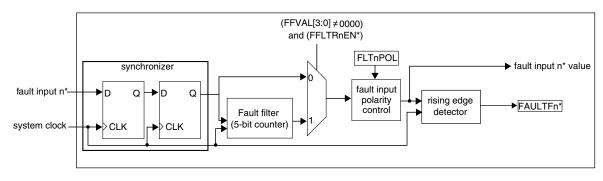
Table 39-308. Output mask result for channel (n) before the polarity control

CHnOM	Output Mask Input	Output Mask Result
0	inactive state	inactive state
	active state	active state
1	inactive state	inactive state
	active state	

39.4.16 Fault control

The fault control is enabled if $(FAULTM[1:0] \neq 0:0)$.

FTM can have up to four fault inputs. FAULTnEN bit (where n = 0, 1, 2, 3) enables the fault input n and FFLTRnEN bit enables the fault input n filter. FFVAL[3:0] bits select the value of the enabled filter in each enabled fault input.


First, each fault input signal is synchronized by the system clock; see the synchronizer block in the following figure. Following synchronization, the fault input n signal enters the filter block. When there is a state change in the fault input n signal, the 5-bit counter is reset and starts counting up. As long as the new state is stable on the fault input n, the

counter continues to increment. If the 5-bit counter overflows, that is, the counter exceeds the value of the FFVAL[3:0] bits, the new fault input n value is validated. It is then transmitted as a pulse edge to the edge detector.

If the opposite edge appears on the fault input n signal before validation (counter overflow), the counter is reset. At the next input transition, the counter starts counting again. Any pulse that is shorter than the minimum value selected by FFVAL[3:0] bits (× system clock) is regarded as a glitch and is not passed on to the edge detector.

The fault input n filter is disabled when the FFVAL[3:0] bits are zero or when FAULTnEN = 0. In this case, the fault input n signal is delayed 2 rising edges of the system clock and the FAULTFn bit is set on 3th rising edge of the system clock after a rising edge occurs on the fault input n.

If FFVAL[3:0] \neq 0000 and FAULTnEN = 1, then the fault input n signal is delayed (3 + FFVAL[3:0]) rising edges of the system clock, that is, the FAULTFn bit is set (4 + FFVAL[3:0]) rising edges of the system clock after a rising edge occurs on the fault input n.

* where n = 3, 2, 1, 0

Figure 39-275. Fault input n control block diagram

If the fault control and fault input n are enabled and a rising edge at the fault input n signal is detected, a fault condition has occurred and the FAULTFn bit is set. The FAULTF bit is the logic OR of FAULTFn[3:0] bits. See the following figure.

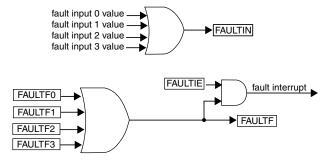


Figure 39-276. FAULTF and FAULTIN bits and fault interrupt

If the fault control is enabled (FAULTM[1:0] \neq 0:0), a fault condition has occurred and (FAULTEN = 1), then outputs are forced to their safe values:

- Channel (n) output takes the value of POL(n)
- Channel (n+1) takes the value of POL(n+1)

The fault interrupt is generated when (FAULTF = 1) and (FAULTIE = 1). This interrupt request remains set until:

- Software clears the FAULTF bit by reading FAULTF bit as 1 and writing 0 to it
- Software clears the FAULTIE bit
- A reset occurs

39.4.16.1 Automatic fault clearing

If the automatic fault clearing is selected (FAULTM[1:0] = 1:1), then the channels output disabled by fault control is again enabled when the fault input signal (FAULTIN) returns to zero and a new PWM cycle begins. See the following figure.

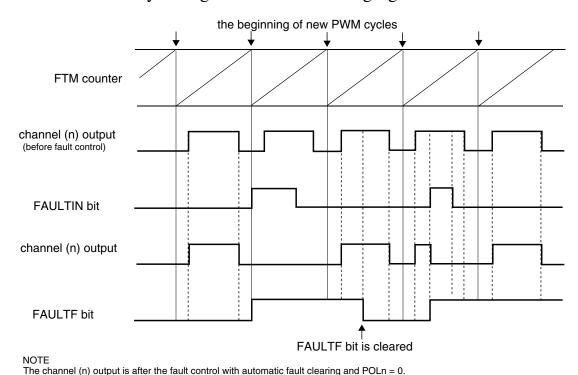


Figure 39-277. Fault control with automatic fault clearing

39.4.16.2 Manual fault clearing

If the manual fault clearing is selected (FAULTM[1:0] = 0:1 or 1:0), then the channels output disabled by fault control is again enabled when the FAULTF bit is cleared and a new PWM cycle begins. See the following figure.

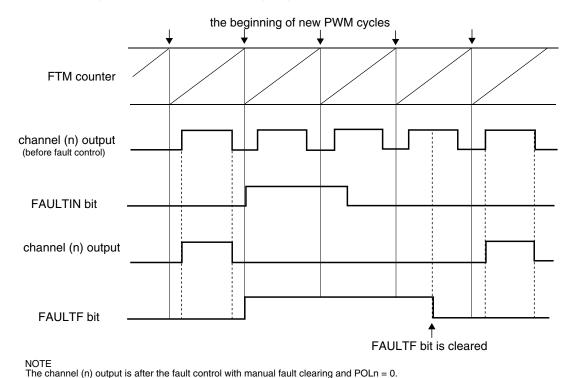


Figure 39-278. Fault control with manual fault clearing

39.4.16.3 Fault inputs polarity control

The FLTjPOL bit selects the fault input j polarity, where j = 0, 1, 2, 3:

- If FLTjPOL = 0, the fault j input polarity is high, so the logical one at the fault input j indicates a fault.
- If FLTjPOL = 1, the fault j input polarity is low, so the logical zero at the fault input j indicates a fault.

39.4.17 Polarity control

The POLn bit selects the channel (n) output polarity:

- If POLn = 0, the channel (n) output polarity is high, so the logical one is the active state and the logical zero is the inactive state.
- If POLn = 1, the channel (n) output polarity is low, so the logical zero is the active state and the logical one is the inactive state.

39.4.18 Initialization

The initialization forces the CHnOI bit value to the channel (n) output when a one is written to the INIT bit.

The initialization depends on COMP and DTEN bits. The following table shows the values that channels (n) and (n+1) are forced by initialization when the COMP and DTEN bits are zero.

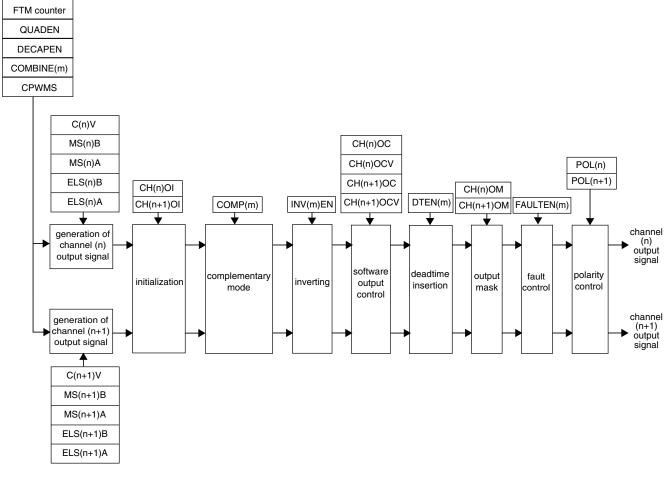
Table 39-309. Initialization behavior when (COMP = 0 and DTEN = 0)

CH(n)OI	CH(n+1)OI	Channel (n) Output	Channel (n+1) Output
0	0	is forced to zero	is forced to zero
0	1	is forced to zero	is forced to one
1	0	is forced to one	is forced to zero
1	1	is forced to one	is forced to one

The following table shows the values that channels (n) and (n+1) are forced by initialization when (COMP = 1) or (DTEN = 1).

Table 39-310. Initialization behavior when (COMP = 1 or DTEN = 1)

CH(n)OI	CH(n+1)OI	Channel (n) Output	Channel (n+1) Output
0	X	is forced to zero	is forced to one
1	X	is forced to one	is forced to zero


Note

The initialization feature must be used only with disabled FTM counter. See the description of the CLKS field in the Status and Control register.

39.4.19 Features priority

The following figure shows the priority of the features used at the generation of channels (n) and (n+1) outputs signals.

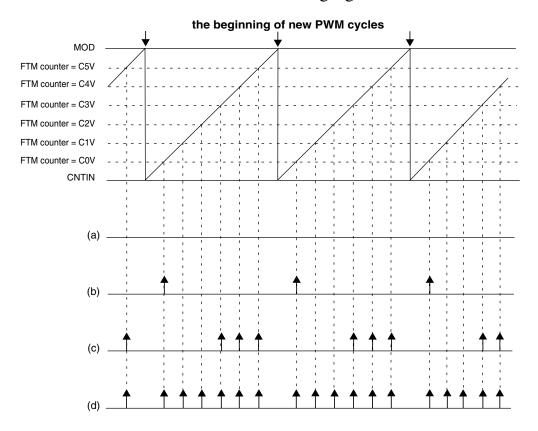
pair channels (m) - channels (n) and (n+1)

NOTE

The channels (n) and (n+1) are in output compare, EPWM, CPWM or combine modes.

Figure 39-279. Priority of the features used at the generation of channels (n) and (n+1) outputs signals

Note


The Initialization feature must not be used with Inverting and Software output control features.

39.4.20 Channel trigger output

If CHjTRIG = 1, where j = 0, 1, 2, 3, 4, or 5, then the FTM generates a trigger when the channel (j) match occurs (FTM counter = C(j)V).

The channel trigger output provides a trigger signal that is used for on-chip modules.

The FTM is able to generate multiple triggers in one PWM period. Because each trigger is generated for a specific channel, several channels are required to implement this functionality. This behavior is described in the following figure.

NOTE

```
(a) CH0TRIG = 0, CH1TRIG = 0, CH2TRIG = 0, CH3TRIG = 0, CH4TRIG = 0, CH5TRIG = 0 (b) CH0TRIG = 1, CH1TRIG = 0, CH2TRIG = 0, CH3TRIG = 0, CH4TRIG = 0, CH5TRIG = 0 (c) CH0TRIG = 0, CH1TRIG = 0, CH2TRIG = 0, CH3TRIG = 1, CH4TRIG = 1, CH5TRIG = 1 (d) CH0TRIG = 1, CH1TRIG = 1, CH2TRIG = 1, CH3TRIG = 1, CH4TRIG = 1, CH5TRIG = 1
```

Figure 39-280. Channel match trigger

39.4.21 Initialization trigger

If INITTRIGEN = 1, then the FTM generates a trigger when the FTM counter is updated with the CNTIN register value in the following cases.

- The FTM counter is automatically updated with the CNTIN register value by the selected counting mode.
- When there is a write to CNT register.
- When there is the FTM counter synchronization.

- If (CNT = CNTIN), (CLKS[1:0] = 0:0), and a value different from zero is written to CLKS[1:0] bits.
- If the channel (n) is in Input Capture mode, (ICRST = 1) and the selected input capture event occurs in the channel (n) input.

The following figures show these cases.

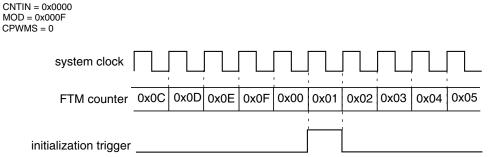


Figure 39-281. Initialization trigger is generated when the FTM counting achieves the CNTIN register value

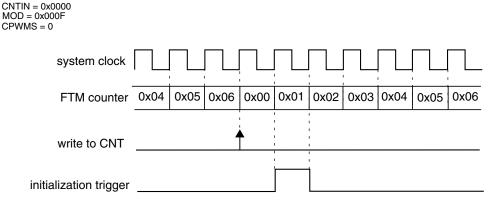


Figure 39-282. Initialization trigger is generated when there is a write to CNT register

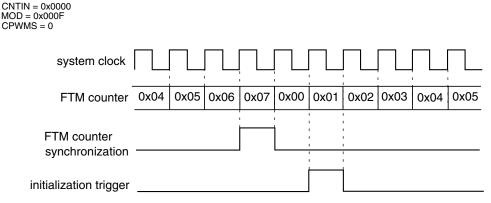


Figure 39-283. Initialization trigger is generated when there is the FTM counter synchronization

CNTIN = 0x0000 MOD = 0x000F CPWMS = 0

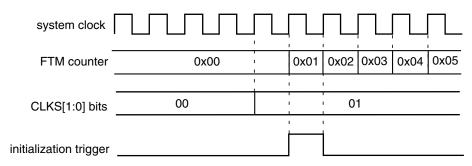


Figure 39-284. Initialization trigger is generated if (CNT = CNTIN), (CLKS[1:0] = 0:0), and a value different from zero is written to CLKS[1:0] bits

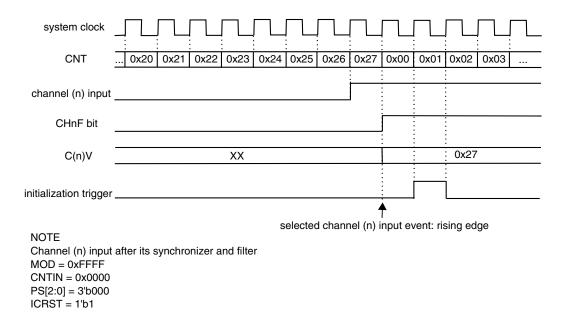
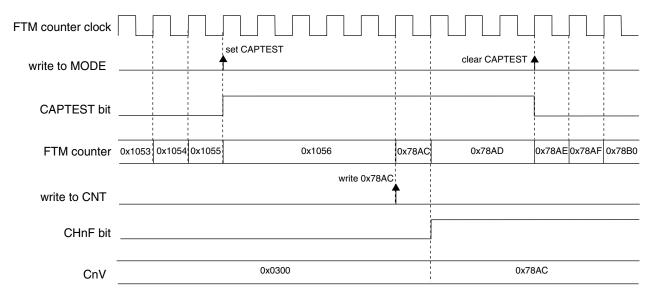


Figure 39-285. Initialization trigger is generated if the channel (n) is in Input Capture mode, ICRST = 1 and the selected input capture event occurs in the channel (n) input

The initialization trigger output provides a trigger signal that is used for on-chip modules.


39.4.22 Capture Test mode

The Capture Test mode allows to test the CnV registers, the FTM counter and the interconnection logic between the FTM counter and CnV registers.

In this test mode, all channels must be configured for Input Capture mode and FTM counter must be configured to the Up counting.

When the Capture Test mode is enabled (CAPTEST = 1), the FTM counter is frozen and any write to CNT register updates directly the FTM counter; see the following figure. After it was written, all CnV registers are updated with the written value to CNT register and CHnF bits are set. Therefore, the FTM counter is updated with its next value according to its configuration. Its next value depends on CNTIN, MOD, and the written value to FTM counter.

The next reads of CnV registers return the written value to the FTM counter and the next reads of CNT register return FTM counter next value.

NOTE

Figure 39-286. Capture Test mode

39.4.23 DMA

The channel generates a DMA transfer request according to DMA and CHnIE bits. See the following table.

Table 39-311. Channel DMA transfer request

DMA	CHnIE	Channel DMA Transfer Request	Channel Interrupt
0	0	The channel DMA transfer request is not generated.	The channel interrupt is not generated.
0	1	The channel DMA transfer request is not generated.	The channel interrupt is generated if (CHnF = 1).
1	0	The channel DMA transfer request is not generated.	The channel interrupt is not generated.

Table continues on the next page...

⁻ FTM counter configuration: (FTMEN = 1), (QUADEN = 0), (CAPTEST = 1), (CPWMS = 0), (CNTIN = 0x0000), and (MOD = 0xFFFF)

⁻ FTM channel n configuration: input capture mode - (DECAPEN = 0), (COMBINE = 0), and (MSnB:MSnA = 0:0)

Table 39-311. Channel DMA transfer request (continued)

	DMA	CHnIE	Channel DMA Transfer Request	Channel Interrupt
Ī	1	1	The channel DMA transfer request is generated if $(CHnF = 1)$.	The channel interrupt is not generated.

If DMA = 1, the CHnF bit is cleared either by channel DMA transfer done or reading CnSC while CHnF is set and then writing a zero to CHnF bit according to CHnIE bit. See the following table.

Table 39-312. Clear CHnF bit when DMA = 1

CHnIE	How CHnF Bit Can Be Cleared	
	CHnF bit is cleared either when the channel DMA transfer is done or by reading CnSC while CHnF is set and then writing a 0 to CHnF bit.	
1	CHnF bit is cleared when the channel DMA transfer is done.	

39.4.24 Dual Edge Capture mode

The Dual Edge Capture mode is selected if DECAPEN = 1. This mode allows to measure a pulse width or period of the signal on the input of channel (n) of a channel pair. The channel (n) filter can be active in this mode when n is 0 or 2.

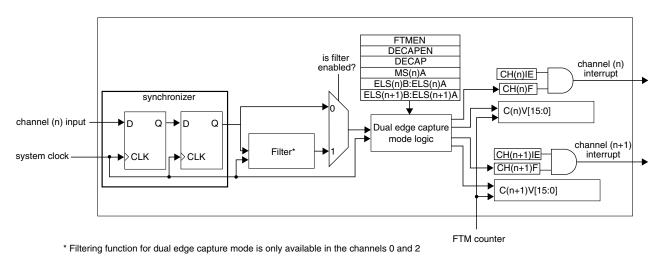


Figure 39-287. Dual Edge Capture mode block diagram

The MS(n)A bit defines if the Dual Edge Capture mode is one-shot or continuous.

The ELS(n)B:ELS(n)A bits select the edge that is captured by channel (n), and ELS(n+1)B:ELS(n+1)A bits select the edge that is captured by channel (n+1). If both ELS(n)B:ELS(n)A and ELS(n+1)B:ELS(n+1)A bits select the same edge, then it is the period measurement. If these bits select different edges, then it is a pulse width measurement.

In the Dual Edge Capture mode, only channel (n) input is used and channel (n+1) input is ignored.

If the selected edge by channel (n) bits is detected at channel (n) input, then CH(n)F bit is set and the channel (n) interrupt is generated (if CH(n)IE = 1). If the selected edge by channel (n+1) bits is detected at channel (n) input and (CH(n)F = 1), then CH(n+1)F bit is set and the channel (n+1) interrupt is generated (if CH(n+1)IE = 1).

The C(n)V register stores the value of FTM counter when the selected edge by channel (n) is detected at channel (n) input. The C(n+1)V register stores the value of FTM counter when the selected edge by channel (n+1) is detected at channel (n) input.

In this mode, a coherency mechanism ensures coherent data when the C(n)V and C(n+1)V registers are read. The only requirement is that C(n)V must be read before C(n+1)V.

Note

- The CH(n)F, CH(n)IE, MS(n)A, ELS(n)B, and ELS(n)A bits are channel (n) bits.
- The CH(n+1)F, CH(n+1)IE, MS(n+1)A, ELS(n+1)B, and ELS(n+1)A bits are channel (n+1) bits.
- The Dual Edge Capture mode must be used with ELS(n)B:ELS(n)A = 0:1 or 1:0, ELS(n+1)B:ELS(n+1)A = 0:1 or 1:0 and the FTM counter in Free running counter.

39.4.24.1 One-Shot Capture mode

The One-Shot Capture mode is selected when (DECAPEN = 1), and (MS(n)A = 0). In this capture mode, only one pair of edges at the channel (n) input is captured. The ELS(n)B:ELS(n)A bits select the first edge to be captured, and ELS(n+1)B:ELS(n+1)A bits select the second edge to be captured.

The edge captures are enabled while DECAP bit is set. For each new measurement in One-Shot Capture mode, first the CH(n)F and CH(n+1) bits must be cleared, and then the DECAP bit must be set.

In this mode, the DECAP bit is automatically cleared by FTM when the edge selected by channel (n+1) is captured. Therefore, while DECAP bit is set, the one-shot capture is in process. When this bit is cleared, both edges were captured and the captured values are ready for reading in the C(n)V and C(n+1)V registers.

Similarly, when the CH(n+1)F bit is set, both edges were captured and the captured values are ready for reading in the C(n)V and C(n+1)V registers.

39.4.24.2 Continuous Capture mode

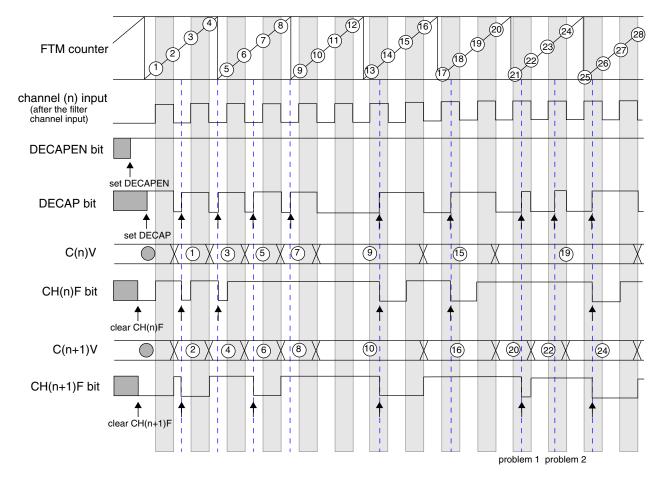
The Continuous Capture mode is selected when (DECAPEN = 1), and (MS(n)A = 1). In this capture mode, the edges at the channel (n) input are captured continuously. The ELS(n)B:ELS(n)A bits select the initial edge to be captured, and ELS(n+1)B:ELS(n+1)A bits select the final edge to be captured.

The edge captures are enabled while DECAP bit is set. For the initial use, first the CH(n)F and CH(n+1)F bits must be cleared, and then DECAP bit must be set to start the continuous measurements.

When the CH(n+1)F bit is set, both edges were captured and the captured values are ready for reading in the C(n)V and C(n+1)V registers. The latest captured values are always available in these registers even after the DECAP bit is cleared.

In this mode, it is possible to clear only the CH(n+1)F bit. Therefore, when the CH(n+1)F bit is set again, the latest captured values are available in C(n)V and C(n+1)V registers.

For a new sequence of the measurements in the Dual Edge Capture – Continuous mode, clear the CH(n)F and CH(n+1)F bits to start new measurements.

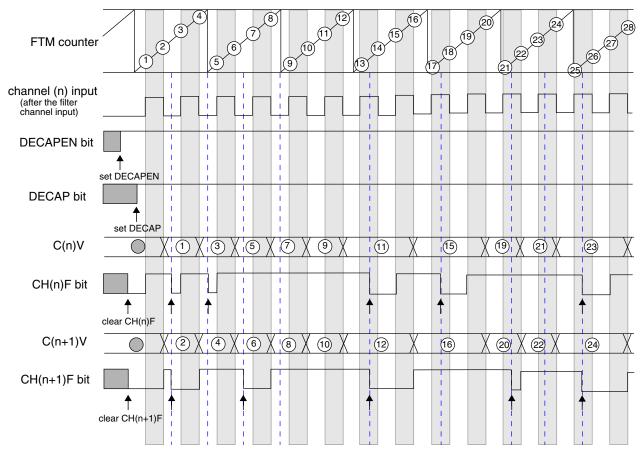

39.4.24.3 Pulse width measurement

If the channel (n) is configured to capture rising edges (ELS(n)B:ELS(n)A = 0:1) and the channel (n+1) to capture falling edges (ELS(n+1)B:ELS(n+1)A = 1:0), then the positive polarity pulse width is measured. If the channel (n) is configured to capture falling edges (ELS(n)B:ELS(n)A = 1:0) and the channel (n+1) to capture rising edges (ELS(n+1)B:ELS(n+1)A = 0:1), then the negative polarity pulse width is measured.

The pulse width measurement can be made in One-Shot Capture mode or Continuous Capture mode.

The following figure shows an example of the Dual Edge Capture – One-Shot mode used to measure the positive polarity pulse width. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. The DECAP bit is set to enable the measurement of next

positive polarity pulse width. The CH(n)F bit is set when the first edge of this pulse is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit is set and DECAP bit is cleared when the second edge of this pulse is detected, that is, the edge selected by ELS(n+1)B:ELS(n+1)A bits. Both DECAP and CH(n+1)F bits indicate when two edges of the pulse were captured and the C(n)V and C(n+1)V registers are ready for reading.


Note

- The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.
- Problem 1: channel (n) input = 1, set DECAP, not clear CH(n)F, and clear CH(n+1)F.
- Problem 2: channel (n) input = 1, set DECAP, not clear CH(n)F, and not clear CH(n+1)F.

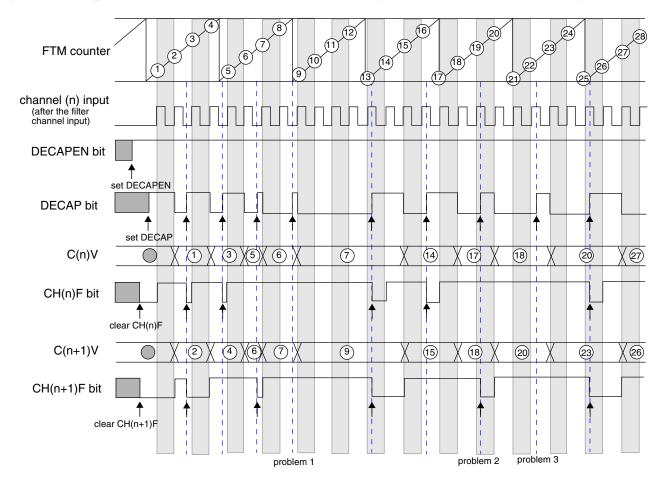
Figure 39-288. Dual Edge Capture – One-Shot mode for positive polarity pulse width measurement

The following figure shows an example of the Dual Edge Capture – Continuous mode used to measure the positive polarity pulse width. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. While the DECAP bit is set the configured measurements are made. The CH(n)F bit is set when the first edge of the positive polarity pulse is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit

is set when the second edge of this pulse is detected, that is, the edge selected by ELS(n+1)B:ELS(n+1)A bits. The CH(n+1)F bit indicates when two edges of the pulse were captured and the C(n)V and C(n+1)V registers are ready for reading.

Note

Figure 39-289. Dual Edge Capture – Continuous mode for positive polarity pulse width measurement

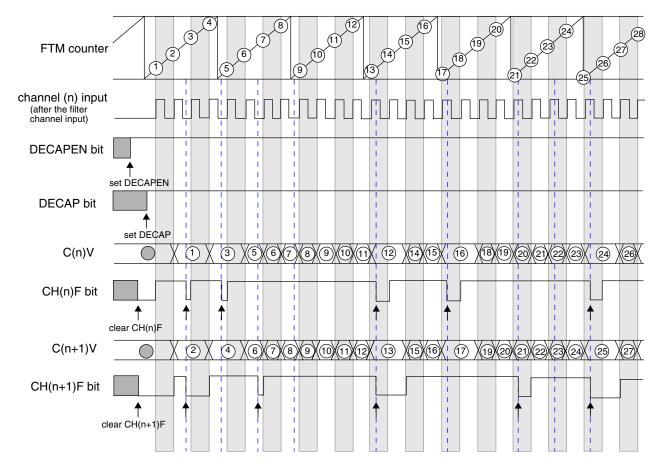

39.4.24.4 Period measurement

If the channels (n) and (n+1) are configured to capture consecutive edges of the same polarity, then the period of the channel (n) input signal is measured. If both channels (n) and (n+1) are configured to capture rising edges (ELS(n)B:ELS(n)A = 0:1 and ELS(n +1)B:ELS(n+1)A = 0:1), then the period between two consecutive rising edges is measured. If both channels (n) and (n+1) are configured to capture falling edges (ELS(n)B:ELS(n)A = 1:0 and ELS(n+1)B:ELS(n+1)A = 1:0), then the period between two consecutive falling edges is measured.

⁻ The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.

The period measurement can be made in One-Shot Capture mode or Continuous Capture mode.

The following figure shows an example of the Dual Edge Capture – One-Shot mode used to measure the period between two consecutive rising edges. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. The DECAP bit is set to enable the measurement of next period. The CH(n)F bit is set when the first rising edge is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit is set and DECAP bit is cleared when the second rising edge is detected, that is, the edge selected by ELS(n+1)B:ELS(n+1)A bits. Both DECAP and CH(n+1)F bits indicate when two selected edges were captured and the C(n)V and C(n+1)V registers are ready for reading.



Note

- The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.
- Problem 1: channel (n) input = 0, set DECAP, not clear CH(n)F, and not clear CH(n+1)F.
- Problem 2: channel (n) input = 1, set DECAP, not clear CH(n)F, and clear CH(n+1)F.
- Problem 3: channel (n) input = 1, set DECAP, not clear CH(n)F, and not clear CH(n+1)F.

Figure 39-290. Dual Edge Capture – One-Shot mode to measure of the period between two consecutive rising edges

The following figure shows an example of the Dual Edge Capture – Continuous mode used to measure the period between two consecutive rising edges. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. While the DECAP bit is set the configured measurements are made. The CH(n)F bit is set when the first rising edge is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit is set when the second rising edge is detected, that is, the edge selected by ELS(n+1)B:ELS(n+1)A bits. The CH(n+1)F bit indicates when two edges of the period were captured and the C(n)V and C(n+1)V registers are ready for reading.

Note

Figure 39-291. Dual Edge Capture – Continuous mode to measure of the period between two consecutive rising edges

39.4.24.5 Read coherency mechanism

The Dual Edge Capture mode implements a read coherency mechanism between the FTM counter value captured in C(n)V and C(n+1)V registers. The read coherency mechanism is illustrated in the following figure. In this example, the channels (n) and (n

⁻ The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.

+1) are in Dual Edge Capture – Continuous mode for positive polarity pulse width measurement. Thus, the channel (n) is configured to capture the FTM counter value when there is a rising edge at channel (n) input signal, and channel (n+1) to capture the FTM counter value when there is a falling edge at channel (n) input signal.

When a rising edge occurs in the channel (n) input signal, the FTM counter value is captured into channel (n) capture buffer. The channel (n) capture buffer value is transferred to C(n)V register when a falling edge occurs in the channel (n) input signal. C(n)V register has the FTM counter value when the previous rising edge occurred, and the channel (n) capture buffer has the FTM counter value when the last rising edge occurred.

When a falling edge occurs in the channel (n) input signal, the FTM counter value is captured into channel (n+1) capture buffer. The channel (n+1) capture buffer value is transferred to C(n+1)V register when the C(n)V register is read.

In the following figure, the read of C(n)V returns the FTM counter value when the event 1 occurred and the read of C(n+1)V returns the FTM counter value when the event 2 occurred.

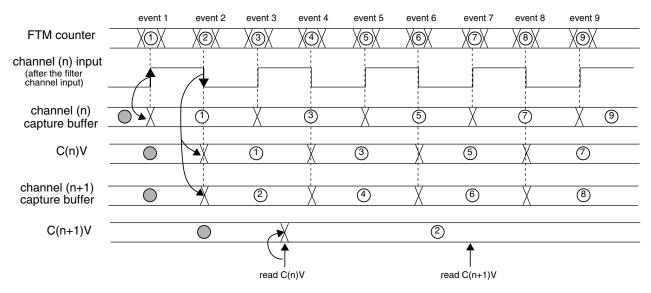


Figure 39-292. Dual Edge Capture mode read coherency mechanism

C(n)V register must be read prior to C(n+1)V register in dual edge capture one-shot and continuous modes for the read coherency mechanism works properly.

39.4.25 Quadrature Decoder mode

The Quadrature Decoder mode is selected if (QUADEN = 1). The Quadrature Decoder mode uses the input signals phase A and B to control the FTM counter increment and decrement. The following figure shows the quadrature decoder block diagram.

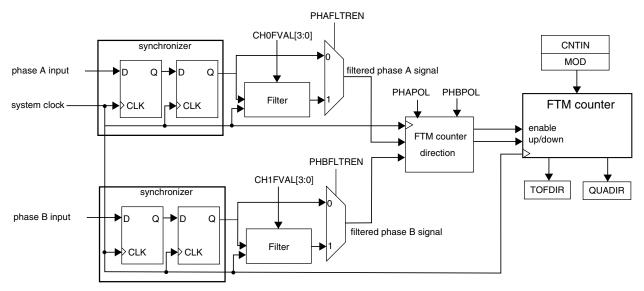


Figure 39-293. Quadrature Decoder block diagram

Each one of input signals phase A and B has a filter that is equivalent to the filter used in the channels input; Filter for Input Capture mode. The phase A input filter is enabled by PHAFLTREN bit and this filter's value is defined by CH0FVAL[3:0] bits (CH(n)FVAL[3:0] bits in FILTER0 register). The phase B input filter is enabled by PHBFLTREN bit and this filter's value is defined by CH1FVAL[3:0] bits (CH(n+1)FVAL[3:0] bits in FILTER0 register).

Except for CH0FVAL[3:0] and CH1FVAL[3:0] bits, no channel logic is used in Quadrature Decoder mode.

Note

Notice that the FTM counter is clocked by the phase A and B input signals when quadrature decoder mode is selected. Therefore it is expected that the Quadrature Decoder be used only with the FTM channels in input capture or output compare modes.

Note

An edge at phase A must not occur together an edge at phase B and vice-versa.

The PHAPOL bit selects the polarity of the phase A input, and the PHBPOL bit selects the polarity of the phase B input.

The QUADMODE selects the encoding mode used in the Quadrature Decoder mode. If QUADMODE = 1, then the count and direction encoding mode is enabled; see the following figure. In this mode, the phase B input value indicates the counting direction, and the phase A input defines the counting rate. The FTM counter is updated when there is a rising edge at phase A input signal.

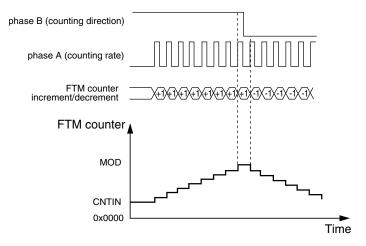


Figure 39-294. Quadrature Decoder – Count and Direction Encoding mode

If QUADMODE = 0, then the Phase A and Phase B Encoding mode is enabled; see the following figure. In this mode, the relationship between phase A and B signals indicates the counting direction, and phase A and B signals define the counting rate. The FTM counter is updated when there is an edge either at the phase A or phase B signals.

If PHAPOL = 0 and PHBPOL = 0, then the FTM counter increment happens when:

- there is a rising edge at phase A signal and phase B signal is at logic zero;
- there is a rising edge at phase B signal and phase A signal is at logic one;
- there is a falling edge at phase B signal and phase A signal is at logic zero;
- there is a falling edge at phase A signal and phase B signal is at logic one;

and the FTM counter decrement happens when:

- there is a falling edge at phase A signal and phase B signal is at logic zero;
- there is a falling edge at phase B signal and phase A signal is at logic one;
- there is a rising edge at phase B signal and phase A signal is at logic zero;
- there is a rising edge at phase A signal and phase B signal is at logic one.

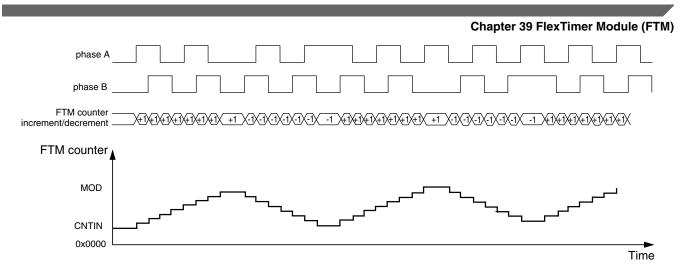


Figure 39-295. Quadrature Decoder – Phase A and Phase B Encoding mode

The following figure shows the FTM counter overflow in up counting. In this case, when the FTM counter changes from MOD to CNTIN, TOF and TOFDIR bits are set. TOF bit indicates the FTM counter overflow occurred. TOFDIR indicates the counting was up when the FTM counter overflow occurred.

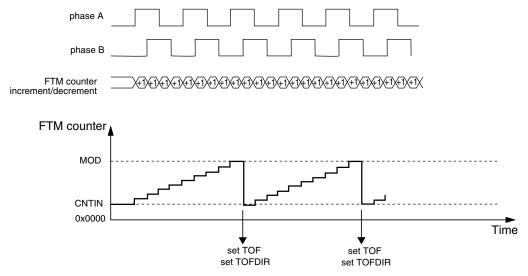
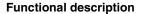



Figure 39-296. FTM Counter overflow in up counting for Quadrature Decoder mode

The following figure shows the FTM counter overflow in down counting. In this case, when the FTM counter changes from CNTIN to MOD, TOF bit is set and TOFDIR bit is cleared. TOF bit indicates the FTM counter overflow occurred. TOFDIR indicates the counting was down when the FTM counter overflow occurred.

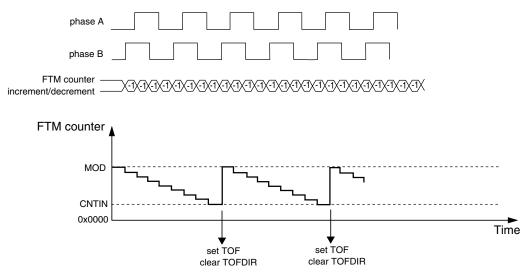


Figure 39-297. FTM counter overflow in down counting for Quadrature Decoder mode

39.4.25.1 Quadrature Decoder boundary conditions

The following figures show the FTM counter responding to motor jittering typical in motor position control applications.

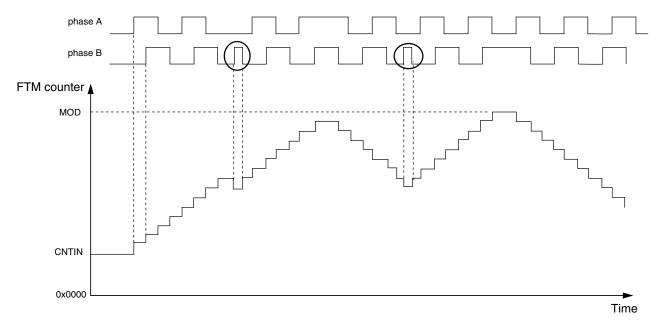


Figure 39-298. Motor position jittering in a mid count value

The following figure shows motor jittering produced by the phase B and A pulses respectively:

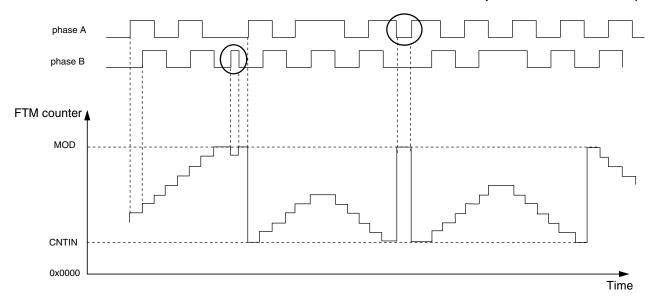


Figure 39-299. Motor position jittering near maximum and minimum count value

The first highlighted transition causes a jitter on the FTM counter value near the maximum count value (MOD). The second indicated transition occurs on phase A and causes the FTM counter transition between the maximum and minimum count values which are defined by MOD and CNTIN registers.

The appropriate settings of the phase A and phase B input filters are important to avoid glitches that may cause oscillation on the FTM counter value. The preceding figures show examples of oscillations that can be caused by poor input filter setup. Thus, it is important to guarantee a minimum pulse width to avoid these oscillations.

39.4.26 BDM mode

When the chip is in BDM mode, the BDMMODE[1:0] bits select the behavior of the FTM counter, the CH(n)F bit, the channels output, and the writes to the MOD, CNTIN, and C(n)V registers according to the following table.

Tab	le 39-313.	FTM behavior when the	chip is in BDM mode
		·	

BDMMODE	FTM Counter	CH(n)F Bit	FTM Channels Output	Writes to MOD, CNTIN, and C(n)V Registers
00	Stopped	can be set	Functional mode	Writes to these registers bypass the registers buffers
01	Stopped	is not set	The channels outputs are forced to their safe value according to POLn bit	Writes to these registers bypass the registers buffers
10	Stopped	is not set	The channels outputs are frozen when the chip enters in BDM mode	Writes to these registers bypass the registers buffers

Table continues on the next page...

Table 39-313. FTM behavior when the chip Is in BDM mode (continued)

BDMMODE	FTM Counter	CH(n)F Bit	FTM Channels Output	Writes to MOD, CNTIN, and C(n)V Registers
11	Functional mode	can be set	Functional mode	Functional mode

Note that if BDMMODE[1:0] = 2'b00 then the channels outputs remain at the value when the chip enters in BDM mode, because the FTM counter is stopped. However, the following situations modify the channels outputs in this BDM mode.

- Write any value to CNT register; see Counter reset. In this case, the FTM counter is updated with the CNTIN register value and the channels outputs are updated to the initial value except for those channels set to Output Compare mode.
- FTM counter is reset by PWM Synchronization mode; see FTM counter synchronization. In this case, the FTM counter is updated with the CNTIN register value and the channels outputs are updated to the initial value except for channels in Output Compare mode.
- In the channels outputs initialization, the channel (n) output is forced to the CH(n)OI bit value when the value 1 is written to INIT bit. See Initialization.

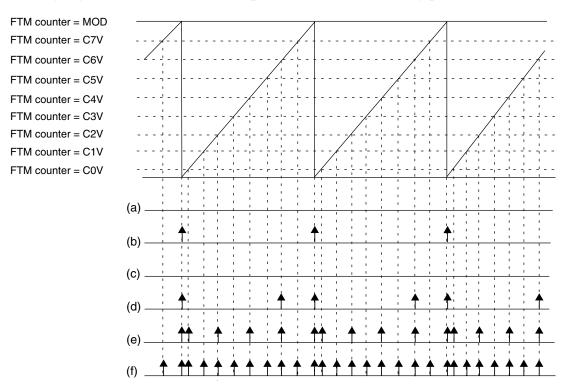
Note

The BDMMODE[1:0] = 2'b00 must not be used with the Fault control. Even if the fault control is enabled and a fault condition exists, the channels outputs values are updated as above.

Note

If CLKS[1:0] = 2'b00 in BDM, a non-zero value is written to CLKS in BDM, and CnV = CNTIN when the BDM is disabled, then the CHnF bit is set (since if the channel is a 0% EPWM signal) when the BDM is disabled.

39.4.27 Intermediate load


The PWMLOAD register allows to update the MOD, CNTIN, and C(n)V registers with the content of the register buffer at a defined load point. In this case, it is not required to use the PWM synchronization.

There are multiple possible loading points for intermediate load:

Table 39-314. When possible loading points are enabled

Loading point	Enabled
When the FTM counter wraps from MOD value to CNTIN value	Always
At the channel (j) match (FTM counter = C(j)V)	When CHjSEL = 1

The following figure shows some examples of enabled loading points.

NOTE

(a) LDOK = 0, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 0, CH4SEL = 0, CH5SEL = 0, CH6SEL = 0, CH7SEL = 0
(b) LDOK = 1, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 0, CH4SEL = 0, CH5SEL = 0, CH6SEL = 0, CH7SEL = 0
(c) LDOK = 0, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 1, CH4SEL = 0, CH5SEL = 0, CH6SEL = 0, CH7SEL = 0
(d) LDOK = 1, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 0, CH4SEL = 0, CH5SEL = 0, CH6SEL = 1, CH7SEL = 0
(e) LDOK = 1, CH0SEL = 1, CH1SEL = 0, CH2SEL = 1, CH3SEL = 0, CH4SEL = 1, CH5SEL = 0, CH6SEL = 1, CH7SEL = 0
(f) LDOK = 1, CH0SEL = 1, CH1SEL = 1, CH2SEL = 1, CH3SEL = 1, CH5SEL = 1, CH6SEL = 1, CH7SEL = 1

Figure 39-300. Loading points for intermediate load

After enabling the loading points, the LDOK bit must be set for the load to occur. In this case, the load occurs at the next enabled loading point according to the following conditions:

Table 39-315. Conditions for loads occurring at the next enabled loading point

When a new value was written	Then	
To the MOD register	The MOD register is updated with its write buffer value.	

Table continues on the next page...

Table 39-315. Conditions for loads occurring at the next enabled loading point (continued)

When a new value was written	Then
To the CNTIN register and CNTINC = 1	The CNTIN register is updated with its write buffer value.
To the C(n)V register and SYNCENm = 1 – where m indicates the pair channels (n) and (n+1)	The C(n)V register is updated with its write buffer value.
To the C(n+1)V register and SYNCENm = 1 – where m indicates the pair channels (n) and (n+1)	The C(n+1)V register is updated with its write buffer value.

NOTE

- If ELSjB and ELSjA bits are different from zero, then the channel (j) output signal is generated according to the configured output mode. If ELSjB and ELSjA bits are zero, then the generated signal is not available on channel (j) output.
- If CHjIE = 1, then the channel (j) interrupt is generated when the channel (j) match occurs.
- At the intermediate load neither the channels outputs nor the FTM counter are changed. Software must set the intermediate load at a safe point in time.

39.4.28 Global time base (GTB)

The global time base (GTB) is a FTM function that allows the synchronization of multiple FTM modules on a chip. The following figure shows an example of the GTB feature used to synchronize two FTM modules. In this case, the FTM A and B channels can behave as if just one FTM module was used, that is, a global time base.

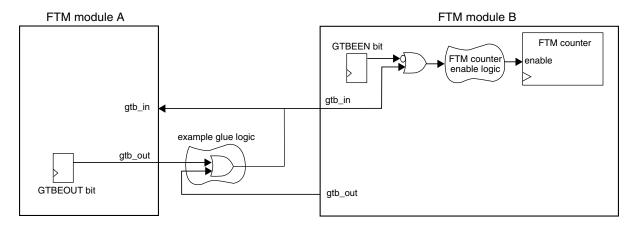


Figure 39-301. Global time base (GTB) block diagram

The GTB functionality is implemented by the GTBEEN and GTBEOUT bits in the CONF register, the input signal *gtb_in*, and the output signal *gtb_out*. The GTBEEN bit enables gtb_in to control the FTM counter enable signal:

- If GTBEEN = 0, each one of FTM modules works independently according to their configured mode.
- If GTBEEN = 1, the FTM counter update is enabled only when gtb_in is 1.

In the configuration described in the preceding figure, FTM modules A and B have their FTM counters enabled if at least one of the gtb_out signals from one of the FTM modules is 1. There are several possible configurations for the interconnection of the gtb_in and gtb_out signals, represented by the example glue logic shown in the figure. Note that these configurations are chip-dependent and implemented outside of the FTM modules. See the chip-specific FTM information for the chip's specific implementation.

NOTE

- In order to use the GTB signals to synchronize the FTM counter of different FTM modules, the configuration of each FTM module should guarantee that its FTM counter starts counting as soon as the gtb_in signal is 1.
- The GTB feature does not provide continuous synchronization of FTM counters, meaning that the FTM counters may lose synchronization during FTM operation. The GTB feature only allows the FTM counters to *start* their operation synchronously.

39.4.28.1 Enabling the global time base (GTB)

To enable the GTB feature, follow these steps for each participating FTM module:

- 1. Stop the FTM counter: Write 00b to SC[CLKS].
- 2. Program the FTM to the intended configuration. The FTM counter mode needs to be consistent across all participating modules.
- 3. Write 1 to CONF[GTBEEN] and write 0 to CONF[GTBEOUT] at the same time.
- 4. Select the intended FTM counter clock source in SC[CLKS]. The clock source needs to be consistent across all participating modules.
- 5. Reset the FTM counter: Write any value to the CNT register.

To initiate the GTB feature in the configuration described in the preceding figure, write 1 to CONF[GTBEOUT] in the FTM module used as the time base.

39.5 Reset overview

The FTM is reset whenever any chip reset occurs.

When the FTM exits from reset:

- the FTM counter and the prescaler counter are zero and are stopped (CLKS[1:0] = 00b);
- the timer overflow interrupt is zero, see Timer Overflow Interrupt;
- the channels interrupts are zero, see Channel (n) Interrupt;
- the fault interrupt is zero, see Fault Interrupt;
- the channels are in input capture mode, see Input Capture mode;
- the channels outputs are zero;
- the channels pins are not controlled by FTM (ELS(n)B:ELS(n)A = 0:0) (See the table in the description of CnSC register).

The following figure shows the FTM behavior after the reset. At the reset (item 1), the FTM counter is disabled (see the description of the CLKS field in the Status and Control register), its value is updated to zero and the pins are not controlled by FTM (See the table in the description of CnSC register).

After the reset, the FTM should be configurated (item 2). It is necessary to define the FTM counter mode, the FTM counting limits (MOD and CNTIN registers value), the channels mode and CnV registers value according to the channels mode.

Thus, it is recommended to write any value to CNT register (item 3). This write updates the FTM counter with the CNTIN register value and the channels output with its initial value (except for channels in output compare mode) (Counter reset).

The next step is to select the FTM counter clock by the CLKS[1:0] bits (item 4). It is important to highlight that the pins are only controlled by FTM when CLKS[1:0] bits are different from zero (See the table in the description of CnSC register).

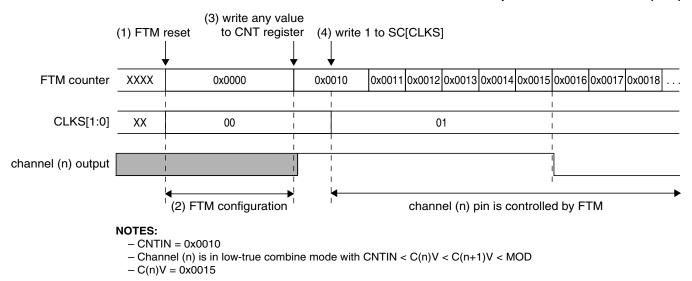


Figure 39-302. FTM behavior after reset when the channel (n) is in Combine mode

The following figure shows an example when the channel (n) is in Output Compare mode and the channel (n) output is toggled when there is a match. In the Output Compare mode, the channel output is not updated to its initial value when there is a write to CNT register (item 3). In this case, use the software output control (Software output control) or the initialization (Initialization) to update the channel output to the selected value (item 4).

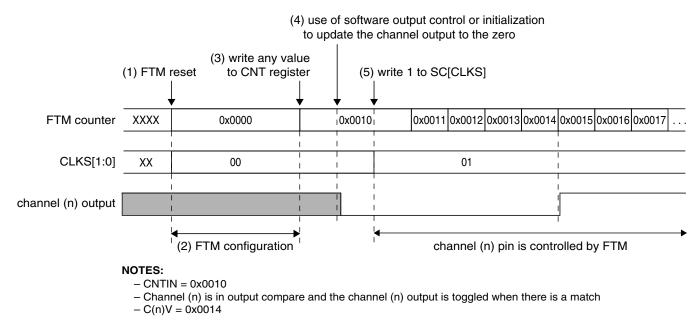


Figure 39-303. FTM behavior after reset when the channel (n) is in Output Compare mode

39.6 FTM Interrupts

39.6.1 Timer Overflow Interrupt

The timer overflow interrupt is generated when (TOIE = 1) and (TOF = 1).

39.6.2 Channel (n) Interrupt

The channel (n) interrupt is generated when (CHnIE = 1) and (CHnF = 1).

39.6.3 Fault Interrupt

The fault interrupt is generated when (FAULTIE = 1) and (FAULTF = 1).

39.7 Initialization Procedure

The following initialization procedure is recommended to configure the FlexTimer operation. This procedure can also be used to do a new configuration of the FlexTimer operation.

- Define the POL bits.
- Mask the channels outputs using SYNCHOM = 0. Two clocks after the write to OUTMASK, the channels output are in the safe value.
- (Re)Configuration FTM counter and channels to generation of periodic signals Disable the clock. If the selected mode is Quadrature Decoder, then disable this mode. Examples of the (re)configuration:
 - Write to MOD.
 - Write to CNTIN.
 - Select OC, EPWM, CPWM, Combine, Complement modes for all channels that will be used
 - Select the high-true and low-true channels modes.
 - Write to CnV for all channels that will be used .
 - (Re)Configure deadtime and fault control.
 - Do not use the SWOC without SW synchronization (see item 6).
 - Do not use the Inverting without SW synchronization (see item 6).
 - Do not use the Initialization.
 - Do not change the polarity control.
 - Do not configure the HW synchronization

- Write any value to CNT. The FTM Counter is reset and the channels output are updated according to new configuration.
- Enable the clock. Write to CLKS[1:0] bits a value different from zero. If in the Quadrature Decoder mode, enable this mode.
- Configure the SW synchronization for SWOC (if it is necessary), Inverting (if it is necessary) and Output Mask (always)
 - Select synchronization for Output Mask Write to SYNC (SWSYNC = 0, TRIG2 = 0, TRIG1 = 0, TRIG0 = 0, SYNCHOM = 1, REINIT = 0, CNTMAX = 0, CNTMIN = 0)
 - Write to SYNCONF.
 - HW Synchronization can not be enabled (HWSOC = 0, HWINVC = 0, HWOM = 0, HWWRBUF = 0, HWRSTCNT = 0, HWTRIGMODE = 0).
 - SW Synchronization for SWOC (if it is necessary): SWSOC = [0/1] and SWOC = [0/1].
 - SW Synchronization for Inverting (if it is necessary): SWINVC = [0/1] and INVC = [0/1].
 - SW Synchronization for SWOM (always): SWOM = 1. No enable the SW Synchronization for write buffers (because the writes to registers with write buffer are done using CLKS[1:0] = 2'b00): SWWRBUF = 0 and CNTINC = 0.
 - SW Synchronization for counter reset (always): SWRSTCNT = 1.
 - Enhanced synchronization (always): SYNCMODE = 1
 - If the SWOC is used (SWSOC = 1 and SWOC = 1), then write to SWOCTRL register.
 - If the Inverting is used (SWINVC = 1 and INVC = 1), then write to INVCTRL register.
 - Write to OUTMASK to enable the masked channels.
- Generate the Software Trigger Write to SYNC (SWSYNC = 1, TRIG2 = 0, TRIG1 = 0, TRIG0 = 0, SYNCHOM = 1, REINIT = 0, CNTMAX = 0, CNTMIN = 0)

Initialization Procedure

Chapter 40 Periodic Interrupt Timer (PIT)

40.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The PIT module is an array of timers that can be used to raise interrupts and trigger DMA channels.

40.1.1 Block diagram

The following figure shows the block diagram of the PIT module.

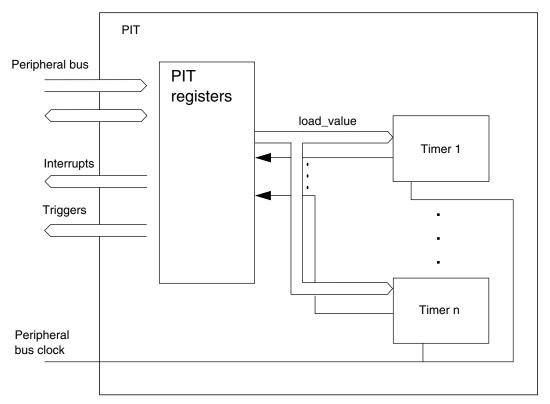


Figure 40-1. Block diagram of the PIT

NOTE

See the chip-specific PIT information for the number of PIT channels used in this MCU.

40.1.2 Features

The main features of this block are:

- Ability of timers to generate DMA trigger pulses
- Ability of timers to generate interrupts
- Maskable interrupts
- Independent timeout periods for each timer

40.2 Signal description

The PIT module has no external pins.

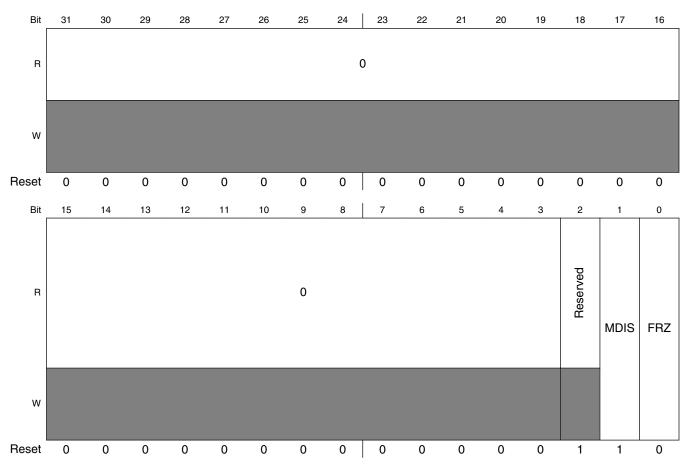
40.3 Memory map/register description

This section provides a detailed description of all registers accessible in the PIT module.

- Reserved registers will read as 0, writes will have no effect.
- See the chip-specific PIT information for the number of PIT channels used in this MCU.

PIT memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_7000	PIT Module Control Register (PIT_MCR)	32	R/W	0000_0006h	40.3.1/1019
4003_7100	Timer Load Value Register (PIT_LDVAL0)	32	R/W	0000_0000h	40.3.2/1021
4003_7104	Current Timer Value Register (PIT_CVAL0)	32	R	0000_0000h	40.3.3/1021
4003_7108	Timer Control Register (PIT_TCTRL0)	32	R/W	0000_0000h	40.3.4/1022
4003_710C	Timer Flag Register (PIT_TFLG0)	32	R/W	0000_0000h	40.3.5/1022
4003_7110	Timer Load Value Register (PIT_LDVAL1)	32	R/W	0000_0000h	40.3.2/1021
4003_7114	Current Timer Value Register (PIT_CVAL1)	32	R	0000_0000h	40.3.3/1021
4003_7118	Timer Control Register (PIT_TCTRL1)	32	R/W	0000_0000h	40.3.4/1022
4003_711C	Timer Flag Register (PIT_TFLG1)	32	R/W	0000_0000h	40.3.5/1022
4003_7120	Timer Load Value Register (PIT_LDVAL2)	32	R/W	0000_0000h	40.3.2/1021
4003_7124	Current Timer Value Register (PIT_CVAL2)	32	R	0000_0000h	40.3.3/1021
4003_7128	Timer Control Register (PIT_TCTRL2)	32	R/W	0000_0000h	40.3.4/1022
4003_712C	Timer Flag Register (PIT_TFLG2)	32	R/W	0000_0000h	40.3.5/1022
4003_7130	Timer Load Value Register (PIT_LDVAL3)	32	R/W	0000_0000h	40.3.2/1021
4003_7134	Current Timer Value Register (PIT_CVAL3)	32	R	0000_0000h	40.3.3/1021
4003_7138	Timer Control Register (PIT_TCTRL3)	32	R/W	0000_0000h	40.3.4/1022
4003_713C	Timer Flag Register (PIT_TFLG3)	32	R/W	0000_0000h	40.3.5/1022

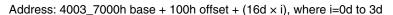

40.3.1 PIT Module Control Register (PIT_MCR)

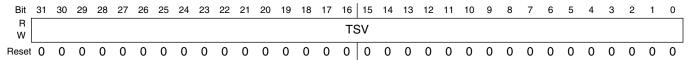
This register enables or disables the PIT timer clocks and controls the timers when the PIT enters the Debug mode.

Access: User read/write

Memory map/register description

Address: 4003_7000h base + 0h offset = 4003_7000h


PIT_MCR field descriptions

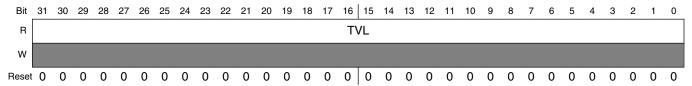

Field	Description			
31–3	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
2	This field is reserved.			
Reserved				
1 MDIS	Module Disable - (PIT section)			
	Disables the standard timers. This field must be enabled before any other setup is done.			
	0 Clock for standard PIT timers is enabled.			
	1 Clock for standard PIT timers is disabled.			
0 FRZ	Freeze			
	Allows the timers to be stopped when the device enters the Debug mode.			
	0 Timers continue to run in Debug mode.			
	1 Timers are stopped in Debug mode.			

40.3.2 Timer Load Value Register (PIT_LDVALn)

These registers select the timeout period for the timer interrupts.

Access: User read/write

PIT_LDVALn field descriptions


Field	Description
	Timer Start Value Sets the timer start value. The timer will count down until it reaches 0, then it will generate an interrupt and load this register value again. Writing a new value to this register will not restart the timer; instead the value will be loaded after the timer expires. To abort the current cycle and start a timer period with the new value, the timer must be disabled and enabled again.

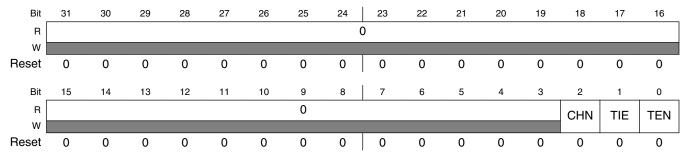
40.3.3 Current Timer Value Register (PIT_CVALn)

These registers indicate the current timer position.

Access: User read only

Address: 4003_7000h base + 104h offset + $(16d \times i)$, where i=0d to 3d

PIT_CVALn field descriptions

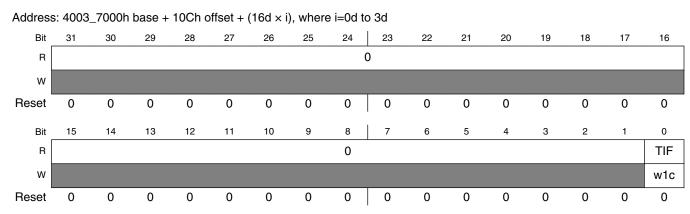

Field	Description		
TVL	Current Timer Value Represents the current timer value, if the timer is enabled.		
	 NOTE: • If the timer is disabled, do not use this field as its value is unreliable. • The timer uses a downcounter. The timer values are frozen in Debug mode if MCR[FRZ] is set. 		

40.3.4 Timer Control Register (PIT_TCTRLn)

These registers contain the control bits for each timer.

Access: User read/write

Address: 4003_{7000h} base + 108h offset + $(16d \times i)$, where i=0d to 3d


PIT_TCTRLn field descriptions

Field	Description
31–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 CHN	Chain Mode When activated, Timer n-1 needs to expire before timer n can decrement by 1. Timer 0 cannot be chained. Timer is not chained. Timer is chained to previous timer. For example, for Channel 2, if this field is set, Timer 2 is chained to Timer 1.
1 TIE	Timer Interrupt Enable When an interrupt is pending, or, TFLGn[TIF] is set, enabling the interrupt will immediately cause an interrupt event. To avoid this, the associated TFLGn[TIF] must be cleared first. O Interrupt requests from Timer n are disabled. Interrupt will be requested whenever TIF is set.
0 TEN	Timer Enable Enables or disables the timer. 0 Timer n is disabled. 1 Timer n is enabled.

40.3.5 Timer Flag Register (PIT_TFLGn)

These registers hold the PIT interrupt flags.

Access: User read/write

PIT_TFLGn field descriptions

Field	Description			
31–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
0 TIF	Timer Interrupt Flag Sets to 1 at the end of the timer period. Writing 1 to this flag clears it. Writing 0 has no effect. If enabled, or, when TCTRLn[TIE] = 1, TIF causes an interrupt request.			
	0 Timeout has not yet occurred.1 Timeout has occurred.			

40.4 Functional description

This section provides the functional description of the module.

40.4.1 General operation

This section gives detailed information on the internal operation of the module. Each timer can be used to generate trigger pulses and interrupts. Each interrupt is available on a separate interrupt line.

40.4.1.1 Timers

The timers generate triggers at periodic intervals, when enabled. The timers load the start values as specified in their LDVAL registers, count down to 0 and then load the respective start value again. Each time a timer reaches 0, it will generate a trigger pulse and set the interrupt flag.

All interrupts can be enabled or masked by setting TCTRLn[TIE]. A new interrupt can be generated only after the previous one is cleared.

Functional description

If desired, the current counter value of the timer can be read via the CVAL registers.

The counter period can be restarted, by first disabling, and then enabling the timer with TCTRLn[TEN]. See the following figure.

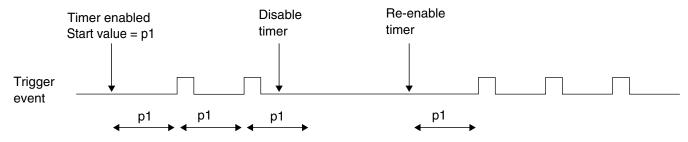


Figure 40-23. Stopping and starting a timer

The counter period of a running timer can be modified, by first disabling the timer, setting a new load value, and then enabling the timer again. See the following figure.

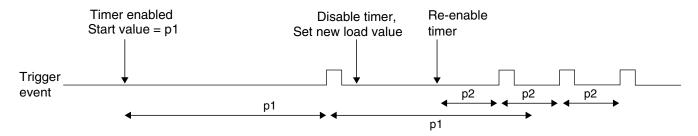


Figure 40-24. Modifying running timer period

It is also possible to change the counter period without restarting the timer by writing LDVAL with the new load value. This value will then be loaded after the next trigger event. See the following figure.

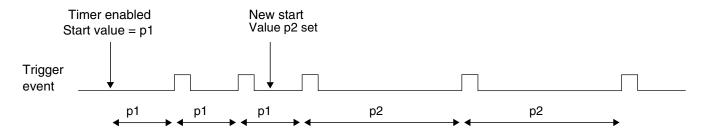


Figure 40-25. Dynamically setting a new load value

40.4.1.2 Debug mode

In Debug mode, the timers will be frozen based on MCR[FRZ]. This is intended to aid software development, allowing the developer to halt the processor, investigate the current state of the system, for example, the timer values, and then continue the operation.

40.4.2 Interrupts

All the timers support interrupt generation. See the MCU specification for related vector addresses and priorities.

Timer interrupts can be enabled by setting TCTRLn[TIE]. TFLGn[TIF] are set to 1 when a timeout occurs on the associated timer, and are cleared to 0 by writing a 1 to the corresponding TFLGn[TIF].

40.4.3 Chained timers

When a timer has chain mode enabled, it will only count after the previous timer has expired. So if timer n-1 has counted down to 0, counter n will decrement the value by one. This allows to chain some of the timers together to form a longer timer. The first timer (timer 0) cannot be chained to any other timer.

40.5 Initialization and application information

In the example configuration:

- The PIT clock has a frequency of 50 MHz.
- Timer 1 creates an interrupt every 5.12 ms.
- Timer 3 creates a trigger event every 30 ms.

The PIT module must be activated by writing a 0 to MCR[MDIS].

The 50 MHz clock frequency equates to a clock period of 20 ns. Timer 1 needs to trigger every 5.12 ms/20 ns = 256,000 cycles and Timer 3 every 30 ms/20 ns = 1,500,000 cycles. The value for the LDVAL register trigger is calculated as:

LDVAL trigger = (period / clock period) -1

Example configuration for chained timers

This means LDVAL1 and LDVAL3 must be written with 0x0003E7FF and 0x0016E35F respectively.

The interrupt for Timer 1 is enabled by setting TCTRL1[TIE]. The timer is started by writing 1 to TCTRL1[TEN].

Timer 3 shall be used only for triggering. Therefore, Timer 3 is started by writing a 1 to TCTRL3[TEN]. TCTRL3[TIE] stays at 0.

The following example code matches the described setup:

```
// turn on PIT
PIT_MCR = 0x00;

// Timer 1
PIT_LDVAL1 = 0x0003E7FF; // setup timer 1 for 256000 cycles
PIT_TCTRL1 = TIE; // enable Timer 1 interrupts
PIT_TCTRL1 |= TEN; // start Timer 1

// Timer 3
PIT_LDVAL3 = 0x0016E35F; // setup timer 3 for 1500000 cycles
PIT_TCTRL3 |= TEN; // start Timer 3
```

40.6 Example configuration for chained timers

In the example configuration:

- The PIT clock has a frequency of 100 MHz.
- Timers 1 and 2 are available.
- An interrupt shall be raised every 1 minute.

The PIT module needs to be activated by writing a 0 to MCR[MDIS].

The 100 MHz clock frequency equates to a clock period of 10 ns, so the PIT needs to count for 6000 million cycles, which is more than a single timer can do. So, Timer 1 is set up to trigger every 6 s (600 million cycles). Timer 2 is chained to Timer 1 and programmed to trigger 10 times.

The value for the LDVAL register trigger is calculated as number of cycles-1, so LDVAL1 receives the value 0x23C345FF and LDVAL2 receives the value 0x00000009.

The interrupt for Timer 2 is enabled by setting TCTRL2[TIE], the Chain mode is activated by setting TCTRL2[CHN], and the timer is started by writing a 1 to TCTRL2[TEN]. TCTRL1[TEN] needs to be set, and TCTRL1[CHN] and TCTRL1[TIE] are cleared.

The following example code matches the described setup:

```
// turn on PIT
PIT_MCR = 0x00;

// Timer 2
PIT_LDVAL2 = 0x00000009; // setup Timer 2 for 10 counts
PIT_TCTRL2 = TIE; // enable Timer 2 interrupt
PIT_TCTRL2 |= CHN; // chain Timer 2 to Timer 1
PIT_TCTRL2 |= TEN; // start Timer 2

// Timer 1
PIT_LDVAL1 = 0x23C345FF; // setup Timer 1 for 600 000 000 cycles
PIT_TCTRL1 = TEN; // start Timer 1
```

Example configuration for chained timers

Chapter 41 Low-Power Timer (LPTMR)

41.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter.

41.1.1 Features

The features of the LPTMR module include:

- 16-bit time counter or pulse counter with compare
 - Optional interrupt can generate asynchronous wakeup from any low-power mode
 - Hardware trigger output
 - Counter supports free-running mode or reset on compare
- Configurable clock source for prescaler/glitch filter
- Configurable input source for pulse counter
 - Rising-edge or falling-edge

41.1.2 Modes of operation

The following table describes the operation of the LPTMR module in various modes.

Table 41-1. Modes of operation

Modes	Description	
Run	The LPTMR operates normally.	
Wait	The LPTMR continues to operate normally and may be configured to exit the low-power mode by generating an interrupt request.	
Stop	The LPTMR continues to operate normally and may be configured to exit the low-power mode by generating an interrupt request.	
Low-Leakage	The LPTMR continues to operate normally and may be configured to exit the low-power mode by generating an interrupt request.	
Debug	The LPTMR operates normally in Pulse Counter mode, but counter does not increment in Time Counter mode.	

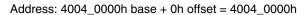
41.2 LPTMR signal descriptions

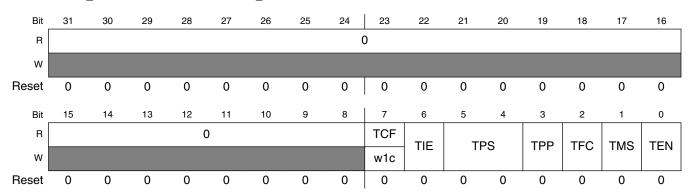
Table 41-2. LPTMR signal descriptions

Signal	I/O	Description
LPTMR_ALTn	I	Pulse Counter Input pin

41.2.1 Detailed signal descriptions

Table 41-3. LPTMR interface—detailed signal descriptions


Signal	I/O	Description	
LPTMR_ALT <i>n</i>	I	Pulse Counter Input	
		The LPTMR can select one	of the input pins to be used in Pulse Counter mode.
		State meaning	Assertion—If configured for pulse counter mode with active-high input, then assertion causes the CNR to increment.
			Deassertion—If configured for pulse counter mode with active-low input, then deassertion causes the CNR to increment.
		Timing	Assertion or deassertion may occur at any time; input may assert asynchronously to the bus clock.


41.3 Memory map and register definition

LPTMR memory map

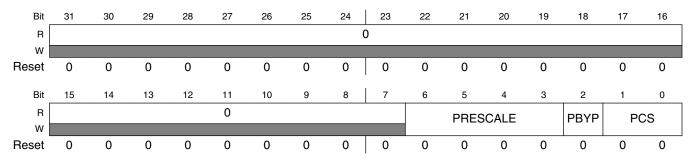
Absolute address (hex)	Register name		Access	Reset value	Section/ page
4004_0000	Low Power Timer Control Status Register (LPTMR0_CSR)	32	R/W	0000_0000h	41.3.1/1031
4004_0004	Low Power Timer Prescale Register (LPTMR0_PSR)	32	R/W	0000_0000h	41.3.2/1032
4004_0008	Low Power Timer Compare Register (LPTMR0_CMR)	32	R/W	0000_0000h	41.3.3/1034
4004_000C	Low Power Timer Counter Register (LPTMR0_CNR)	32	R	0000_0000h	41.3.4/1034

41.3.1 Low Power Timer Control Status Register (LPTMRx_CSR)

LPTMRx_CSR field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 TCF	Timer Compare Flag TCF is set when the LPTMR is enabled and the CNR equals the CMR and increments. TCF is cleared when the LPTMR is disabled or a logic 1 is written to it.
	0 The value of CNR is not equal to CMR and increments.
	1 The value of CNR is equal to CMR and increments.
6 TIE	Timer Interrupt Enable When TIE is set, the LPTMR Interrupt is generated whenever TCF is also set.
	0 Timer interrupt disabled.
	1 Timer interrupt enabled.
5–4 TPS	Timer Pin Select Configures the input source to be used in Pulse Counter mode. TPS must be altered only when the LPTMR is disabled. The input connections vary by device. See the chip configuration details for information on the connections to these inputs.
	00 Pulse counter input 0 is selected.

Table continues on the next page...


Memory map and register definition

LPTMRx_CSR field descriptions (continued)

Field	Description	
	01 Pulse counter input 1 is selected.	
	10 Pulse counter input 2 is selected.	
	11 Pulse counter input 3 is selected.	
3 TPP	Timer Pin Polarity	
	Configures the polarity of the input source in Pulse Counter mode. TPP must be changed only when the LPTMR is disabled.	
	 Pulse Counter input source is active-high, and the CNR will increment on the rising-edge. Pulse Counter input source is active-low, and the CNR will increment on the falling-edge. 	
2 TFC	Timer Free-Running Counter	
	When clear, TFC configures the CNR to reset whenever TCF is set. When set, TFC configures the CNR to reset on overflow. TFC must be altered only when the LPTMR is disabled.	
	0 CNR is reset whenever TCF is set.	
	1 CNR is reset on overflow.	
1	Timer Mode Select	
TMS	Configures the mode of the LPTMR. TMS must be altered only when the LPTMR is disabled.	
	0 Time Counter mode.	
	1 Pulse Counter mode.	
0 TEN	Timer Enable	
	When TEN is clear, it resets the LPTMR internal logic, including the CNR and TCF. When TEN is set, the LPTMR is enabled. While writing 1 to this field, CSR[5:1] must not be altered.	
	0 LPTMR is disabled and internal logic is reset.1 LPTMR is enabled.	
	1 LPTMR is enabled.	

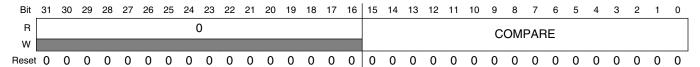
41.3.2 Low Power Timer Prescale Register (LPTMRx_PSR)

Address: 4004_0000h base + 4h offset = 4004_0004h

LPTMRx_PSR field descriptions

Field	Description		
31–7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		
6–3 PRESCALE	Prescale Value		
	Configures the size of the Prescaler in Time Counter mode or width of the glitch filter in Pulse Counter mode. PRESCALE must be altered only when the LPTMR is disabled.		
	0000 Prescaler divides the prescaler clock by 2; glitch filter does not support this configuration.		
	O001 Prescaler divides the prescaler clock by 4; glitch filter recognizes change on input pin after 2 rising clock edges.		
	O010 Prescaler divides the prescaler clock by 8; glitch filter recognizes change on input pin after 4 rising clock edges.		
	O011 Prescaler divides the prescaler clock by 16; glitch filter recognizes change on input pin after 8 rising clock edges.		
	O100 Prescaler divides the prescaler clock by 32; glitch filter recognizes change on input pin after 16 rising clock edges.		
	O101 Prescaler divides the prescaler clock by 64; glitch filter recognizes change on input pin after 32 rising clock edges.		
	O110 Prescaler divides the prescaler clock by 128; glitch filter recognizes change on input pin after 64 rising clock edges.		
	O111 Prescaler divides the prescaler clock by 256; glitch filter recognizes change on input pin after 128 rising clock edges.		
	1000 Prescaler divides the prescaler clock by 512; glitch filter recognizes change on input pin after 256 rising clock edges.		
	Prescaler divides the prescaler clock by 1024; glitch filter recognizes change on input pin after 512 rising clock edges.		
	1010 Prescaler divides the prescaler clock by 2048; glitch filter recognizes change on input pin after 1024 rising clock edges.		
	Prescaler divides the prescaler clock by 4096; glitch filter recognizes change on input pin after 2048 rising clock edges.		
	Prescaler divides the prescaler clock by 8192; glitch filter recognizes change on input pin after 4096 rising clock edges.		
	Prescaler divides the prescaler clock by 16,384; glitch filter recognizes change on input pin after 8192 rising clock edges.		
	Prescaler divides the prescaler clock by 32,768; glitch filter recognizes change on input pin after 16,384 rising clock edges.		
	Prescaler divides the prescaler clock by 65,536; glitch filter recognizes change on input pin after 32,768 rising clock edges.		
2 PBYP	Prescaler Bypass		
	When PBYP is set, the selected prescaler clock in Time Counter mode or selected input source in Pulse Counter mode directly clocks the CNR. When PBYP is clear, the CNR is clocked by the output of the prescaler/glitch filter. PBYP must be altered only when the LPTMR is disabled.		
	0 Prescaler/glitch filter is enabled.		
	1 Prescaler/glitch filter is bypassed.		
1–0 PCS	Prescaler Clock Select		
	Selects the clock to be used by the LPTMR prescaler/glitch filter. PCS must be altered only when the LPTMR is disabled. The clock connections vary by device.		
	NOTE: See the chip configuration details for information on the connections to these inputs.		

Table continues on the next page...

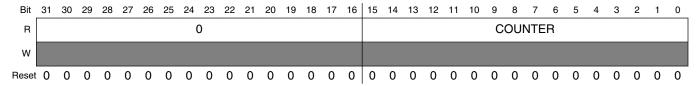

Memory map and register definition

LPTMRx_PSR field descriptions (continued)

Field		Description
	00	Prescaler/glitch filter clock 0 selected.
	01	Prescaler/glitch filter clock 1 selected.
	10	Prescaler/glitch filter clock 2 selected.
	11	Prescaler/glitch filter clock 3 selected.

41.3.3 Low Power Timer Compare Register (LPTMRx_CMR)

Address: 4004_0000h base + 8h offset = 4004_0008h



LPTMRx_CMR field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
	Compare Value When the LPTMR is enabled and the CNR equals the value in the CMR and increments, TCF is set and the hardware trigger asserts until the next time the CNR increments. If the CMR is 0, the hardware trigger will remain asserted until the LPTMR is disabled. If the LPTMR is enabled, the CMR must be altered only when TCF is set.

41.3.4 Low Power Timer Counter Register (LPTMRx_CNR)

Address: 4004_0000h base + Ch offset = 4004_000Ch

LPTMRx_CNR field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 COUNTER	Counter Value

41.4 Functional description

41.4.1 LPTMR power and reset

The LPTMR remains powered in all power modes, including low-leakage modes. If the LPTMR is not required to remain operating during a low-power mode, then it must be disabled before entering the mode.

The LPTMR is reset only on global Power On Reset (POR) or Low Voltage Detect (LVD). When configuring the LPTMR registers, the CSR must be initially written with the timer disabled, before configuring the PSR and CMR. Then, CSR[TIE] must be set as the last step in the initialization. This ensures the LPTMR is configured correctly and the LPTMR counter is reset to zero following a warm reset.

41.4.2 LPTMR clocking

The LPTMR prescaler/glitch filter can be clocked by one of the four clocks. The clock source must be enabled before the LPTMR is enabled.

NOTE

The clock source selected may need to be configured to remain enabled in low-power modes, otherwise the LPTMR will not operate during low-power modes.

In Pulse Counter mode with the prescaler/glitch filter bypassed, the selected input source directly clocks the CNR and no other clock source is required. To minimize power in this case, configure the prescaler clock source for a clock that is not toggling.

NOTE

The clock source or pulse input source selected for the LPTMR should not exceed the frequency f_{LPTMR} defined in the device datasheet.

41.4.3 LPTMR prescaler/glitch filter

The LPTMR prescaler and glitch filter share the same logic which operates as a prescaler in Time Counter mode and as a glitch filter in Pulse Counter mode.

NOTE

The prescaler/glitch filter configuration must not be altered when the LPTMR is enabled.

41.4.3.1 Prescaler enabled

In Time Counter mode, when the prescaler is enabled, the output of the prescaler directly clocks the CNR. When the LPTMR is enabled, the CNR will increment every 2^2 to 2^{16} prescaler clock cycles. After the LPTMR is enabled, the first increment of the CNR will take an additional one or two prescaler clock cycles due to synchronization logic.

41.4.3.2 Prescaler bypassed

In Time Counter mode, when the prescaler is bypassed, the selected prescaler clock increments the CNR on every clock cycle. When the LPTMR is enabled, the first increment will take an additional one or two prescaler clock cycles due to synchronization logic.

41.4.3.3 Glitch filter

In Pulse Counter mode, when the glitch filter is enabled, the output of the glitch filter directly clocks the CNR. When the LPTMR is first enabled, the output of the glitch filter is asserted, that is, logic 1 for active-high and logic 0 for active-low. The following table shows the change in glitch filter output with the selected input source.

If	Then
The selected input source remains deasserted for at least 2 ¹ to 2 ¹⁵ consecutive prescaler clock rising edges	The glitch filter output will also deassert.
The selected input source remains asserted for at least 2 ¹ to 2 ¹⁵ consecutive prescaler clock rising-edges	The glitch filter output will also assert.

NOTE

The input is only sampled on the rising clock edge.

The CNR will increment each time the glitch filter output asserts. In Pulse Counter mode, the maximum rate at which the CNR can increment is once every 2^2 to 2^{16} prescaler clock edges. When first enabled, the glitch filter will wait an additional one or two prescaler clock edges due to synchronization logic.

41.4.3.4 Glitch filter bypassed

In Pulse Counter mode, when the glitch filter is bypassed, the selected input source increments the CNR every time it asserts. Before the LPTMR is first enabled, the selected input source is forced to be asserted. This prevents the CNR from incrementing if the selected input source is already asserted when the LPTMR is first enabled.

41.4.4 LPTMR compare

When the CNR equals the value of the CMR and increments, the following events occur:

- CSR[TCF] is set.
- LPTMR interrupt is generated if CSR[TIE] is also set.
- LPTMR hardware trigger is generated.
- CNR is reset if CSR[TFC] is clear.

When the LPTMR is enabled, the CMR can be altered only when CSR[TCF] is set. When updating the CMR, the CMR must be written and CSR[TCF] must be cleared before the LPTMR counter has incremented past the new LPTMR compare value.

41.4.5 LPTMR counter

The CNR increments by one on every:

- Prescaler clock in Time Counter mode with prescaler bypassed
- Prescaler output in Time Counter mode with prescaler enabled
- Input source assertion in Pulse Counter mode with glitch filter bypassed
- Glitch filter output in Pulse Counter mode with glitch filter enabled

The CNR is reset when the LPTMR is disabled or if the counter register overflows. If CSR[TFC] is cleared, then the CNR is also reset whenever CSR[TCF] is set.

The CNR continues incrementing when the core is halted in Debug mode when configured for Pulse Counter mode, the CNR will stop incrementing when the core is halted in Debug mode when configured for Time Counter mode.

The CNR cannot be initialized, but can be read at any time. On each read of the CNR, software must first write to the CNR with any value. This will synchronize and register the current value of the CNR into a temporary register. The contents of the temporary register are returned on each read of the CNR.

When reading the CNR, the bus clock must be at least two times faster than the rate at which the LPTMR counter is incrementing, otherwise incorrect data may be returned.

41.4.6 LPTMR hardware trigger

The LPTMR hardware trigger asserts at the same time the CSR[TCF] is set and can be used to trigger hardware events in other peripherals without software intervention. The hardware trigger is always enabled.

When	Then
The CMR is set to 0 with CSR[TFC] clear	The LPTMR hardware trigger will assert on the first compare and does not deassert.
The CMR is set to a nonzero value, or, if CSR[TFC] is set	The LPTMR hardware trigger will assert on each compare and deassert on the following increment of the CNR.

41.4.7 LPTMR interrupt

The LPTMR interrupt is generated whenever CSR[TIE] and CSR[TCF] are set. CSR[TCF] is cleared by disabling the LPTMR or by writing a logic 1 to it.

CSR[TIE] can be altered and CSR[TCF] can be cleared while the LPTMR is enabled.

The LPTMR interrupt is generated asynchronously to the system clock and can be used to generate a wakeup from any low-power mode, including the low-leakage modes, provided the LPTMR is enabled as a wakeup source.

Chapter 42 Real Time Clock (RTC)

42.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

42.1.1 Features

The RTC module features include:

- Independent power supply, POR, and 32 kHz crystal oscillator
- 32-bit seconds counter with roll-over protection and 32-bit alarm
- 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm
- Register write protection
 - Lock register requires VBAT POR or software reset to enable write access
 - Access control registers require system reset to enable read and/or write access
- 1 Hz square wave output

42.1.2 Modes of operation

The RTC remains functional in all low power modes and can generate an interrupt to exit any low power mode. It operates in one of two modes of operation: chip power-up and chip power-down.

Introduction

During chip power-down, RTC is powered from the backup power supply (VBAT) and is electrically isolated from the rest of the chip but continues to increment the time counter (if enabled) and retain the state of the RTC registers. The RTC registers are not accessible.

During chip power-up, RTC remains powered from the backup power supply (VBAT). All RTC registers are accessible by software and all functions are operational. If enabled, the 32.768 kHz clock can be supplied to the rest of the chip.

42.1.3 RTC signal descriptions

Table 42-1. RTC signal descriptions

Signal	Description	I/O
EXTAL32	32.768 kHz oscillator input	1
XTAL32	32.768 kHz oscillator output	0
RTC_CLKOUT	1 Hz square-wave output	0
RTC_WAKEUP	Wakeup for external device	0

42.1.3.1 RTC clock output

The clock to the seconds counter is available on the RTC_CLKOUT signal. It is a 1 Hz square wave output.

42.1.3.2 RTC wakeup pin

The RTC wakeup pin is an open drain, active low, output that allows the RTC to wakeup the chip via an external component. The wakeup pin asserts when the wakeup pin enable is set and either the RTC interrupt is asserted or the wakeup pin is turned on via a register bit. The wakeup pin does not assert from the RTC seconds interrupt.

NOTE

The wakeup pin is optional and may not be implemented on all devices.

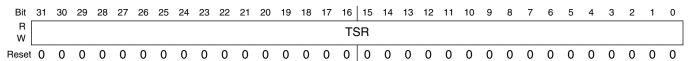
42.2 Register definition

All registers must be accessed using 32-bit writes and all register accesses incur three wait states.

Write accesses to any register by non-supervisor mode software, when the supervisor access bit in the control register is clear, will terminate with a bus error.

Read accesses by non-supervisor mode software complete as normal.

Writing to a register protected by the write access register or lock register does not generate a bus error, but the write will not complete.


Reading a register protected by the read access register does not generate a bus error, but the register will read zero.

RTC memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_D000	RTC Time Seconds Register (RTC_TSR)	32	R/W	0000_0000h	42.2.1/1041
4003_D004	RTC Time Prescaler Register (RTC_TPR)	32	R/W	0000_0000h	42.2.2/1042
4003_D008	RTC Time Alarm Register (RTC_TAR)	32	R/W	0000_0000h	42.2.3/1042
4003_D00C	RTC Time Compensation Register (RTC_TCR)	32	R/W	0000_0000h	42.2.4/1043
4003_D010	RTC Control Register (RTC_CR)	32	R/W	0000_0000h	42.2.5/1044
4003_D014	RTC Status Register (RTC_SR)	32	R/W	0000_0001h	42.2.6/1046
4003_D018	RTC Lock Register (RTC_LR)	32	R/W	0000_00FFh	42.2.7/1047
4003_D01C	RTC Interrupt Enable Register (RTC_IER)	32	R/W	0000_0007h	42.2.8/1048
4003_D800	RTC Write Access Register (RTC_WAR)	32	R/W	0000_00FFh	42.2.9/1049
4003_D804	RTC Read Access Register (RTC_RAR)	32	R/W	0000_00FFh	42.2.10/ 1050

42.2.1 RTC Time Seconds Register (RTC_TSR)

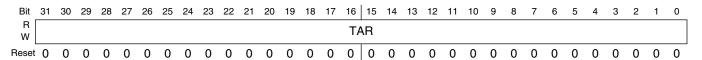
Address: 4003_D000h base + 0h offset = 4003_D000h

RTC_TSR field descriptions

Field	Description
31–0 TSR	Time Seconds Register
	When the time counter is enabled, the TSR is read only and increments once a second provided SR[TOF] or SR[TIF] are not set. The time counter will read as zero when SR[TOF] or SR[TIF] are set. When the time counter is disabled, the TSR can be read or written. Writing to the TSR when the time counter is disabled will clear the SR[TOF] and/or the SR[TIF]. Writing to TSR with zero is supported, but not recommended because TSR will read as zero when SR[TIF] or SR[TOF] are set (indicating the time is invalid).

42.2.2 RTC Time Prescaler Register (RTC_TPR)

Address: 4003_D000h base + 4h offset = 4003_D004h

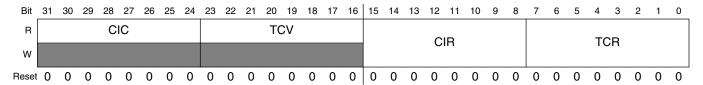


RTC_TPR field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 TPR	Time Prescaler Register When the time counter is enabled, the TPR is read only and increments every 32.768 kHz clock cycle. The time counter will read as zero when SR[TOF] or SR[TIF] are set. When the time counter is disabled, the TPR can be read or written. The TSR[TSR] increments when bit 14 of the TPR transitions from a logic one to a logic zero.

42.2.3 RTC Time Alarm Register (RTC_TAR)

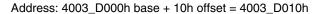
Address: 4003_D000h base + 8h offset = 4003_D008h

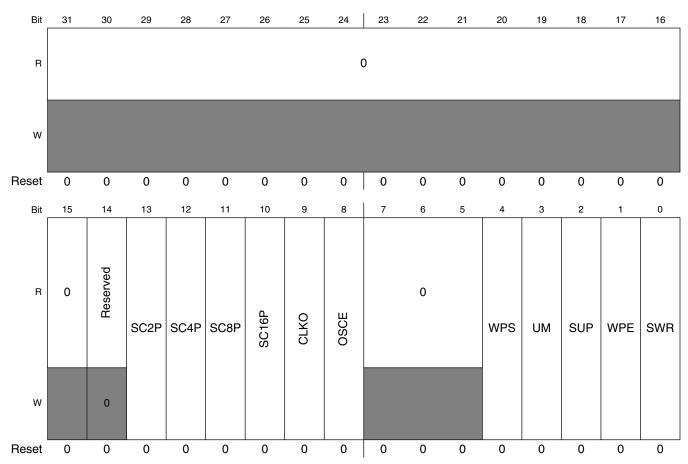


RTC_TAR field descriptions

Field	Description
31–0	Time Alarm Register
TAR	
	When the time counter is enabled, the SR[TAF] is set whenever the TAR[TAR] equals the TSR[TSR] and the TSR[TSR] increments. Writing to the TAR clears the SR[TAF].

42.2.4 RTC Time Compensation Register (RTC_TCR)


Address: 4003_D000h base + Ch offset = 4003_D00Ch



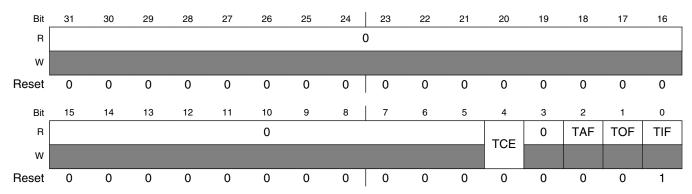
RTC_TCR field descriptions

Field	Description
31–24 CIC	Compensation Interval Counter
	Current value of the compensation interval counter. If the compensation interval counter equals zero then it is loaded with the contents of the CIR. If the CIC does not equal zero then it is decremented once a second.
23–16 TCV	Time Compensation Value
	Current value used by the compensation logic for the present second interval. Updated once a second if the CIC equals 0 with the contents of the TCR field. If the CIC does not equal zero then it is loaded with zero (compensation is not enabled for that second increment).
15–8 CIR	Compensation Interval Register
	Configures the compensation interval in seconds from 1 to 256 to control how frequently the TCR should adjust the number of 32.768 kHz cycles in each second. The value written should be one less than the number of seconds. For example, write zero to configure for a compensation interval of one second. This register is double buffered and writes do not take affect until the end of the current compensation interval.
7–0 TOD	Time Compensation Register
TCR	Configures the number of 32.768 kHz clock cycles in each second. This register is double buffered and writes do not take affect until the end of the current compensation interval.
	80h Time Prescaler Register overflows every 32896 clock cycles.
	FFh Time Prescaler Register overflows every 32769 clock cycles.
	00h Time Prescaler Register overflows every 32768 clock cycles.
	01h Time Prescaler Register overflows every 32767 clock cycles.
	7Fh Time Prescaler Register overflows every 32641 clock cycles.

42.2.5 RTC Control Register (RTC_CR)

RTC_CR field descriptions

Field	Description
31–15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
14 Reserved	This field is reserved. It must always be written to 0.
13 SC2P	Oscillator 2pF Load Configure 0 Disable the load. 1 Enable the additional load.
12 SC4P	Oscillator 4pF Load Configure 0 Disable the load. 1 Enable the additional load.
11 SC8P	Oscillator 8pF Load Configure

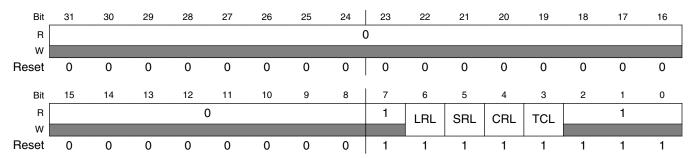

Table continues on the next page...

RTC_CR field descriptions (continued)

Field	Description							
	0 Disable the load.							
	1 Enable the additional load.							
10 SC16P	Oscillator 16pF Load Configure							
	0 Disable the load.							
	1 Enable the additional load.							
9	Clock Output							
CLKO	0 The 32 kHz clock is output to other peripherals.							
	The 32 kHz clock is output to other peripherals.							
8	Oscillator Enable							
OSCE	Coolinator Enable							
	0 32.768 kHz oscillator is disabled.							
	1 32.768 kHz oscillator is enabled. After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.							
7–5	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
4 WPS	Wakeup Pin Select							
Wild	The wakeup pin is optional and not available on all devices.							
	0 Wakeup pin asserts (active low, open drain) if the RTC interrupt asserts or the wakeup pin is turned on.							
	1 Wakeup pin instead outputs the RTC 32kHz clock, provided the wakeup pin is turned on and the 32kHz clock is output to other peripherals.							
3	Update Mode							
UM	Allows SR[TCE] to be written even when the Status Register is locked. When set, the SR[TCE] can always be written if the SR[TIF] or SR[TOF] are set or if the SR[TCE] is clear.							
	Registers cannot be written when locked.							
	Registers can be written when locked under limited conditions.							
2	Supervisor Access							
SUP	Non-supervisor mode write accesses are not supported and generate a bus error.							
	1 Non-supervisor mode write accesses are supported.							
1 WPE	Wakeup Pin Enable							
VVI L	The wakeup pin is optional and not available on all devices.							
	0 Wakeup pin is disabled.							
	1 Wakeup pin is enabled and wakeup pin asserts if the RTC interrupt asserts or the wakeup pin is turned on.							
0 SWR	Software Reset							
	0 No effect.							
	1 Resets all RTC registers except for the SWR bit and the RTC_WAR and RTC_RAR registers . The SWR bit is cleared by VBAT POR and by software explicitly clearing it.							

42.2.6 RTC Status Register (RTC_SR)

Address: 4003_D000h base + 14h offset = 4003_D014h



RTC_SR field descriptions

Field	Description
31–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 TCE	Time Counter Enable When time counter is disabled the TSR register and TPR register are writeable, but do not increment. When time counter is enabled the TSR register and TPR register are not writeable, but increment.
	0 Time counter is disabled.1 Time counter is enabled.
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 TAF	Time Alarm Flag Time alarm flag is set when the TAR[TAR] equals the TSR[TSR] and the TSR[TSR] increments. This bit is cleared by writing the TAR register. O Time alarm has not occurred. 1 Time alarm has occurred.
1 TOF	Time Overflow Flag Time overflow flag is set when the time counter is enabled and overflows. The TSR and TPR do not increment and read as zero when this bit is set. This bit is cleared by writing the TSR register when the time counter is disabled. O Time overflow has not occurred. Time overflow has occurred and time counter is read as zero.
0 TIF	Time Invalid Flag The time invalid flag is set on VBAT POR or software reset. The TSR and TPR do not increment and read as zero when this bit is set. This bit is cleared by writing the TSR register when the time counter is disabled. O Time is valid. Time is invalid and time counter is read as zero.

42.2.7 RTC Lock Register (RTC_LR)

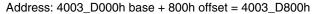
Address: 4003_D000h base + 18h offset = 4003_D018h

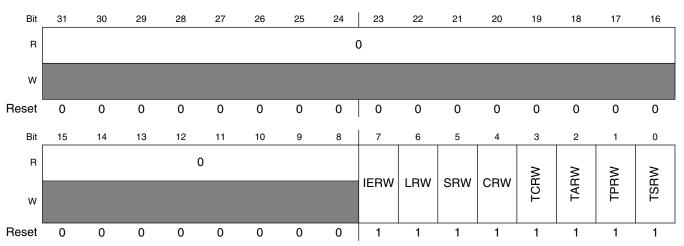
RTC_LR field descriptions

Field	Description
31–8	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7	This field is reserved.
Reserved	This read-only field is reserved and always has the value 1.
6 LRL	Lock Register Lock
	After being cleared, this bit can be set only by VBAT POR or software reset.
	0 Lock Register is locked and writes are ignored.
	1 Lock Register is not locked and writes complete as normal.
5 SRL	Status Register Lock
	After being cleared, this bit can be set only by VBAT POR or software reset.
	0 Status Register is locked and writes are ignored.
	1 Status Register is not locked and writes complete as normal.
4 CRL	Control Register Lock
0	After being cleared, this bit can only be set by VBAT POR.
	0 Control Register is locked and writes are ignored.
	1 Control Register is not locked and writes complete as normal.
3	Time Compensation Lock
TCL	After being cleared, this bit can be set only by VBAT POR or software reset.
	0 Time Compensation Register is locked and writes are ignored.
	1 Time Compensation Register is not locked and writes complete as normal.
2–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 1.

42.2.8 RTC Interrupt Enable Register (RTC_IER)

Address: 4003_D000h base + 1Ch offset = 4003_D01Ch


RTC_IER field descriptions


Field	Description							
31–8	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
7 WPON	Wakeup Pin On							
	The wakeup pin is optional and not available on all devices. Whenever the wakeup pin is enabled and this bit is set, the wakeup pin will assert.							
	0 No effect.							
	1 If the wakeup pin is enabled, then the wakeup pin will assert.							
6–5 Reserved	This field is reserved.							
4 TSIE	Time Seconds Interrupt Enable							
	The seconds interrupt is an edge-sensitive interrupt with a dedicated interrupt vector. It is generated once a second and requires no software overhead (there is no corresponding status flag to clear).							
	0 Seconds interrupt is disabled.							
	1 Seconds interrupt is enabled.							
3	This field is reserved.							
Reserved								
2 TAIE	Time Alarm Interrupt Enable							
	0 Time alarm flag does not generate an interrupt.							
	1 Time alarm flag does generate an interrupt.							
1 TOIE	Time Overflow Interrupt Enable							
	0 Time overflow flag does not generate an interrupt.							
	1 Time overflow flag does generate an interrupt.							

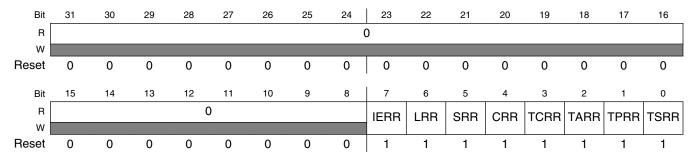
RTC_IER field descriptions (continued)

Field	Description					
0	Time Invalid Interrupt Enable					
TIIE						
	0 Time invalid flag does not generate an interrupt.					
	1 Time invalid flag does generate an interrupt.					

42.2.9 RTC Write Access Register (RTC_WAR)

RTC_WAR field descriptions

Field	Description							
31–8	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
7 IERW	Interrupt Enable Register Write							
	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Interupt Enable Register are ignored.							
	1 Writes to the Interrupt Enable Register complete as normal.							
6	Lock Register Write							
LRW	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Lock Register are ignored.							
	1 Writes to the Lock Register complete as normal.							
5	Status Register Write							
SRW	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Status Register are ignored.							
	1 Writes to the Status Register complete as normal.							


Register definition

RTC_WAR field descriptions (continued)

Field	Description							
4 CRW	Control Register Write							
	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Control Register are ignored.							
	1 Writes to the Control Register complete as normal.							
3 TCRW	Time Compensation Register Write							
	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Time Compensation Register are ignored.							
	1 Writes to the Time Compensation Register complete as normal.							
2 TARW	Time Alarm Register Write							
	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Time Alarm Register are ignored.							
	1 Writes to the Time Alarm Register complete as normal.							
1 TPRW	Time Prescaler Register Write							
	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Time Prescaler Register are ignored.							
	1 Writes to the Time Prescaler Register complete as normal.							
0 TSRW	Time Seconds Register Write							
	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.							
	0 Writes to the Time Seconds Register are ignored.							
	1 Writes to the Time Seconds Register complete as normal.							

42.2.10 RTC Read Access Register (RTC_RAR)

Address: 4003_D000h base + 804h offset = 4003_D804h

RTC_RAR field descriptions

Field	Description					
31–8	This field is reserved.					
Reserved	This read-only field is reserved and always has the value 0.					
7 IERR	Interrupt Enable Register Read					
IENN	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	0 Reads to the Interrupt Enable Register are ignored.					
	1 Reads to the Interrupt Enable Register complete as normal.					
6	Lock Register Read					
LRR	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	0 Reads to the Lock Register are ignored.					
	1 Reads to the Lock Register complete as normal.					
5	Status Register Read					
SRR	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	0 Reads to the Status Register are ignored.					
	1 Reads to the Status Register complete as normal.					
4 CRR	Control Register Read					
	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	O Reads to the Control Register are ignored.					
	1 Reads to the Control Register complete as normal.					
3 TCRR	Time Compensation Register Read					
1011	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	0 Reads to the Time Compensation Register are ignored.					
	1 Reads to the Time Compensation Register complete as normal.					
2	Time Alarm Register Read					
TARR	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	0 Reads to the Time Alarm Register are ignored.					
	1 Reads to the Time Alarm Register complete as normal.					
1	Time Prescaler Register Read					
TPRR	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	0 Reads to the Time Pprescaler Register are ignored.					
	1 Reads to the Time Prescaler Register complete as normal.					
0 TSRR	Time Seconds Register Read					
101111	After being cleared, this bit is set only by system reset. It is not affected by VBAT POR or software reset.					
	0 Reads to the Time Seconds Register are ignored.					
	1 Reads to the Time Seconds Register complete as normal.					

42.3 Functional description

42.3.1 Power, clocking, and reset

The RTC is an always powered block that remains active in all low power modes and is powered by the battery power supply (VBAT). The battery power supply ensures that the RTC registers retain their state during chip power-down and that the RTC time counter remains operational.

The time counter within the RTC is clocked by a 32.768 kHz clock and can supply this clock to other peripherals. The 32.768 kHz clock can only be sourced from an external crystal using the oscillator that is part of the RTC module.

The RTC includes its own analog POR block, which generates a VBAT power-on-reset signal whenever the RTC module is powered up and initializes all RTC registers to their default state. A software reset bit can also initialize all RTC registers. The RTC also monitors the chip power supply and electrically isolates itself when the rest of the chip is powered down.

NOTE

An attempt to access an RTC register, except the access control registers, results in a bus error when:

- VBAT is powered down,
- the RTC is electrically isolated, or
- VBAT POR is asserted.

To determine if the VBAT domain is active, software can use the ADC to measure VBAT via an internal connection. See the chip-specific ADC information to find the ADC input channel assignments.

42.3.1.1 Oscillator control

The 32.768 kHz crystal oscillator is disabled at VBAT POR and must be enabled by software. After enabling the cystal oscillator, wait the oscillator startup time before setting SR[TCE] or using the oscillator clock external to the RTC.

The crystal oscillator includes tunable capacitors that can be configured by software. Do not change the capacitance unless the oscillator is disabled.

42.3.1.2 Software reset

Writing 1 to CR[SWR] forces the equivalent of a VBAT POR to the rest of the RTC module. CR[SWR] is not affected by the software reset and must be cleared by software. The access control registers are not affected by either VBAT POR or the software reset; they are reset by the chip reset.

42.3.1.3 Supervisor access

When the supervisor access control bit is clear, only supervisor mode software can write to the RTC registers, non-supervisor mode software will generate a bus error. Both supervisor and non-supervisor mode software can always read the RTC registers.

42.3.2 Time counter

The time counter consists of a 32-bit seconds counter that increments once every second and a 16-bit prescaler register that increments once every 32.768 kHz clock cycle.

Reading the time counter (either seconds or prescaler) while is is incrementing may return invalid data due to synchronization of the read data bus. If it is necessary for software to read the prescaler or seconds counter when they could be incrementing, it is recommended that two read accesses are performed and that software verifies that the same data was returned for both reads.

The time seconds register and time prescaler register can be written only when SR[TCE] is clear. Always write to the prescaler register before writing to the seconds register, because the seconds register increments on the falling edge of bit 14 of the prescaler register.

The time prescaler register increments provided SR[TCE] is set, SR[TIF] is clear, SR[TOF] is clear, and the 32.768 kHz clock source is present. After enabling the oscillator, wait the oscillator startup time before setting SR[TCE] to allow time for the oscillator clock output to stabilize.

If the time seconds register overflows then the SR[TOF] will set and the time prescaler register will stop incrementing. Clear SR[TOF] by initializing the time seconds register. The time seconds register and time prescaler register read as zero whenever SR[TOF] is set.

SR[TIF] is set on VBAT POR and software reset and is cleared by initializing the time seconds register. The time seconds register and time prescaler register read as zero whenever SR[TIF] is set.

42.3.3 Compensation

The compensation logic provides an accurate and wide compensation range and can correct errors as high as 3906 ppm and as low as 0.12 ppm. The compensation factor must be calculated externally to the RTC and supplied by software to the compensation register. The RTC itself does not calculate the amount of compensation that is required, although the 1 Hz clock is output to an external pin in support of external calibration logic.

Crystal compensation can be supported by using firmware and crystal characteristics to determine the compensation amount. Temperature compensation can be supported by firmware that periodically measures the external temperature via ADC and updates the compensation register based on a look-up table that specifies the change in crystal frequency over temperature.

The compensation logic alters the number of 32.768 kHz clock cycles it takes for the prescaler register to overflow and increment the time seconds counter. The time compensation value is used to adjust the number of clock cycles between -127 and +128. Cycles are added or subtracted from the prescaler register when the prescaler register equals 0x3FFF and then increments. The compensation interval is used to adjust the frequency at which the time compensation value is used, that is, from once a second to once every 256 seconds.

Updates to the time compensation register will not take effect until the next time the time seconds register increments and provided the previous compensation interval has expired. When the compensation interval is set to other than once a second then the compensation is applied in the first second interval and the remaining second intervals receive no compensation.

Compensation is disabled by configuring the time compensation register to zero.

42.3.4 Time alarm

The Time Alarm register (TAR), SR[TAF], and IER[TAIE] allow the RTC to generate an interrupt at a predefined time. The 32-bit TAR is compared with the 32-bit Time Seconds register (TSR) each time it increments. SR[TAF] will set when TAR equals TSR and TSR increments.

SR[TAF] is cleared by writing TAR. This will usually be the next alarm value, although writing a value that is less than TSR, such as 0, will prevent SR[TAF] from setting again. SR[TAF] cannot otherwise be disabled, although the interrupt it generates is enabled or disabled by IER[TAIE].

42.3.5 Update mode

The Update Mode field in the Control register (CR[UM]) configures software write access to the Time Counter Enable (SR[TCE]) field. When CR[UM] is clear, SR[TCE] can be written only when LR[SRL] is set. When CR[UM] is set, SR[TCE] can also be written when SR[TCE] is clear or when SR[TIF] or SR[TOF] are set. This allows the time seconds and prescaler registers to be initialized whenever time is invalidated, while preventing the time seconds and prescaler registers from being changed on the fly. When LR[SRL] is set, CR[UM] has no effect on SR[TCE].

42.3.6 Register lock

The Lock register (LR) can be used to block write accesses to certain registers until the next VBAT POR or software reset. Locking the Control register (CR) will disable the software reset. Locking LR will block future updates to LR.

Write accesses to a locked register are ignored and do not generate a bus error.

42.3.7 Access control

The read access and write access registers are implemented in the chip power domain and reset on the chip reset. They are not affected by the VBAT POR or the software reset. They are used to block read or write accesses to each register until the next chip system reset. When accesses are blocked, the bus access is not seen in the VBAT power supply and does not generate a bus error.

42.3.8 Interrupt

The RTC interrupt is asserted whenever a status flag and the corresponding interrupt enable bit are both set. It is always asserted on VBAT POR, and software reset, and when the VBAT power supply is powered down. The RTC interrupt is enabled at the chip level

Functional description

by enabling the chip-specific RTC clock gate control bit. The RTC interrupt can be used to wakeup the chip from any low-power mode. If the RTC wakeup pin is enabled and the chip is powered down, the RTC interrupt will cause the wakeup pin to assert.

The optional RTC seconds interrupt is an edge-sensitive interrupt with a dedicated interrupt vector that is generated once a second and requires no software overhead (there is no corresponding status flag to clear). It is enabled in the RTC by the time seconds interrupt enable bit and enabled at the chip level by setting the chip-specific RTC clock gate control bit. The RTC seconds interrupt does not cause the RTC wakeup pin to assert. This interrupt is optional and may not be implemented on all devices.

Chapter 43 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)

43.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

This section describes the USB full speed OTG controller. The OTG implementation in this module provides limited host functionality and device solutions for implementing a USB 2.0 full-speed/low-speed compliant peripheral. The OTG implementation supports the On-The-Go (OTG) addendum to the USB 2.0 Specification. The USB full speed controller interfaces to a USBFS/LS transceiver.

43.1.1 USB

The USB is a cable bus that supports data exchange between a host computer and a wide range of simultaneously accessible peripherals. The attached peripherals share USB bandwidth through a host-scheduled, token-based protocol. The bus allows peripherals to be attached, configured, used, and detached while the host and other peripherals are in operation.

USB software provides a uniform view of the system for all application software, hiding implementation details making application software more portable. It manages the dynamic attach and detach of peripherals.

There is only one host in any USB system. The USB interface to the host computer system is referred to as the Host Controller.

Introduction

There may be multiple USB devices in any system such as joysticks, speakers, printers, etc. USB devices present a standard USB interface in terms of comprehension, response, and standard capability.

The host initiates transactions to specific peripherals, whereas the device responds to control transactions. The device sends and receives data to and from the host using a standard USB data format. USB 2.0 full-speed /low-speed peripherals operate at 12Mbit/s or 1.5 Mbit/s.

For additional information, see the USB 2.0 specification.

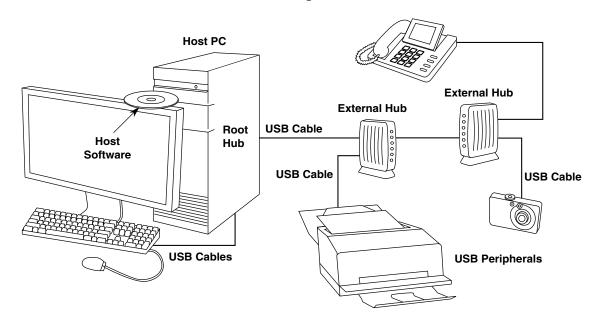


Figure 43-1. Example USB 2.0 system configuration

43.1.2 USB On-The-Go

USB is a popular standard for connecting peripherals and portable consumer electronic devices such as digital cameras and tablets to host PCs. The On-The-Go (OTG) Supplement to the USB Specification extends USB to peer-to-peer application. Using USB OTG technology, consumer electronics, peripherals, and portable devices can connect to each other to exchange data. For example, a digital camera can connect directly to a printer, or a keyboard can connect to a tablet to exchange data.

With the USB On-The-Go product, you can develop a fully USB-compliant peripheral device that can also assume the role of a USB host. Software determines the role of the device based on hardware signals, and then initializes the device in the appropriate mode of operation (host or peripheral) based on how it is connected. After connecting, the devices can negotiate using the OTG protocols to assume the role of host or peripheral based on the task to be accomplished.

For additional information, see the On-The-Go Supplement to the USB 2.0 Specification.

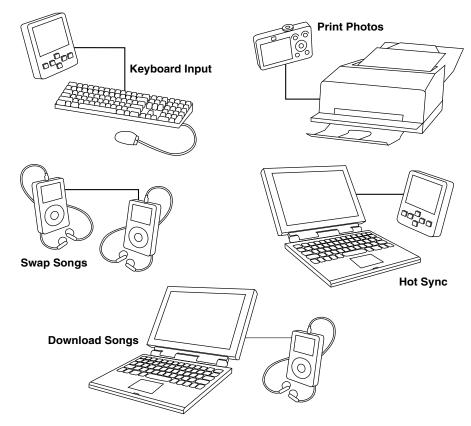


Figure 43-2. Example USB 2.0 On-The-Go configurations

43.1.3 USBFS Features

- USB 1.1 and 2.0 compliant full-speed device controller
- 16 bidirectional end points
- DMA or FIFO data stream interfaces
- Low-power consumption
- On-The-Go protocol logic
- IRC48 with clock-recovery is supported to eliminate the 48 MHz crystal. It is used for USB device-only implementation.

43.2 Functional description

USBOTG communicates with the processor core through status registers, control registers, and data structures in memory.

43.2.1 Data Structures

To efficiently manage USB endpoint communications, USBFS implements a Buffer Descriptor Table (BDT) in system memory. See Figure 43-3.

43.3 Programmers interface

This section discusses the major components of the programming model for the USB module.

43.3.1 Buffer Descriptor Table

To efficiently manage USB endpoint communications USBFS implements a Buffer Descriptor Table (BDT) in system memory. The BDT resides on a 512-byte boundary in system memory and is pointed to by the BDT Page Registers. Every endpoint direction requires two 8-byte Buffer Descriptor (BD) entries. Therefore, a system with 16 fully bidirectional endpoints would require 512 bytes of system memory to implement the BDT. The two BD entries allows for an EVEN BD and ODD BD entry for each endpoint direction. This allows the microprocessor to process one BD while USBFS is processing the other BD. Double buffering BDs in this way allows USBFS to transfer data easily at the maximum throughput provided by USB.

Software should manage buffers for USBFS by updating the BDT when needed. This allows USBFS to efficiently manage data transmission and reception, while the microprocessor performs communication overhead processing and other function dependent applications. Because the buffers are shared between the microprocessor and USBFS, a simple semaphore mechanism is used to distinguish who is allowed to update the BDT and buffers in system memory. A semaphore, the OWN bit, is cleared to 0 when the BD entry is owned by the microprocessor. The microprocessor is allowed read and write access to the BD entry and the buffer in system memory when the OWN bit is 0. When the OWN bit is set to 1, the BD entry and the buffer in system memory are owned by USBFS. USBFS now has full read and write access and the microprocessor must not modify the BD or its corresponding data buffer. The BD also contains indirect address pointers to where the actual buffer resides in system memory. This indirect address mechanism is shown in the following diagram.

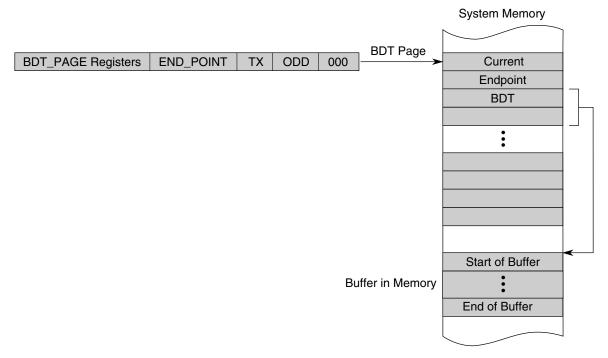


Figure 43-3. Buffer descriptor table

43.3.2 RX vs. TX as a USB target device or USB host

The USBFS core uses software control to switch between two modes of operation:

- USB target device
- USB hosts

In either mode, USB host or USB target device, the same data paths and buffer descriptors are used for the transmission and reception of data. For this reason, a USBFS core-centric nomenclature is used to describe the direction of the data transfer between the USBFS core and USB:

- "RX" (or "receive") describes transfers that move data from USB to memory.
- "TX" (or "transmit") describes transfers that move data from memory to USB.

The following table shows how the data direction corresponds to the USB token type in host and target device applications.

Table 43-1. Data direction for USB host or USB target

	RX	TX
Device	OUT or SETUP	IN
Host	IN	OUT or SETUP

43.3.3 Addressing BDT entries

An understanding of the addressing mechanism of the Buffer Descriptor Table is useful when accessing endpoint data via USBFS or microprocessor. Some points of interest are:

- The BDT occupies up to 512 bytes of system memory.
- 16 bidirectional endpoints can be supported with a full BDT of 512 bytes.
- 16 bytes are needed for each USB endpoint direction.
- Applications with fewer than 16 endpoints require less RAM to implement the BDT.
- The BDT Page Registers (BDT_PAGE) point to the starting location of the BDT.
- The BDT must be located on a 512-byte boundary in system memory.
- All enabled TX and RX endpoint BD entries are indexed into the BDT to allow easy access via USBFS or MCU core.

When a USB token on an enabled endpoint is received, USBFS uses its integrated DMA controller to interrogate the BDT. USBFS reads the corresponding endpoint BD entry to determine whether it owns the BD and corresponding buffer in system memory.

To compute the entry point in to the BDT, the BDT_PAGE registers is concatenated with the current endpoint and the TX and ODD fields to form a 32-bit address. This address mechanism is shown in the following tables:

Table 43-2. BDT Address Calculation

31:24	23:16	15:9	8:5	4	3	2:0
BDT_PAGE_03	BDT_PAGE_02	BDT_PAGE_01[7:1]	End Point	TX	ODD	000

Table 43-3. BDT address calculation fields

Field	Description
BDT_PAGE	BDT_PAGE registers in the Control Register Block
END_POINT	END POINT field from the USB TOKEN
TX	1 for transmit transfers and 0 for receive transfers
ODD	Maintained within the USBFS SIE. It corresponds to the buffer currently in use. The buffers are used in a ping-pong fashion.

43.3.4 Buffer Descriptors (BDs)

A buffer descriptor provides endpoint buffer control information for USBFS and the processor. The Buffer Descriptors have different meaning based on whether it is USBFS or the processor reading the BD in memory.

The USBFS Controller uses the data stored in the BDs to determine:

- Who owns the buffer in system memory
- Data0 or Data1 PID
- Whether to release ownership upon packet completion
- No address increment (FIFO mode)
- Whether data toggle synchronization is enabled
- How much data is to be transmitted or received
- Where the buffer resides in system memory

While the processor uses the data stored in the BDs to determine:

- Who owns the buffer in system memory
- Data0 or Data1 PID
- The received TOKEN PID
- How much data was transmitted or received
- Where the buffer resides in system memory

The format for the BD is shown in the following figure.

Table 43-4. Buffer descriptor format

31:26	25:16	15:8	7	6	5	4	3	2	1	0
RSVD	ВС	RSVD	OWN	DATA0/1	KEEP/	NINC/	DTS/	BDT_STALL/	0	
	(10 bits)	NOVD	OVVIN	13VD OWN	DATAU/T	TOK_PID[3]	TOK_PID[2]	TOK_PID[1]	TOK_PID[0]	0
	Buffer Address (32-Bits)									

Table 43-5. Buffer descriptor fields

Field	Description
31–26	Reserved
RSVD	
25–16	Byte Count
BC	Represents the 10-bit byte count. The USBFS SIE changes this field upon the completion of a RX transfer with the byte count of the data received.
15–8	Reserved
RSVD	

Table 43-5. Buffer descriptor fields (continued)

Field	Description
7 OWN	Determines whether the processor or USBFS currently owns the buffer. Except when KEEP=1, the SIE hands ownership back to the processor after completing the token by clearing this bit.
	This must always be the last byte of the BD that the processor updates when it initializes a BD.
	0 The processor has access to the BD. USBFS ignores all other fields in the BD.
	1 USBFS has access to the BD. While USBFS owns the BD, the processor should not modify any other fields in the BD.
6	Defines whether a DATA0 field (DATA0/1=0) or a DATA1 (DATA0/1=1) field was transmitted or received. It is unchanged by USBFS.
DATA0/1	,
5	This bit has two functions: • KEEP bit—When written by the processor, it serves as the KEEP bit. Typically, this bit is 1
KEEP/ TOK_PID[3]	with ISO endpoints feeding a FIFO. The microprocessor is not informed that a token has been processed, the data is simply transferred to or from the FIFO. When KEEP is set, normally the NINC bit is also set to prevent address increment.
	0 Allows USBFS to release the BD when a token has been processed.
	1 This bit is unchanged by USBFS. Bit 3 of the current token PID is written back to the BD by USBFS.
	 TOK_PID[3]—If the OWN bit is also set, the BD remains owned by USBFS indefinitely; when written by USB, it serves as the TOK_PID[3] bit.
	0 or 1 Bit 3 of the current token PID is written back to the BD by USBFS.
	Typically, this bit is 1 with ISO endpoints feeding a FIFO. The microprocessor is not informed that a token has been processed, the data is simply transferred to or from the FIFO. When KEEP is set, normally the NINC bit is also set to prevent address increment.
4	No Increment (NINC)
NINC/ TOK_PID[2]	Disables the DMA engine address increment. This forces the DMA engine to read or write from the same address. This is useful for endpoints when data needs to be read from or written to a single location such as a FIFO. Typically this bit is set with the KEEP bit for ISO endpoints that are interfacing to a FIFO.
	0 USBFS writes bit 2 of the current token PID to the BD.
	1 This bit is unchanged by USBFS.
3 DTS/	Setting this bit enables USBFS to perform Data Toggle Synchronization. • If KEEP=0, bit 1 of the current token PID is written back to the BD. • If KEEP=1, this bit is unchanged by USBFS.
TOK_PID[1]	0 Data Toggle Synchronization is disabled.
	1 Enables USBFS to perform Data Toggle Synchronization.
	1

Table 43-5. Buffer descriptor fields (continued)

Field	Description
2 BDT_STALL TOK_PID[0]	Setting this bit causes USBFS to issue a STALL handshake if a token is received by the SIE that would use the BDT in this location. The BDT is not consumed by the SIE (the owns bit remains set and the rest of the BDT is unchanged) when a BDT-STALL bit is set. • If KEEP=0, bit 0 of the current token PID is written back to the BD. • If KEEP=1, this bit is unchanged by USBFS.
	0 No stall issued.
	1 The BDT is not consumed by the SIE (the OWN bit remains set and the rest of the BDT is unchanged).
	Setting BDT_STALL also causes the corresponding USB_ENDPTn[EPSTALL] bit to set. This causes USBOTG to issue a STALL handshake for both directions of the associated endpoint. To clear the stall condition: 1. Clear the associated USB_ENDPTn[EPSTALL] bit. 2. Write the BDT to clear OWN and BDT_STALL.
TOK_PID[n]	Bits [5:2] can also represent the current token PID. The current token PID is written back in to the BD by USBFS when a transfer completes. The values written back are the token PID values from the USB specification: • 0x1h for an OUT token. • 0x9h for an IN token. • 0xDh for a SETUP token.
	In host mode, this field is used to report the last returned PID or a transfer status indication. The possible values returned are:
	 0x3h DATA0 0xBh DATA1 0x2h ACK 0xEh STALL 0xAh NAK 0x0h Bus Timeout 0xFh Data Error
1–0	Reserved, should read as zeroes.
Reserved	
ADDR[31:0]	Address
	Represents the 32-bit buffer address in system memory. These bits are unchanged by USBFS.

43.3.5 USB transaction

When USBFS transmits or receives data, it computes the BDT address using the address generation shown in "Addressing Buffer Descriptor Entries" table.

If OWN =1, the following process occurs:

- 1. USBFS reads the BDT.
- 2. The SIE transfers the data via the DMA to or from the buffer pointed to by the ADDR field of the BD.

Programmers interface

- 3. When the TOKEN is complete, USBFS updates the BDT and, if KEEP=0, changes the OWN bit to 0.
- 4. The STAT register is updated and the TOK_DNE interrupt is set.
- 5. When the processor processes the TOK_DNE interrupt, it reads from the status register all the information needed to process the endpoint.
- 6. At this point, the processor allocates a new BD so that additional USB data can be transmitted or received for that endpoint, and then processes the last BD.

The following figure shows a timeline of how a typical USB token is processed after the BDT is read and OWN=1.

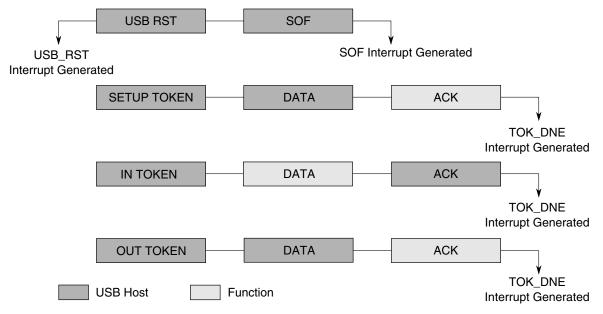


Figure 43-4. USB token transaction

The USB has two sources for the DMA overrun error:

Memory Latency

The memory latency may be too high and cause the receive FIFO to overflow. This is predominantly a hardware performance issue, usually caused by transient memory access issues.

Oversized Packets

The packet received may be larger than the negotiated *MaxPacket* size. Typically, this is caused by a software bug. For DMA overrun errors due to oversized data packets, the USB specification is ambiguous. It assumes correct software drivers on both sides. NAKing the packet can result in retransmission of the already oversized packet data. Therefore, in response to oversized packets, the USB core continues ACKing the packet for non-isochronous transfers.

Table 43-6. USB responses to DMA overrun errors

Errors due to Memory Latency	Errors due to Oversized Packets
Non-Acknowledgment (NAK) or Bus Timeout (BTO) — See bit 4 in "Error Interrupt Status Register (ERRSTAT)" as appropriate for the class of transaction.	Continues acknowledging (ACKing) the packet for non-isochronous transfers.
_	The data written to memory is clipped to the MaxPacket size so as not to corrupt system memory.
The DMAERR bit is set in the ERRSTAT register for host and device modes of operation. Depending on the values of the INTENB and ERRENB register, the core may assert an interrupt to notify the processor of the DMA error.	Asserts ERRSTAT[DMAERR] ,which can trigger an interrupt and TOKDNE interrupt fires. Note: The TOK_PID field of the BDT is not 1111 because the DMAERR is not due to latency.
 For host mode, the TOKDNE interrupt is generated and the TOK_PID field of the BDT is 1111 to indicate the DMA latency error. Host mode software can decide to retry or move to next scheduled item. In device mode, the BDT is not written back nor is the TOKDNE interrupt triggered because it is assumed that a second attempt is queued and will succeed in the future. 	The packet length field written back to the BDT is the MaxPacket value that represents the length of the clipped data actually written to memory.

From here, the software can decide an appropriate course of action for future transactions such as stalling the endpoint, canceling the transfer, disabling the endpoint, etc.

43.4 Memory map/Register definitions

This section provides the memory map and detailed descriptions of all USB interface registers.

USB memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_2000	Peripheral ID register (USB0_PERID)	8	R	04h	43.4.1/1069
4007_2004	Peripheral ID Complement register (USB0_IDCOMP)	8	R	FBh	43.4.2/1070
4007_2008	Peripheral Revision register (USB0_REV)	8	R	33h	43.4.3/1070
4007_200C	Peripheral Additional Info register (USB0_ADDINFO)	8	R	01h	43.4.4/1071
4007_2010	OTG Interrupt Status register (USB0_OTGISTAT)	8	R/W	00h	43.4.5/1071
4007_2014	OTG Interrupt Control register (USB0_OTGICR)	8	R/W	00h	43.4.6/1072
4007_2018	OTG Status register (USB0_OTGSTAT)	8	R/W	00h	43.4.7/1073
4007_201C	OTG Control register (USB0_OTGCTL)	8	R/W	00h	43.4.8/1074
4007_2080	Interrupt Status register (USB0_ISTAT)	8	R/W	00h	43.4.9/1075
4007_2084	Interrupt Enable register (USB0_INTEN)	8	R/W	00h	43.4.10/ 1076
4007_2088	Error Interrupt Status register (USB0_ERRSTAT)	8	R/W	00h	43.4.11/ 1077

USB memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_208C	Error Interrupt Enable register (USB0_ERREN)	8	R/W	00h	43.4.12/ 1078
4007_2090	Status register (USB0_STAT)	8	R	00h	43.4.13/ 1080
4007_2094	Control register (USB0_CTL)	8	R/W	00h	43.4.14/ 1081
4007_2098	Address register (USB0_ADDR)	8	R/W	00h	43.4.15/ 1082
4007_209C	BDT Page register 1 (USB0_BDTPAGE1)	8	R/W	00h	43.4.16/ 1083
4007_20A0	Frame Number register Low (USB0_FRMNUML)	8	R/W	00h	43.4.17/ 1083
4007_20A4	Frame Number register High (USB0_FRMNUMH)	8	R/W	00h	43.4.18/ 1084
4007_20A8	Token register (USB0_TOKEN)	8	R/W	00h	43.4.19/ 1084
4007_20AC	SOF Threshold register (USB0_SOFTHLD)	8	R/W	00h	43.4.20/ 1085
4007_20B0	BDT Page Register 2 (USB0_BDTPAGE2)	8	R/W	00h	43.4.21/ 1086
4007_20B4	BDT Page Register 3 (USB0_BDTPAGE3)	8	R/W	00h	43.4.22/ 1086
4007_20C0	Endpoint Control register (USB0_ENDPT0)	8	R/W	00h	43.4.23/ 1087
4007_20C4	Endpoint Control register (USB0_ENDPT1)	8	R/W	00h	43.4.23/ 1087
4007_20C8	Endpoint Control register (USB0_ENDPT2)	8	R/W	00h	43.4.23/ 1087
4007_20CC	Endpoint Control register (USB0_ENDPT3)	8	R/W	00h	43.4.23/ 1087
4007_20D0	Endpoint Control register (USB0_ENDPT4)	8	R/W	00h	43.4.23/ 1087
4007_20D4	Endpoint Control register (USB0_ENDPT5)	8	R/W	00h	43.4.23/ 1087
4007_20D8	Endpoint Control register (USB0_ENDPT6)	8	R/W	00h	43.4.23/ 1087
4007_20DC	Endpoint Control register (USB0_ENDPT7)	8	R/W	00h	43.4.23/ 1087
4007_20E0	Endpoint Control register (USB0_ENDPT8)	8	R/W	00h	43.4.23/ 1087
4007_20E4	Endpoint Control register (USB0_ENDPT9)	8	R/W	00h	43.4.23/ 1087
4007_20E8	Endpoint Control register (USB0_ENDPT10)	8	R/W	00h	43.4.23/ 1087

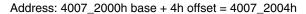

USB memory map (continued)

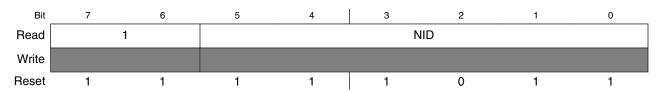
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_20EC	Endpoint Control register (USB0_ENDPT11)	8	R/W	00h	43.4.23/ 1087
4007_20F0	Endpoint Control register (USB0_ENDPT12)	8	R/W	00h	43.4.23/ 1087
4007_20F4	Endpoint Control register (USB0_ENDPT13)	8	R/W	00h	43.4.23/ 1087
4007_20F8	Endpoint Control register (USB0_ENDPT14)	8	R/W	00h	43.4.23/ 1087
4007_20FC	Endpoint Control register (USB0_ENDPT15)	8	R/W	00h	43.4.23/ 1087
4007_2100	USB Control register (USB0_USBCTRL)	8	R/W	C0h	43.4.24/ 1088
4007_2104	USB OTG Observe register (USB0_OBSERVE)	8	R	50h	43.4.25/ 1089
4007_2108	USB OTG Control register (USB0_CONTROL)	8	R/W	00h	43.4.26/ 1089
4007_210C	USB Transceiver Control register 0 (USB0_USBTRC0)	8	R/W	00h	43.4.27/ 1090
4007_2114	Frame Adjust Register (USB0_USBFRMADJUST)	8	R/W	00h	43.4.28/ 1091
4007_2140	USB Clock recovery control (USB0_CLK_RECOVER_CTRL)	8	R/W	00h	43.4.29/ 1092
4007_2144	IRC48M oscillator enable register (USB0_CLK_RECOVER_IRC_EN)	8	R/W	01h	43.4.30/ 1093
4007_2154	Clock recovery combined interrupt enable (USB0_CLK_RECOVER_INT_EN)	8	R/W	10h	43.4.31/ 1094
4007_215C	Clock recovery separated interrupt status (USB0_CLK_RECOVER_INT_STATUS)	8	w1c	00h	43.4.32/ 1094

43.4.1 Peripheral ID register (USBx_PERID)

Reads back the value of 0x04. This value is defined for the USB peripheral.

Address: 4007_2000h base + 0h offset = 4007_2000h

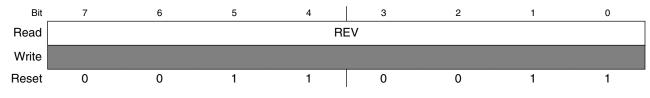



USBx_PERID field descriptions

Field	Description
7–6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5–0	Peripheral Identification
ID	This field always reads 0x4h.

43.4.2 Peripheral ID Complement register (USBx_IDCOMP)

Reads back the complement of the Peripheral ID register. For the USB peripheral, the value is 0xFB.

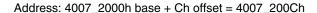

USBx_IDCOMP field descriptions

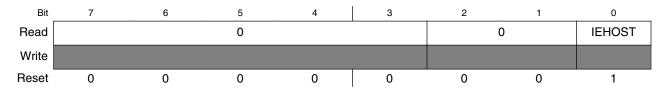
Field	Description
7–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
5–0 NID	Ones' complement of PERID[ID]. bits.

43.4.3 Peripheral Revision register (USBx_REV)

Contains the revision number of the USB module.

Address: 4007_2000h base + 8h offset = 4007_2008h

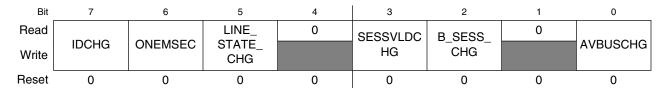



USBx_REV field descriptions

Field	Description
7–0 REV	Revision
	Indicates the revision number of the USB Core.

43.4.4 Peripheral Additional Info register (USBx_ADDINFO)

Reads back the value of the Host Enable bit.


USBx_ADDINFO field descriptions

Field	Description
7–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 IEHOST	This bit is set if host mode is enabled.

43.4.5 OTG Interrupt Status register (USBx_OTGISTAT)

Records changes of the ID sense and VBUS signals. Software can read this register to determine the event that triggers an interrupt. Only bits that have changed since the last software read are set. Writing a one to a bit clears the associated interrupt.

Address: 4007_2000h base + 10h offset = 4007_2010h

USBx OTGISTAT field descriptions

Field	Description
7 IDCHG	This bit is set when a change in the ID Signal from the USB connector is sensed.
6 ONEMSEC	This bit is set when the 1 millisecond timer expires. This bit stays asserted until cleared by software. The interrupt must be serviced every millisecond to avoid losing 1msec counts.

USBx_OTGISTAT field descriptions (continued)

Field	Description
5 LINE_STATE_ CHG	This interrupt is set when the USB line state (CTL[SE0] and CTL[JSTATE] bits) are stable without change for 1 millisecond, and the value of the line state is different from the last time when the line state was stable. It is set on transitions between SE0 and J-state, SE0 and K-state, and J-state and K-state. Changes in J-state while SE0 is true do not cause an interrupt. This interrupt can be used in detecting Reset, Resume, Connect, and Data Line Pulse signaling.
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 SESSVLDCHG	This bit is set when a change in VBUS is detected indicating a session valid or a session no longer valid.
2 B_SESS_CHG	This bit is set when a change in VBUS is detected on a B device.
1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0 AVBUSCHG	This bit is set when a change in VBUS is detected on an A device.

43.4.6 OTG Interrupt Control register (USBx_OTGICR)

Enables the corresponding interrupt status bits defined in the OTG Interrupt Status Register.

Address: 4007_2000h base + 14h offset = 4007_2014h

USBx_OTGICR field descriptions

Field	Description
7	ID Interrupt Enable
IDEN	
	0 The ID interrupt is disabled
	1 The ID interrupt is enabled
6	One Millisecond Interrupt Enable
ONEMSECEN	
	0 Diables the 1ms timer interrupt.
	1 Enables the 1ms timer interrupt.
5	Line State Change Interrupt Enable
LINESTATEEN	
	0 Disables the LINE_STAT_CHG interrupt.
	1 Enables the LINE_STAT_CHG interrupt.
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

USBx_OTGICR field descriptions (continued)

Field	Description			
3 SESSVLDEN	Session Valid Interrupt Enable			
	0 Disables the SESSVLDCHG interrupt.			
	1 Enables the SESSVLDCHG interrupt.			
2 BSESSEN	B Session END Interrupt Enable			
	0 Disables the B_SESS_CHG interrupt.			
	1 Enables the B_SESS_CHG interrupt.			
1	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
0 AVBUSEN	A VBUS Valid Interrupt Enable			
	0 Disables the AVBUSCHG interrupt.			
	1 Enables the AVBUSCHG interrupt.			

43.4.7 OTG Status register (USBx_OTGSTAT)

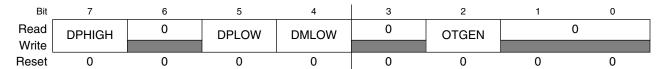
Displays the actual value from the external comparator outputs of the ID pin and VBUS.

Address: 4007_2000h base + 18h offset = 4007_2018h

Bit	7	6	5	4
Read Write	ID	ONEMSECEN	LINESTATESTABLE	0
Reset	0	0	0	0
Bit	3	2	1	0
Read Write	SESS_VLD	BSESSEND	0	AVBUSVLD
Reset	0	0	0	0

USBx_OTGSTAT field descriptions

Field	Description
7	Indicates the current state of the ID pin on the USB connector
ID	0 Indicates a Type A cable is plugged into the USB connector.
	1 Indicates no cable is attached or a Type B cable is plugged into the USB connector.
6 ONEMSECEN	This bit is reserved for the 1ms count, but it is not useful to software.
5 LINESTATESTABLE	Indicates that the internal signals that control the LINE_STATE_CHG field of OTGISTAT are stable for at least 1 ms. This bit is used to provide a hardware debounce of the linestate in detection of Connect, Disconnect and Resume signaling. First read LINE_STATE_CHG field and then read this field. If this field reads as 1, then the value of LINE_STATE_CHG can be considered stable.
	0 The LINE_STAT_CHG bit is not yet stable.1 The LINE_STAT_CHG bit has been debounced and is stable.


USBx_OTGSTAT field descriptions (continued)

Field	Description			
4	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
3	Session Valid			
SESS_VLD				
	0 The VBUS voltage is below the B session valid threshold			
	1 The VBUS voltage is above the B session valid threshold.			
2	B Session End			
BSESSEND				
	0 The VBUS voltage is above the B session end threshold.			
	1 The VBUS voltage is below the B session end threshold.			
1	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
0	A VBUS Valid			
AVBUSVLD				
	0 The VBUS voltage is below the A VBUS Valid threshold.			
	1 The VBUS voltage is above the A VBUS Valid threshold.			

43.4.8 OTG Control register (USBx_OTGCTL)

Controls the operation of VBUS and Data Line termination resistors.

Address: 4007_2000h base + 1Ch offset = 4007_201Ch

USBx_OTGCTL field descriptions

Field	Description
7	D+ Data Line pullup resistor enable
DPHIGH	0 D+ pullup resistor is not enabled
	1 D+ pullup resistor is enabled
6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5	D+ Data Line pull-down resistor enable
DPLOW	This bit should always be enabled together with bit 4 (DMLOW)
	0 D+ pulldown resistor is not enabled.
	1 D+ pulldown resistor is enabled.
4	D- Data Line pull-down resistor enable
DMLOW	
	0 D- pulldown resistor is not enabled.
	1 D- pulldown resistor is enabled.

USBx_OTGCTL field descriptions (continued)

Field	Description
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 OTGEN	On-The-Go pullup/pulldown resistor enable If USB_EN is 1 and HOST_MODE is 0 in the Control Register (CTL), then the D+ Data Line pull-up resistors are enabled. If HOST_MODE is 1 the D+ and D- Data Line pull-down resistors are engaged. The pull-up and pull-down controls in this register are used.
1–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

43.4.9 Interrupt Status register (USBx_ISTAT)

Contains fields for each of the interrupt sources within the USB Module. Each of these fields are qualified with their respective interrupt enable bits. All fields of this register are logically OR'd together along with the OTG Interrupt Status Register (OTGSTAT) to form a single interrupt source for the processor's interrupt controller. After an interrupt bit has been set it may only be cleared by writing a one to the respective interrupt bit. This register contains the value of 0x00 after a reset.

Address: 4007_2000h base + 80h offset = 4007_2080h

Bit	7	6	5	4	3	2	1	0
Read	STALL	ATTACH	RESUME	SLEEP	TOKDNE	SOFTOK	ERROR	USBRST
Write	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0

USBx_ISTAT field descriptions

Field	Description			
7	Stall Interrupt			
STALL	In Target mode this bit is asserted when a STALL handshake is sent by the SIE.			
	In Host mode this bit is set when the USB Module detects a STALL acknowledge during the handshake phase of a USB transaction. This interrupt can be used to determine whether the last USB transaction was completed successfully or stalled.			
6	Attach Interrupt			
ATTACH	This field is set when the USB Module detects an attach of a USB device. This field is only valid if CTL[HOSTMODEEN]=1. This interrupt signifies that a peripheral is now present and must be configured; it is asserted if there have been no transitions on the USB for 2.5 µs and the current bus state is not SE0."			
	0 No Attach is detected since the last time the ATTACH bit was cleared.			
	1 A peripheral is now present and must be configured (a stable non-SE0 state is detected for more than 2.5 μs).			

USBx_ISTAT field descriptions (continued)

Field	Description
5 RESUME	This bit is set when a K-state is observed on the DP/DM signals for 2.5 μ s. When not in suspend mode this interrupt must be disabled.
4 SLEEP	This bit is set when the USB Module detects a constant idle on the USB bus for 3 ms. The sleep timer is reset by activity on the USB bus.
3 TOKDNE	This bit is set when the current token being processed has completed. The processor must immediately read the STATUS (STAT) register to determine the EndPoint and BD used for this token. Clearing this bit (by writing a one) causes STAT to be cleared or the STAT holding register to be loaded into the STAT register.
2	This bit is set when the USB Module receives a Start Of Frame (SOF) token.
SOFTOK	In Host mode this field is set when the SOF threshold is reached, so that software can prepare for the next SOF.
1 ERROR	This bit is set when any of the error conditions within Error Interrupt Status (ERRSTAT) register occur. The processor must then read the ERRSTAT register to determine the source of the error.
0 USBRST	This bit is set when the USB Module has decoded a valid USB reset. This informs the processor that it should write 0x00 into the address register and enable endpoint 0. USBRST is set after a USB reset has been detected for 2.5 microseconds. It is not asserted again until the USB reset condition has been removed and then reasserted.

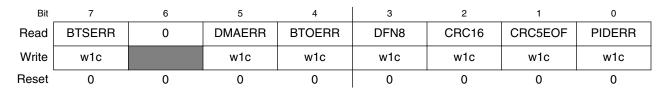
43.4.10 Interrupt Enable register (USBx_INTEN)

Contains enable fields for each of the interrupt sources within the USB Module. Setting any of these bits enables the respective interrupt source in the ISTAT register. This register contains the value of 0x00 after a reset.

Address: 4007_2000h base + 84h offset = 4007_2084h

USBx_INTEN field descriptions

Field	Description
7	STALL Interrupt Enable
STALLEN	
	0 Diasbles the STALL interrupt.
	1 Enables the STALL interrupt.
6	ATTACH Interrupt Enable
ATTACHEN	
	0 Disables the ATTACH interrupt.
	1 Enables the ATTACH interrupt.
5	RESUME Interrupt Enable
RESUMEEN	
	0 Disables the RESUME interrupt.
	1 Enables the RESUME interrupt.


USBx_INTEN field descriptions (continued)

Field	Description
4 SLEEPEN	SLEEP Interrupt Enable
	0 Disables the SLEEP interrupt.
	1 Enables the SLEEP interrupt.
3 TOKDNEEN	TOKDNE Interrupt Enable
	0 Disables the TOKDNE interrupt.
	1 Enables the TOKDNE interrupt.
2 SOFTOKEN	SOFTOK Interrupt Enable
	0 Disbles the SOFTOK interrupt.
	1 Enables the SOFTOK interrupt.
1 ERROREN	ERROR Interrupt Enable
	0 Disables the ERROR interrupt.
	1 Enables the ERROR interrupt.
0 USBRSTEN	USBRST Interrupt Enable
	0 Disables the USBRST interrupt.
	1 Enables the USBRST interrupt.

43.4.11 Error Interrupt Status register (USBx_ERRSTAT)

Contains enable bits for each of the error sources within the USB Module. Each of these bits are qualified with their respective error enable bits. All bits of this register are logically OR'd together and the result placed in the ERROR bit of the ISTAT register. After an interrupt bit has been set it may only be cleared by writing a one to the respective interrupt bit. Each bit is set as soon as the error condition is detected. Therefore, the interrupt does not typically correspond with the end of a token being processed. This register contains the value of 0x00 after a reset.

Address: 4007_2000h base + 88h offset = 4007_2088h

USBx_ERRSTAT field descriptions

Field	Description
7	This bit is set when a bit stuff error is detected. If set, the corresponding packet is rejected due to the error.
BTSERR	

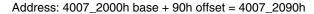
USBx_ERRSTAT field descriptions (continued)

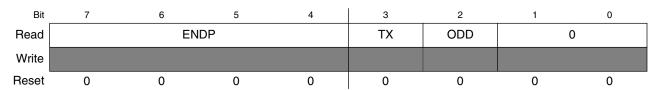
Field	Description
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 DMAERR	This bit is set if the USB Module has requested a DMA access to read a new BDT but has not been given the bus before it needs to receive or transmit data. If processing a TX transfer this would cause a transmit data underflow condition. If processing a RX transfer this would cause a receive data overflow condition. This interrupt is useful when developing device arbitration hardware for the microprocessor and the USB module to minimize bus request and bus grant latency. This bit is also set if a data packet to or from the host is larger than the buffer size allocated in the BDT. In this case the data packet is truncated as it is put in buffer memory.
4 BTOERR	This bit is set when a bus turnaround timeout error occurs. The USB module contains a bus turnaround timer that keeps track of the amount of time elapsed between the token and data phases of a SETUP or OUT TOKEN or the data and handshake phases of a IN TOKEN. If more than 16 bit times are counted from the previous EOP before a transition from IDLE, a bus turnaround timeout error occurs.
3 DFN8	This bit is set if the data field received was not 8 bits in length. USB Specification 1.0 requires that data fields be an integral number of bytes. If the data field was not an integral number of bytes, this bit is set.
2 CRC16	This bit is set when a data packet is rejected due to a CRC16 error.
1 CRC5EOF	This error interrupt has two functions. When the USB Module is operating in peripheral mode (HOSTMODEEN=0), this interrupt detects CRC5 errors in the token packets generated by the host. If set the token packet was rejected due to a CRC5 error.
	When the USB Module is operating in host mode (HOSTMODEEN=1), this interrupt detects End Of Frame (EOF) error conditions. This occurs when the USB Module is transmitting or receiving data and the SOF counter reaches zero. This interrupt is useful when developing USB packet scheduling software to ensure that no USB transactions cross the start of the next frame.
0 PIDERR	This bit is set when the PID check field fails.

43.4.12 Error Interrupt Enable register (USBx_ERREN)

Contains enable bits for each of the error interrupt sources within the USB module. Setting any of these bits enables the respective interrupt source in ERRSTAT. Each bit is set as soon as the error condition is detected. Therefore, the interrupt does not typically correspond with the end of a token being processed. This register contains the value of 0x00 after a reset.

Address: 4007_2000h base + 8Ch offset = 4007_208Ch


Chapter 43 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)


USBx_ERREN field descriptions

Field	Description
7	BTSERR Interrupt Enable
BTSERREN	0 Disables the BTSERR interrupt.
	1 Enables the BTSERR interrupt.
6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5 DMAERREN	DMAERR Interrupt Enable
	0 Disables the DMAERR interrupt.
	1 Enables the DMAERR interrupt.
4 BTOERREN	BTOERR Interrupt Enable
	0 Disables the BTOERR interrupt.
	1 Enables the BTOERR interrupt.
3 DFN8EN	DFN8 Interrupt Enable
	0 Disables the DFN8 interrupt.
	1 Enables the DFN8 interrupt.
2 CRC16EN	CRC16 Interrupt Enable
011010211	0 Disables the CRC16 interrupt.
	1 Enables the CRC16 interrupt.
1 CRC5EOFEN	CRC5/EOF Interrupt Enable
	0 Disables the CRC5/EOF interrupt.
	1 Enables the CRC5/EOF interrupt.
0 PIDERREN	PIDERR Interrupt Enable
	0 Disables the PIDERR interrupt.
	1 Enters the PIDERR interrupt.

43.4.13 Status register (USBx_STAT)

Reports the transaction status within the USB module. When the processor's interrupt controller has received a TOKDNE, interrupt the Status Register must be read to determine the status of the previous endpoint communication. The data in the status register is valid when TOKDNE interrupt is asserted. The Status register is actually a read window into a status FIFO maintained by the USB module. When the USB module uses a BD, it updates the Status register. If another USB transaction is performed before the TOKDNE interrupt is serviced, the USB module stores the status of the next transaction in the STAT FIFO. Thus STAT is actually a four byte FIFO that allows the processor core to process one transaction while the SIE is processing the next transaction. Clearing the TOKDNE bit in the ISTAT register causes the SIE to update STAT with the contents of the next STAT value. If the data in the STAT holding register is valid, the SIE immediately reasserts to TOKDNE interrupt.

USBx_STAT field descriptions

Field	Description
7–4 ENDP	This four-bit field encodes the endpoint address that received or transmitted the previous token. This allows the processor core to determine the BDT entry that was updated by the last USB transaction.
3 TX	Transmit Indicator O The most recent transaction was a receive operation. The most recent transaction was a transmit operation.
2 ODD	This bit is set if the last buffer descriptor updated was in the odd bank of the BDT.
1–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

43.4.14 Control register (USBx_CTL)

Provides various control and configuration information for the USB module.

Address: 4007_2000h base + 94h offset = 4007_2094h

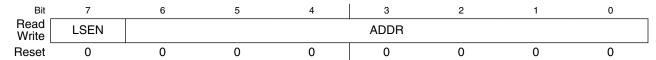
Bit	7	6	5	4
Read Write JSTATE		SE0	SE0 TXSUSPENDTOKENB USY	
Reset	0	0	0	0
Bit 3		2	1	0
Read Write	HOSTMODEEN	RESUME	ODDRST	USBENSOFEN
Reset	0	0	0	0

USBx_CTL field descriptions

Field	Description			
7 JSTATE	Live USB differential receiver JSTATE signal			
JSTATE	The polarity of this signal is affected by the current state of LSEN.			
6 SE0	Live USB Single Ended Zero signal			
5 TXSUSPENDTOKENBUSY	In Host mode, TOKEN_BUSY is set when the USB module is busy executing a USB token. Software must not write more token commands to the Token Register when TOKEN_BUSY is set. Software should check this field before writing any tokens to the Token Register to ensure that token commands are not lost.			
	In Target mode, TXD_SUSPEND is set when the SIE has disabled packet transmission and reception. Clearing this bit allows the SIE to continue token processing. This bit is set by the SIE when a SETUP Token is received allowing software to dequeue any pending packet transactions in the BDT before resuming token processing.			
4 RESET	Setting this bit enables the USB Module to generate USB reset signaling. This allows the USB Module to reset USB peripherals. This control signal is only valid in Host mode (HOSTMODEEN=1). Software must set RESET to 1 for the required amount of time and then clear it to 0 to end reset signaling. For more information on reset signaling see Section 7.1.4.3 of the USB specification version 1.0.			
3 HOSTMODEEN	When set to 1, this bit enables the USB Module to operate in Host mode. In host mode, the USB module performs USB transactions under the programmed control of the host processor.			
2 RESUME	When set to 1 this bit enables the USB Module to execute resume signaling. This allows the USB Module to perform remote wake-up. Software must set RESUME to 1 for the required amount of time and then clear it to 0. If the HOSTMODEEN bit is set, the USB module appends a Low Speed End of Packet to the Resume signaling when the RESUME bit is cleared. For more information on RESUME signaling see Section 7.1.4.5 of the USB specification version 1.0.			
1 ODDRST	Setting this bit to 1 resets all the BDT ODD ping/pong fields to 0, which then specifies the EVEN BDT bank.			
0 USBENSOFEN	USB Enable Setting this bit enables the USB-FS to operate; clearing it disables the USB-FS. Setting the bit causes the SIE to reset all of its ODD bits to the BDTs. Therefore, setting this bit resets much of the logic in the SIE.			

Table continues on the next page...

Memory map/Register definitions

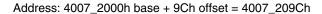

USBx_CTL field descriptions (continued)

Field	Description	
	When host mode is enabled, clearing this bit causes the SIE to stop sending SOF tokens.	
	0 Disables the USB Module.	
	1 Enables the USB Module.	

43.4.15 Address register (USBx_ADDR)

Holds the unique USB address that the USB module decodes when in Peripheral mode (HOSTMODEEN=0). When operating in Host mode (HOSTMODEEN=1) the USB module transmits this address with a TOKEN packet. This enables the USB module to uniquely address any USB peripheral. In either mode, CTL[USBENSOFEN] must be 1. The Address register is reset to 0x00 after the reset input becomes active or the USB module decodes a USB reset signal. This action initializes the Address register to decode address 0x00 as required by the USB specification.

Address: 4007_2000h base + 98h offset = 4007_2098h

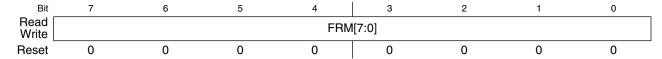


USBx_ADDR field descriptions

Field	Description	
7 LSEN	Low Speed Enable bit	
	Informs the USB module that the next token command written to the token register must be performed at low speed. This enables the USB module to perform the necessary preamble required for low-speed data transmissions.	
6–0 ADDR	USB Address	
	Defines the USB address that the USB module decodes in peripheral mode, or transmits when in host mode.	

43.4.16 BDT Page register 1 (USBx_BDTPAGE1)

Provides address bits 15 through 9 of the base address where the current Buffer Descriptor Table (BDT) resides in system memory. See Buffer Descriptor Table. The 32-bit BDT Base Address is always aligned on 512-byte boundaries, so bits 8 through 0 of the base address are always zero.

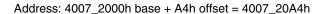

USBx_BDTPAGE1 field descriptions

Field	Description
7–1 BDTBA	Provides address bits 15 through 9 of the BDT base address.
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

43.4.17 Frame Number register Low (USBx_FRMNUML)

The Frame Number registers (low and high) contain the 11-bit frame number. These registers are updated with the current frame number whenever a SOF TOKEN is received.

Address: 4007_2000h base + A0h offset = 4007_20A0h



USBx_FRMNUML field descriptions

Field	Description
7–0	This 8-bit field and the 3-bit field in the Frame Number Register High are used to compute the address
FRM[7:0]	where the current Buffer Descriptor Table (BDT) resides in system memory.

43.4.18 Frame Number register High (USBx_FRMNUMH)

The Frame Number registers (low and high) contain the 11-bit frame number. These registers are updated with the current frame number whenever a SOF TOKEN is received.

USBx_FRMNUMH field descriptions

Field	Description
7–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
	This 3-bit field and the 8-bit field in the Frame Number Register Low are used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory.

43.4.19 Token register (USBx_TOKEN)

Used to initiate USB transactions when in host mode (HOSTMODEEN=1). When the software needs to execute a USB transaction to a peripheral, it writes the TOKEN type and endpoint to this register. After this register has been written, the USB module begins the specified USB transaction to the address contained in the address register. The processor core must always check that the TOKEN_BUSY bit in the control register is not 1 before writing to the Token Register. This ensures that the token commands are not overwritten before they can be executed. The address register and endpoint control register 0 are also used when performing a token command and therefore must also be written before the Token Register. The address register is used to select the USB peripheral address transmitted by the token command. The endpoint control register determines the handshake and retry policies used during the transfer.

Address: 4007_2000h base + A8h offset = 4007_20A8h

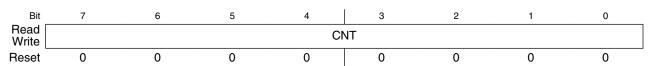
Bit	7	6	5	4	3	2	1	0
Read Write		TOKE	NPID			TOKEN	ENDPT	
Reset	0	0	0	0	0	0	0	0

USBx_TOKEN field descriptions

Field	Description			
7–4 TOKENPID	Contains the token type executed by the USB module.			
	0001 OUT Token. USB Module performs an OUT (TX) transaction.			
	1001 IN Token. USB Module performs an In (RX) transaction.			
	1101 SETUP Token. USB Module performs a SETUP (TX) transaction			
3–0 TOKENENDPT	Holds the Endpoint address for the token command. The four bit value written must be a valid endpoint.			

43.4.20 SOF Threshold register (USBx_SOFTHLD)

The SOF Threshold Register is used only in Host mode (HOSTMODEEN=1). When in Host mode, the 14-bit SOF counter counts the interval between SOF frames. The SOF must be transmitted every 1ms so therefore the SOF counter is loaded with a value of 12000. When the SOF counter reaches zero, a Start Of Frame (SOF) token is transmitted.

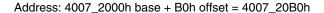

The SOF threshold register is used to program the number of USB byte times before the SOF to stop initiating token packet transactions. This register must be set to a value that ensures that other packets are not actively being transmitted when the SOF time counts to zero. When the SOF counter reaches the threshold value, no more tokens are transmitted until after the SOF has been transmitted.

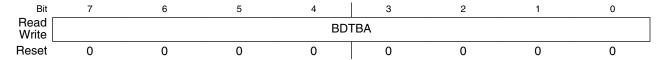
The value programmed into the threshold register must reserve enough time to ensure the worst case transaction completes. In general the worst case transaction is an IN token followed by a data packet from the target followed by the response from the host. The actual time required is a function of the maximum packet size on the bus.

Typical values for the SOF threshold are:

- 64-byte packets=74;
- 32-byte packets=42;
- 16-byte packets=26;
- 8-byte packets=18.

Address: 4007_2000h base + ACh offset = 4007_20ACh




USBx SOFTHLD field descriptions

Field	Description
7–0 CNT	Represents the SOF count threshold in byte times.

43.4.21 BDT Page Register 2 (USBx_BDTPAGE2)

Contains an 8-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. See Buffer Descriptor Table.

USBx_BDTPAGE2 field descriptions

Field	Description
7–0	Provides address bits 23 through 16 of the BDT base address that defines the location of Buffer Descriptor
BDTBA	Table resides in system memory.

43.4.22 BDT Page Register 3 (USBx_BDTPAGE3)

Contains an 8-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. See Buffer Descriptor Table.

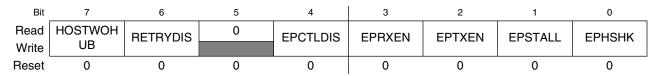
Address: 4007_2000h base + B4h offset = 4007_20B4h

USBx_BDTPAGE3 field descriptions

Field	Description
7–0 BDTBA	Provides address bits 31 through 24 of the BDT base address that defines the location of Buffer Descriptor Table resides in system memory.

43.4.23 Endpoint Control register (USBx_ENDPTn)

Contains the endpoint control bits for each of the 16 endpoints available within the USB module for a decoded address. The format for these registers is shown in the following figure. Endpoint 0 (ENDPT0) is associated with control pipe 0, which is required for all USB functions. Therefore, after a USBRST interrupt occurs the processor core should set ENDPT0 to contain 0x0D.


In Host mode ENDPT0 is used to determine the handshake, retry and low speed characteristics of the host transfer. For Control, Bulk and Interrupt transfers, the EPHSHK bit should be 1. For Isochronous transfers it should be 0. Common values to use for ENDPT0 in host mode are 0x4D for Control, Bulk, and Interrupt transfers, and 0x4C for Isochronous transfers.

The three bits EPCTLDIS, EPRXEN, and EPTXEN define if an endpoint is enabled and define the direction of the endpoint. The endpoint enable/direction control is defined in the following table.

EPCTLDIS EPRXEN EPTXEN Endpoint enable/direction control Х 0 Disable endpoint Х 0 Enable endpoint for Tx transfers only Х 1 0 Enable endpoint for Rx transfers only 1 1 1 Enable endpoint for Rx and Tx transfers 0 1 1 Enable Endpoint for RX and TX as well as control (SETUP) transfers.

Table 43-97. Endpoint enable and direction control

Address: 4007_2000h base + C0h offset + $(4d \times i)$, where i=0d to 15d

USBx_ENDPTn field descriptions

Field	Description
7	Host without a hub This is a Host mode only field and is present in the control register for endpoint 0
HOSTWOHUB	(ENDPT0) only.

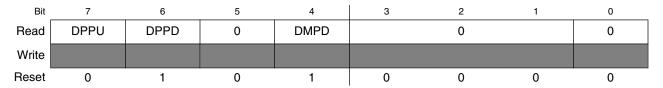
Table continues on the next page...

USBx_ENDPT*n* field descriptions (continued)

Field	Description
	Low-speed device connected to Host through a hub. PRE_PID will be generated as required.
	1 Low-speed device directly connected. No hub, or no low-speed device attached.
6 RETRYDIS	This is a Host mode only bit and is present in the control register for endpoint 0 (ENDPT0) only. When set this bit causes the host to not retry NAK'ed (Negative Acknowledgement) transactions. When a transaction is NAKed, the BDT PID field is updated with the NAK PID, and the TOKEN_DNE interrupt is set. When this bit is cleared, NAKed transactions are retried in hardware. This bit must be set when the host is attempting to poll an interrupt endpoint.
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 EPCTLDIS	This bit, when set, disables control (SETUP) transfers. When cleared, control transfers are enabled. This applies if and only if the EPRXEN and EPTXEN bits are also set. See Table 43-31
3 EPRXEN	This bit, when set, enables the endpoint for RX transfers. See Table 43-31
2 EPTXEN	This bit, when set, enables the endpoint for TX transfers. See Table 43-31
1 EPSTALL	When set this bit indicates that the endpoint is called. This bit has priority over all other control bits in the EndPoint Enable Register, but it is only valid if EPTXEN=1 or EPRXEN=1. Any access to this endpoint causes the USB Module to return a STALL handshake. After an endpoint is stalled it requires intervention from the Host Controller.
0 EPHSHK	When set this bit enables an endpoint to perform handshaking during a transaction to this endpoint. This bit is generally 1 unless the endpoint is Isochronous.

43.4.24 USB Control register (USBx_USBCTRL)

Address: 4007_2000h base + 100h offset = 4007_2100h

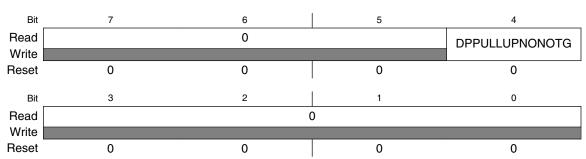

USBx_USBCTRL field descriptions

Field	Description
7 SUSP	Places the USB transceiver into the suspend state.
	0 USB transceiver is not in suspend state.
	1 USB transceiver is in suspend state.
6 PDE	Enables the weak pulldowns on the USB transceiver.
	0 Weak pulldowns are disabled on D+ and D
	1 Weak pulldowns are enabled on D+ and D
5–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

43.4.25 USB OTG Observe register (USBx_OBSERVE)

Provides visibility on the state of the pull-ups and pull-downs at the transceiver. Useful when interfacing to an external OTG control module via a serial interface.

Address: 4007_2000h base + 104h offset = 4007_2104h



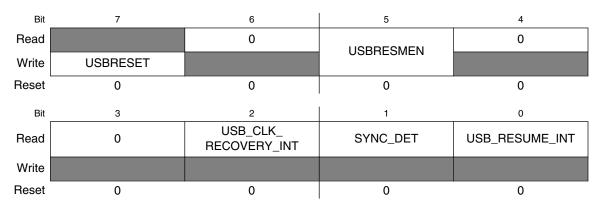
USBx_OBSERVE field descriptions

Field	Description
7 DPPU	Provides observability of the D+ Pullup enable at the USB transceiver.
_	0 D+ pullup disabled.
	1 D+ pullup enabled.
6 DPPD	Provides observability of the D+ Pulldown enable at the USB transceiver.
	0 D+ pulldown disabled.
	1 D+ pulldown enabled.
5	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
4 DMPD	Provides observability of the D- Pulldown enable at the USB transceiver.
	0 D– pulldown disabled.
	1 D- pulldown enabled.
3–1	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

43.4.26 USB OTG Control register (USBx_CONTROL)

Address: 4007_2000h base + 108h offset = 4007_2108h

K22F Sub-Family Reference Manual, Rev. 3, 7/2014


USBx_CONTROL field descriptions

Field	Description
7–5	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
4 DPPULLUPNONOTG	Provides control of the DP Pullup in USBOTG, if USB is configured in non-OTG device mode.
	0 DP Pullup in non-OTG device mode is not enabled.
	1 DP Pullup in non-OTG device mode is enabled.
3–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

43.4.27 USB Transceiver Control register 0 (USBx_USBTRC0)

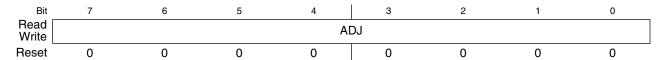
Includes signals for basic operation of the on-chip USB Full Speed transceiver and configuration of the USB data connection that are not otherwise included in the USB Full Speed controller registers.

Address: 4007_2000h base + 10Ch offset = 4007_210Ch

USBx_USBTRC0 field descriptions

Field	Description
7 USBRESET	USB Reset Generates a hard reset to USBOTG. After this bit is set and the reset occurs, this bit is automatically cleared.
	NOTE: This bit is always read as zero. Wait two USB clock cycles after setting this bit. 0 Normal USB module operation. 1 Returns the USB module to its reset state.
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 USBRESMEN	Asynchronous Resume Interrupt Enable This bit, when set, allows the USB module to send an asynchronous wakeup event to the MCU upon detection of resume signaling on the USB bus. The MCU then re-enables clocks to the USB module. It is

Table continues on the next page...


Chapter 43 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)

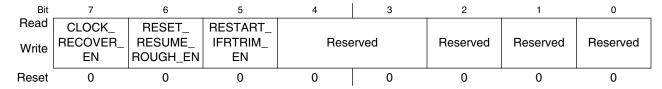
USBx_USBTRC0 field descriptions (continued)

Field	Description
	used for low-power suspend mode when USB module clocks are stopped or the USB transceiver is in Suspend mode. Async wakeup only works in device mode.
	 USB asynchronous wakeup from suspend mode disabled. USB asynchronous wakeup from suspend mode enabled. The asynchronous resume interrupt differs from the synchronous resume interrupt in that it asynchronously detects K-state using the unfiltered state of the D+ and D- pins. This interrupt should only be enabled when the Transceiver is suspended.
4–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 USB_CLK_ RECOVERY_INT	Combined USB Clock Recovery interrupt status This read-only field will be set to value high at 1'b1 when any of USB clock recovery interrupt conditions are detected and those interrupts are unmasked.
	For customer use the only unmasked USB clock recovery interrupt condition results from an overflow of the frequency trim setting values indicating that the frequency trim calculated is out of the adjustment range of the IRC48M output clock.
	To clear this bit after it has been set, Write 0xFF to register USB_CLK_RECOVER_INT_STATUS.
1 SYNC_DET	Synchronous USB Interrupt Detect
	Synchronous interrupt has not been detected.Synchronous interrupt has been detected.
0 USB_RESUME_	USB Asynchronous Interrupt
INT	No interrupt was generated.Interrupt was generated because of the USB asynchronous interrupt.

43.4.28 Frame Adjust Register (USBx_USBFRMADJUST)

Address: 4007_2000h base + 114h offset = 4007_2114h

USBx_USBFRMADJUST field descriptions


Field	Description
7–0	Frame Adjustment
	In Host mode, the frame adjustment is a twos complement number that adjusts the period of each USB frame in 12-MHz clock periods. A SOF is normally generated every 12,000 12-MHz clock cycles. The Frame Adjust Register can adjust this by -128 to +127 to compensate for inaccuracies in the USB 48-MHz
	clock. Changes to the ADJ bit take effect at the next start of the next frame.

43.4.29 USB Clock recovery control (USBx_CLK_RECOVER_CTRL)

Signals in this register control the crystal-less USB clock mode in which the internal IRC48M oscillator is tuned to match the clock extracted from the incoming USB data stream.

The IRC48M internal oscillator module must be enabled in register USB_CLK_RECOVER_IRC_EN for this mode.

Address: 4007_2000h base + 140h offset = 4007_2140h

USBx_CLK_RECOVER_CTRL field descriptions

Field	Description
7 CLOCK_ RECOVER_EN	Crystal-less USB enable This bit must be enabled if user wants to use the crystal-less USB mode for the Full Speed USB controller and transceiver. NOTE: This bit should not be set for USB host mode or OTG.
	Disable clock recovery block (default) Enable clock recovery block
6 RESET_ RESUME_ ROUGH_EN	Reset/resume to rough phase enable The clock recovery block tracks the IRC48Mhz to get an accurate 48Mhz clock. It has two phases after user enables clock_recover_en bit, rough phase and tracking phase. The step to fine tune the IRC 48Mhz by adjusting the trim fine value is different during these two phases. The step in rough phase is larger than that in tracking phase. Switch back to rough stage whenever USB bus reset or bus resume occurs. O Always works in tracking phase after the 1st time rough to track transition (default) Go back to rough stage whenever bus reset or bus resume occurs
5 RESTART_ IFRTRIM_EN	Restart from IFR trim value IRC48 has a default trim fine value whose default value is factory trimmed (the IFR trim value). Clock recover block tracks the accuracy of the clock 48Mhz and keeps updating the trim fine value accordingly Trim fine adjustment always works based on the previous updated trim fine value (default) Trim fine restarts from the IFR trim value whenever bus_reset/bus_resume is detected or module enable is desasserted
4–3 Reserved	This field is reserved.
2 Reserved	This field is reserved. This bit is for Freescale use only. Customers should not change this bit from its default state.
1 Reserved	This field is reserved. This bit is for Freescale use only. Customers should not change this bit from its default state.

Table continues on the next page...

USBx_CLK_RECOVER_CTRL field descriptions (continued)

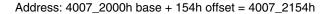
	Field	Description
Γ	0	This field is reserved.
	Reserved	Default should not be changed

43.4.30 IRC48M oscillator enable register (USBx_CLK_RECOVER_IRC_EN)

Controls basic operation of the on-chip IRC48M module used to produce nominal 48MHz clocks for USB crystal-less operation and other functions.

See additional information about the IRC48M operation in the Clock Distribution chapter.

Address: 4007_2000h base + 144h offset = 4007_2144h



USBx_CLK_RECOVER_IRC_EN field descriptions

Field	Description
7–2 Reserved	This field is reserved.
1 IRC_EN	IRC48M enable This bit is used to enable the on-chip IRC48Mhz module to generate clocks for crystal-less USB. It can be used for FS USB device mode operation. This bit must be set before using the crystal-less USB clock configuration.
	0 Disable the IRC48M module (default)1 Enable the IRC48M module
0 REG_EN	IRC48M regulator enable This bit is used to enable the local analog regulator for IRC48Mhz module. This bit must be set if user wants to use the crystal-less USB clock configuration.
	 IRC48M local regulator is disabled IRC48M local regulator is enabled (default)

43.4.31 Clock recovery combined interrupt enable (USBx_CLK_RECOVER_INT_EN)

Enables or masks the individual interrupt flags which are logically OR'ed together to produce the combined interrupt indication on the USB_CLK_RECOVERY_INT bit in the USB_USBTRC0 register if the indicated conditions have been detected in the USB clock recovery algorithm operation.

USBx_CLK_RECOVER_INT_EN field descriptions

Field	Description
7–5 Reserved	This field is reserved. Should always be written as 0.
4 OVF_ERROR_ EN	Determines whether OVF_ERROR condition signal is used in generation of USB_CLK_RECOVERY_INT. 1 The interrupt will be masked 1 The interrupt will be enabled (default)
3–0 Reserved	This field is reserved. Should always be written as 0.

43.4.32 Clock recovery separated interrupt status (USBx_CLK_RECOVER_INT_STATUS)

A Write operation with value high at 1'b1 on any combination of individual bits will clear those bits.

Address: 4007_2000h base + 15Ch offset = 4007_215Ch

Bit	7	6	5	4	3	2	1	0
Read	ead Reserved		OVF_ ERROR	Reserved				
Write	rite w1c		w1c		w1c			
Reset	0	0	0	0	0	0	0	0

USBx_CLK_RECOVER_INT_STATUS field descriptions

Field	Description			
7–5 Reserved	This field is reserved. Should always be written as 0.			
4 OVF_ERROR	Indicates that the USB clock recovery algorithm has detected that the frequency trim adjustment needed for the IRC48M output clock is outside the available TRIM_FINE adjustment range for the IRC48M module. 0 No interrupt is reported 1 Unmasked interrupt has been generated			
3–0 Reserved	This field is reserved. Should always be written as 0.			

43.5 OTG and Host mode operation

The Host mode logic allows devices such as digital cameras and palmtop computers to function as a USB Host Controller. The OTG logic adds an interface to allow the OTG Host Negotiation and Session Request Protocols (HNP and SRP) to be implemented in software. Host Mode allows a peripheral such as a digital camera to be connected directly to a USB compliant printer. Digital photos can then be easily printed without being uploaded to a PC. In the palmtop computer application, a USB compliant keyboard/mouse can be connected to the palmtop computer with the obvious advantages of easier interaction.

Host mode is intended for use in handheld-portable devices to allow easy connection to simple HID class devices such as printers and keyboards. It is not intended to perform the functions of a full OHCI or UHCI compatible host controller found on PC motherboards. The USB-FS is not supported by Windows as a USB host controller. Host mode allows bulk, isochronous, interrupt and control transfers. Bulk data transfers are performed at nearly the full USB interface bandwidth. Support is provided for ISO transfers, but the number of ISO streams that can be practically supported is affected by the interrupt latency of the processor servicing the Token Done interrupts from the SIE. Custom drivers must be written to support Host mode operation.

Setting the HOST_MODE_EN bit in the CTL register enables Host mode. The USB-FS core can only operate as a peripheral device or in Host mode. It cannot operate in both modes simultaneously. When HOST_MODE is enabled, only endpoint zero is used. All other endpoints should be disabled by software.

43.6 Host Mode Operation Examples

The following sections illustrate the steps required to perform USB host functions using the USB-FS core. While it is useful to understand the interaction of the hardware and the software at a detailed level, an understanding of the interactions at this level is not required to write host applications using the API software.

To enable host mode and discover a connected device:

- 1. Enable Host Mode (CTL[HOST_MODE_EN]=1). The pull-down resistors are enabled, and pull-up disabled. Start of Frame (SOF) generation begins. SOF counter loaded with 12,000. Disable SOF packet generation to eliminate noise on the USB by writing the USB enable bit to 0 (CTL[USB_EN]=0).
- 2. Enable the ATTACH interrupt (INT_ENB[ATTACH]=1).
- 3. Wait for ATTACH interrupt (INT_STAT[ATTACH]). Signaled by USB Target pull-up resistor changing the state of DPLUS or DMINUS from 0 to 1 (SE0 to J or K state).
- 4. Check the state of the JSTATE and SE0 bits in the control register. If the connecting device is low speed (JSTATE bit is 0), set the low-speed bit in the address registers (ADDR[LS_EN]=1) and the Host Without Hub bit in endpoint 0 register control (ENDPT0[HOSTWOHUB]=1).
- 5. Enable RESET (CTL[RESET]=1) for 10 ms.
- 6. Enable SOF packet to keep the connected device from going to suspend (CTL[USB_EN=1]).
- 7. Enumerate the attached device by sending the appropriate commands to the default control pipe of the connected device. See the *Universal Serial Bus Revision 2.0 specification*, "Chapter 9 USB Device Framework" (http://www.usb.org/developers/docs).

To complete a control transaction to a connected device:

- 1. Complete all the steps to discover a connected device
- 2. Set up the endpoint control register for bidirectional control transfers ENDPT0[4:0] = 0x0d.

- 3. Place a copy of the device framework setup command in a memory buffer. See the *Universal Serial Bus Revision 2.0 specification*, "Chapter 9 USB Device Framework" (http://www.usb.org/developers/docs).
- 4. Initialize current even or odd TX EP0 BDT to transfer the 8 bytes of command data for a device framework command (for example, a GET DEVICE DESCRIPTOR).
 - Set the BDT command word to 0x00080080 –Byte count to 8, OWN bit to 1.
 - Set the BDT buffer address field to the start address of the 8 byte command buffer.
- 5. Set the USB device address of the target device in the address register (ADDR[6:0]). After the USB bus reset, the device USB address is zero. It is set to some other value usually 1 by the Set Address device framework command.
- 6. Write the TOKEN register with a SETUP to Endpoint 0, the target device default control pipe (TOKEN=0xD0). This initiates a setup token on the bus followed by a data packet. The device handshake is returned in the BDT PID field after the packets complete. When the BDT is written, a Token Done (ISTAT[TOKDNE]) interrupt is asserted. This completes the setup phase of the setup transaction. See the *Universal Serial Bus Revision 2.0 specification*, "Chapter 9 USB Device Framework" (http://www.usb.org/developers/docs).
- 7. To initiate the data phase of the setup transaction (that is, get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory for the data to be transferred.
- 8. Initialize the current even or odd TX EP0 BDT to transfer the data.
 - Set the BDT command word to 0x004000C0 BC to 64 (the byte count of the data buffer in this case), OWN bit to 1, Data toggle to Data1.
 - Set the BDT buffer address field to the start address of the data buffer
- 9. Write the TOKEN register with an IN or OUT token to Endpoint 0, the target device default control pipe, an IN token for a GET DEVICE DESCRIPTOR command (TOKEN=0x90). This initiates an IN token on the bus followed by a data packet from the device to the host. When the data packet completes, the BDT is written and a Token Done (ISTAT[DNE]) interrupt is asserted. For control transfers with a single packet data phase this completes the data phase of the setup transaction. See the *Universal Serial Bus Revision 2.0 specification*, "Chapter 9 USB Device Framework" (http://www.usb.org/developers/docs).
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.

Host Mode Operation Examples

- 11. Initialize the current even or odd TX EP0 BDT to transfer the status data.
 - Set the BDT command word to 0x00000080 BC to 0 (the byte count of the data buffer in this case), OWN bit to 1, Data toggle to Data1.
 - Set the BDT buffer address field to the start address of the data buffer
- 12. Write the TOKEN register with a IN or OUT token to Endpoint 0, the target device default control pipe, an OUT token for a GET DEVICE DESCRIPTOR command (TOKEN=0x10). This initiates an OUT token on the bus followed by a zero length data packet from the host to the device. When the data packet completes, the BDT is written with the handshake from the device and a Token Done (ISTAT[TOKDNE]) interrupt is asserted. This completes the data phase of the setup transaction. See the *Universal Serial Bus Revision 2.0 specification*, "Chapter 9 USB Device Framework" (http://www.usb.org/developers/docs).

To send a full speed bulk data transfer to a target device:

- 1. Complete all steps to discover a connected device and to configure a connected device. Write the ADDR register with the address of the target device. Typically, there is only one other device on the USB bus in host mode so it is expected that the address is 0x01 and should remain constant.
- 2. Write 0x1D to ENDPT0 register to enable transmit and receive transfers with handshaking enabled.
- 3. Setup the even TX EP0 BDT to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (ADDR[6:0]).
- 5. Write the TOKEN register with an OUT token to the desired endpoint. The write to this register triggers the USB-FS transmit state machines to begin transmitting the token and the data.
- 6. Setup the odd TX EP0 BDT to transfer up to 64 bytes.
- 7. Write the TOKEN register with an OUT token as in step 4. Two tokens can be queued at a time to allow the packets to be double buffered to achieve maximum throughput.
- 8. Wait for the TOKDNE interrupt. This indicates that one of the BDTs has been released back to the processor and the transfer has completed. If the target device asserts NAKs, the USB-FS continues to retry the transfer indefinitely without processor intervention unless the ENDPT0[RETRYDIS] is 1. If the retry disable field is set, the handshake (ACK, NAK, STALL, or ERROR (0xf)) is returned in the BDT

- PID field. If a stall interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a Reset interrupt occurs (SE0 for more than 2.5 µs), the target has detached.
- 9. After the TOK_DNE interrupt occurs, the BDTs can be examined and the next data packet queued by returning to step 2.

43.7 On-The-Go operation

The USB-OTG core provides sensors and controls to enable On-The-Go (OTG) operation. These sensors are used by the OTG API software to implement the Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). API calls are provided to give access to the OTG protocol control signals, and include the OTG capabilities in the device application. The following state machines show the OTG operations involved with HNP and SRP protocols from either end of the USB cable.

43.7.1 OTG dual role A device operation

A device is considered the A device because of the type of cable attached. If the USB Type A connector or the USB Type Mini A connector is plugged into the device, it is considered the A device.

A dual role A device operates as the following flow diagram and state description table illustrates.

On-The-Go operation

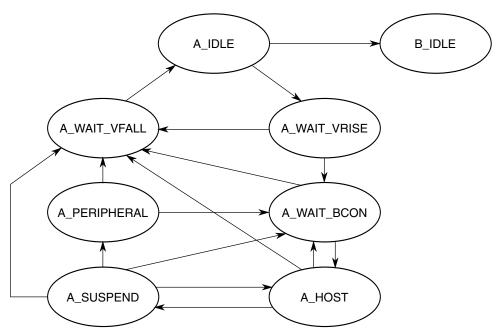


Figure 43-101. Dual role A device flow diagram

Table 43-139. State descriptions for the dual role A device flow

State	Action	Response	
A_IDLE	If ID Interrupt.	Go to B_IDLE	
	The cable has been unplugged or a Type B cable has been attached. The device now acts as a Type B device.		
	If the A application wants to use the bus or if the B device is doing	Go to A_WAIT_VRISE	
	an SRP as indicated by an A_SESS_VLD Interrupt or Attach or Port Status Change Interrupt check data line for 5 –10 msec pulsing.	Turn on DRV_VBUS	
A_WAIT_VRISE	If ID Interrupt or if A_VBUS_VLD is false after 100 msec	Go to A_WAIT_VFALL	
	The cable has been changed or the A device cannot support the current required from the B device.	Turn off DRV_VBUS	
	If A_VBUS_VLD interrupt	Go to A_WAIT_BCON	
A_WAIT_BCON	After 200 ms without Attach or ID Interrupt. (This could wait forever	Go to A_WAIT_FALL	
	if desired.)	Turn off DRV_VBUS	
	A_VBUS_VLD Interrupt and B device attaches	Go to A_HOST	
		Turn on Host mode	
A_HOST	Enumerate Device determine OTG Support.		
	If A_VBUS_VLD/ Interrupt or A device is done and does not think it	Go to A_WAIT_VFALL	
	wants to do something soon or the B device disconnects	Turn off Host mode	
		Turn off DRV_VBUS	
	If the A device is finished with session or if the A device wants to allow the B device to take bus.	Go to A_SUSPEND	
	ID Interrupt or the B device disconnects	Go to A_WAIT_BCON	

Table continues on the next page...

Table 43-139. State descriptions for the dual role A device flow (continued)

State	Action	Response
A_SUSPEND	If ID Interrupt, or if 150 ms B disconnect timeout (This timeout value	Go to A_WAIT_VFALL
	could be longer) or if A_VBUS_VLD\ Interrupt	Turn off DRV_VBUS
	If HNP enabled, and B disconnects in 150 ms then B device is	Go to A_PERIPHERAL
	becoming the host.	Turn off Host mode
	If A wants to start another session	Go to A_HOST
A_PERIPHERAL	If ID Interrupt or if A_VBUS_VLD interrupt	Go to A_WAIT_VFALL
		Turn off DRV_VBUS.
	If 3 –200 ms of Bus Idle	Go to A_WAIT_BCON
		Turn on Host mode
A_WAIT_VFALL	If ID Interrupt or (A_SESS_VLD/ & b_conn/)	Go to A_IDLE

43.7.2 OTG dual role B device operation

A device is considered a B device if it is connected to the bus with a USB Type B cable or a USB Type Mini B cable.

A dual role B device operates as the following flow diagram and state description table illustrates.

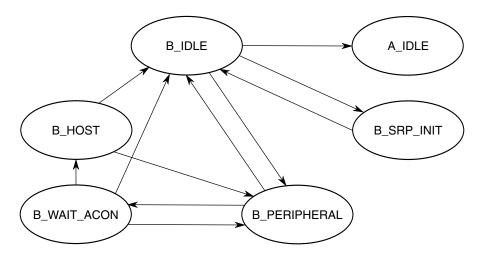


Figure 43-102. Dual role B device flow diagram

Table 43-140. State descriptions for the dual role B device flow

State	Action	Response	
B_IDLE	If ID\ Interrupt.	Go to A_IDLE	
	A Type A cable has been plugged in and the device should now respond as a Type A device.		
	If B_SESS_VLD Interrupt.	Go to B_PERIPHERAL	
	The A device has turned on VBUS and begins a session.	Turn on DP_HIGH	
	If B application wants the bus and Bus is Idle for 2 ms and the	Go to B_SRP_INIT	
	B_SESS_END bit is set, the B device can perform an SRP.	Pulse CHRG_VBUS Pulse DP_HIGH 5-10 ms	
B_SRP_INIT	If ID\ Interrupt or SRP Done (SRP must be done in less than 100 ms.)	Go to B_IDLE	
B_PERIPHERAL	If HNP enabled and the bus is suspended and B wants the bus, the	Go to B_WAIT_ACON	
	B device can become the host.	Turn off DP_HIGH	
B_WAIT_ACON	If A connects, an attach interrupt is received	Go to B_HOST	
		Turn on Host Mode	
	If ID\ Interrupt or B_SESS_VLD/ Interrupt	Go to B_IDLE	
	If the cable changes or if VBUS goes away, the host doesn't support us.		
	Go to B_IDLE		
	If 3.125 ms expires or if a Resume occurs	Go to B_PERIPHERAL	
B_HOST	If ID\ Interrupt or B_SESS_VLD\ Interrupt	Go to B_IDLE	
	If the cable changes or if VBUS goes away, the host doesn't support us.		
	If B application is done or A disconnects	Go to B_PERIPHERAL	

43.8 Device mode IRC48 operation

The following are the IRC48 initialization code steps:

- 1. Enable the IRC48M clock: USB_CLK_RECOVER_IRC_EN[IRC_EN] = 1b
- 2. Enable the USB clock recovery tuning: USB_CLK_RECOVER_CTRL[CTRL_CLOCK_RECOVER_EN] = 1b
- 3. Choose the clock source of USB by configuring the muxes and dividers in the SIM. The IRC48M is muxed by setting SIM_SOPT2[MCGPLLFLL]=11b for USB usage.
- 4. The selected mux output clock can be divided by the USB clock divider, so set these fields so no clock division is enabled. This is the equation for the divider:

Divider output clock = Divider input clock \times [(USBFRAC+1) / (USBDIV+1)]. So set SIM_CLKDIV2[USBDIV] = 000b and SIM_CLKDIV2[USBFRAC] = 0b

5. The USB clock source must choose the output of the divided clock by setting SIM_SOPT2[USBSRC] = 1b.

For chip-specific details, see the USB FS OTG controller clocking information in the "Clock Distribution" chapter.

Device mode IRC48 operation

Chapter 44 USB Voltage Regulator (VREG)

44.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The USB Voltage Regulator module is a LDO linear voltage regulator to provide 3.3V power from an input power supply varying from 2.7 V to 5.5 V. It consists of one 3.3 V power channel. When the input power supply is below 3.6 V, the regulator goes to pass-through mode. The following figure shows the ideal relation between the regulator output and input power supply.

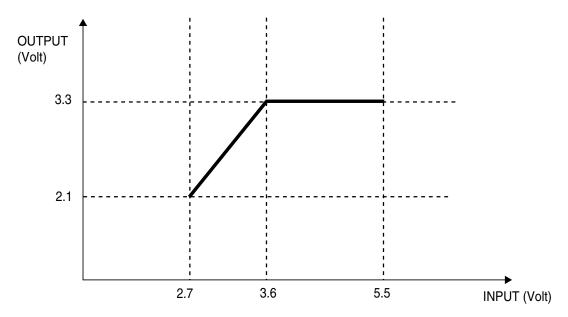


Figure 44-1. Ideal Relation Between the Regulator Output and Input Power Supply

44.1.1 Overview

A simplified block diagram for the USB Voltage Regulator module is shown below.

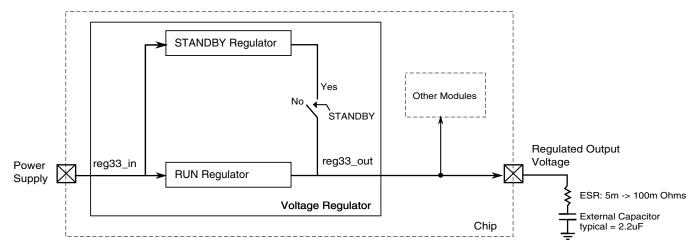


Figure 44-2. USB Voltage Regulator Block Diagram

This module uses 2 regulators in parallel. In run mode, the RUN regulator with the bandgap voltage reference is enabled and can provide up to 120 mA load current. In run mode, the STANDBY regulator and the low power reference are also enabled, but a switch disconnects its output from the external pin. In STANDBY mode, the RUN regulator is disabled and the STANDBY regulator output is connected to the external pin.

Internal power mode signals control whether the module is in RUN or STANDBY mode.

44.1.2 Features

- Low drop-out linear voltage regulator with one power channel (3.3 V).
- Low drop-out voltage: 300 mV.
- Output current: 120 mA.
- Three different power modes: RUN, STANDBY and SHUTDOWN.
- Low quiescent current in RUN mode.
 - Typical value is around 120 μA (one thousand times smaller than the maximum load current).
- Very low quiescent current in STANDBY mode.
 - Typical value is around 1 μ A.
- Automatic current limiting if the load current is greater than 290 mA.

- Automatic power-up once some voltage is applied to the regulator input.
- Pass-through mode for regulator input voltages less than 3.6 V
- Small output capacitor: 2.2 μF
- Stable with aluminum, tantalum or ceramic capacitors.

44.1.3 Modes of Operation

The regulator has these power modes:

- RUN—The regulating loop of the RUN regulator and the STANDBY regulator are active, but the switch connecting the STANDBY regulator output to the external pin is open.
- STANDBY—The regulating loop of the RUN regulator is disabled and the standby regulator is active. The switch connecting the STANDBY regulator output to the external pin is closed.
- SHUTDOWN—The module is disabled.

The regulator is enabled by default. This means that once the power supply is provided, the module power-up sequence to RUN mode starts.

44.2 USB Voltage Regulator Module Signal Descriptions

The following table shows the external signals for the regulator.

Table 44-1. USB Voltage Regulator Module Signal Descriptions

Signal	Description	I/O
reg33_in	Unregulated power supply	I
reg33_out	Regulator output voltage	0

Chapter 45 Serial Peripheral Interface (SPI)

45.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The serial peripheral interface (SPI) module provides a synchronous serial bus for communication between an MCU and an external peripheral device.

45.1.1 Block Diagram

The block diagram of this module is as follows:

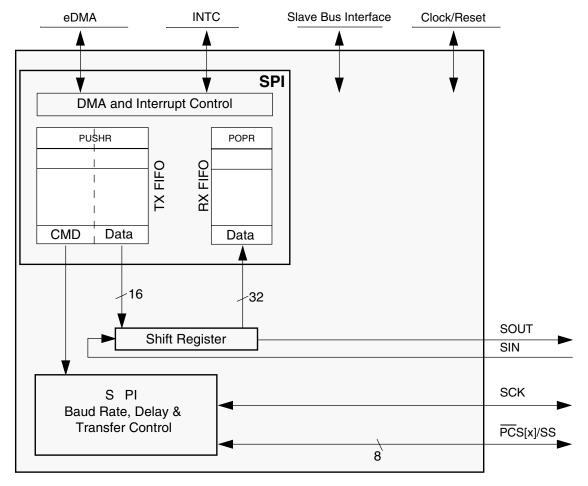


Figure 45-1. SPI Block Diagram

45.1.2 Features

The module supports the following features:

- Full-duplex, three-wire synchronous transfers
- Master mode
- Slave mode
- Data streaming operation in Slave mode with continuous slave selection
- Buffered transmit operation using the transmit first in first out (TX FIFO) with depth of 4 entries
- Buffered receive operation using the receive FIFO (RX FIFO) with depth of 4 entries
- TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues

- Visibility into TX and RX FIFOs for ease of debugging
- Programmable transfer attributes on a per-frame basis:
 - two transfer attribute registers
 - Serial clock (SCK) with programmable polarity and phase
 - Various programmable delays
 - Programmable serial frame size: 4 to 16 bits
 - SPI frames longer than 16 bits can be supported using the continuous selection format.
 - Continuously held chip select capability
- 6 peripheral chip selects (PCSes), expandable to 64 with external demultiplexer
- Deglitching support for up to 32 peripheral chip selects (PCSes) with external demultiplexer
- DMA support for adding entries to TX FIFO and removing entries from RX FIFO:
 - TX FIFO is not full (TFFF)
 - RX FIFO is not empty (RFDF)
- Interrupt conditions:
 - End of Queue reached (EOQF)
 - TX FIFO is not full (TFFF)
 - Transfer of current frame complete (TCF)
 - Attempt to transmit with an empty Transmit FIFO (TFUF)
 - RX FIFO is not empty (RFDF)
 - Frame received while Receive FIFO is full (RFOF)
- Global interrupt request line
- Modified SPI transfer formats for communication with slower peripheral devices
- Power-saving architectural features:
 - Support for Stop mode
 - Support for Doze mode

45.1.3 Interface configurations

45.1.3.1 SPI configuration

The Serial Peripheral Interface (SPI) configuration allows the module to send and receive serial data. This configuration allows the module to operate as a basic SPI block with internal FIFOs supporting external queue operation. Transmitted data and received data reside in separate FIFOs. The host CPU or a DMA controller read the received data from the Receive FIFO and write transmit data to the Transmit FIFO.

For queued operations, the SPI queues can reside in system RAM, external to the module. Data transfers between the queues and the module FIFOs are accomplished by a DMA controller or host CPU. The following figure shows a system example with DMA, SPI, and external queues in system RAM.

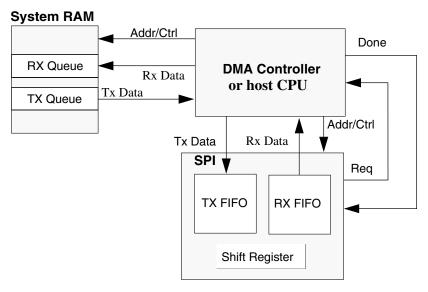


Figure 45-2. SPI with queues and DMA

45.1.4 Modes of Operation

The module supports the following modes of operation that can be divided into two categories:

- Module-specific modes:
 - Master mode

- Slave mode
- Module Disable mode
- MCU-specific modes:
 - External Stop mode
 - Debug mode

The module enters module-specific modes when the host writes a module register. The MCU-specific modes are controlled by signals external to the module. The MCU-specific modes are modes that an MCU may enter in parallel to the block-specific modes.

45.1.4.1 Master Mode

Master mode allows the module to initiate and control serial communication. In this mode, these signals are controlled by the module and configured as outputs:

- SCK
- SOUT
- PCS[*x*]

45.1.4.2 Slave Mode

Slave mode allows the module to communicate with SPI bus masters. In this mode, the module responds to externally controlled serial transfers. The SCK signal and the $PCS[0]/\overline{SS}$ signals are configured as inputs and driven by an SPI bus master.

45.1.4.3 Module Disable Mode

The Module Disable mode can be used for MCU power management. The clock to the non-memory mapped logic in the module can be stopped while in the Module Disable mode.

45.1.4.4 External Stop Mode

External Stop mode is used for MCU power management. The module supports the Peripheral Bus Stop mode mechanism. When a request is made to enter External Stop mode, it acknowledges the request and completes the transfer that is in progress. When the module reaches the frame boundary, it signals that the protocol clock to the module may be shut off.

45.1.4.5 Debug Mode

Debug mode is used for system development and debugging. The MCR[FRZ] bit controls module behavior in the Debug mode:

- If the bit is set, the module stops all serial transfers, when the MCU is in debug mode.
- If the bit is cleared, the MCU debug mode has no effect on the module.

45.2 Module signal descriptions

This table describes the signals on the boundary of the module that may connect off chip (in alphabetical order).

Signal	Master mode	Slave mode	I/O
PCS0/SS	Peripheral Chip Select 0 (O)	Slave Select (I)	I/O
PCS[1:3]	Peripheral Chip Selects 1–3	(Unused)	0
PCS4	Peripheral Chip Select 4	(Unused)	0
PCS5/ PCSS	Peripheral Chip Select 5 /Peripheral Chip Select Strobe	(Unused)	0
SCK	Serial Clock (O)	Serial Clock (I)	I/O
SIN	Serial Data In	Serial Data In	ı
SOUT	Serial Data Out	Serial Data Out	0

Table 45-1. Module signal descriptions

45.2.1 PCS0/SS—Peripheral Chip Select/Slave Select

Master mode: Peripheral Chip Select 0 (O)—Selects an SPI slave to receive data transmitted from the module.

Slave mode: Slave Select (I)—Selects the module to receive data transmitted from an SPI master.

45.2.2 PCS1-PCS3—Peripheral Chip Selects 1-3

Master mode: Peripheral Chip Selects 1–3 (O)—Select an SPI slave to receive data transmitted by the module.

Slave mode: Unused

45.2.3 PCS4—Peripheral Chip Select 4

Master mode: Peripheral Chip Select 4 (O)—Selects an SPI slave to receive data transmitted by the module.

Slave mode: Unused

45.2.4 PCS5/PCSS—Peripheral Chip Select 5/Peripheral Chip Select Strobe

Master mode:

- Peripheral Chip Select 5 (O)—Used only when the peripheral-chip-select strobe is disabled (MCR[PCSSE]). Selects an SPI slave to receive data transmitted by the module.
- Peripheral Chip Select Strobe (O)—Used only when the peripheral-chip-select strobe is enabled (MCR[PCSSE]). Strobes an off-module peripheral-chip-select demultiplexer, which decodes the module's PCS signals other than PCS5, preventing glitches on the demultiplexer outputs.

Slave mode: Unused

45.2.5 SCK—Serial Clock

Master mode: Serial Clock (O)—Supplies a clock signal from the module to SPI slaves.

Slave mode: Serial Clock (I)—Supplies a clock signal to the module from an SPI master.

45.2.6 SIN—Serial Input

Master mode: Serial Input (I)—Receives serial data.

Slave mode: Serial Input (I)—Receives serial data.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

NOTE

Serial Data Out output buffers are controlled through SIU (or SIUL) and cannot be controlled through the module.

45.2.7 SOUT—Serial Output

Master mode: Serial Output (O)—Transmits serial data.

Slave mode: Serial Output (O)—Transmits serial data.

NOTE

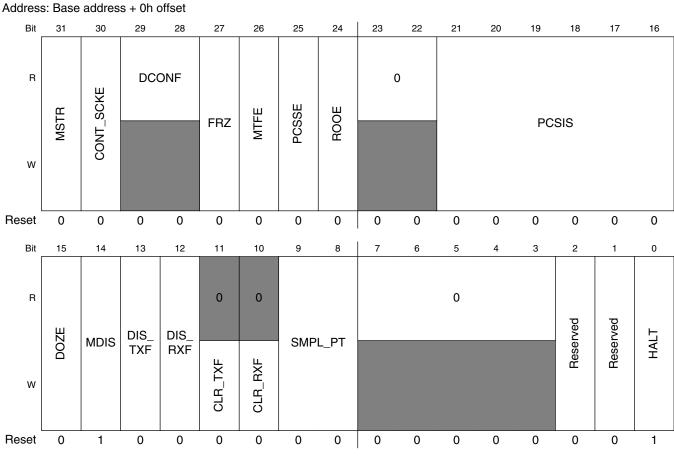
Serial Data Out output buffers are controlled through SIU (or SIUL) and cannot be controlled through the module.

45.3 Memory Map/Register Definition

Register accesses to memory addresses that are reserved or undefined result in a transfer error. Write access to the POPR also results in a transfer error.

SPI memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_C000	Module Configuration Register (SPI0_MCR)	32	R/W	0000_4001h	45.3.1/1118
4002_C008	Transfer Count Register (SPI0_TCR)	32	R/W	0000_0000h	45.3.2/1121
4002_C00C	Clock and Transfer Attributes Register (In Master Mode) (SPI0_CTAR0)	32	R/W	7800_0000h	45.3.3/1121
4002_C00C	Clock and Transfer Attributes Register (In Slave Mode) (SPI0_CTAR0_SLAVE)	32	R/W	7800_0000h	45.3.4/1126
4002_C010	Clock and Transfer Attributes Register (In Master Mode) (SPI0_CTAR1)	32	R/W	7800_0000h	45.3.3/1121
4002_C02C	Status Register (SPI0_SR)	32	R/W	See section	45.3.5/1128
4002_C030	DMA/Interrupt Request Select and Enable Register (SPI0_RSER)	32	R/W	0000_0000h	45.3.6/1131
4002_C034	PUSH TX FIFO Register In Master Mode (SPI0_PUSHR)	32	R/W	0000_0000h	45.3.7/1133
4002_C034	PUSH TX FIFO Register In Slave Mode (SPI0_PUSHR_SLAVE)	32	R/W	0000_0000h	45.3.8/1134
4002_C038	POP RX FIFO Register (SPI0_POPR)	32	R	0000_0000h	45.3.9/1135
4002_C03C	Transmit FIFO Registers (SPI0_TXFR0)	32	R	0000_0000h	45.3.10/ 1136
4002_C040	Transmit FIFO Registers (SPI0_TXFR1)	32	R	0000_0000h	45.3.10/ 1136


Table continues on the next page...

SPI memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_C044	Transmit FIFO Registers (SPI0_TXFR2)	32	R	0000_0000h	45.3.10/ 1136
4002_C048	Transmit FIFO Registers (SPI0_TXFR3)	32	R	0000_0000h	45.3.10/ 1136
4002_C07C	Receive FIFO Registers (SPI0_RXFR0)	32	R	0000_0000h	45.3.11/ 1136
4002_C080	Receive FIFO Registers (SPI0_RXFR1)	32	R	0000_0000h	45.3.11/ 1136
4002_C084	Receive FIFO Registers (SPI0_RXFR2)	32	R	0000_0000h	45.3.11/ 1136
4002_C088	Receive FIFO Registers (SPI0_RXFR3)	32	R	0000_0000h	45.3.11/ 1136
4002_D000	Module Configuration Register (SPI1_MCR)	32	R/W	0000_4001h	45.3.1/1118
4002_D008	Transfer Count Register (SPI1_TCR)	32	R/W	0000_0000h	45.3.2/1121
4002_D00C	Clock and Transfer Attributes Register (In Master Mode) (SPI1_CTAR0)	32	R/W	7800_0000h	45.3.3/1121
4002_D00C	Clock and Transfer Attributes Register (In Slave Mode) (SPI1_CTAR0_SLAVE)	32	R/W	7800_0000h	45.3.4/1126
4002_D010	Clock and Transfer Attributes Register (In Master Mode) (SPI1_CTAR1)	32	R/W	7800_0000h	45.3.3/1121
4002_D02C	Status Register (SPI1_SR)	32	R/W	See section	45.3.5/1128
4002_D030	DMA/Interrupt Request Select and Enable Register (SPI1_RSER)	32	R/W	0000_0000h	45.3.6/1131
4002_D034	PUSH TX FIFO Register In Master Mode (SPI1_PUSHR)	32	R/W	0000_0000h	45.3.7/1133
4002_D034	PUSH TX FIFO Register In Slave Mode (SPI1_PUSHR_SLAVE)	32	R/W	0000_0000h	45.3.8/1134
4002_D038	POP RX FIFO Register (SPI1_POPR)	32	R	0000_0000h	45.3.9/1135
4002_D03C	Transmit FIFO Registers (SPI1_TXFR0)	32	R	0000_0000h	45.3.10/ 1136
4002_D040	Transmit FIFO Registers (SPI1_TXFR1)	32	R	0000_0000h	45.3.10/ 1136
4002_D044	Transmit FIFO Registers (SPI1_TXFR2)	32	R	0000_0000h	45.3.10/ 1136
4002_D048	Transmit FIFO Registers (SPI1_TXFR3)	32	R	0000_0000h	45.3.10/ 1136
4002_D07C	Receive FIFO Registers (SPI1_RXFR0)	32	R	0000_0000h	45.3.11/ 1136
4002_D080	Receive FIFO Registers (SPI1_RXFR1)	32	R	0000_0000h	45.3.11/ 1136
4002_D084	Receive FIFO Registers (SPI1_RXFR2)	32	R	0000_0000h	45.3.11/ 1136
4002_D088	Receive FIFO Registers (SPI1_RXFR3)	32	R	0000_0000h	45.3.11/ 1136

45.3.1 Module Configuration Register (SPIx_MCR)

Contains bits to configure various attributes associated with the module operations. The HALT and MDIS bits can be changed at any time, but the effect takes place only on the next frame boundary. Only the HALT and MDIS bits in the MCR can be changed, while the module is in the Running state.

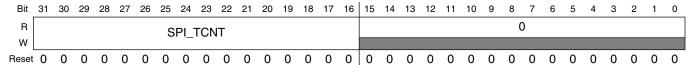
SPIx_MCR field descriptions

Field	Description
31 MSTR	Master/Slave Mode Select
	Enables either Master mode (if supported) or Slave mode (if supported) operation.
	0 Enables Slave mode
	1 Enables Master mode
30	Continuous SCK Enable
CONT_SCKE	Enables the Serial Communication Clock (SCK) to run continuously.

Field	Description
	0 Continuous SCK disabled.
	1 Continuous SCK enabled.
29–28 DCONF	SPI Configuration.
	Selects among the different configurations of the module.
	00 SPI
	01 Reserved
	10 Reserved 11 Reserved
07	111 11
27 FRZ	Freeze
1112	Enables transfers to be stopped on the next frame boundary when the device enters Debug mode.
	0 Do not halt serial transfers in Debug mode.
	1 Halt serial transfers in Debug mode.
26 MTFE	Modified Timing Format Enable
	Enables a modified transfer format to be used.
	0 Modified SPI transfer format disabled.
	1 Modified SPI transfer format enabled.
25 PCSSE	Peripheral Chip Select Strobe Enable
	Enables the PCS5/ PCSS to operate as a PCS Strobe output signal.
	0 PCS5/ PCSS is used as the Peripheral Chip Select[5] signal.
	1 PCS5/ PCSS is used as an active-low PCS Strobe signal.
24 ROOE	Receive FIFO Overflow Overwrite Enable
	In the RX FIFO overflow condition, configures the module to ignore the incoming serial data or overwrite existing data. If the RX FIFO is full and new data is received, the data from the transfer, generating the overflow, is ignored or shifted into the shift register.
	0 Incoming data is ignored.
	1 Incoming data is shifted into the shift register.
23–22	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
21–16 PCSIS	Peripheral Chip Select x Inactive State
	Determines the inactive state of PCSx.
	0 The inactive state of PCSx is low.
	1 The inactive state of PCSx is high.
15 DOZE	Doze Enable
	Provides support for an externally controlled Doze mode power-saving mechanism.
	0 Doze mode has no effect on the module.
	1 Doze mode disables the module.

Memory Map/Register Definition

SPIx_MCR field descriptions (continued)


Field	Description
14	Module Disable
MDIS	Allows the clock to be stopped to the non-memory mapped logic in the module effectively putting it in a software-controlled power-saving state. The reset value of the MDIS bit is parameterized, with a default reset value of 0. When the module is used in Slave Mode, it is recommended to leave this bit 0, because a slave doesn't have control over master transactions.
	0 Enables the module clocks.
	1 Allows external logic to disable the module clocks.
13	Disable Transmit FIFO
DIS_TXF	When the TX FIFO is disabled, the transmit part of the module operates as a simplified double-buffered SPI. This bit can be written only when the MDIS bit is cleared.
	0 TX FIFO is enabled.
	1 TX FIFO is disabled.
12	Disable Receive FIFO
DIS_RXF	When the RX FIFO is disabled, the receive part of the module operates as a simplified double-buffered SPI. This bit can only be written when the MDIS bit is cleared.
	0 RX FIFO is enabled.
	1 RX FIFO is disabled.
11 CLR_TXF	Clear TX FIFO Flushes the TX FIFO. Writing a 1 to CLR_TXF clears the TX FIFO Counter. The CLR_TXF bit is always read as zero.
	0 Do not clear the TX FIFO counter.
	1 Clear the TX FIFO counter.
10	CLR_RXF
CLR_RXF	Flushes the RX FIFO. Writing a 1 to CLR_RXF clears the RX Counter. The CLR_RXF bit is always read as zero.
	0 Do not clear the RX FIFO counter.1 Clear the RX FIFO counter.
9–8	Sample Point
SMPL_PT	Controls when the module master samples SIN in Modified Transfer Format. This field is valid only when CPHA bit in CTARn[CPHA] is 0.
	00 0 protocol clock cycles between SCK edge and SIN sample
	01 1 protocol clock cycle between SCK edge and SIN sample
	10 2 protocol clock cycles between SCK edge and SIN sample
7.0	11 Reserved
7–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 Reserved	This field is reserved.

Field	Description
1 Reserved	This field is reserved.
0 HALT	Halt The HALT bit starts and stops frame transfers. See Start and Stop of Module transfers 0 Start transfers. 1 Stop transfers.

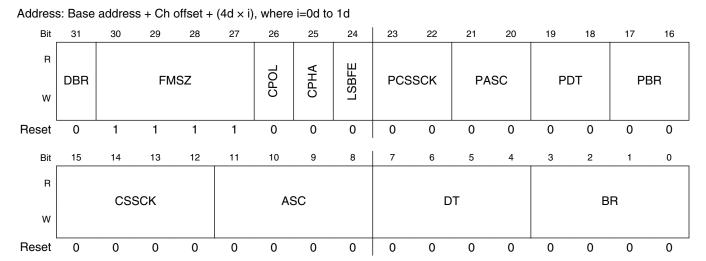
45.3.2 Transfer Count Register (SPIx_TCR)

TCR contains a counter that indicates the number of SPI transfers made. The transfer counter is intended to assist in queue management. Do not write the TCR when the module is in the Running state.

Address: Base address + 8h offset

SPIx_TCR field descriptions

Field	Description
31-16 SPI_TCNT	SPI Transfer Counter
_	Counts the number of SPI transfers the module makes. The SPI_TCNT field increments every time the last bit of an SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that value. SPI_TCNT is reset to zero at the beginning of the frame when the CTCNT field is set in the executing SPI command. The Transfer Counter wraps around; incrementing the counter past 65535 resets the counter to zero.
15–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.


45.3.3 Clock and Transfer Attributes Register (In Master Mode) (SPIx_CTARn)

CTAR registers are used to define different transfer attributes. Do not write to the CTAR registers while the module is in the Running state.

Memory Map/Register Definition

In Master mode, the CTAR registers define combinations of transfer attributes such as frame size, clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode, a subset of the bitfields in CTAR0 are used to set the slave transfer attributes.

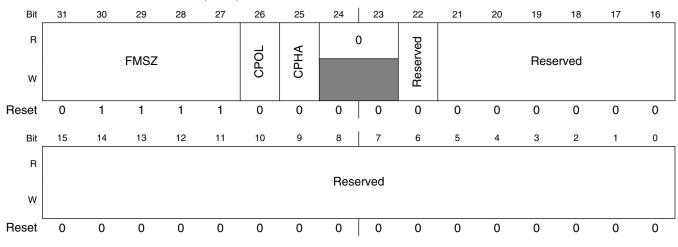
When the module is configured as an SPI master, the CTAS field in the command portion of the TX FIFO entry selects which of the CTAR registers is used. When the module is configured as an SPI bus slave, it uses the CTAR0 register.

SPIx_CTARn field descriptions

Field	Description			
31 DBR	master mode. It effectively division ratios for the Seri Serial Communications C	d rate of the Serial Commun y halves the Baud Rate divis al Communications Clock (S lock (SCK) depends on the v following table. See the BR f	sion ratio, supporting fas CK). When the DBR bit value in the Baud Rate F	ter frequencies, and odd is set, the duty cycle of t Prescaler and the Clock
	DBR	Table 45-40. SF	PI SCK Duty Cycle	SCK Duty Cycle
	0	any	any	50/50
	1	0	00	50/50
	1	0	01	33/66
				1
	1	0	10	40/60
	1	0 0	10 11	40/60 43/57
	1 1 1			
	1 1 1 1		11	43/57
	1 1 1 1		11 00	43/57 50/50

Field	Description
	0 The baud rate is computed normally with a 50/50 duty cycle.
	1 The baud rate is doubled with the duty cycle depending on the Baud Rate Prescaler.
30–27 FMSZ	Frame Size
1 WOZ	The number of bits transferred per frame is equal to the FMSZ value plus 1. Regardless of the transmission mode, the minimum valid frame size value is 4.
26 CPOL	Clock Polarity
	Selects the inactive state of the Serial Communications Clock (SCK). This bit is used in both master and slave mode. For successful communication between serial devices, the devices must have identical clock polarities. When the Continuous Selection Format is selected, switching between clock polarities without stopping the module can cause errors in the transfer due to the peripheral device interpreting the switch of clock polarity as a valid clock edge.
	NOTE: In case of Continuous SCK mode, when the module goes in low power mode(disabled), inactive state of SCK is not guaranted.
	0 The inactive state value of SCK is low.
	1 The inactive state value of SCK is high.
25 CPHA	Clock Phase
	Selects which edge of SCK causes data to change and which edge causes data to be captured. This bit is used in both master and slave mode. For successful communication between serial devices, the devices must have identical clock phase settings. In Continuous SCK mode, the bit value is ignored and the transfers are done as if the CPHA bit is set to 1.
	0 Data is captured on the leading edge of SCK and changed on the following edge.
	1 Data is changed on the leading edge of SCK and captured on the following edge.
24 LSBFE	LSB First
	Specifies whether the LSB or MSB of the frame is transferred first.
	0 Data is transferred MSB first.
	1 Data is transferred LSB first.
23–22 PCSSCK	PCS to SCK Delay Prescaler
	Selects the prescaler value for the delay between assertion of PCS and the first edge of the SCK. See the CSSCK field description for information on how to compute the PCS to SCK Delay. Refer PCS to SCK Delay (t _{CSC}) for more details.
	00 PCS to SCK Prescaler value is 1.
	01 PCS to SCK Prescaler value is 3.
	10 PCS to SCK Prescaler value is 5.
	11 PCS to SCK Prescaler value is 7.
21–20 PASC	After SCK Delay Prescaler
	Selects the prescaler value for the delay between the last edge of SCK and the negation of PCS. See the ASC field description for information on how to compute the After SCK Delay. Refer After SCK Delay (t _{ASC}) for more details.
	00 Delay after Transfer Prescaler value is 1.
	01 Delay after Transfer Prescaler value is 3.
	To being and transfer toobaid value to b.

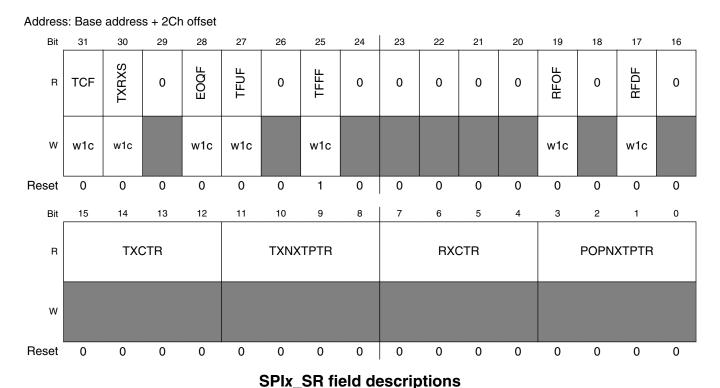
	Description		
	10 Delay after Transfer Prescaler value is 5.		
	11 Delay after Transfer Prescaler value is 7.		
19–18 PDT	Delay after Transfer Prescaler		
	the assertion of PCS at the beginning of the next fra	ne negation of the PCS signal at the end of a frame a ame. The PDT field is only used in master mode. See te the Delay after Transfer. Refer Delay after Transfe	
	00 Delay after Transfer Prescaler value is 1.		
	01 Delay after Transfer Prescaler value is 3.		
	10 Delay after Transfer Prescaler value is 5.		
	11 Delay after Transfer Prescaler value is 7.		
17–16 PBR	Baud Rate Prescaler		
		ield is used only in master mode. The baud rate is the by the prescaler value before the baud rate selection on how to compute the baud rate.	
	00 Baud Rate Prescaler value is 2.		
	01 Baud Rate Prescaler value is 3.		
	10 Baud Rate Prescaler value is 5.		
	11 Baud Rate Prescaler value is 7.		
15–12 CSSCK	PCS to SCK Delay Scaler Selects the scaler value for the PCS to SCK delay. This field is used only in master mode. The PCS to SCK Delay is the delay between the assertion of PCS and the first edge of the SCK. The delay is a multiple of the protocol clock period, and it is computed according to the following equation:		
	$t_{CSC} = (1/f_P) x PCSSCK x CSSCK.$		
	000 (1)		
	The following table lists the delay scaler values.		
	The following table lists the delay scaler values.	elay Scaler Encoding	
	The following table lists the delay scaler values.	Play Scaler Encoding Delay Scaler Value	
	The following table lists the delay scaler values. Table 45-39. De	, ,	
	The following table lists the delay scaler values. Table 45-39. De	Delay Scaler Value	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000	Delay Scaler Value	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001	Delay Scaler Value 2 4	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011	Delay Scaler Value 2 4 8 16	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100	Delay Scaler Value 2 4 8 16 32	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100 0101	Delay Scaler Value 2 4 8 16 32 64	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100 0101 0110	Delay Scaler Value 2 4 8 16 32 64 128	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100 0101 0110 0111	Delay Scaler Value 2 4 8 16 32 64 128 256	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100 0110 0110 0111 1000	Delay Scaler Value 2 4 8 16 32 64 128 256 512	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001	Delay Scaler Value 2 4 8 16 32 64 128 256 512 1024	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010	Delay Scaler Value 2 4 8 16 32 64 128 256 512 1024 2048	
	The following table lists the delay scaler values. Table 45-39. De Field Value 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001	Delay Scaler Value 2 4 8 16 32 64 128 256 512 1024	


Field	Description		
	Table 45-39. Delay Se	caler Encoding (continued)	
	Field Value	Delay Scaler Value	
	1101	16384	
	1110	32768	
	1111	65536	
	Refer PCS to SCK Delay (t _{CSC}) for more details.		
11–8	After SCK Delay Scaler		
ASC	Selects the scaler value for the After SCK Delay. This field is used only in master mode. The After SCK Delay is the delay between the last edge of SCK and the negation of PCS. The delay is a multiple of the protocol clock period, and it is computed according to the following equation:		
	$t_{ASC} = (1/f_P) \times PASC \times ASC$		
	See Delay Scaler Encoding table in CTARn[CSSCK] bit field description for scaler values. Refer After SC Delay (t _{ASC}) for more details.		
7–4	Delay After Transfer Scaler		
DT	Selects the Delay after Transfer Scaler. This field is used only in master mode. The Delay after Transfer the time between the negation of the PCS signal at the end of a frame and the assertion of PCS at the beginning of the next frame.		
	In the Continuous Serial Communications Clock operation, the DT value is fixed to one SCK clock period. The Delay after Transfer is a multiple of the protocol clock period, and it is computed according to the following equation:		
	$t_{DT} = (1/f_P) \times PDT \times DT$		
	See Delay Scaler Encoding table in CTARn[CSSCh	() bit field description for scaler values.	
3–0	Baud Rate Scaler		
BR	Selects the scaler value for the baud rate. This field is used only in master mode. The prescaled protocol clock is divided by the Baud Rate Scaler to generate the frequency of the SCK. The baud rate is compute according to the following equation:		
	SCK baud rate = (f _P /PBR) x [(1+DBR)/BR]		
	The following table lists the baud rate scaler values		
	Table 45-38. Baud Rate Scaler		
	CTARn[BR]	Baud Rate Scaler Value	
	0000	2	
	0001	4	
	0010	6	
	0011	8	
	0100	16	
	0101	32	
	0110	64	
	0111	128	

Field	De	scription
	Table 45-38. Baud	Rate Scaler (continued)
	CTARn[BR]	Baud Rate Scaler Value
	1000	256
	1001	512
	1010	1024
	1011	2048
	1100	4096
	1101	8192
	1110	16384
	1111	32768

45.3.4 Clock and Transfer Attributes Register (In Slave Mode) (SPIx_CTARn_SLAVE)

When the module is configured as an SPI bus slave, the CTAR0 register is used.


SPIx_CTARn_SLAVE field descriptions

Field	Description
31–27 FMSZ	Frame Size The number of bits transfered per frame is equal to the FMSZ field value plus 1. Note that the minimum valid value of frame size is 4.

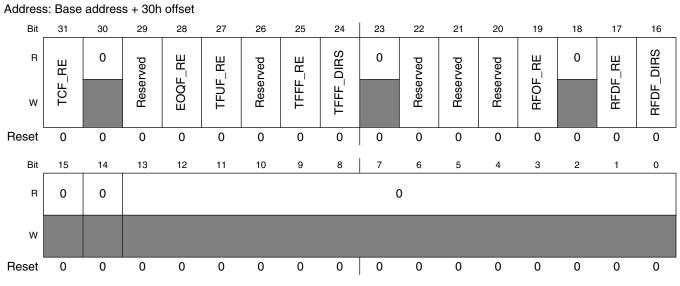
Field	Description
26 CPOL	Clock Polarity
	Selects the inactive state of the Serial Communications Clock (SCK).
	NOTE: In case of Continuous SCK mode, when the module goes in low power mode(disabled), inactive state of SCK is not guaranted.
	0 The inactive state value of SCK is low.
	1 The inactive state value of SCK is high.
25 CPHA	Clock Phase
	Selects which edge of SCK causes data to change and which edge causes data to be captured. This bit is used in both master and slave mode. For successful communication between serial devices, the devices must have identical clock phase settings. In Continuous SCK mode, the bit value is ignored and the transfers are done as if the CPHA bit is set to 1.
	0 Data is captured on the leading edge of SCK and changed on the following edge.
	1 Data is changed on the leading edge of SCK and captured on the following edge.
24–23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22 Reserved	This field is reserved.
21–0 Reserved	This field is reserved.

45.3.5 Status Register (SPIx_SR)

SR contains status and flag bits. The bits reflect the status of the module and indicate the occurrence of events that can generate interrupt or DMA requests. Software can clear flag bits in the SR by writing a 1 to them. Writing a 0 to a flag bit has no effect. This register may not be writable in Module Disable mode due to the use of power saving mechanisms.

Field Description 31 Transfer Complete Flag **TCF** Indicates that all bits in a frame have been shifted out. TCF remains set until it is cleared by writing a 1 to it. 0 Transfer not complete. Transfer complete. 30 TX and RX Status **TXRXS** Reflects the run status of the module. Transmit and receive operations are disabled (The module is in Stopped state). Transmit and receive operations are enabled (The module is in Running state). 29 This field is reserved. Reserved This read-only field is reserved and always has the value 0.

Field	Description
28	End of Queue Flag
EOQF	Indicates that the last entry in a queue has been transmitted when the module is in Master mode. The EOQF bit is set when the TX FIFO entry has the EOQ bit set in the command halfword and the end of the transfer is reached. The EOQF bit remains set until cleared by writing a 1 to it. When the EOQF bit is set, the TXRXS bit is automatically cleared.
	0 EOQ is not set in the executing command.
	1 EOQ is set in the executing SPI command.
27 TFUF	Transmit FIFO Underflow Flag
Troi	Indicates an underflow condition in the TX FIFO. The transmit underflow condition is detected only for SPI blocks operating in Slave mode and SPI configuration. TFUF is set when the TX FIFO of the module operating in SPI Slave mode is empty and an external SPI master initiates a transfer. The TFUF bit remains set until cleared by writing 1 to it.
	0 No TX FIFO underflow.
	1 TX FIFO underflow has occurred.
26 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
25	Transmit FIFO Fill Flag
TFFF	Provides a method for the module to request more entries to be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be cleared by writing 1 to it or by acknowledgement from the DMA controller to the TX FIFO full request. 0 TX FIFO is full.
	1 TX FIFO is not full.
24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19 RFOF	Receive FIFO Overflow Flag Indicates an overflow condition in the RX FIFO. The field is set when the RX FIFO and shift register are full and a transfer is initiated. The bit remains set until it is cleared by writing a 1 to it.
	O No Rx FIFO overflow. Rx FIFO overflow has occurred.
18 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
17 RFDF	Receive FIFO Drain Flag


Memory Map/Register Definition

SPIx_SR field descriptions (continued)

Field	Description
	Provides a method for the module to request that entries be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be cleared by writing 1 to it or by acknowledgement from the DMA controller when the RX FIFO is empty.
	0 RX FIFO is empty.
	1 RX FIFO is not empty.
16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–12 TXCTR	TX FIFO Counter
	Indicates the number of valid entries in the TX FIFO. The TXCTR is incremented every time the PUSHR is written. The TXCTR is decremented every time an SPI command is executed and the SPI data is transferred to the shift register.
11–8 TXNXTPTR	Transmit Next Pointer
	Indicates which TX FIFO entry is transmitted during the next transfer. The TXNXTPTR field is updated every time SPI data is transferred from the TX FIFO to the shift register.
7–4 RXCTR	RX FIFO Counter
	Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time the POPR is read. The RXCTR is incremented every time data is transferred from the shift register to the RX FIFO.
3–0 POPNXTPTR	Pop Next Pointer
	Contains a pointer to the RX FIFO entry to be returned when the POPR is read. The POPNXTPTR is updated when the POPR is read.

45.3.6 DMA/Interrupt Request Select and Enable Register (SPIx_RSER)

RSER controls DMA and interrupt requests. Do not write to the RSER while the module is in the Running state.

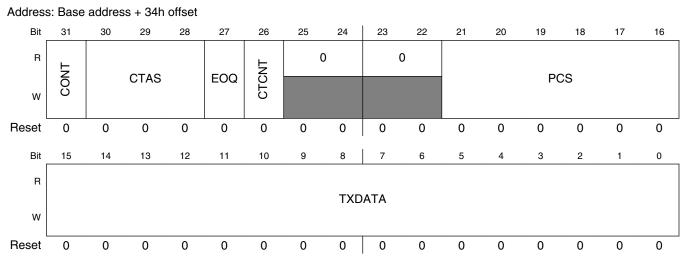
SPIx_RSER field descriptions

Field	Description
31 TCF_RE	Transmission Complete Request Enable
	Enables TCF flag in the SR to generate an interrupt request.
	0 TCF interrupt requests are disabled.
	1 TCF interrupt requests are enabled.
30	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
29	This field is reserved.
Reserved	
28 EOQF_RE	Finished Request Enable
	Enables the EOQF flag in the SR to generate an interrupt request.
	0 EOQF interrupt requests are disabled.
	1 EOQF interrupt requests are enabled.
27 TFUF_RE	Transmit FIFO Underflow Request Enable
11 01 _11	Enables the TFUF flag in the SR to generate an interrupt request.
	0 TFUF interrupt requests are disabled.
	1 TFUF interrupt requests are enabled.

Memory Map/Register Definition

SPIx_RSER field descriptions (continued)

Field	Description
26 Reserved	This field is reserved.
25 TFFF_RE	Transmit FIFO Fill Request Enable
	Enables the TFFF flag in the SR to generate a request. The TFFF_DIRS bit selects between generating an interrupt request or a DMA request.
	TFFF interrupts or DMA requests are disabled.TFFF interrupts or DMA requests are enabled.
24 TFFF_DIRS	Transmit FIFO Fill DMA or Interrupt Request Select
	Selects between generating a DMA request or an interrupt request. When SR[TFFF] and RSER[TFFF_RE] are set, this field selects between generating an interrupt request or a DMA request.
	TFFF flag generates interrupt requests. TFFF flag generates DMA requests.
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22 Reserved	This field is reserved.
21 Reserved	This field is reserved.
20 Reserved	This field is reserved.
19 RFOF_RE	Receive FIFO Overflow Request Enable
	Enables the RFOF flag in the SR to generate an interrupt request.
	0 RFOF interrupt requests are disabled.1 RFOF interrupt requests are enabled.
18 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
17 RFDF_RE	Receive FIFO Drain Request Enable
	Enables the RFDF flag in the SR to generate a request. The RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
	 0 RFDF interrupt or DMA requests are disabled. 1 RFDF interrupt or DMA requests are enabled.
16	Receive FIFO Drain DMA or Interrupt Request Select
RFDF_DIRS	Selects between generating a DMA request or an interrupt request. When the RFDF flag bit in the SR is set, and the RFDF_RE bit in the RSER is set, the RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
	0 Interrupt request. 1 DMA request.
15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.


Field	Description
14 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
13–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

45.3.7 PUSH TX FIFO Register In Master Mode (SPIx_PUSHR)

Specifies data to be transferred to the TX FIFO. An 8- or 16-bit write access transfers all 32 bits to the TX FIFO. In Master mode, the register transfers 16 bits of data and 16 bits of command information. In Slave mode, all 32 bits can be used as data, supporting up to 32-bit frame operation.

A read access of PUSHR returns the topmost TX FIFO entry.

When the module is disabled, writing to this register does not update the FIFO. Therefore, any reads performed while the module is disabled return the last PUSHR write performed while the module was still enabled.

SPIx_PUSHR field descriptions

Field	Description
31 CONT	Continuous Peripheral Chip Select Enable
	Selects a continuous selection format. The bit is used in SPI Master mode. The bit enables the selected PCS signals to remain asserted between transfers.
	0 Return PCSn signals to their inactive state between transfers.
	1 Keep PCSn signals asserted between transfers.

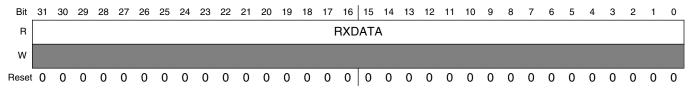
Field	Description
30–28 CTAS	Clock and Transfer Attributes Select Selects which CTAR to use in master mode to specify the transfer attributes for the associated SPI frame. In SPI Slave mode, CTAR0 is used. See the chip configuration details to determine how many CTARs this device has. You should not program a value in this field for a register that is not present. OOU CTAR0 OO1 CTAR1 O10 Reserved O11 Reserved 100 Reserved 110 Reserved 111 Reserved
27 EOQ	End Of Queue Host software uses this bit to signal to the module that the current SPI transfer is the last in a queue. At the end of the transfer, the EOQF bit in the SR is set. O The SPI data is not the last data to transfer. 1 The SPI data is the last data to transfer.
26 CTCNT	Clear Transfer Counter Clears the TCNT field in the TCR register. The TCNT field is cleared before the module starts transmitting the current SPI frame. 0 Do not clear the TCR[TCNT] field. 1 Clear the TCR[TCNT] field.
25–24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23–22 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
21–16 PCS	Select which PCS signals are to be asserted for the transfer. Refer to the chip configuration details for the number of PCS signals used in this MCU. Negate the PCS[x] signal. Assert the PCS[x] signal.
15–0 TXDATA	Transmit Data Holds SPI data to be transferred according to the associated SPI command.

45.3.8 PUSH TX FIFO Register In Slave Mode (SPIx_PUSHR_SLAVE)

Specifies data to be transferred to the TX FIFO. An 8- or 16-bit write access to PUSHR transfers all 32 bits to the TX FIFO.

In master mode, the register transfers 16 bits of data and 16 bits of command information to the TX FIFO. In slave mode, all 32 register bits can be used as data, supporting up to 32-bit SPI Frame operation.

Address: Base address + 34h offset

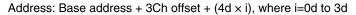

SPIx_PUSHR_SLAVE field descriptions

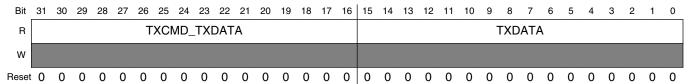
Field	Description
31–0 TXDATA	Transmit Data
	Holds SPI data to be transferred according to the associated SPI command.

45.3.9 POP RX FIFO Register (SPIx_POPR)

POPR is used to read the RX FIFO. Eight- or sixteen-bit read accesses to the POPR have the same effect on the RX FIFO as 32-bit read accesses. A write to this register will generate a Transfer Error.

Address: Base address + 38h offset

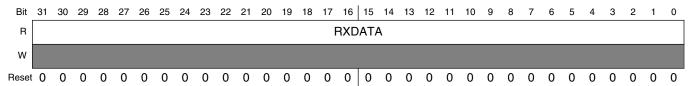



SPIx_POPR field descriptions

Field	Description
31–0 RXDATA	Received Data
	Contains the SPI data from the RX FIFO entry to which the Pop Next Data Pointer points.

45.3.10 Transmit FIFO Registers (SPIx_TXFRn)

TXFRn registers provide visibility into the TX FIFO for debugging purposes. Each register is an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the TXFRx registers does not alter the state of the TX FIFO.


SPIx_TXFRn field descriptions

Field	Description
31–16 TXCMD_ TXDATA	Transmit Command or Transmit Data In Master mode the TXCMD field contains the command that sets the transfer attributes for the SPI data.In Slave mode, the TXDATA contains 16 MSB bits of the SPI data to be shifted out.
15–0 TXDATA	Transmit Data Contains the SPI data to be shifted out.

45.3.11 Receive FIFO Registers (SPIx_RXFRn)

RXFRn provide visibility into the RX FIFO for debugging purposes. Each register is an entry in the RX FIFO. The RXFR registers are read-only. Reading the RXFRx registers does not alter the state of the RX FIFO.

Address: Base address + 7Ch offset + (4d × i), where i=0d to 3d

SPIx RXFRn field descriptions

Field	Description
31–0 RXDATA	Receive Data
	Contains the received SPI data.

Field	Description
	· ·

45.4 Functional description

The module supports full-duplex, synchronous serial communications between MCUs and peripheral devices. The SPI configuration transfers data serially using a shift register and a selection of programmable transfer attributes.

The module has the following configurations

• The SPI Configuration in which the module operates as a basic SPI or a queued SPI.

The DCONF field in the Module Configuration Register (MCR) determines the module Configuration. SPI configuration is selected when DCONF within SPIx_MCR is 0b00.

The CTARn registers hold clock and transfer attributes. The SPI configuration allows to select which CTAR to use on a frame by frame basis by setting a field in the SPI command.

See Clock and Transfer Attributes Register (In Master Mode) (SPI_CTAR*n*) for information on the fields of CTAR registers.

Typical master to slave connections are shown in the following figure. When a data transfer operation is performed, data is serially shifted a predetermined number of bit positions. Because the modules are linked, data is exchanged between the master and the slave. The data that was in the master shift register is now in the shift register of the slave, and vice versa. At the end of a transfer, the Transfer Control Flag(TCF) bit in the Shift Register(SR) is set to indicate a completed frame transfer.

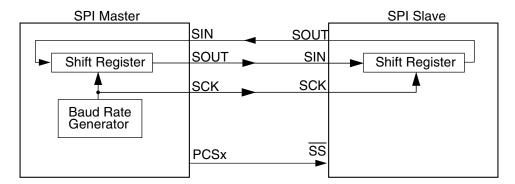


Figure 45-69. Serial protocol overview

Functional description

Generally, more than one slave device can be connected to the module master. 6 Peripheral Chip Select (PCS) signals of the module masters can be used to select which of the slaves to communicate with. Refer to the chip configuration details for the number of PCS signals used in this MCU.

The SPI configuration shares transfer protocol and timing properties which are described independently of the configuration in Transfer formats. The transfer rate and delay settings are described in Module baud rate and clock delay generation.

45.4.1 Start and Stop of module transfers

The module has two operating states: Stopped and Running. Both the states are independent of it's configuration. The default state of the module is Stopped. In the Stopped state, no serial transfers are initiated in Master mode and no transfers are responded to in Slave mode. The Stopped state is also a safe state for writing the various configuration registers of the module without causing undetermined results. In the Running state serial transfers take place.

The TXRXS bit in the SR indicates the state of module. The bit is set if the module is in Running state.

The module starts or transitions to Running when all of the following conditions are true:

- SR[EOQF] bit is clear
- MCU is not in the Debug mode or the MCR[FRZ] bit is clear
- MCR[HALT] bit is clear

The module stops or transitions from Running to Stopped after the current frame when any one of the following conditions exist:

- SR[EOQF] bit is set
- MCU in the Debug mode and the MCR[FRZ] bit is set
- MCR[HALT] bit is set

State transitions from Running to Stopped occur on the next frame boundary if a transfer is in progress, or immediately if no transfers are in progress.

45.4.2 Serial Peripheral Interface (SPI) configuration

The SPI configuration transfers data serially using a shift register and a selection of programmable transfer attributes. The module is in SPI configuration when the DCONF field in the MCR is 0b00. The SPI frames can be 32 bits long. The host CPU or a DMA controller transfers the SPI data from the external to the module RAM queues to a TX FIFO buffer. The received data is stored in entries in the RX FIFO buffer. The host CPU or the DMA controller transfers the received data from the RX FIFO to memory external to the module. The operation of FIFO buffers is described in the following sections:

- Transmit First In First Out (TX FIFO) buffering mechanism
- Transmit First In First Out (TX FIFO) buffering mechanism
- Receive First In First Out (RX FIFO) buffering mechanism

The interrupt and DMA request conditions are described in Interrupts/DMA requests.

The SPI configuration supports two block-specific modes—Master mode and Slave mode. In Master mode the module initiates and controls the transfer according to the fields of the executing SPI Command. In Slave mode, the module responds only to transfers initiated by a bus master external to it and the SPI command field space is reserved.

45.4.2.1 Master mode

In SPI Master mode, the module initiates the serial transfers by controlling the SCK and the PCS signals. The executing SPI Command determines which CTARs will be used to set the transfer attributes and which PCS signals to assert. The command field also contains various bits that help with queue management and transfer protocol. See PUSH TX FIFO Register In Master Mode (SPI_PUSHR) for details on the SPI command fields. The data in the executing TX FIFO entry is loaded into the shift register and shifted out on the Serial Out (SOUT) pin. In SPI Master mode, each SPI frame to be transmitted has a command associated with it, allowing for transfer attribute control on a frame by frame basis.

45.4.2.2 Slave mode

In SPI Slave mode the module responds to transfers initiated by an SPI bus master. It does not initiate transfers. Certain transfer attributes such as clock polarity, clock phase, and frame size must be set for successful communication with an SPI master. The SPI Slave mode transfer attributes are set in the CTARO. The data is shifted out with MSB first. Shifting out of LSB is not supported in this mode.

45.4.2.3 FIFO disable operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. The module operates as a double-buffered simplified SPI when the FIFOs are disabled. The Transmit and Receive side of the FIFOs are disabled separately. Setting the MCR[DIS_TXF] bit disables the TX FIFO, and setting the MCR[DIS_RXF] bit disables the RX FIFO.

The FIFO disable mechanisms are transparent to the user and to host software. Transmit data and commands are written to the PUSHR and received data is read from the POPR.

When the TX FIFO is disabled:

- SR[TFFF], SR[TFUF] and SR[TXCTR] behave as if there is a one-entry FIFO
- The contents of TXFRs, SR[TXNXTPTR] are undefined

Similarly, when the RX FIFO is disabled, the RFDF, RFOF, and RXCTR fields in the SR behave as if there is a one-entry FIFO, but the contents of the RXFR registers and POPNXTPTR are undefined.

45.4.2.4 Transmit First In First Out (TX FIFO) buffering mechanism

The TX FIFO functions as a buffer of SPI data for transmission. The TX FIFO holds 4 words, each consisting of SPI data. The number of entries in the TX FIFO is device-specific. SPI data is added to the TX FIFO by writing to the Data Field of module PUSH FIFO Register (PUSHR). TX FIFO entries can only be removed from the TX FIFO by being shifted out or by flushing the TX FIFO.

The TX FIFO Counter field (TXCTR) in the module Status Register (SR) indicates the number of valid entries in the TX FIFO. The TXCTR is updated every time a 8- or 16-bit write takes place to PUSHR[TXDATA] or SPI data is transferred into the shift register from the TX FIFO.

The TXNXTPTR field indicates the TX FIFO Entry that will be transmitted during the next transfer. The TXNXTPTR field is incremented every time SPI data is transferred from the TX FIFO to the shift register. The maximum value of the field is equal to the maximum implemented TXFR number and it rolls over after reaching the maximum.

45.4.2.4.1 Filling the TX FIFO

Host software or other intelligent blocks can add (push) entries to the TX FIFO by writing to the PUSHR. When the TX FIFO is not full, the TX FIFO Fill Flag (TFFF) in the SR is set. The TFFF bit is cleared when TX FIFO is full and the DMA controller

indicates that a write to PUSHR is complete. Writing a '1' to the TFFF bit also clears it. The TFFF can generate a DMA request or an interrupt request. See Transmit FIFO Fill Interrupt or DMA Request for details.

The module ignores attempts to push data to a full TX FIFO, and the state of the TX FIFO does not change and no error condition is indicated.

45.4.2.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO Counter decrements by one. At the end of a transfer, the TCF bit in the SR is set to indicate the completion of a transfer. The TX FIFO is flushed by writing a '1' to the CLR_TXF bit in MCR.

If an external bus master initiates a transfer with a module slave while the slave's TX FIFO is empty, the Transmit FIFO Underflow Flag (TFUF) in the slave's SR is set. See Transmit FIFO Underflow Interrupt Request for details.

45.4.2.5 Receive First In First Out (RX FIFO) buffering mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds 4 received SPI data frames. The number of entries in the RX FIFO is device-specific. SPI data is added to the RX FIFO at the completion of a transfer when the received data in the shift register is transferred into the RX FIFO. SPI data are removed (popped) from the RX FIFO by reading the module POP RX FIFO Register (POPR). RX FIFO entries can only be removed from the RX FIFO by reading the POPR or by flushing the RX FIFO.

The RX FIFO Counter field (RXCTR) in the module's Status Register (SR) indicates the number of valid entries in the RX FIFO. The RXCTR is updated every time the POPR is read or SPI data is copied from the shift register to the RX FIFO.

The POPNXTPTR field in the SR points to the RX FIFO entry that is returned when the POPR is read. The POPNXTPTR contains the positive offset from RXFR0 in a number of 32-bit registers. For example, POPNXTPTR equal to two means that the RXFR2 contains the received SPI data that will be returned when the POPR is read. The POPNXTPTR field is incremented every time the POPR is read. The maximum value of the field is equal to the maximum implemented RXFR number and it rolls over after reaching the maximum.

45.4.2.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full, SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI frame is transferred to the RX FIFO, the RX FIFO Counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the SR is set indicating an overflow condition. Depending on the state of the ROOE bit in the MCR, the data from the transfer that generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is shifted in to the shift register. If the ROOE bit is cleared, the incoming data is ignored.

45.4.2.5.2 Draining the RX FIFO

Host CPU or a DMA can remove (pop) entries from the RX FIFO by reading the module POP RX FIFO Register (POPR). A read of the POPR decrements the RX FIFO Counter by one. Attempts to pop data from an empty RX FIFO are ignored and the RX FIFO Counter remains unchanged. The data, read from the empty RX FIFO, is undetermined.

When the RX FIFO is not empty, the RX FIFO Drain Flag (RFDF) in the SR is set. The RFDF bit is cleared when the RX_FIFO is empty and the DMA controller indicates that a read from POPR is complete or by writing a 1 to it.

45.4.3 Module baud rate and clock delay generation

The SCK frequency and the delay values for serial transfer are generated by dividing the protocol clock frequency by a prescaler and a scaler with the option for doubling the baud rate. The following figure shows conceptually how the SCK signal is generated.

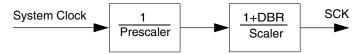


Figure 45-70. Communications clock prescalers and scalers

45.4.3.1 Baud rate generator

The baud rate is the frequency of the SCK. The protocol clock is divided by a prescaler (PBR) and scaler (BR) to produce SCK with the possibility of halving the scaler division. The DBR, PBR, and BR fields in the CTARs select the frequency of SCK by the formula in the BR field description. The following table shows an example of how to compute the baud rate.

Table 45-98. Baud rate computation example

f _P	PBR	Prescaler	BR	Scaler	DBR	Baud rate
100 MHz	0b00	2	0b0000	2	0	25 Mb/s
20 MHz	0b00	2	0b0000	2	1	10 Mb/s

NOTE

The clock frequencies mentioned in the preceding table are given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

45.4.3.2 PCS to SCK Delay (t_{CSC})

The PCS to SCK delay is the length of time from assertion of the PCS signal to the first SCK edge. See Figure 45-72 for an illustration of the PCS to SCK delay. The PCSSCK and CSSCK fields in the CTARx registers select the PCS to SCK delay by the formula in the CSSCK field description. The following table shows an example of how to compute the PCS to SCK delay.

Table 45-99. PCS to SCK delay computation example

f _{SYS}	PCSSCK	Prescaler	CSSCK	Scaler	PCS to SCK Delay
100 MHz	0b01	3	0b0100	32	0.96 µs

NOTE

The clock frequency mentioned in the preceding table is given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

45.4.3.3 After SCK Delay (t_{ASC})

The After SCK Delay is the length of time between the last edge of SCK and the negation of PCS. See Figure 45-72 and Figure 45-73 for illustrations of the After SCK delay. The PASC and ASC fields in the CTARx registers select the After SCK Delay by the formula in the ASC field description. The following table shows an example of how to compute the After SCK delay.

Table 45-100. After SCK Delay computation example

f _P	PASC	Prescaler	ASC	Scaler	After SCK Delay
100 MHz	0b01	3	0b0100	32	0.96 µs

NOTE

The clock frequency mentioned in the preceding table is given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

45.4.3.4 Delay after Transfer (t_{DT})

The Delay after Transfer is the minimum time between negation of the PCS signal for a frame and the assertion of the PCS signal for the next frame. See Figure 45-72 for an illustration of the Delay after Transfer. The PDT and DT fields in the CTARx registers select the Delay after Transfer by the formula in the DT field description. The following table shows an example of how to compute the Delay after Transfer.

Table 45-101. Delay after Transfer computation example

f _P	PDT	Prescaler	DT	Scaler	Delay after Transfer
100 MHz	0b01	3	0b1110	32768	0.98 ms

NOTE

The clock frequency mentioned in the preceding table is given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

When in Non-Continuous Clock mode the t_{DT} delay is configured according to the equation specified in the CTAR[DT] field description. When in Continuous Clock mode, the delay is fixed at 1 SCK period.

45.4.3.5 Peripheral Chip Select Strobe Enable (PCSS)

The \overline{PCSS} signal provides a delay to allow the PCS signals to settle after a transition occurs thereby avoiding glitches. When the Module is in Master mode and the PCSSE bit is set in the MCR, \overline{PCSS} provides a signal for an external demultiplexer to decode peripheral chip selects other than PCS5 into glitch-free PCS signals. The following figure shows the timing of the \overline{PCSS} signal relative to PCS signals.

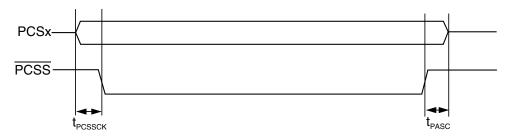


Figure 45-71. Peripheral Chip Select Strobe timing

The delay between the assertion of the PCS signals and the assertion of \overline{PCSS} is selected by the PCSSCK field in the CTAR based on the following formula:

$$t_{\text{PCSSCK}} = \frac{1}{f_{\text{P}}} \times \text{PCSSCK}$$

At the end of the transfer, the delay between \overline{PCSS} negation and PCS negation is selected by the PASC field in the CTAR based on the following formula:

$$t_{\text{PASC}} = \frac{1}{f_{\text{P}}} \times \text{PASC}$$

The following table shows an example of how to compute the t_{pessek} delay.

Table 45-102. Peripheral Chip Select Strobe Assert computation example

f _P	PCSSCK	Prescaler	Delay before Transfer
100 MHz	0b11	7	70.0 ns

The following table shows an example of how to compute the t_{pasc} delay.

Table 45-103. Peripheral Chip Select Strobe Negate computation example

f _P	PASC	Prescaler	Delay after Transfer
100 MHz	0b11	7	70.0 ns

The PCSS signal is not supported when Continuous Serial Communication SCK mode is enabled.

NOTE

The clock frequency mentioned in the preceding tables is given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

45.4.4 Transfer formats

The SPI serial communication is controlled by the Serial Communications Clock (SCK) signal and the PCS signals. The SCK signal provided by the master device synchronizes shifting and sampling of the data on the SIN and SOUT pins. The PCS signals serve as enable signals for the slave devices.

In Master mode, the CPOL and CPHA bits in the Clock and Transfer Attributes Registers (CTARn) select the polarity and phase of the serial clock, SCK.

- CPOL Selects the idle state polarity of the SCK
- CPHA Selects if the data on SOUT is valid before or on the first SCK edge

Even though the bus slave does not control the SCK signal, in Slave mode the values of CPOL and CPHA must be identical to the master device settings to ensure proper transmission. In SPI Slave mode, only CTAR0 is used.

The module supports four different transfer formats:

- Classic SPI with CPHA=0
- Classic SPI with CPHA=1
- Modified Transfer Format with CPHA = 0
- Modified Transfer Format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that require longer setup times. The module can sample the incoming data later than halfway through the cycle to give the peripheral more setup time. The MTFE bit in the MCR selects between Classic SPI Format and Modified Transfer Format.

In the interface configurations, the module provides the option of keeping the PCS signals asserted between frames. See Continuous Selection Format for details.

45.4.4.1 Classic SPI Transfer Format (CPHA = 0)

The transfer format shown in following figure is used to communicate with peripheral SPI slave devices where the first data bit is available on the first clock edge. In this format, the master and slave sample their SIN pins on the odd-numbered SCK edges and change the data on their SOUT pins on the even-numbered SCK edges.

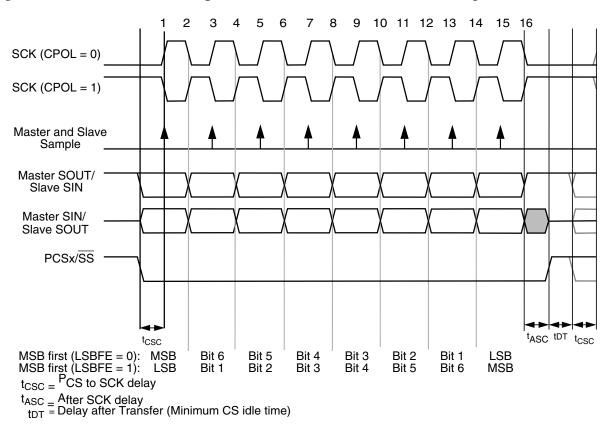
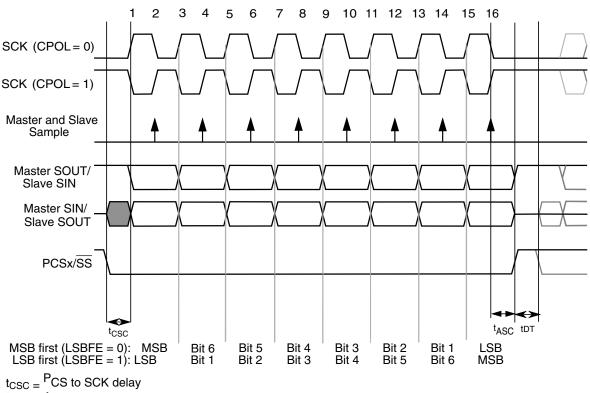



Figure 45-72. Module transfer timing diagram (MTFE=0, CPHA=0, FMSZ=8)

The master initiates the transfer by placing its first data bit on the SOUT pin and asserting the appropriate peripheral chip select signals to the slave device. The slave responds by placing its first data bit on its SOUT pin. After the $t_{\rm ASC}$ delay elapses, the master outputs the first edge of SCK. The master and slave devices use this edge to sample the first input data bit on their serial data input signals. At the second edge of the SCK, the master and slave devices place their second data bit on their serial data output signals. For the rest of the frame the master and the slave sample their SIN pins on the odd-numbered clock edges and changes the data on their SOUT pins on the even-numbered clock edges. After the last clock edge occurs, a delay of $t_{\rm ASC}$ is inserted before the master negates the PCS signals. A delay of $t_{\rm DT}$ is inserted before a new frame transfer can be initiated by the master.

Classic SPI Transfer Format (CPHA = 1) 45.4.4.2

This transfer format shown in the following figure is used to communicate with peripheral SPI slave devices that require the first SCK edge before the first data bit becomes available on the slave SOUT pin. In this format, the master and slave devices change the data on their SOUT pins on the odd-numbered SCK edges and sample the data on their SIN pins on the even-numbered SCK edges.

t_{ASC} _ After SCK delay

tDT = Delay after Transfer (minimum CS negation time)

Figure 45-73. Module transfer timing diagram (MTFE=0, CPHA=1, FMSZ=8)

The master initiates the transfer by asserting the PCS signal to the slave. After the t_{CSC} delay has elapsed, the master generates the first SCK edge and at the same time places valid data on the master SOUT pin. The slave responds to the first SCK edge by placing its first data bit on its slave SOUT pin.

At the second edge of the SCK the master and slave sample their SIN pins. For the rest of the frame the master and the slave change the data on their SOUT pins on the oddnumbered clock edges and sample their SIN pins on the even-numbered clock edges. After the last clock edge occurs, a delay of t_{ASC} is inserted before the master negates the PCS signal. A delay of t_{DT} is inserted before a new frame transfer can be initiated by the master.

45.4.4.3 Continuous Selection Format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected between several sequential serial transfers. The Continuous Selection Format provides the flexibility to handle the following case. The Continuous Selection Format is enabled for the SPI configuration by setting the CONT bit in the SPI command.

When the CONT bit = 0, the module drives the asserted Chip Select signals to their idle states in between frames. The idle states of the Chip Select signals are selected by the PCSISn bits in the MCR. The following timing diagram is for two four-bit transfers with CPHA = 1 and CONT = 0.

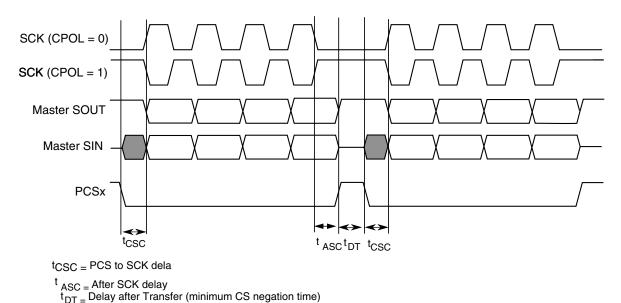


Figure 45-74. Example of non-continuous format (CPHA=1, CONT=0)

When the CONT bit = 1, the PCS signal remains asserted for the duration of the two transfers. The Delay between Transfers ($t_{\rm DT}$) is not inserted between the transfers. The following figure shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT = 1.

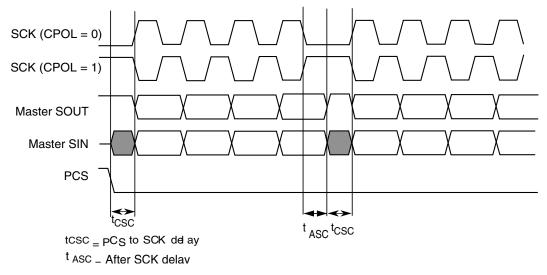


Figure 45-75. Example of continuous transfer (CPHA=1, CONT=1)

When using the module with continuous selection follow these rules:

- All transmit commands must have the same PCSn bits programming.
- The CTARs, selected by transmit commands, must be programmed with the same transfer attributes. Only FMSZ field can be programmed differently in these CTARs.
- When transmitting multiple frames in this mode, the user software must ensure that the last frame has the PUSHR[CONT] bit deasserted in Master mode and the user software must provide sufficient frames in the TX_FIFO to be sent out in Slave mode and the master deasserts the PCSn at end of transmission of the last frame.
- PUSHR[CONT] must be deasserted before asserting MCR[HALT] in master mode. This will make sure that the PCSn signals are deasserted. Asserting MCR[HALT] during continuous transfer will cause the PCSn signals to remain asserted and hence Slave Device cannot transition from Running to Stopped state.

NOTE

User must fill the TX FIFO with the number of entries that will be concatenated together under one PCS assertion for both master and slave before the TX FIFO becomes empty.

When operating in Slave mode, ensure that when the last entry in the TX FIFO is completely transmitted, that is, the corresponding TCF flag is asserted and TXFIFO is empty, the slave is deselected for any further serial communication; otherwise, an underflow error occurs.

45.4.5 Continuous Serial Communications Clock

The module provides the option of generating a Continuous SCK signal for slave peripherals that require a continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the MCR. Enabling this bit generates the Continuous SCK regardless of the MCR[HALT] bit status. Continuous SCK is valid in all configurations.

Continuous SCK is only supported for CPHA=1. Clearing CPHA is ignored if the CONT_SCKE bit is set. Continuous SCK is supported for Modified Transfer Format.

Clock and transfer attributes for the Continuous SCK mode are set according to the following rules:

- When the module is in SPI configuration, CTAR0 is used initially. At the start of each SPI frame transfer, the CTAR specified by the CTAS for the frame is used.
- In all configurations, the currently selected CTAR remains in use until the start of a frame with a different CTAR specified, or the Continuous SCK mode is terminated.

It is recommended to keep the baud rate the same while using the Continuous SCK. Switching clock polarity between frames while using Continuous SCK can cause errors in the transfer. Continuous SCK operation is not guaranteed if the module is put into the External Stop mode or Module Disable mode.

Enabling Continuous SCK disables the PCS to SCK delay and the Delay after Transfer (t_{DT}) is fixed to one SCK cycle. The following figure is the timing diagram for Continuous SCK format with Continuous Selection disabled.

NOTE

In Continuous SCK mode, for the SPI transfer CTAR0 should always be used, and the TX FIFO must be cleared using the MCR[CLR_TXF] field before initiating transfer.

Functional description

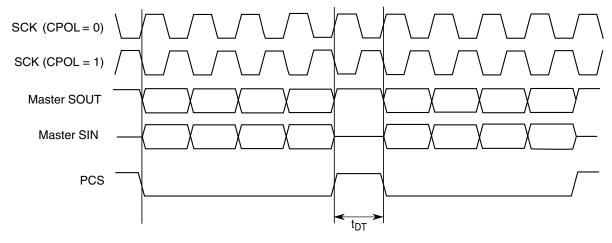


Figure 45-76. Continuous SCK Timing Diagram (CONT=0)

If the CONT bit in the TX FIFO entry is set, PCS remains asserted between the transfers. Under certain conditions, SCK can continue with PCS asserted, but with no data being shifted out of SOUT, that is, SOUT pulled high. This can cause the slave to receive incorrect data. Those conditions include:

- Continuous SCK with CONT bit set, but no data in the TX FIFO.
- Continuous SCK with CONT bit set and entering Stopped state (refer to Start and Stop of module transfers).
- Continuous SCK with CONT bit set and entering Stop mode or Module Disable mode.

The following figure shows timing diagram for Continuous SCK format with Continuous Selection enabled.

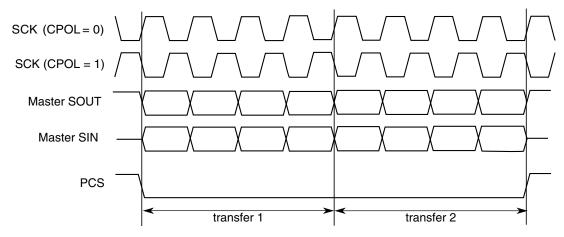


Figure 45-77. Continuous SCK timing diagram (CONT=1)

45.4.6 Slave Mode Operation Constraints

Slave mode logic shift register is buffered. This allows data streaming operation, when the module is permanently selected and data is shifted in with a constant rate.

The transmit data is transferred at second SCK clock edge of the each frame to the shift register if the \overline{SS} signal is asserted and any time when transmit data is ready and \overline{SS} signal is negated.

Received data is transferred to the receive buffer at last SCK edge of each frame, defined by frame size programmed to the CTAR0/1 register. Then the data from the buffer is transferred to the RXFIFO or DDR register.

If the \overline{SS} negates before that last SCK edge, the data from shift register is lost.

45.4.7 Interrupts/DMA requests

The module has several conditions that can generate only interrupt requests and two conditions that can generate interrupt or DMA requests. The following table lists these conditions.

Condition	Flag	Interrupt	DMA
End of Queue (EOQ)	EOQF	Yes	-
TX FIFO Fill	TFFF	Yes	Yes
Transfer Complete	TCF	Yes	-
TX FIFO Underflow	TFUF	Yes	-
RX FIFO Drain	RFDF	Yes	Yes
RX FIFO Overflow	RFOF	Yes	-

Table 45-104. Interrupt and DMA request conditions

Each condition has a flag bit in the module Status Register (SR) and a Request Enable bit in the DMA/Interrupt Request Select and Enable Register (RSER). Certain flags (as shown in above table) generate interrupt requests or DMA requests depending on configuration of RSER register.

The module also provides a global interrupt request line, which is asserted when any of individual interrupt requests lines is asserted.

45.4.7.1 End Of Queue interrupt request

The End Of Queue (EOQ) interrupt request indicates that the end of a transmit queue is reached. The module generates the interrupt request when EOQ interrupt requests are enabled (RSER[EOQF_RE]) and the EOQ bit in the executing SPI command is 1.

The module generates the interrupt request when the last bit of the SPI frame with EOQ bit set is transmitted.

45.4.7.2 Transmit FIFO Fill Interrupt or DMA Request

The Transmit FIFO Fill Request indicates that the TX FIFO is not full. The Transmit FIFO Fill Request is generated when the number of entries in the TX FIFO is less than the maximum number of possible entries, and the TFFF_RE bit in the RSER is set. The TFFF_DIRS bit in the RSER selects whether a DMA request or an interrupt request is generated.

NOTE

TFFF flag clears automatically when DMA is used to fill TX FIFO.

To clear TFFF when not using DMA, follow these steps for every PUSH performed using CPU to fill TX FIFO:

- 1. Wait until TFFF = 1.
- 2. Write data to PUSHR using CPU.
- 3. Clear TFFF by writing a 1 to its location. If TX FIFO is not full, this flag will not clear.

45.4.7.3 Transfer Complete Interrupt Request

The Transfer Complete Request indicates the end of the transfer of a serial frame. The Transfer Complete Request is generated at the end of each frame transfer when the TCF_RE bit is set in the RSER.

45.4.7.4 Transmit FIFO Underflow Interrupt Request

The Transmit FIFO Underflow Request indicates that an underflow condition in the TX FIFO has occurred. The transmit underflow condition is detected only for the module operating in Slave mode and SPI configuration. The TFUF bit is set when the TX FIFO

of the module is empty, and a transfer is initiated from an external SPI master. If the TFUF bit is set while the TFUF_RE bit in the RSER is set, an interrupt request is generated.

45.4.7.5 Receive FIFO Drain Interrupt or DMA Request

The Receive FIFO Drain Request indicates that the RX FIFO is not empty. The Receive FIFO Drain Request is generated when the number of entries in the RX FIFO is not zero, and the RFDF_RE bit in the RSER is set. The RFDF_DIRS bit in the RSER selects whether a DMA request or an interrupt request is generated.

45.4.7.6 Receive FIFO Overflow Interrupt Request

The Receive FIFO Overflow Request indicates that an overflow condition in the RX FIFO has occurred. A Receive FIFO Overflow request is generated when RX FIFO and shift register are full and a transfer is initiated. The RFOF_RE bit in the RSER must be set for the interrupt request to be generated.

Depending on the state of the ROOE bit in the MCR, the data from the transfer that generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is shifted in to the shift register. If the ROOE bit is cleared, the incoming data is ignored.

45.4.8 Power saving features

The module supports following power-saving strategies:

- External Stop mode
- Module Disable mode Clock gating of non-memory mapped logic

45.4.8.1 Stop mode (External Stop mode)

This module supports the Stop mode protocol. When a request is made to enter External Stop mode, the module acknowledges the request. If a serial transfer is in progress, then this module waits until it reaches the frame boundary before it is ready to have its clocks shut off. While the clocks are shut off, this module's memory-mapped logic is not

Initialization/application information

accessible. This also puts the module in STOPPED state. The SR[TXRXS] bit is cleared to indicate STOPPED state. The states of the interrupt and DMA request signals cannot be changed while in External Stop mode.

45.4.8.2 Module Disable mode

Module Disable mode is a block-specific mode that the module can enter to save power. Host CPU can initiate the Module Disable mode by setting the MDIS bit in the MCR. The Module Disable mode can also be initiated by hardware.

When the MDIS bit is set, the module negates the Clock Enable signal at the next frame boundary. Once the Clock Enable signal is negated, it is said to have entered Module Disable Mode. This also puts the module in STOPPED state. The SR[TXRXS] bit is cleared to indicate STOPPED state. If implemented, the Clock Enable signal can stop the clock to the non-memory mapped logic. When Clock Enable is negated, the module is in a dormant state, but the memory mapped registers are still accessible. Certain read or write operations have a different effect when the module is in the Module Disable mode. Reading the RX FIFO Pop Register does not change the state of the RX FIFO. Similarly, writing to the PUSHR Register does not change the state of the TX FIFO. Clearing either of the FIFOs has no effect in the Module Disable mode. Changes to the DIS_TXF and DIS_RXF fields of the MCR have no effect in the Module Disable mode. In the Module Disable mode, all status bits and register flags in the module return the correct values when read, but writing to them has no effect. Writing to the TCR during Module Disable mode has no effect. Interrupt and DMA request signals cannot be cleared while in the Module Disable mode.

45.5 Initialization/application information

This section describes how to initialize the module.

45.5.1 How to manage queues

The queues are not part of the module, but it includes features in support of queue management. Queues are primarily supported in SPI configuration.

1. When module executes last command word from a queue, the EOQ bit in the command word is set to indicate it that this is the last entry in the queue.

- 2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ flag (EOQF) in the SR is set.
- 3. The setting of the EOQF flag disables serial transmission and reception of data, putting the module in the Stopped state. The TXRXS bit is cleared to indicate the Stopped state.
- 4. The DMA can continue to fill TX FIFO until it is full or step 5 occurs.
- 5. Disable DMA transfers by disabling the DMA enable request for the DMA channel assigned to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA enable request bits in the DMA Controller.
- 6. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading the RXCNT in SR or by checking RFDF in the SR after each read operation of the POPR.
- 7. Modify DMA descriptor of TX and RX channels for new queues
- 8. Flush TX FIFO by writing a 1 to the CLR_TXF bit in the MCR. Flush RX FIFO by writing a '1' to the CLR_RXF bit in the MCR.
- 9. Clear transfer count either by setting CTCNT bit in the command word of the first entry in the new queue or via CPU writing directly to SPI_TCNT field in the TCR.
- 10. Enable DMA channel by enabling the DMA enable request for the DMA channel assigned to the module TX FIFO, and RX FIFO by setting the corresponding DMA set enable request bit.
- 11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

45.5.2 Switching Master and Slave mode

When changing modes in the module, follow the steps below to guarantee proper operation.

- 1. Halt it by setting MCR[HALT].
- 2. Clear the transmit and receive FIFOs by writing a 1 to the CLR_TXF and CLR_RXF bits in MCR.
- 3. Set the appropriate mode in MCR[MSTR] and enable it by clearing MCR[HALT].

45.5.3 Initializing Module in Master/Slave Modes

Once the appropriate mode in MCR[MSTR] is configured, the module is enabled by clearing MCR[HALT]. It should be ensured that module Slave is enabled before enabling it's Master. This ensures the Slave is ready to be communicated with, before Master initializes communication.

45.5.4 Baud rate settings

The following table shows the baud rate that is generated based on the combination of the baud rate prescaler PBR and the baud rate scaler BR in the CTARs. The values calculated assume a 100 MHz protocol frequency and the double baud rate DBR bit is cleared.

NOTE

The clock frequency mentioned above is given as an example in this chapter. See the clocking chapter for the frequency used to drive this module in the device.

				Baud rate d	ivider prescaler values
		2	3	5	7
	2	25.0M	16.7M	10.0M	7.14M
	4	12.5M	8.33M	5.00M	3.57M
	6	8.33M	5.56M	3.33M	2.38M
	8	6.25M	4.17M	2.50M	1.79M
	16	3.12M	2.08M	1.25M	893k
nes	32	1.56M	1.04M	625k	446k
Baud Rate Scaler Values	64	781k	521k	312k	223k
<u>le</u>	128	391k	260k	156k	112k
Sc	256	195k	130k	78.1k	55.8k
late	512	97.7k	65.1k	39.1k	27.9k
ρί	1024	48.8k	32.6k	19.5k	14.0k
Baı	2048	24.4k	16.3k	9.77k	6.98k
	4096	12.2k	8.14k	4.88k	3.49k
	8192	6.10k	4.07k	2.44k	1.74k
	16384	3.05k	2.04k	1.22k	872
	32768	1.53k	1.02k	610	436

Table 45-105. Baud rate values (bps)

45.5.5 Delay settings

The following table shows the values for the Delay after Transfer (t_{DT}) and CS to SCK Delay (T_{CSC}) that can be generated based on the prescaler values and the scaler values set in the CTARs. The values calculated assume a 100 MHz protocol frequency.

NOTE

The clock frequency mentioned above is given as an example in this chapter. See the clocking chapter for the frequency used to drive this module in the device.

					Delay prescaler values
		1	3	5	7
	2	20.0 ns	60.0 ns	100.0 ns	140.0 ns
	4	40.0 ns	120.0 ns	200.0 ns	280.0 ns
	8	80.0 ns	240.0 ns	400.0 ns	560.0 ns
	16	160.0 ns	480.0 ns	800.0 ns	1.1 µs
	32	320.0 ns	960.0 ns	1.6 µs	2.2 µs
့ တ	64	640.0 ns	1.9 µs	3.2 µs	4.5 µs
Delay scaler values	128	1.3 µs	3.8 µs	6.4 µs	9.0 µs
l %	256	2.6 µs	7.7 µs	12.8 µs	17.9 µs
cale	512	5.1 µs	15.4 µs	25.6 µs	35.8 µs
ay s	1024	10.2 µs	30.7 µs	51.2 µs	71.7 µs
Delk	2048	20.5 µs	61.4 µs	102.4 µs	143.4 µs
	4096	41.0 µs	122.9 µs	204.8 µs	286.7 µs
	8192	81.9 µs	245.8 µs	409.6 µs	573.4 µs
	16384	163.8 µs	491.5 µs	819.2 µs	1.1 ms
	32768	327.7 µs	983.0 µs	1.6 ms	2.3 ms
	65536	655.4 µs	2.0 ms	3.3 ms	4.6 ms

Table 45-106. Delay values

45.5.6 Calculation of FIFO pointer addresses

Complete visibility of the FIFO contents is available through the FIFO registers, and valid entries can be identified through a memory-mapped pointer and counter for each FIFO. The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO the first-in pointer is the Transmit Next Pointer (TXNXTPTR). For the RX FIFO the first-in pointer is the Pop Next Pointer (POPNXTPTR). The following figure illustrates the concept of first-in and last-in FIFO entries along with the FIFO Counter. The TX

Initialization/application information

FIFO is chosen for the illustration, but the concepts carry over. See Transmit First In First Out (TX FIFO) buffering mechanism and Receive First In First Out (RX FIFO) buffering mechanism for details on the FIFO operation.

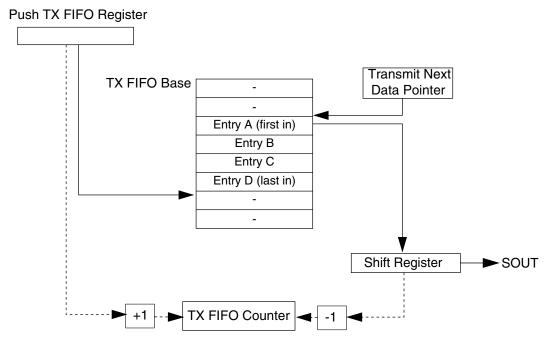


Figure 45-78. TX FIFO pointers and counter

45.5.6.1 Address Calculation for the First-in Entry and Last-in Entry in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

First-in EntryAddress = $TXFIFOBase + (4 \times TXNXTPTR)$

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Last-inEntryaddress = TXFIFOBase + 4 × (TXCTR + TXNXTPTR - 1)mod(TXFIFOdepth)

TX FIFO Base - Base address of TX FIFO

TXCTR - TX FIFO Counter

TXNXTPTR - Transmit Next Pointer

TX FIFO Depth - Transmit FIFO depth, implementation specific

45.5.6.2 Address Calculation for the First-in Entry and Last-in Entry in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

First-in EntryAddress = RX FIFOBase + (4 × POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

 $Last-inEntryaddress = RX\ FIFO\ Base + 4 \times \big(RXCTR + POPNXTPTR - 1\big) mod \big(RXFIFO depth\big)$

RX FIFO Base - Base address of RX FIFO

RXCTR - RX FIFO counter

POPNXTPTR - Pop Next Pointer

RX FIFO Depth - Receive FIFO depth, implementation specific

Initialization/application information

Chapter 46 Inter-Integrated Circuit (I2C)

46.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The inter-integrated circuit (I²C, I2C, or IIC) module provides a method of communication between a number of devices.

The interface is designed to operate up to 100 kbit/s with maximum bus loading and timing. The I2C device is capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400 pF. The I2C module also complies with the *System Management Bus (SMBus) Specification, version 2*.

46.1.1 Features

The I2C module has the following features:

- Compatible with *The I²C-Bus Specification*
- Multimaster operation
- Software programmable for one of 64 different serial clock frequencies
- Software-selectable acknowledge bit
- Interrupt-driven byte-by-byte data transfer
- Arbitration-lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- START and STOP signal generation and detection
- Repeated START signal generation and detection
- Acknowledge bit generation and detection

Introduction

- Bus busy detection
- General call recognition
- 10-bit address extension
- Support for System Management Bus (SMBus) Specification, version 2
- Programmable input glitch filter
- Low power mode wakeup on slave address match
- Range slave address support
- DMA support

46.1.2 Modes of operation

The I2C module's operation in various low power modes is as follows:

- Run mode: This is the basic mode of operation. To conserve power in this mode, disable the module.
- Wait mode: The module continues to operate when the core is in Wait mode and can provide a wakeup interrupt.
- Stop mode: The module is inactive in Stop mode for reduced power consumption, except that address matching is enabled in Stop mode. The STOP instruction does not affect the I2C module's register states.

46.1.3 Block diagram

The following figure is a functional block diagram of the I2C module.

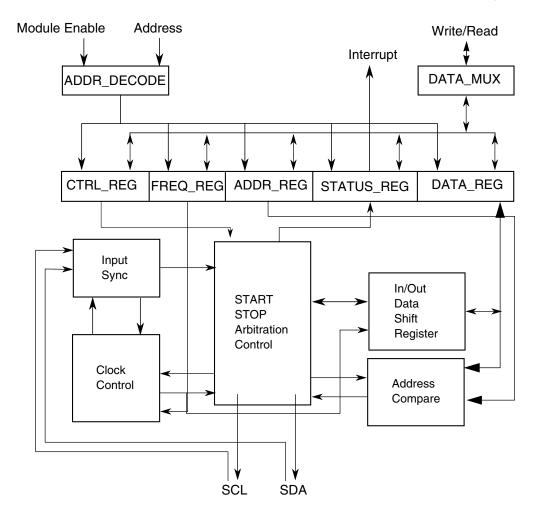


Figure 46-1. I2C Functional block diagram

46.2 I²C signal descriptions

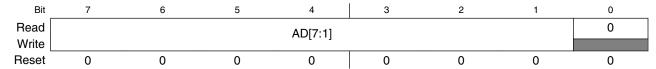
The signal properties of I²C are shown in the table found here.

Table 46-1. I²C signal descriptions

Signal	Description	I/O
SCL	Bidirectional serial clock line of the I ² C system.	I/O
SDA	Bidirectional serial data line of the I ² C system.	I/O

46.3 Memory map/register definition

This section describes in detail all I2C registers accessible to the end user.

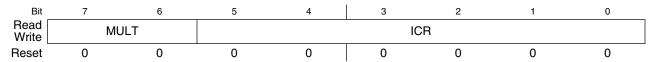

I2C memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_6000	I2C Address Register 1 (I2C0_A1)	8	R/W	00h	46.3.1/1167
4006_6001	I2C Frequency Divider register (I2C0_F)	8	R/W	00h	46.3.2/1167
4006_6002	I2C Control Register 1 (I2C0_C1)	8	R/W	00h	46.3.3/1168
4006_6003	I2C Status register (I2C0_S)	8	R/W	80h	46.3.4/1170
4006_6004	I2C Data I/O register (I2C0_D)	8	R/W	00h	46.3.5/1172
4006_6005	I2C Control Register 2 (I2C0_C2)	8	R/W	00h	46.3.6/1172
4006_6006	I2C Programmable Input Glitch Filter Register (I2C0_FLT)	8	R/W	00h	46.3.7/1173
4006_6007	I2C Range Address register (I2C0_RA)	8	R/W	00h	46.3.8/1175
4006_6008	I2C SMBus Control and Status register (I2C0_SMB)	8	R/W	00h	46.3.9/1175
4006_6009	I2C Address Register 2 (I2C0_A2)	8	R/W	C2h	46.3.10/ 1177
4006_600A	I2C SCL Low Timeout Register High (I2C0_SLTH)	8	R/W	00h	46.3.11/ 1177
4006_600B	I2C SCL Low Timeout Register Low (I2C0_SLTL)	8	R/W	00h	46.3.12/ 1178
4006_7000	I2C Address Register 1 (I2C1_A1)	8	R/W	00h	46.3.1/1167
4006_7001	I2C Frequency Divider register (I2C1_F)	8	R/W	00h	46.3.2/1167
4006_7002	I2C Control Register 1 (I2C1_C1)	8	R/W	00h	46.3.3/1168
4006_7003	I2C Status register (I2C1_S)	8	R/W	80h	46.3.4/1170
4006_7004	I2C Data I/O register (I2C1_D)	8	R/W	00h	46.3.5/1172
4006_7005	I2C Control Register 2 (I2C1_C2)	8	R/W	00h	46.3.6/1172
4006_7006	I2C Programmable Input Glitch Filter Register (I2C1_FLT)	8	R/W	00h	46.3.7/1173
4006_7007	I2C Range Address register (I2C1_RA)	8	R/W	00h	46.3.8/1175
4006_7008	I2C SMBus Control and Status register (I2C1_SMB)	8	R/W	00h	46.3.9/1175
4006_7009	I2C Address Register 2 (I2C1_A2)	8	R/W	C2h	46.3.10/ 1177
4006_700A	I2C SCL Low Timeout Register High (I2C1_SLTH)	8	R/W	00h	46.3.11/ 1177
4006_700B	I2C SCL Low Timeout Register Low (I2C1_SLTL)	8	R/W	00h	46.3.12/ 1178

46.3.1 I2C Address Register 1 (I2Cx_A1)

This register contains the slave address to be used by the I2C module.

Address: Base address + 0h offset



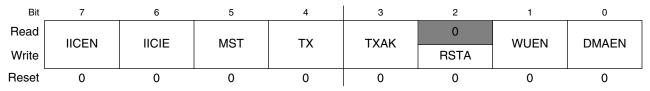
I2Cx_A1 field descriptions

Field	Description
7–1 AD[7:1]	Address Contains the primary slave address used by the I2C module when it is addressed as a slave. This field is used in the 7-bit address scheme and the lower seven bits in the 10-bit address scheme.
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

46.3.2 I2C Frequency Divider register (I2Cx_F)

Address: Base address + 1h offset

I2Cx_F field descriptions


Field	Description
7–6 MULT	Multiplier Factor
WOLI	Defines the multiplier factor (mul). This factor is used along with the SCL divider to generate the I2C baud rate.
	00 mul = 1
	01 mul = 2
	10 mul = 4
	11 Reserved
5–0	ClockRate
ICR	Prescales the I2C module clock for bit rate selection. This field and the MULT field determine the I2C baud rate, the SDA hold time, the SCL start hold time, and the SCL stop hold time. For a list of values corresponding to each ICR setting, see I2C divider and hold values.
	The SCL divider multiplied by multiplier factor (mul) determines the I2C baud rate.
	I2C baud rate = I2C module clock speed (Hz)/(mul x SCL divider)

I2Cx_F field descriptions (continued)

I	Description				
	The SDA hold time is	the delay from the fallir	ng edge of SCL (I2	2C clock) to the changi	ng of SDA (I2C da
	SDA hold time =	I2C module clock	period (s) x	mul × SDA hold va	alue
		ne is the delay from the g edge of SCL (I2C cloc	• •	DA (I2C data) while SC	L is high (start
	SCL start hold t	ime = I2C module	clock period	(s) × mul × SCL s	start hold val
The SCL stop hold time is the delay from the ris data) while SCL is high (stop condition). SCL stop hold time = I2C module clo For example, if the I2C module clock speed is 8 values with different ICR and MULT selections to	rising edge of SC	L (I2C clock) to the risi	ing edge of SDA (I		
	For example, if the I2	C module clock speed i	s 8 MHz, the follo	wing table shows the p	ossible hold time
	For example, if the I20 values with different I0	C module clock speed i CR and MULT selection	s 8 MHz, the follo	wing table shows the p	ossible hold time
	For example, if the I20	C module clock speed i	s 8 MHz, the follo	wing table shows the p C baud rate of 100 kbi	ossible hold time
	For example, if the I20 values with different I0	C module clock speed i CR and MULT selection	s 8 MHz, the follo	wing table shows the p C baud rate of 100 kbi	ossible hold time t/s.
	For example, if the I20 values with different I0	C module clock speed i CR and MULT selection ICR	s 8 MHz, the follons to achieve an I ²	wing table shows the p C baud rate of 100 kbi Hold times (µs) SCL Start	ossible hold time t/s.
	For example, if the I2 values with different I0 MULT 2h	C module clock speed i CR and MULT selection ICR 00h	s 8 MHz, the follons to achieve an I ² SDA 3.500	wing table shows the p C baud rate of 100 kbi Hold times (μs) SCL Start 3.000	ossible hold time t/s. SCL Stop 5.500
	For example, if the I2 values with different I0 MULT 2h 1h	C module clock speed i CR and MULT selection ICR 00h 07h	S 8 MHz, the follows to achieve an I ² SDA 3.500 2.500	wing table shows the p C baud rate of 100 kbi Hold times (µs) SCL Start 3.000 4.000	ossible hold time t/s. SCL Stop 5.500 5.250

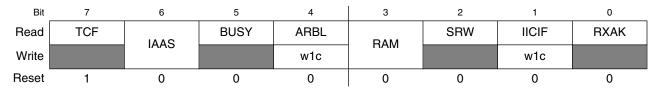
46.3.3 I2C Control Register 1 (I2Cx_C1)

Address: Base address + 2h offset

I2Cx_C1 field descriptions

Field	Description
7	I2C Enable
IICEN	Enables I2C module operation.
	0 Disabled
	1 Enabled
6	I2C Interrupt Enable
IICIE	Enables I2C interrupt requests.

I2Cx_C1 field descriptions (continued)


Field	Description
	0 Disabled
	1 Enabled
5 MST	Master Mode Select When MST is changed from 0 to 1, a START signal is generated on the bus and master mode is selected. When this bit changes from 1 to 0, a STOP signal is generated and the mode of operation changes from master to slave.
	0 Slave mode1 Master mode
4	Transmit Mode Select
TX	Selects the direction of master and slave transfers. In master mode this bit must be set according to the type of transfer required. Therefore, for address cycles, this bit is always set. When addressed as a slave this bit must be set by software according to the SRW bit in the status register.
	0 Receive1 Transmit
3 TXAK	Transmit Acknowledge Enable Specifies the value driven onto the SDA during data acknowledge cycles for both master and slave receivers. The value of SMB[FACK] affects NACK/ACK generation.
	NOTE: SCL is held low until TXAK is written.
	O An acknowledge signal is sent to the bus on the following receiving byte (if FACK is cleared) or the current receiving byte (if FACK is set).
	1 No acknowledge signal is sent to the bus on the following receiving data byte (if FACK is cleared) or the current receiving data byte (if FACK is set).
2	Repeat START
RSTA	Writing 1 to this bit generates a repeated START condition provided it is the current master. This bit will always be read as 0. Attempting a repeat at the wrong time results in loss of arbitration.
11	Wakeup Enable
WUEN	The I2C module can wake the MCU from low power mode with no peripheral bus running when slave address matching occurs.
	 Normal operation. No interrupt generated when address matching in low power mode. Enables the wakeup function in low power mode.
0	DMA Enable
DMAEN	Enables or disables the DMA function.
	0 All DMA signalling disabled.
	DMA transfer is enabled. While SMB[FACK] = 0, the following conditions trigger the DMA request:
	 a data byte is received, and either address or data is transmitted. (ACK/NACK is automatic) the first byte received matches the A1 register or is a general call address.

I2Cx_C1 field descriptions (continued)

Field	Description
	If any address matching occurs, S[IAAS] and S[TCF] are set. If the direction of transfer is known from master to slave, then it is not required to check S[SRW]. With this assumption, DMA can also be used in this case. In other cases, if the master reads data from the slave, then it is required to rewrite the C1 register operation. With this assumption, DMA cannot be used.
	When FACK = 1, an address or a data byte is transmitted.

46.3.4 I2C Status register (I2Cx_S)

Address: Base address + 3h offset

I2Cx_S field descriptions

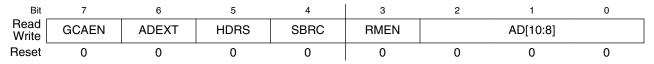
Field	Description
7 TCF	Transfer Complete Flag Acknowledges a byte transfer; TCF is set on the completion of a byte transfer. This bit is valid only during or immediately following a transfer to or from the I2C module. TCF is cleared by reading the I2C data register in receive mode or by writing to the I2C data register in transmit mode. O Transfer in progress Transfer complete
6 IAAS	Addressed As A Slave This bit is set by one of the following conditions: • The calling address matches the programmed primary slave address in the A1 register, or matches the range address in the RA register (which must be set to a nonzero value and under the condition I2C_C2[RMEN] = 1). • C2[GCAEN] is set and a general call is received. • SMB[SIICAEN] is set and the calling address matches the second programmed slave address. • ALERTEN is set and an SMBus alert response address is received • RMEN is set and an address is received that is within the range between the values of the A1 and RA registers. IAAS sets before the ACK bit. The CPU must check the SRW bit and set TX/RX accordingly. Writing the C1 register with any value clears this bit. 0 Not addressed 1 Addressed as a slave
5 BUSY	Bus Busy Indicates the status of the bus regardless of slave or master mode. This bit is set when a START signal is detected and cleared when a STOP signal is detected.

I2Cx_S field descriptions (continued)

Field	Description
	0 Bus is idle
	1 Bus is busy
4 ARBL	Arbitration Lost
	This bit is set by hardware when the arbitration procedure is lost. The ARBL bit must be cleared by software, by writing 1 to it.
	0 Standard bus operation.
	1 Loss of arbitration.
3 RAM	Range Address Match
	 This bit is set to 1 by any of the following conditions, if I2C_C2[RMEN] = 1: Any nonzero calling address is received that matches the address in the RA register. The calling address is within the range of values of the A1 and RA registers.
	NOTE: For the RAM bit to be set to 1 correctly, C1[IICIE] must be set to 1.
	Writing the C1 register with any value clears this bit to 0.
	0 Not addressed
	1 Addressed as a slave
2 SRW	Slave Read/Write
	When addressed as a slave, SRW indicates the value of the R/W command bit of the calling address sent to the master.
	0 Slave receive, master writing to slave
	1 Slave transmit, master reading from slave
1 IICIF	Interrupt Flag
	This bit sets when an interrupt is pending. This bit must be cleared by software by writing 1 to it, such as ir the interrupt routine. One of the following events can set this bit: • One byte transfer, including ACK/NACK bit, completes if FACK is 0. An ACK or NACK is sent on the bus by writing 0 or 1 to TXAK after this bit is set in receive mode.
	 One byte transfer, excluding ACK/NACK bit, completes if FACK is 1. Match of slave address to calling address including primary slave address, range slave address, alert response address, second slave address, or general call address. Arbitration lost
	 In SMBus mode, any timeouts except SCL and SDA high timeouts I2C bus stop or start detection if the SSIE bit in the Input Glitch Filter register is 1
	NOTE: To clear the I2C bus stop or start detection interrupt: In the interrupt service routine, first clear the STOPF or STARTF bit in the Input Glitch Filter register b writing 1 to it, and then clear the IICIF bit. If this sequence is reversed, the IICIF bit is asserted again.
	0 No interrupt pending
	1 Interrupt pending
0 RXAK	Receive Acknowledge Acknowledge signal was received after the completion of one buts of data transmission on the bus
	 Acknowledge signal was received after the completion of one byte of data transmission on the bus No acknowledge signal detected
	I INO authowieuge signal detected

46.3.5 I2C Data I/O register (I2Cx_D)

Address: Base address + 4h offset


Bit	7	6	5	4	3	2	1	0
Read Write				DA	TA			
Reset	0	0	0	0	0	0	0	0

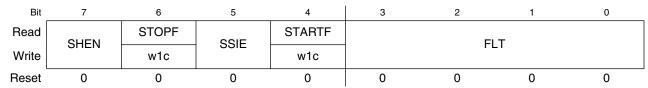
I2Cx_D field descriptions

Field	Description
7–0 DATA	Data
DATA	In master transmit mode, when data is written to this register, a data transfer is initiated. The most significant bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data.
	NOTE: When making the transition out of master receive mode, switch the I2C mode before reading the Data register to prevent an inadvertent initiation of a master receive data transfer.
	In slave mode, the same functions are available after an address match occurs.
	The C1[TX] bit must correctly reflect the desired direction of transfer in master and slave modes for the transmission to begin. For example, if the I2C module is configured for master transmit but a master receive is desired, reading the Data register does not initiate the receive.
	Reading the Data register returns the last byte received while the I2C module is configured in master receive or slave receive mode. The Data register does not reflect every byte that is transmitted on the I2C bus, and neither can software verify that a byte has been written to the Data register correctly by reading it back.
	In master transmit mode, the first byte of data written to the Data register following assertion of MST (start bit) or assertion of RSTA (repeated start bit) is used for the address transfer and must consist of the calling address (in bits 7-1) concatenated with the required R/W bit (in position bit 0).

46.3.6 I2C Control Register 2 (I2Cx_C2)

Address: Base address + 5h offset

I2Cx_C2 field descriptions


Field	Description
7 GCAEN	General Call Address Enable
	Enables general call address. 0 Disabled
	1 Enabled

I2Cx_C2 field descriptions (continued)

Field	Description
6 ADEXT	Address Extension Controls the number of bits used for the slave address.
	Controls the number of bits used for the slave address.
	0 7-bit address scheme
	1 10-bit address scheme
5 HDRS	High Drive Select
TIBITO	Controls the drive capability of the I2C pads.
	0 Normal drive mode
	1 High drive mode
4	Slave Baud Rate Control
SBRC	Enables independent slave mode baud rate at maximum frequency, which forces clock stretching on SCL in very fast I2C modes. To a slave, an example of a "very fast" mode is when the master transfers at 40 kbit/s but the slave can capture the master's data at only 10 kbit/s.
	The slave baud rate follows the master baud rate and clock stretching may occur
	1 Slave baud rate is independent of the master baud rate
3	Range Address Matching Enable
RMEN	This bit controls the slave address matching for addresses between the values of the A1 and RA registers. When this bit is set, a slave address matching occurs for any address greater than the value of the A1 register and less than or equal to the value of the RA register.
	0 Range mode disabled. No address matching occurs for an address within the range of values of the A1 and RA registers.
	1 Range mode enabled. Address matching occurs when a slave receives an address within the range of values of the A1 and RA registers.
2-0	Slave Address
AD[10:8]	Contains the upper three bits of the slave address in the 10-bit address scheme. This field is valid only while the ADEXT bit is set.

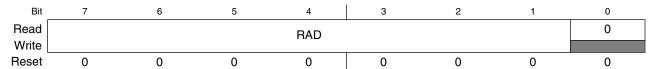
46.3.7 I2C Programmable Input Glitch Filter Register (I2Cx_FLT)

Address: Base address + 6h offset

I2Cx_FLT field descriptions

Field	Description
7	Stop Hold Enable
SHEN	Set this bit to hold off entry to stop mode when any data transmission or reception is occurring.

Table continues on the next page...


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

I2Cx_FLT field descriptions (continued)

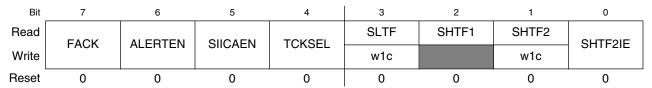
Field	Description
	 The following scenario explains the holdoff functionality: The I2C module is configured for a basic transfer, and the SHEN bit is set to 1. A transfer begins. The MCU signals the I2C module to enter stop mode. The byte currently being transferred, including both address and data, completes its transfer. The I2C slave or master acknowledges that the in-transfer byte completed its transfer and acknowledges the request to enter stop mode. After receiving the I2C module's acknowledgment of the request to enter stop mode, the MCU determines whether to shut off the I2C module's clock.
	If the SHEN bit is set to 1 and the I2C module is in an idle or disabled state when the MCU signals to enter stop mode, the module immediately acknowledges the request to enter stop mode.
	If SHEN is cleared to 0 and the overall data transmission or reception that was suspended by stop mode entry was incomplete: To resume the overall transmission or reception after the MCU exits stop mode, software must reinitialize the transfer by resending the address of the slave.
	If the I2C Control Register 1's IICIE bit was set to 1 before the MCU entered stop mode, system software will receive the interrupt triggered by the I2C Status Register's TCF bit after the MCU wakes from the stop mode.
	Stop holdoff is disabled. The MCU's entry to stop mode is not gated.Stop holdoff is enabled.
6	I2C Bus Stop Detect Flag
STOPF	Hardware sets this bit when the I2C bus's stop status is detected. The STOPF bit must be cleared by writing 1 to it.
	0 No stop happens on I2C bus1 Stop detected on I2C bus
5	I2C Bus Stop or Start Interrupt Enable
SSIE	This bit enables the interrupt for I2C bus stop or start detection.
	NOTE: To clear the I2C bus stop or start detection interrupt: In the interrupt service routine, first clear the STOPF or STARTF bit by writing 1 to it, and then clear the IICIF bit in the status register. If this sequence is reversed, the IICIF bit is asserted again.
	0 Stop or start detection interrupt is disabled
	1 Stop or start detection interrupt is enabled
4 STARTE	I2C Bus Start Detect Flag
STARTF	Hardware sets this bit when the I2C bus's start status is detected. The STARTF bit must be cleared by writing 1 to it.
	0 No start happens on I2C bus1 Start detected on I2C bus
3–0	I2C Programmable Filter Factor
FLT	Controls the width of the glitch, in terms of I2C module clock cycles, that the filter must absorb. For any glitch whose size is less than or equal to this width setting, the filter does not allow the glitch to pass.
	0h No filter/bypass 1-Fh Filter glitches up to width of <i>n</i> I2C module clock cycles, where <i>n</i> =1-15d

46.3.8 I2C Range Address register (I2Cx_RA)

Address: Base address + 7h offset

I2Cx RA field descriptions

Field	Description
7–1 RAD	Range Slave Address This field contains the slave address to be used by the I2C module. The field is used in the 7-bit address scheme. If I2C_C2[RMEN] is set to 1, any nonzero value write enables this register. This register value can be considered as a maximum boundary in the range matching mode.
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.


46.3.9 I2C SMBus Control and Status register (I2Cx_SMB) NOTE

When the SCL and SDA signals are held high for a length of time greater than the high timeout period, the SHTF1 flag sets. Before reaching this threshold, while the system is detecting how long these signals are being held high, a master assumes that the bus is free. However, the SHTF1 bit is set to 1 in the bus transmission process with the idle bus state.

NOTE

When the TCKSEL bit is set, there is no need to monitor the SHTF1 bit because the bus speed is too high to match the protocol of SMBus.

Address: Base address + 8h offset

I2Cx_SMB field descriptions

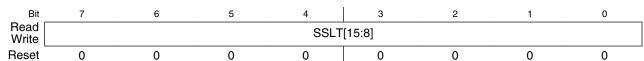
Field	Description
7	Fast NACK/ACK Enable
FACK	For SMBus packet error checking, the CPU must be able to issue an ACK or NACK according to the result of receiving data byte.
	 An ACK or NACK is sent on the following receiving data byte Writing 0 to TXAK after receiving a data byte generates an ACK. Writing 1 to TXAK after receiving a data byte generates a NACK.
6	SMBus Alert Response Address Enable
ALERTEN	Enables or disables SMBus alert response address matching.
	NOTE: After the host responds to a device that used the alert response address, you must use software to put the device's address on the bus. The alert protocol is described in the SMBus specification.
	0 SMBus alert response address matching is disabled
	1 SMBus alert response address matching is enabled
5 SIICAEN	Second I2C Address Enable
SIICALIN	Enables or disables SMBus device default address.
	0 I2C address register 2 matching is disabled
	1 I2C address register 2 matching is enabled
4 TCKSEL	Timeout Counter Clock Select
	Selects the clock source of the timeout counter.
	0 Timeout counter counts at the frequency of the I2C module clock / 64
	1 Timeout counter counts at the frequency of the I2C module clock
3 SLTF	SCL Low Timeout Flag
SET!	This bit is set when the SLT register (consisting of the SLTH and SLTL registers) is loaded with a non-zero value (LoValue) and an SCL low timeout occurs. Software clears this bit by writing a logic 1 to it.
	NOTE: The low timeout function is disabled when the SLT register's value is 0.
	0 No low timeout occurs
	1 Low timeout occurs
2 SHTF1	SCL High Timeout Flag 1
	This read-only bit sets when SCL and SDA are held high more than clock × LoValue / 512, which indicates the bus is free. This bit is cleared automatically.
	0 No SCL high and SDA high timeout occurs
	1 SCL high and SDA high timeout occurs
1 SHTF2	SCL High Timeout Flag 2
SITIT Z	This bit sets when SCL is held high and SDA is held low more than clock \times LoValue / 512. Software clears this bit by writing 1 to it.
	0 No SCL high and SDA low timeout occurs
	1 SCL high and SDA low timeout occurs

I2Cx_SMB field descriptions (continued)

Field	Description
0 SHTF2IE	SHTF2 Interrupt Enable
01111212	Enables SCL high and SDA low timeout interrupt.
	0 SHTF2 interrupt is disabled 1 SHTF2 interrupt is enabled

46.3.10 I2C Address Register 2 (I2Cx_A2)

Address: Base address + 9h offset

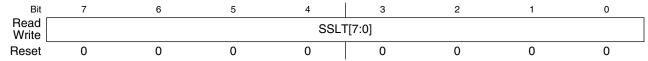


I2Cx_A2 field descriptions

Field	Description
7–1 SAD	SMBus Address Contains the slave address used by the SMBus. This field is used on the device default address or other related addresses.
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

46.3.11 I2C SCL Low Timeout Register High (I2Cx_SLTH)

Address: Base address + Ah offset



I2Cx_SLTH field descriptions

Field	Description
7–0	SSLT[15:8]
SSLT[15:8]	Most significant byte of SCL low timeout value that determines the timeout period of SCL low.

46.3.12 I2C SCL Low Timeout Register Low (I2Cx_SLTL)

Address: Base address + Bh offset

I2Cx_SLTL field descriptions

Field	Description
7–0 SSLT[7:0]	SSLT[7:0]
3321[7.0]	Least significant byte of SCL low timeout value that determines the timeout period of SCL low.

46.4 Functional description

This section provides a comprehensive functional description of the I2C module.

46.4.1 I2C protocol

The I2C bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfers.

All devices connected to it must have open drain or open collector outputs. A logic AND function is exercised on both lines with external pull-up resistors. The value of these resistors depends on the system.

Normally, a standard instance of communication is composed of four parts:

- 1. START signal
- 2. Slave address transmission
- 3. Data transfer
- 4. STOP signal

The STOP signal should not be confused with the CPU STOP instruction. The following figure illustrates I2C bus system communication.

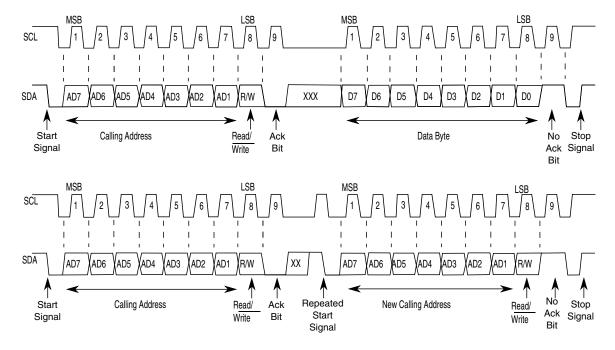


Figure 46-38. I2C bus transmission signals

46.4.1.1 START signal

The bus is free when no master device is engaging the bus (both SCL and SDA are high). When the bus is free, a master may initiate communication by sending a START signal. A START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer—each data transfer might contain several bytes of data—and brings all slaves out of their idle states.

46.4.1.2 Slave address transmission

Immediately after the START signal, the first byte of a data transfer is the slave address transmitted by the master. This address is a 7-bit calling address followed by an R/\overline{W} bit. The R/\overline{W} bit tells the slave the desired direction of data transfer.

- 1 = Read transfer: The slave transmits data to the master
- 0 = Write transfer: The master transmits data to the slave

Only the slave with a calling address that matches the one transmitted by the master responds by sending an acknowledge bit. The slave sends the acknowledge bit by pulling SDA low at the ninth clock.

Functional description

No two slaves in the system can have the same address. If the I2C module is the master, it must not transmit an address that is equal to its own slave address. The I2C module cannot be master and slave at the same time. However, if arbitration is lost during an address cycle, the I2C module reverts to slave mode and operates correctly even if it is being addressed by another master.

46.4.1.3 Data transfers

When successful slave addressing is achieved, data transfer can proceed on a byte-by-byte basis in the direction specified by the R/\overline{W} bit sent by the calling master.

All transfers that follow an address cycle are referred to as data transfers, even if they carry subaddress information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low. Data must be held stable while SCL is high. There is one clock pulse on SCL for each data bit, and the MSB is transferred first. Each data byte is followed by a ninth (acknowledge) bit, which is signaled from the receiving device by pulling SDA low at the ninth clock. In summary, one complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the ninth bit, the slave must leave SDA high. The master interprets the failed acknowledgement as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave interprets it as an end to data transfer and releases the SDA line.

In the case of a failed acknowledgement by either the slave or master, the data transfer is aborted and the master does one of two things:

- Relinquishes the bus by generating a STOP signal.
- Commences a new call by generating a repeated START signal.

46.4.1.4 STOP signal

The master can terminate the communication by generating a STOP signal to free the bus. A STOP signal is defined as a low-to-high transition of SDA while SCL is asserted.

The master can generate a STOP signal even if the slave has generated an acknowledgement, at which point the slave must release the bus.

46.4.1.5 Repeated START signal

The master may generate a START signal followed by a calling command without generating a STOP signal first. This action is called a repeated START. The master uses a repeated START to communicate with another slave or with the same slave in a different mode (transmit/receive mode) without releasing the bus.

46.4.1.6 Arbitration procedure

The I2C bus is a true multimaster bus that allows more than one master to be connected on it.

If two or more masters try to control the bus at the same time, a clock synchronization procedure determines the bus clock. The bus clock's low period is equal to the longest clock low period, and the high period is equal to the shortest one among the masters.

The relative priority of the contending masters is determined by a data arbitration procedure. A bus master loses arbitration if it transmits logic level 1 while another master transmits logic level 0. The losing masters immediately switch to slave receive mode and stop driving SDA output. In this case, the transition from master to slave mode does not generate a STOP condition. Meanwhile, hardware sets a status bit to indicate the loss of arbitration.

46.4.1.7 Clock synchronization

Because wire AND logic is performed on SCL, a high-to-low transition on SCL affects all devices connected on the bus. The devices start counting their low period and, after a device's clock has gone low, that device holds SCL low until the clock reaches its high state. However, the change of low to high in this device clock might not change the state of SCL if another device clock is still within its low period. Therefore, the synchronized clock SCL is held low by the device with the longest low period. Devices with shorter low periods enter a high wait state during this time; see the following diagram. When all applicable devices have counted off their low period, the synchronized clock SCL is released and pulled high. Afterward there is no difference between the device clocks and the state of SCL, and all devices start counting their high periods. The first device to complete its high period pulls SCL low again.

Functional description

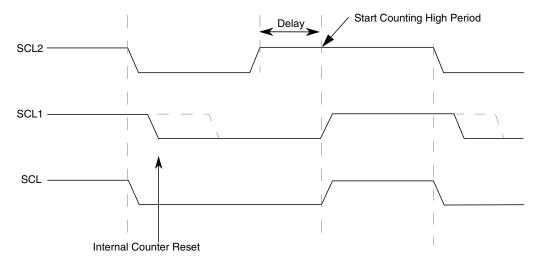


Figure 46-39. I2C clock synchronization

46.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfers. A slave device may hold SCL low after completing a single byte transfer (9 bits). In this case, it halts the bus clock and forces the master clock into wait states until the slave releases SCL.

46.4.1.9 Clock stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After the master drives SCL low, a slave can drive SCL low for the required period and then release it. If the slave's SCL low period is greater than the master's SCL low period, the resulting SCL bus signal's low period is stretched. In other words, the SCL bus signal's low period is increased to be the same length as the slave's SCL low period.

46.4.1.10 I2C divider and hold values

NOTE

For some cases on some devices, the SCL divider value may vary by ±2 or ±4 when ICR's value ranges from 00h to 0Fh. These potentially varying SCL divider values are highlighted in the following table. For the actual SCL divider values for your device, see the chip-specific details about the I2C module.

Table 46-41. I2C divider and hold values

ICR (hex)	SCL divider	SDA hold value	SCL hold (start) value	SCL hold (stop) value	ICR (hex)	SCL divider (clocks)	SDA hold (clocks)	SCL hold (start) value	SCL hold (stop) value
00	20	7	6	11	20	160	17	78	81
01	22	7	7	12	21	192	17	94	97
02	24	8	8	13	22	224	33	110	113
03	26	8	9	14	23	256	33	126	129
04	28	9	10	15	24	288	49	142	145
05	30	9	11	16	25	320	49	158	161
06	34	10	13	18	26	384	65	190	193
07	40	10	16	21	27	480	65	238	241
08	28	7	10	15	28	320	33	158	161
09	32	7	12	17	29	384	33	190	193
0A	36	9	14	19	2A	448	65	222	225
0B	40	9	16	21	2B	512	65	254	257
0C	44	11	18	23	2C	576	97	286	289
0D	48	11	20	25	2D	640	97	318	321
0E	56	13	24	29	2E	768	129	382	385
0F	68	13	30	35	2F	960	129	478	481
10	48	9	18	25	30	640	65	318	321
11	56	9	22	29	31	768	65	382	385
12	64	13	26	33	32	896	129	446	449
13	72	13	30	37	33	1024	129	510	513
14	80	17	34	41	34	1152	193	574	577
15	88	17	38	45	35	1280	193	638	641
16	104	21	46	53	36	1536	257	766	769
17	128	21	58	65	37	1920	257	958	961
18	80	9	38	41	38	1280	129	638	641
19	96	9	46	49	39	1536	129	766	769
1A	112	17	54	57	3A	1792	257	894	897
1B	128	17	62	65	3B	2048	257	1022	1025
1C	144	25	70	73	3C	2304	385	1150	1153
1D	160	25	78	81	3D	2560	385	1278	1281
1E	192	33	94	97	3E	3072	513	1534	1537
1F	240	33	118	121	3F	3840	513	1918	1921

46.4.2 10-bit address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of read/write formats are possible within a transfer that includes 10-bit addressing.

46.4.2.1 Master-transmitter addresses a slave-receiver

The transfer direction is not changed. When a 10-bit address follows a START condition, each slave compares the first 7 bits of the first byte of the slave address (11110XX) with its own address and tests whether the eighth bit (R/\overline{W}) direction bit) is 0. It is possible that more than one device finds a match and generates an acknowledge (A1). Each slave that finds a match compares the 8 bits of the second byte of the slave address with its own address, but only one slave finds a match and generates an acknowledge (A2). The matching slave remains addressed by the master until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address.

Table 46-42. Master-transmitter addresses slave-receiver with a 10-bit address

S	Slave address first 7 bits 11110 + AD10 + AD9	R/W 0	A1	Slave address second byte AD[8:1]	A2	Data	А		Data	A/A	Р	
---	--	----------	----	---	----	------	---	--	------	-----	---	--

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an I2C interrupt. User software must ensure that for this interrupt, the contents of the Data register are ignored and not treated as valid data.

46.4.2.2 Master-receiver addresses a slave-transmitter

The transfer direction is changed after the second R/\overline{W} bit. Up to and including acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a slave-receiver. After the repeated START condition (Sr), a matching slave remembers that it was addressed before. This slave then checks whether the first seven bits of the first byte of the slave address following Sr are the same as they were after the START condition (S), and it tests whether the eighth (R/\overline{W}) bit is 1. If there is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3. The slave-transmitter remains addressed until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address.

After a repeated START condition (Sr), all other slave devices also compare the first seven bits of the first byte of the slave address with their own addresses and test the eighth (R/\overline{W}) bit. However, none of them are addressed because $R/\overline{W} = 1$ (for 10-bit devices), or the 11110XX slave address (for 7-bit devices) does not match.

Table 46-43. Master-receiver addresses a slave-transmitter with a 10-bit address

S	Slave address first 7 bits 11110 + AD10 +	R/W 0	A1	Slave address second byte AD[8:1]	A2	Sr	Slave address first 7 bits 11110 + AD10 +	R/W 1	A3	Data	A	 Data	А	Р
	AD10 +						AD10 +							
	AD9						AD9							

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an I2C interrupt. User software must ensure that for this interrupt, the contents of the Data register are ignored and not treated as valid data.

46.4.3 Address matching

All received addresses can be requested in 7-bit or 10-bit address format.

- AD[7:1] in Address Register 1, which contains the I2C primary slave address, always participates in the address matching process. It provides a 7-bit address.
- If the ADEXT bit is set, AD[10:8] in Control Register 2 participates in the address matching process. It extends the I2C primary slave address to a 10-bit address.

Additional conditions that affect address matching include:

- If the GCAEN bit is set, general call participates the address matching process.
- If the ALERTEN bit is set, alert response participates the address matching process.
- If the SIICAEN bit is set, Address Register 2 participates in the address matching process.
- If the RMEN bit is set, when the Range Address register is programmed to a nonzero value, any address within the range of values of Address Register 1 (excluded) and the Range Address register (included) participates in the address matching process. The Range Address register must be programmed to a value greater than the value of Address Register 1.

When the I2C module responds to one of these addresses, it acts as a slave-receiver and the IAAS bit is set after the address cycle. Software must read the Data register after the first byte transfer to determine that the address is matched.

46.4.4 System management bus specification

SMBus provides a control bus for system and power management related tasks. A system can use SMBus to pass messages to and from devices instead of tripping individual control lines.

Removing the individual control lines reduces pin count. Accepting messages ensures future expandability. With the system management bus, a device can provide manufacturer information, tell the system what its model/part number is, save its state for a suspend event, report different types of errors, accept control parameters, and return its status.

46.4.4.1 Timeouts

The $T_{TIMEOUT,MIN}$ parameter allows a master or slave to conclude that a defective device is holding the clock low indefinitely or a master is intentionally trying to drive devices off the bus. The slave device must release the bus (stop driving the bus and let SCL and SDA float high) when it detects any single clock held low longer than $T_{TIMEOUT,MIN}$. Devices that have detected this condition must reset their communication and be able to receive a new START condition within the timeframe of $T_{TIMEOUT,MAX}$.

SMBus defines a clock low timeout, $T_{TIMEOUT}$, of 35 ms, specifies $T_{LOW:SEXT}$ as the cumulative clock low extend time for a slave device, and specifies $T_{LOW:MEXT}$ as the cumulative clock low extend time for a master device.

46.4.4.1.1 SCL low timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than a timeout value condition. Devices that have detected the timeout condition must reset the communication. When the I2C module is an active master, if it detects that SMBCLK low has exceeded the value of T_{TIMEOUT,MIN}, it must generate a stop condition within or after the current data byte in the transfer process. When the I2C module is a slave, if it detects the T_{TIMEOUT,MIN} condition, it resets its communication and is then able to receive a new START condition.

46.4.4.1.2 SCL high timeout

When the I2C module has determined that the SMBCLK and SMBDAT signals have been high for at least $T_{HIGH:MAX}$, it assumes that the bus is idle.

A HIGH timeout occurs after a START condition appears on the bus but before a STOP condition appears on the bus. Any master detecting this scenario can assume the bus is free when either of the following occurs:

- SHTF1 rises.
- The BUSY bit is high and SHTF1 is high.

When the SMBDAT signal is low and the SMBCLK signal is high for a period of time, another kind of timeout occurs. The time period must be defined in software. SHTF2 is used as the flag when the time limit is reached. This flag is also an interrupt resource, so it triggers IICIF.

46.4.4.1.3 CSMBCLK TIMEOUT MEXT and CSMBCLK TIMEOUT SEXT

The following figure illustrates the definition of the timeout intervals $T_{LOW:SEXT}$ and $T_{LOW:MEXT}$. When in master mode, the I2C module must not cumulatively extend its clock cycles for a period greater than $T_{LOW:MEXT}$ within a byte, where each byte is defined as START-to-ACK, ACK-to-ACK, or ACK-to-STOP. When CSMBCLK TIMEOUT MEXT occurs, SMBus MEXT rises and also triggers the SLTF.

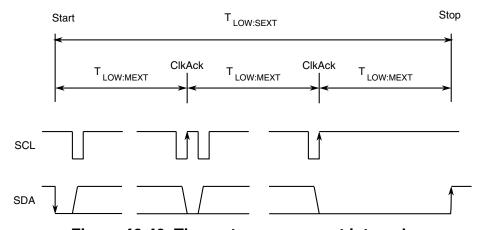


Figure 46-40. Timeout measurement intervals

A master is allowed to abort the transaction in progress to any slave that violates the $T_{LOW:SEXT}$ or $T_{TIMEOUT,MIN}$ specifications. To abort the transaction, the master issues a STOP condition at the conclusion of the byte transfer in progress. When a slave, the I2C module must not cumulatively extend its clock cycles for a period greater than $T_{LOW:SEXT}$ during any message from the initial START to the STOP. When CSMBCLK TIMEOUT SEXT occurs, SEXT rises and also triggers SLTF.

NOTE

CSMBCLK TIMEOUT SEXT and CSMBCLK TIMEOUT MEXT are optional functions that are implemented in the second step.

46.4.4.2 FAST ACK and NACK

To improve reliability and communication robustness, implementation of packet error checking (PEC) by SMBus devices is optional for SMBus devices but required for devices participating in and only during the address resolution protocol (ARP) process. The PEC is a CRC-8 error checking byte, calculated on all the message bytes. The PEC is appended to the message by the device that supplied the last data byte. If the PEC is present but not correct, a NACK is issued by the receiver. Otherwise an ACK is issued. To calculate the CRC-8 by software, this module can hold the SCL line low after receiving the eighth SCL (8th bit) if this byte is a data byte. So software can determine whether an ACK or NACK should be sent to the bus by setting or clearing the TXAK bit if the FACK (fast ACK/NACK enable) bit is enabled.

SMBus requires a device always to acknowledge its own address, as a mechanism to detect the presence of a removable device (such as a battery or docking station) on the bus. In addition to indicating a slave device busy condition, SMBus uses the NACK mechanism to indicate the reception of an invalid command or invalid data. Because such a condition may occur on the last byte of the transfer, SMBus devices are required to have the ability to generate the not acknowledge after the transfer of each byte and before the completion of the transaction. This requirement is important because SMBus does not provide any other resend signaling. This difference in the use of the NACK signaling has implications on the specific implementation of the SMBus port, especially in devices that handle critical system data such as the SMBus host and the SBS components.

NOTE

In the last byte of master receive slave transmit mode, the master must send a NACK to the bus, so FACK must be switched off before the last byte transmits.

46.4.5 Resets

The I2C module is disabled after a reset. The I2C module cannot cause a core reset.

46.4.6 Interrupts

The I2C module generates an interrupt when any of the events in the table found here occur, provided that the IICIE bit is set.

The interrupt is driven by the IICIF bit (of the I2C Status Register) and masked with the IICIE bit (of the I2C Control Register 1). The IICIF bit must be cleared (by software) by writing 1 to it in the interrupt routine. The SMBus timeouts interrupt is driven by SLTF and masked with the IICIE bit. The SLTF bit must be cleared by software by writing 1 to it in the interrupt routine. You can determine the interrupt type by reading the Status Register.

NOTE

In master receive mode, the FACK bit must be set to zero before the last byte transfer.

Interrupt source	Status	Flag	Local enable
Complete 1-byte transfer	TCF	IICIF	IICIE
Match of received calling address	IAAS	IICIF	IICIE
Arbitration lost	ARBL	IICIF	IICIE
I ² C bus stop detection	STOPF	IICIF	IICIE & SSIE
I ² C bus start detection	STARTF	IICIF	IICIE & SSIE
SMBus SCL low timeout	SLTF	IICIF	IICIE
SMBus SCL high SDA low timeout	SHTF2	IICIF	IICIE & SHTF2IE
Wakeup from stop or wait mode	IAAS	IICIF	IICIE & WUEN

Table 46-44. Interrupt summary

46.4.6.1 Byte transfer interrupt

The Transfer Complete Flag (TCF) bit is set at the falling edge of the ninth clock to indicate the completion of a byte and acknowledgement transfer. When FACK is enabled, TCF is then set at the falling edge of eighth clock to indicate the completion of byte.

46.4.6.2 Address detect interrupt

When the calling address matches the programmed slave address (I2C Address Register) or when the GCAEN bit is set and a general call is received, the IAAS bit in the Status Register is set. The CPU is interrupted, provided the IICIE bit is set. The CPU must check the SRW bit and set its Tx mode accordingly.

46.4.6.3 Stop Detect Interrupt

When the stop status is detected on the I²C bus, the STOPF bit is set to 1. The CPU is interrupted, provided the IICIE and STOPIE bits are both set to 1.

46.4.6.4 Exit from low-power/stop modes

The slave receive input detect circuit and address matching feature are still active on low power modes (wait and stop). An asynchronous input matching slave address or general call address brings the CPU out of low power/stop mode if the interrupt is not masked. Therefore, TCF and IAAS both can trigger this interrupt.

46.4.6.5 Arbitration lost interrupt

The I2C is a true multimaster bus that allows more than one master to be connected on it. If two or more masters try to control the bus at the same time, the relative priority of the contending masters is determined by a data arbitration procedure. The I2C module asserts the arbitration-lost interrupt when it loses the data arbitration process and the ARBL bit in the Status Register is set.

Arbitration is lost in the following circumstances:

- 1. SDA is sampled as low when the master drives high during an address or data transmit cycle.
- 2. SDA is sampled as low when the master drives high during the acknowledge bit of a data receive cycle.
- 3. A START cycle is attempted when the bus is busy.
- 4. A repeated START cycle is requested in slave mode.
- 5. A STOP condition is detected when the master did not request it.

The ARBL bit must be cleared (by software) by writing 1 to it.

46.4.6.6 Timeout interrupt in SMBus

When the IICIE bit is set, the I2C module asserts a timeout interrupt (outputs SLTF and SHTF2) upon detection of any of the mentioned timeout conditions, with one exception. The SCL high and SDA high TIMEOUT mechanism must not be used to influence the timeout interrupt output, because this timeout indicates an idle condition on the bus. SHTF1 rises when it matches the SCL high and SDA high TIMEOUT and falls automatically just to indicate the bus status. The SHTF2's timeout period is the same as that of SHTF1, which is short compared to that of SLTF, so another control bit, SHTF2IE, is added to enable or disable it.

46.4.7 Programmable input glitch filter

An I2C glitch filter has been added outside legacy I2C modules but within the I2C package. This filter can absorb glitches on the I2C clock and data lines for the I2C module.

The width of the glitch to absorb can be specified in terms of the number of (half) I2C module clock cycles. A single Programmable Input Glitch Filter control register is provided. Effectively, any down-up-down or up-down-up transition on the data line that occurs within the number of clock cycles programmed in this register is ignored by the I2C module. The programmer must specify the size of the glitch (in terms of I2C module clock cycles) for the filter to absorb and not pass.

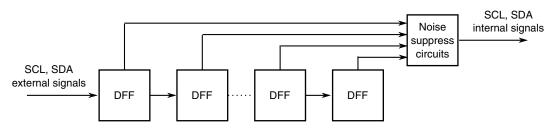


Figure 46-41. Programmable input glitch filter diagram

46.4.8 Address matching wake-up

When a primary, range, or general call address match occurs when the I2C module is in slave receive mode, the MCU wakes from a low power mode where no peripheral bus is running.

After the address matching IAAS bit is set, an interrupt is sent at the end of address matching to wake the core.

NOTE

In Stop mode, the I2C module supports slave receive mode only. To avoid I2C bus conflicts during wakeup from Stop mode, software must ensure the following before entering Stop mode:

- I2C data transfers have completed.
- The I2C module is in slave receive mode (C1[MST]=0, C1[TX]=0).

NOTE

During the wake-up process, if an external master continues to send data to the slave, the baud rate under Stop mode must be less than 50 kbit/s. To avoid the slower baud rate under Stop mode, the master can add a short delay in firmware to wait until the wake-up process is complete and then send data.

NOTE

Wake-up caused by an address match is not supported for SMBus mode.

46.4.9 DMA support

If the DMAEN bit is cleared and the IICIE bit is set, an interrupt condition generates an interrupt request.

If the DMAEN bit is set and the IICIE bit is set, an interrupt condition generates a DMA request instead. DMA requests are generated by the transfer complete flag (TCF).

If the DMAEN bit is set, only the TCF initiates a DMA request. All other events generate CPU interrupts.

NOTE

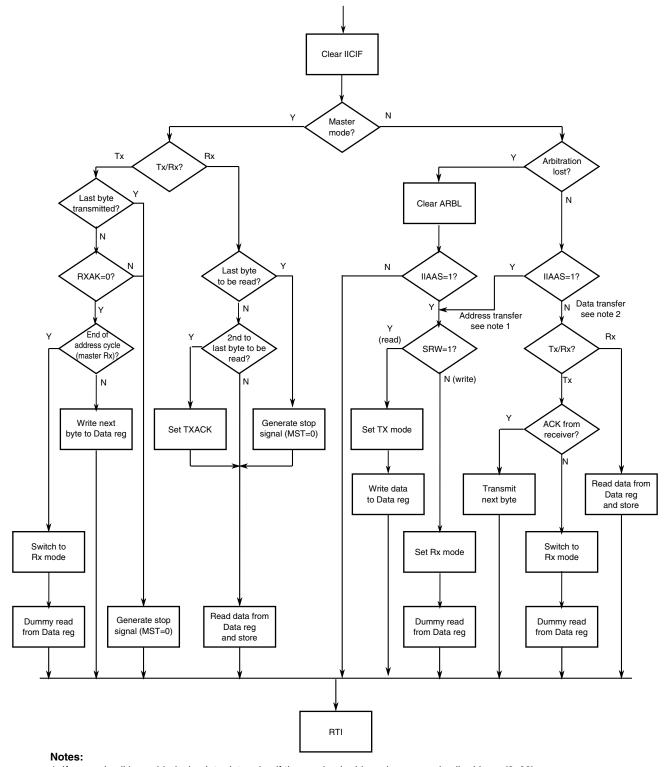
Before the last byte of master receive mode, TXAK must be set to send a NACK after the last byte's transfer. Therefore, the DMA must be disabled before the last byte's transfer.

NOTE

In 10-bit address mode transmission, the addresses to send occupy 2–3 bytes. During this transfer period, the DMA must be disabled because the C1 register is written to send a repeat start or to change the transfer direction.

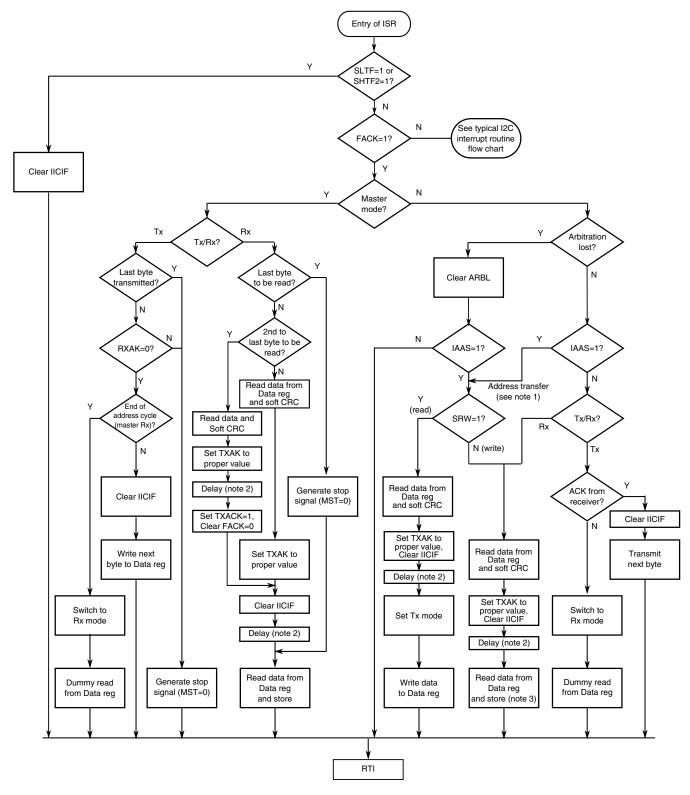
46.5 Initialization/application information

Module Initialization (Slave)


- 1. Write: Control Register 2
 - to enable or disable general call
 - to select 10-bit or 7-bit addressing mode
- 2. Write: Address Register 1 to set the slave address
- 3. Write: Control Register 1 to enable the I2C module and interrupts
- 4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 5. Initialize RAM variables used to achieve the routine shown in the following figure

Module Initialization (Master)

- 1. Write: Frequency Divider register to set the I2C baud rate (see example in description of ICR)
- 2. Write: Control Register 1 to enable the I2C module and interrupts
- 3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 4. Initialize RAM variables used to achieve the routine shown in the following figure
- 5. Write: Control Register 1 to enable TX
- 6. Write: Control Register 1 to enable MST (master mode)
- 7. Write: Data register with the address of the target slave (the LSB of this byte determines whether the communication is master receive or transmit)


The routine shown in the following figure encompasses both master and slave I2C operations. For slave operation, an incoming I2C message that contains the proper address begins I2C communication. For master operation, communication must be initiated by writing the Data register. An example of an I2C driver which implements many of the steps described here is available in AN4342: Using the Inter-Integrated Circuit on ColdFire+ and Kinetis.

Initialization/application information

- 1. If general call is enabled, check to determine if the received address is a general call address (0x00). If the received address is a general call address, the general call must be handled by user software.
- 2. When 10-bit addressing addresses a slave, the slave sees an interrupt following the first byte of the extended address. Ensure that for this interrupt, the contents of the Data register are ignored and not treated as a valid data transfer.

Figure 46-42. Typical I2C interrupt routine

Notes:

- 1. If general call or SIICAEN is enabled, check to determine if the received address is a general call address (0x00) or an SMBus device default address. In either case, they must be handled by user software.
- 2. In receive mode, one bit time delay may be needed before the first and second data reading, to wait for the possible longest time period (in worst case) of the 9th SCL cycle.
- 3. This read is a dummy read in order to reset the SMBus receiver state machine.

Figure 46-43. Typical I2C SMBus interrupt routine

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Initialization/application information

Chapter 47 Universal Asynchronous Receiver/Transmitter (UART)

47.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The UART allows asynchronous serial communication with peripheral devices and CPUs.

47.1.1 Features

The UART includes the following features:

- Full-duplex operation
- Standard mark/space non-return-to-zero (NRZ) format
- Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse width
- 13-bit baud rate selection with /32 fractional divide, based on the module clock frequency
- Programmable 8-bit or 9-bit data format
- Separately enabled transmitter and receiver
- Programmable transmitter output polarity
- Programmable receive input polarity
- Up to 14-bit break character transmission.

Introduction

- 11-bit break character detection option
- Two receiver wakeup methods:
 - Idle line wakeup
 - Address mark wakeup
- Address match feature in the receiver to reduce address mark wakeup ISR overhead
- Ability to select MSB or LSB to be first bit on wire
- Hardware flow control support for request to send (RTS) and clear to send (CTS) signals
- Support for ISO 7816 protocol to interface with SIM cards and smart cards
 - Support for T=0 and T=1 protocols
 - Automatic retransmission of NACK'd packets with programmable retry threshold
 - Support for 11 and 12 ETU transfers
 - Detection of initial packet and automated transfer parameter programming
 - Interrupt-driven operation with seven ISO-7816 specific interrupts:
 - Wait time violated
 - Character wait time violated
 - Block wait time violated
 - Initial frame detected
 - Transmit error threshold exceeded
 - Receive error threshold exceeded
 - Guard time violated
- Interrupt-driven operation with flags, not specific to ISO-7816 support
 - Transmitter data buffer at or below watermark
 - Transmission complete
 - Receiver data buffer at or above watermark
 - Idle receiver input
 - Receiver data buffer overrun

- Noise error
- Framing error
- Parity error
- Active edge on receive pin
- LIN break detect
- Receiver framing error detection
- Hardware parity generation and checking
- 1/16 bit-time noise detection
- DMA interface

47.1.2 Modes of operation

The UART functions in the same way in all the normal modes.

It has the following low power modes:

- Wait mode
- Stop mode

47.1.2.1 Run mode

This is the normal mode of operation.

47.1.2.2 Wait mode

UART operation in the Wait mode depends on the state of the C1[UARTSWAI] field.

- If C1[UARTSWAI] is cleared, and the CPU is in Wait mode, the UART operates normally.
- If C1[UARTSWAI] is set, and the CPU is in Wait mode, the UART clock generation ceases and the UART module enters a power conservation state.

C1[UARTSWAI] does not initiate any power down or power up procedures for the ISO-7816 smartcard interface.

UART signal descriptions

Setting C1[UARTSWAI] does not affect the state of the C2[RE] or C2[TE].

If C1[UARTSWAI] is set, any ongoing transmission or reception stops at the Wait mode entry. The transmission or reception resumes when either an internal or external interrupt brings the CPU out of Wait mode. Bringing the CPU out of Wait mode by reset aborts any ongoing transmission or reception and resets the UART.

47.1.2.3 Stop mode

The UART is inactive during Stop mode for reduced power consumption. The STOP instruction does not affect the UART register states, but the UART module clock is disabled. The UART operation resumes after an external interrupt brings the CPU out of Stop mode. Bringing the CPU out of Stop mode by reset aborts any ongoing transmission or reception and resets the UART. Entering or leaving Stop mode does not initiate any power down or power up procedures for the ISO-7816 smartcard interface.

47.2 UART signal descriptions

The UART signals are shown in the following table.

 Signal
 Description
 I/O

 CTS
 Clear to send
 I

 RTS
 Request to send
 O

 RXD
 Receive data
 I

 TXD
 Transmit data
 O

Table 47-1. UART signal descriptions

47.2.1 Detailed signal descriptions

The detailed signal descriptions of the UART are shown in the following table.

Table 47-2. UART—Detailed signal descriptions

Signal	I/O		Description			
CTS	I	Clear to send. Ir	ndicates whether the UART can start transmitting data when flow control is enabled.			
		State meaning	Asserted—Data transmission can start.			
			Negated—Data transmission cannot start.			
		Timing	Assertion—When transmitting device's RTS asserts.			
			Negation—When transmitting device's RTS deasserts.			
RTS	O Request to send. When driven by the receiver, indicates whether the UART is ready receive data. When driven by the transmitter, can enable an external transceiver duri transmission.					
		State Asserted—When driven by the receiver, ready to receive data. driven by the transmitter, enable the external transmitter.				
		g	Negated—When driven by the receiver, not ready to receive data. When driven by the transmitter, disable the external transmitter.			
		Timing	Assertion—Can occur at any time; can assert asynchronously to the other input signals.			
			Negation—Can occur at any time; can deassert asynchronously to the other input signals.			
RXD	I		Receive data. Serial data input to receiver.			
		State meaning	Whether RXD is interpreted as a 1 or 0 depends on the bit encoding method along with other configuration settings.			
		Timing	Sampled at a frequency determined by the module clock divided by the baud rate.			
TXD	0		Transmit data. Serial data output from transmitter.			
		State meaning	Whether TXD is interpreted as a 1 or 0 depends on the bit encoding method along with other configuration settings.			
		Timing	Driven at the beginning or within a bit time according to the bit encoding method along with other configuration settings. Otherwise, transmissions are independent of reception timing.			

47.3 Memory map and registers

This section provides a detailed description of all memory and registers.

Accessing reserved addresses within the memory map results in a transfer error. None of the contents of the implemented addresses are modified as a result of that access.

Only byte accesses are supported.

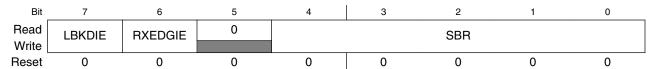
UART memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_A000	UART Baud Rate Registers: High (UART0_BDH)	8	R/W	00h	47.3.1/1206
4006_A001	UART Baud Rate Registers: Low (UART0_BDL)	8	R/W	04h	47.3.2/1207
4006_A002	UART Control Register 1 (UART0_C1)	8	R/W	00h	47.3.3/1208
4006_A003	UART Control Register 2 (UART0_C2)	8	R/W	00h	47.3.4/1209
4006_A004	UART Status Register 1 (UART0_S1)	8	R	C0h	47.3.5/1211
4006_A005	UART Status Register 2 (UART0_S2)	8	R/W	00h	47.3.6/1214
4006_A006	UART Control Register 3 (UART0_C3)	8	R/W	00h	47.3.7/1216
4006_A007	UART Data Register (UART0_D)	8	R/W	00h	47.3.8/1217
4006_A008	UART Match Address Registers 1 (UART0_MA1)	8	R/W	00h	47.3.9/1218
4006_A009	UART Match Address Registers 2 (UART0_MA2)	8	R/W	00h	47.3.10/ 1219
4006_A00A	UART Control Register 4 (UART0_C4)	8	R/W	00h	47.3.11/ 1219
4006_A00B	UART Control Register 5 (UART0_C5)	8	R/W	00h	47.3.12/ 1220
4006_A00C	UART Extended Data Register (UART0_ED)	ART0_ED) 8 R		00h	47.3.13/ 1221
4006_A00D	UART Modem Register (UART0_MODEM)	8	R/W	00h	47.3.14/ 1222
4006_A00E	UART Infrared Register (UART0_IR)	8	R/W	00h	47.3.15/ 1223
4006_A010	UART FIFO Parameters (UART0_PFIFO)	8	R/W	See section	47.3.16/ 1224
4006_A011	UART FIFO Control Register (UART0_CFIFO)	8	R/W	00h	47.3.17/ 1225
4006_A012	UART FIFO Status Register (UART0_SFIFO)	8	R/W	C0h	47.3.18/ 1226
4006_A013	UART FIFO Transmit Watermark (UART0_TWFIFO)	8	R/W	00h	47.3.19/ 1227
4006_A014	UART FIFO Transmit Count (UART0_TCFIFO)	8	R	00h	47.3.20/ 1228
4006_A015	UART FIFO Receive Watermark (UART0_RWFIFO)	8	R/W	01h	47.3.21/ 1228
4006_A016	UART FIFO Receive Count (UART0_RCFIFO)	8 R		00h	47.3.22/ 1229
4006_A018	UART 7816 Control Register (UART0_C7816)	8 R/W		00h	47.3.23/ 1229
4006_A019	UART 7816 Interrupt Enable Register (UART0_IE7816)	8 R/W		00h	47.3.24/ 1231
4006_A01A	UART 7816 Interrupt Status Register (UART0_IS7816)	8	8 R/W 00h		47.3.25/ 1232
4006_A01B	UART 7816 Wait Parameter Register (UART0_WP7816)	8	R/W	00h	47.3.26/ 1234

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4006_A01C	UART 7816 Wait N Register (UART0_WN7816)	8	R/W	00h	47.3.27/ 1234
4006_A01D	UART 7816 Wait FD Register (UART0_WF7816)	8	R/W	01h	47.3.28/ 1235
4006_A01E	UART 7816 Error Threshold Register (UART0_ET7816)	8	R/W	00h	47.3.29/ 1235
4006_A01F	UART 7816 Transmit Length Register (UART0_TL7816)	8	R/W	00h	47.3.30/ 1236
4006_A03A	UART 7816 ATR Duration Timer Register A (UART0_AP7816A_T0)	8	R/W	00h	47.3.31/ 1236
4006_A03B	UART 7816 ATR Duration Timer Register B (UART0_AP7816B_T0)	8	R/W	00h	47.3.32/ 1237
4006_A03C	UART 7816 Wait Parameter Register A (UART0_WP7816A_T0)	8	R/W	00h	47.3.33/ 1238
4006_A03C	UART 7816 Wait Parameter Register A (UART0_WP7816A_T1)	8	R/W	00h	47.3.34/ 1238
4006_A03D	UART 7816 Wait Parameter Register B (UART0_WP7816B_T0)	8	R/W	14h	47.3.35/ 1239
4006_A03D	UART 7816 Wait Parameter Register B (UART0_WP7816B_T1) 8 R/W		14h	47.3.36/ 1239	
4006_A03E	UART 7816 Wait and Guard Parameter Register (UART0_WGP7816_T1) 8 R/W		06h	47.3.37/ 1240	
4006_A03F	UART 7816 Wait Parameter Register C (UART0_WP7816C_T1)	8	R/W	0Bh	47.3.38/ 1240
4006_B000	UART Baud Rate Registers: High (UART1_BDH)	8	R/W	00h	47.3.1/1206
4006_B001	UART Baud Rate Registers: Low (UART1_BDL)	8	R/W	04h	47.3.2/1207
4006_B002	UART Control Register 1 (UART1_C1)	8	R/W	00h	47.3.3/1208
4006_B003	UART Control Register 2 (UART1_C2)	8	R/W	00h	47.3.4/1209
4006_B004	UART Status Register 1 (UART1_S1)	8	R	C0h	47.3.5/1211
4006_B005	UART Status Register 2 (UART1_S2)	8	R/W	00h	47.3.6/1214
4006_B006	UART Control Register 3 (UART1_C3)	8	R/W	00h	47.3.7/1216
4006_B007	UART Data Register (UART1_D)	8	R/W	00h	47.3.8/1217
4006_B008	UART Match Address Registers 1 (UART1_MA1)	8	R/W	00h	47.3.9/1218
4006_B009	UART Match Address Registers 2 (UART1_MA2)	8	R/W	00h	47.3.10/ 1219
4006_B00A	UART Control Register 4 (UART1_C4)	8	R/W	00h	47.3.11/ 1219
4006_B00B	UART Control Register 5 (UART1_C5)		R/W	00h	47.3.12/ 1220
4006_B00C	UART Extended Data Register (UART1_ED) 8 R 00h		47.3.13/ 1221		
4006_B00D	UART Modem Register (UART1_MODEM)	8	R/W	00h	47.3.14/ 1222

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_B00E	UART Infrared Register (UART1_IR)	8	R/W	00h	47.3.15/ 1223
4006_B010	UART FIFO Parameters (UART1_PFIFO)	8	R/W	See section	47.3.16/ 1224
4006_B011	UART FIFO Control Register (UART1_CFIFO)	8	R/W	00h	47.3.17/ 1225
4006_B012	UART FIFO Status Register (UART1_SFIFO)	8	R/W	C0h	47.3.18/ 1226
4006_B013	UART FIFO Transmit Watermark (UART1_TWFIFO)	8	R/W	00h	47.3.19/ 1227
4006_B014	UART FIFO Transmit Count (UART1_TCFIFO)	8	R	00h	47.3.20/ 1228
4006_B015	UART FIFO Receive Watermark (UART1_RWFIFO)	8	R/W	01h	47.3.21/ 1228
4006_B016	UART FIFO Receive Count (UART1_RCFIFO)	8	R	00h	47.3.22/ 1229
4006_B018	UART 7816 Control Register (UART1_C7816)	8	R/W	00h	47.3.23/ 1229
4006_B019	UART 7816 Interrupt Enable Register (UART1_IE7816)	8	R/W	00h	47.3.24/ 1231
4006_B01A	UART 7816 Interrupt Status Register (UART1_IS7816)	8	R/W	00h	47.3.25/ 1232
4006_B01B	UART 7816 Wait Parameter Register (UART1_WP7816)	8	R/W	00h	47.3.26/ 1234
4006_B01C	UART 7816 Wait N Register (UART1_WN7816)	8	R/W	00h	47.3.27/ 1234
4006_B01D	UART 7816 Wait FD Register (UART1_WF7816)	8	R/W	01h	47.3.28/ 1235
4006_B01E	UART 7816 Error Threshold Register (UART1_ET7816)	8	R/W	00h	47.3.29/ 1235
4006_B01F	UART 7816 Transmit Length Register (UART1_TL7816)	8	R/W	00h	47.3.30/ 1236
4006_B03A	UART 7816 ATR Duration Timer Register A (UART1_AP7816A_T0)	8	R/W	00h	47.3.31/ 1236
4006_B03B	UART 7816 ATR Duration Timer Register B (UART1_AP7816B_T0)	8	R/W	00h	47.3.32/ 1237
4006_B03C	UART 7816 Wait Parameter Register A (UART1_WP7816A_T0)	8	R/W	00h	47.3.33/ 1238
4006_B03C	UART 7816 Wait Parameter Register A (UART1_WP7816A_T1)	8	R/W	00h	47.3.34/ 1238
4006_B03D	UART 7816 Wait Parameter Register B (UART1_WP7816B_T0)	8	R/W	14h	47.3.35/ 1239
4006_B03D	UART 7816 Wait Parameter Register B (UART1_WP7816B_T1)	8	R/W	14h	47.3.36/ 1239

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_B03E	UART 7816 Wait and Guard Parameter Register (UART1_WGP7816_T1)	8	R/W	06h	47.3.37/ 1240
4006_B03F	UART 7816 Wait Parameter Register C (UART1_WP7816C_T1)	8	R/W	0Bh	47.3.38/ 1240
4006_C000	UART Baud Rate Registers: High (UART2_BDH)	8	R/W	00h	47.3.1/1206
4006_C001	UART Baud Rate Registers: Low (UART2_BDL)	8	R/W	04h	47.3.2/1207
4006_C002	UART Control Register 1 (UART2_C1)	8	R/W	00h	47.3.3/1208
4006_C003	UART Control Register 2 (UART2_C2)	8	R/W	00h	47.3.4/1209
4006_C004	UART Status Register 1 (UART2_S1)	8	R	C0h	47.3.5/1211
4006_C005	UART Status Register 2 (UART2_S2)	8	R/W	00h	47.3.6/1214
4006_C006	UART Control Register 3 (UART2_C3)	8	R/W	00h	47.3.7/1216
4006_C007	UART Data Register (UART2_D)	8	R/W	00h	47.3.8/1217
4006_C008	UART Match Address Registers 1 (UART2_MA1)	8	R/W	00h	47.3.9/1218
4006_C009	UART Match Address Registers 2 (UART2_MA2)	8	R/W	00h	47.3.10/ 1219
4006_C00A	UART Control Register 4 (UART2_C4)	8	R/W	00h	47.3.11/ 1219
4006_C00B	UART Control Register 5 (UART2_C5)	8	R/W	00h	47.3.12/ 1220
4006_C00C	UART Extended Data Register (UART2_ED)	ter (UART2_ED) 8 R 00		00h	47.3.13/ 1221
4006_C00D	UART Modem Register (UART2_MODEM)	8	R/W	00h	47.3.14/ 1222
4006_C00E	UART Infrared Register (UART2_IR)	8	R/W	00h	47.3.15/ 1223
4006_C010	UART FIFO Parameters (UART2_PFIFO)	8	R/W	See section	47.3.16/ 1224
4006_C011	UART FIFO Control Register (UART2_CFIFO)	8	R/W	00h	47.3.17/ 1225
4006_C012	UART FIFO Status Register (UART2_SFIFO)	8	R/W	C0h	47.3.18/ 1226
4006_C013	UART FIFO Transmit Watermark (UART2_TWFIFO)	8	R/W	00h	47.3.19/ 1227
4006_C014	UART FIFO Transmit Count (UART2_TCFIFO)	8	R	00h	47.3.20/ 1228
4006_C015	UART FIFO Receive Watermark (UART2_RWFIFO)	8	R/W	01h	47.3.21/ 1228
4006_C016	UART FIFO Receive Count (UART2_RCFIFO)	8	R	00h	47.3.22/ 1229
4006_C018	UART 7816 Control Register (UART2_C7816)	8	R/W 00h		47.3.23/ 1229
4006_C019	UART 7816 Interrupt Enable Register (UART2_IE7816)	8	R/W	00h	47.3.24/ 1231

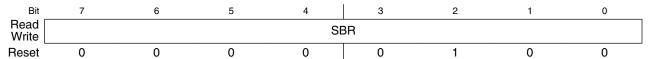

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_C01A	UART 7816 Interrupt Status Register (UART2_IS7816)	8	R/W	00h	47.3.25/ 1232
4006_C01B	UART 7816 Wait Parameter Register (UART2_WP7816)	8	R/W	00h	47.3.26/ 1234
4006_C01C	UART 7816 Wait N Register (UART2_WN7816)	8	R/W	00h	47.3.27/ 1234
4006_C01D	UART 7816 Wait FD Register (UART2_WF7816)	8	R/W	01h	47.3.28/ 1235
4006_C01E	UART 7816 Error Threshold Register (UART2_ET7816)	00h	47.3.29/ 1235		
4006_C01F	UART 7816 Transmit Length Register (UART2_TL7816)	8	R/W	00h	47.3.30/ 1236
4006_C03A	UART 7816 ATR Duration Timer Register A (UART2_AP7816A_T0)	8	R/W	00h	47.3.31/ 1236
4006_C03B	UART 7816 ATR Duration Timer Register B (UART2_AP7816B_T0)	8	R/W	00h	47.3.32/ 1237
4006_C03C	UART 7816 Wait Parameter Register A (UART2_WP7816A_T0)	8	R/W	00h	47.3.33/ 1238
4006_C03C	UART 7816 Wait Parameter Register A (UART2_WP7816A_T1)	8	R/W	00h	47.3.34/ 1238
4006_C03D	UART 7816 Wait Parameter Register B (UART2_WP7816B_T0)	8	R/W	14h	47.3.35/ 1239
4006_C03D	UART 7816 Wait Parameter Register B (UART2_WP7816B_T1)		R/W	14h	47.3.36/ 1239
4006_C03E	UART 7816 Wait and Guard Parameter Register (UART2_WGP7816_T1)		R/W	06h	47.3.37/ 1240
4006_C03F	UART 7816 Wait Parameter Register C (UART2_WP7816C_T1)	8	R/W	0Bh	47.3.38/ 1240

47.3.1 UART Baud Rate Registers: High (UARTx_BDH)

This register, along with the BDL register, controls the prescale divisor for UART baud rate generation. To update the 13-bit baud rate setting (SBR[12:0]), first write to BDH to buffer the high half of the new value and then write to BDL. The working value in BDH does not change until BDL is written.

BDL is reset to a nonzero value, but after reset, the baud rate generator remains disabled until the first time the receiver or transmitter is enabled, that is, when C2[RE] or C2[TE] is set.

Address: Base address + 0h offset


UARTx_BDH field descriptions

Field	Description			
7 LBKDIE	LIN Break Detect Interrupt Enable			
	Enables the LIN break detect flag, LBKDIF, to generate interrupt requests based on the state of LBKDDMAS.			
	0 LBKDIF interrupt requests disabled.			
	1 LBKDIF interrupt requests enabled.			
6 RXEDGIE	RxD Input Active Edge Interrupt Enable			
TIXEDGIE	Enables the receive input active edge, RXEDGIF, to generate interrupt requests.			
	0 Hardware interrupts from RXEDGIF disabled using polling.			
	1 RXEDGIF interrupt request enabled.			
5	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
4–0 SBR	UART Baud Rate Bits			
JBN	The baud rate for the UART is determined by the 13 SBR fields. See Baud rate generation for details.			
	 NOTE: The baud rate generator is disabled until C2[TE] or C2[RE] is set for the first time after reset. The baud rate generator is disabled when SBR = 0. Writing to BDH has no effect without writing to BDL, because writing to BDH puts the data in a temporary location until BDL is written. 			

47.3.2 UART Baud Rate Registers: Low (UARTx_BDL)

This register, along with the BDH register, controls the prescale divisor for UART baud rate generation. To update the 13-bit baud rate setting, SBR[12:0], first write to BDH to buffer the high half of the new value and then write to BDL. The working value in BDH does not change until BDL is written. BDL is reset to a nonzero value, but after reset, the baud rate generator remains disabled until the first time the receiver or transmitter is enabled, that is, when C2[RE] or C2[TE] is set.

Address: Base address + 1h offset

UARTx_BDL field descriptions

Field	Description
7–0 SBR	UART Baud Rate Bits The baud rate for the UART is determined by the 13 SBR fields. See Baud rate generation for details.
	 NOTE: The baud rate generator is disabled until C2[TE] or C2[RE] is set for the first time after reset. The baud rate generator is disabled when SBR = 0. Writing to BDH has no effect without writing to BDL, because writing to BDH puts the data in a temporary location until BDL is written. When the 1/32 narrow pulse width is selected for infrared (IrDA), the baud rate fields must be even, the least significant bit is 0. See MODEM register for more details.

47.3.3 UART Control Register 1 (UARTx_C1)

This read/write register controls various optional features of the UART system.

Address: Base address + 2h offset

Bit	7	6	5	4	3	2	1	0	
Read Write	LOOPS	UARTSWAI	RSRC	М	WAKE	ILT	PE	PT	
Reset	0	0	0	0	0	0	0	0	

UARTx_C1 field descriptions

Field	Description
7 LOOPS	Loop Mode Select
	When LOOPS is set, the RxD pin is disconnected from the UART and the transmitter output is internally connected to the receiver input. The transmitter and the receiver must be enabled to use the loop function.
	0 Normal operation.
	1 Loop mode where transmitter output is internally connected to receiver input. The receiver input is determined by RSRC.
6 UARTSWAI	UART Stops in Wait Mode
	0 UART clock continues to run in Wait mode.
	1 UART clock freezes while CPU is in Wait mode.
5 RSRC	Receiver Source Select
	This field has no meaning or effect unless the LOOPS field is set. When LOOPS is set, the RSRC field determines the source for the receiver shift register input.
	O Selects internal loop back mode. The receiver input is internally connected to transmitter output.
	1 Single wire UART mode where the receiver input is connected to the transmit pin input signal.
4 M	9-bit or 8-bit Mode Select
	This field must be set when C7816[ISO_7816E] is set/enabled.
	0 Normal—start + 8 data bits (MSB/LSB first as determined by MSBF) + stop.
	1 Use—start + 9 data bits (MSB/LSB first as determined by MSBF) + stop.

UARTx_C1 field descriptions (continued)

Field	Description
3 WAKE	Receiver Wakeup Method Select Determines which condition wakes the UART: • Address mark in the most significant bit position of a received data character, or • An idle condition on the receive pin input signal. 0 Idle line wakeup.
	1 Address mark wakeup.
2 ILT	Idle Line Type Select Determines when the receiver starts counting logic 1s as idle character bits. The count begins either after a valid start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit can cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.
	 NOTE: In case the UART is programmed with ILT = 1, a logic of 1'b0 is automatically shifted after a received stop bit, therefore resetting the idle count. In case the UART is programmed for IDLE line wakeup (RWU = 1 and WAKE = 0), ILT has no effect on when the receiver starts counting logic 1s as idle character bits. In idle line wakeup, an idle character is recognized at anytime the receiver sees 10, 11, or 12 1s depending on the M, PE, and C4[M10] fields.
	0 Idle character bit count starts after start bit.
	1 Idle character bit count starts after stop bit.
1 PE	Parity Enable Enables the parity function. When parity is enabled, parity function inserts a parity bit in the bit position immediately preceding the stop bit. This field must be set when C7816[ISO_7816E] is set/enabled.
	0 Parity function disabled.
	1 Parity function enabled.
0 PT	Parity Type Determines whether the UART generates and checks for even parity or odd parity. With even parity, an even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an odd number of 1s clears the parity bit and an even number of 1s sets the parity bit. This field must be cleared when C7816[ISO_7816E] is set/enabled.
	0 Even parity.1 Odd parity.

47.3.4 UART Control Register 2 (UARTx_C2)

This register can be read or written at any time.

Address: Base address + 3h offset

Bit	7	6	5	4	3	2	1	0	
Read Write	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	l
Reset	0	0	0	0	0	0	0	0	

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

UARTx_C2 field descriptions

Field	Description
7	Transmitter Interrupt or DMA Transfer Enable.
TIE	Enables S1[TDRE] to generate interrupt requests or DMA transfer requests, based on the state of C5[TDMAS].
	NOTE: If C2[TIE] and C5[TDMAS] are both set, then TCIE must be cleared, and D[D] must not be written unless servicing a DMA request.
	TDRE interrupt and DMA transfer requests disabled.TDRE interrupt or DMA transfer requests enabled.
6 TCIE	Transmission Complete Interrupt Enable
TOIL	Enables the transmission complete flag, S1[TC], to generate interrupt requests .
	0 TC interrupt requests disabled.
	TC interrupt requests enabled.
5	Receiver Full Interrupt or DMA Transfer Enable
RIE	Enables S1[RDRF] to generate interrupt requests or DMA transfer requests, based on the state of C5[RDMAS].
	0 RDRF interrupt and DMA transfer requests disabled.
	1 RDRF interrupt or DMA transfer requests enabled.
4 ILIE	Idle Line Interrupt Enable
	Enables the idle line flag, S1[IDLE], to generate interrupt requests
	0 IDLE interrupt requests disabled.
	1 IDLE interrupt requests enabled.
3 TE	Transmitter Enable
	Enables the UART transmitter. TE can be used to queue an idle preamble by clearing and then setting TE. When C7816[ISO_7816E] is set/enabled and C7816[TTYPE] = 1, this field is automatically cleared after the requested block has been transmitted. This condition is detected when TL7816[TLEN] = 0 and four additional characters are transmitted.
	0 Transmitter off.
	1 Transmitter on.
2 RE	Receiver Enable
116	Enables the UART receiver.
	0 Receiver off.
	1 Receiver on.
1 RWU	Receiver Wakeup Control
11000	This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. This field must be cleared when C7816[ISO_7816E] is set.
	NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel

UARTx_C2 field descriptions (continued)

Field	Description
	is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted.
	 Normal operation. RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU.
0 SBK	Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit. • 10, 11, or 12 logic 0s if S2[BRK13] is cleared • 13 or 14 logic 0s if S2[BRK13] is set. This field must be cleared when C7816[ISO_7816E] is set. 0 Normal transmitter operation. 1 Queue break characters to be sent.

47.3.5 UART Status Register 1 (UARTx_S1)

The S1 register provides inputs to the MCU for generation of UART interrupts or DMA requests. This register can also be polled by the MCU to check the status of its fields. To clear a flag, the status register should be read followed by a read or write to D register, depending on the interrupt flag type. Other instructions can be executed between the two steps as long the handling of I/O is not compromised, but the order of operations is important for flag clearing. When a flag is configured to trigger a DMA request, assertion of the associated DMA done signal from the DMA controller clears the flag.


NOTE

- If the condition that results in the assertion of the flag, interrupt, or DMA request is not resolved prior to clearing the flag, the flag, and interrupt/DMA request, reasserts. For example, if the DMA or interrupt service routine fails to write sufficient data to the transmit buffer to raise it above the watermark level, the flag reasserts and generates another interrupt or DMA request.
- Reading an empty data register to clear one of the flags of the S1 register causes the FIFO pointers to become misaligned. A receive FIFO flush reinitializes the pointers. A better way to prevent this situation is to always leave one

Memory map and registers

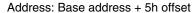
byte in FIFO and this byte will be read eventually in clearing the flag bit.

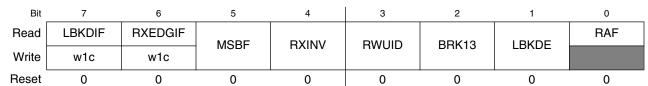
Address: Base address + 4h offset

UARTx_S1 field descriptions

Field	Description
7 TDRE	Transmit Data Register Empty Flag
	TDRE will set when the number of datawords in the transmit buffer (D and C3[T8]) is equal to or less than the number indicated by TWFIFO[TXWATER]. A character that is in the process of being transmitted is not included in the count. To clear TDRE, read S1 when TDRE is set and then write to the UART data register (D). For more efficient interrupt servicing, all data except the final value to be written to the buffer must be written to D/C3[T8]. Then S1 can be read before writing the final data value, resulting in the clearing of the TRDE flag. This is more efficient because the TDRE reasserts until the watermark has been exceeded. So, attempting to clear the TDRE with every write will be ineffective until sufficient data has been written. O The amount of data in the transmit buffer is greater than the value indicated by TWFIFO[TXWATER]. 1 The amount of data in the transmit buffer is less than or equal to the value indicated by
	TWFIFO[TXWATER] at some point in time since the flag has been cleared.
6 TC	Transmit Complete Flag TC is set when the transmit buffer is empty and no data, preamble, or break character is being transmitted. When TC is set, the transmit data output signal becomes idle (logic 1). TC is cleared by reading S1 with TC set and then doing one of the following: When C7816[ISO_7816E] is set/enabled, this field is set after any NACK signal has been received, but prior to any corresponding guard times expiring. • Writing to D to transmit new data. • Queuing a preamble by clearing and then setting C2[TE]. • Queuing a break character by writing 1 to SBK in C2.
	1 Transmitter idle (transmission activity complete).
5 RDRF	Receive Data Register Full Flag RDRF is set when the number of datawords in the receive buffer is equal to or more than the number indicated by RWFIFO[RXWATER]. A dataword that is in the process of being received is not included in the count. To clear RDRF, read S1 when RDRF is set and then read D. For more efficient interrupt and DMA operation, read all data except the final value from the buffer, using D/C3[T8]/ED. Then read S1 and the final data value, resulting in the clearing of the RDRF flag. Even if RDRF is set, data will continue to be received until an overrun condition occurs.RDRF is prevented from setting while S2[LBKDE] is set. Additionally, when S2[LBKDE] is set, the received datawords are stored in the receive buffer but over-write each other. O The number of datawords in the receive buffer is less than the number indicated by RXWATER. The number of datawords in the receive buffer is equal to or greater than the number indicated by RXWATER at some point in time since this flag was last cleared.
4 IDLE	Idle Line Flag

UARTx_S1 field descriptions (continued)


Field	Description
	After the IDLE flag is cleared, a frame must be received (although not necessarily stored in the data buffer, for example if C2[RWU] is set), or a LIN break character must set the S2[LBKDIF] flag before an idle condition can set the IDLE flag. To clear IDLE, read UART status S1 with IDLE set and then read D. IDLE is set when either of the following appear on the receiver input: • 10 consecutive logic 1s if C1[M] = 0 • 11 consecutive logic 1s if C1[M] = 1 and C4[M10] = 0 • 12 consecutive logic 1s if C1[M] = 1, C4[M10] = 1, and C1[PE] = 1
	Idle detection is not supported when 7816 Eis set/enabled and hence this flag is ignored.
	NOTE: When RWU is set and WAKE is cleared, an idle line condition sets the IDLE flag if RWUID is set, else the IDLE flag does not become set.
	 Receiver input is either active now or has never become active since the IDLE flag was last cleared. Receiver input has become idle or the flag has not been cleared since it last asserted.
3	Receiver Overrun Flag
OR	OR is set when software fails to prevent the receive data register from overflowing with data. The OR bit is set immediately after the stop bit has been completely received for the dataword that overflows the buffer and all the other error flags (FE, NF, and PF) are prevented from setting. The data in the shift register is lost, but the data already in the UART data registers is not affected. If the OR flag is set, no data is stored in the data buffer even if sufficient room exists. Additionally, while the OR flag is set, the RDRF and IDLE flags are blocked from asserting, that is, transition from an inactive to an active state. To clear OR, read S1 when OR is set and then read D. See functional description for more details regarding the operation of the OR bit.If LBKDE is enabled and a LIN Break is detected, the OR field asserts if S2[LBKDIF] is not cleared before the next data character is received. In 7816 mode, it is possible to configure a NACK to be returned by programing C7816[ONACK].
	0 No overrun has occurred since the last time the flag was cleared.
	1 Overrun has occurred or the overrun flag has not been cleared since the last overrun occured.
2 NF	Notice Flag NF is set when the UART detects noise on the receiver input. NF does not become set in the case of an overrun or while the LIN break detect feature is enabled (S2[LBKDE] = 1). When NF is set, it indicates only that a dataword has been received with noise since the last time it was cleared. There is no guarantee that the first dataword read from the receive buffer has noise or that there is only one dataword in the buffer that was received with noise unless the receive buffer has a depth of one. To clear NF, read S1 and then read D.
	No noise detected since the last time this flag was cleared. If the receive buffer has a depth greater than 1 then there may be data in the receiver buffer that was received with noise.
4	1 At least one dataword was received with noise detected since the last time the flag was cleared.
1 FE	FE is set when a logic 0 is accepted as the stop bit. FE does not set in the case of an overrun or while the LIN break detect feature is enabled (S2[LBKDE] = 1). FE inhibits further data reception until it is cleared. To clear FE, read S1 with FE set and then read D. The last data in the receive buffer represents the data that was received with the frame error enabled. Framing errors are not supported when 7816E is set/enabled. However, if this flag is set, data is still not received in 7816 mode.
	0 No framing error detected.
	1 Framing error.
0 PF	Parity Error Flag


UARTx_S1 field descriptions (continued)

Field	Description
	PF is set when PE is set and the parity of the received data does not match its parity bit. The PF is not set in the case of an overrun condition. When PF is set, it indicates only that a dataword was received with parity error since the last time it was cleared. There is no guarantee that the first dataword read from the receive buffer has a parity error or that there is only one dataword in the buffer that was received with a parity error, unless the receive buffer has a depth of one. To clear PF, read S1 and then read D., S2[LBKDE] is disabled, Within the receive buffer structure the received dataword is tagged if it is received with a parity error. This information is available by reading the ED register prior to reading the D register.
	 No parity error detected since the last time this flag was cleared. If the receive buffer has a depth greater than 1, then there may be data in the receive buffer what was received with a parity error. At least one dataword was received with a parity error since the last time this flag was cleared.

47.3.6 UART Status Register 2 (UARTx_S2)

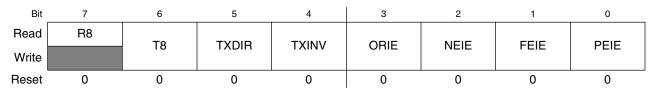
The S2 register provides inputs to the MCU for generation of UART interrupts or DMA requests. Also, this register can be polled by the MCU to check the status of these bits. This register can be read or written at any time, with the exception of the MSBF and RXINV bits, which should be changed by the user only between transmit and receive packets.

UARTx_S2 field descriptions

Field	Description
7 LBKDIF	LIN Break Detect Interrupt Flag
257.07	LBKDIF is set when LBKDE is set and a LIN break character is detected on the receiver input. The LIN break characters are 11 consecutive logic 0s if C1[M] = 0 or 12 consecutive logic 0s if C1[M] = 1. LBKDIF is set after receiving the last LIN break character. LBKDIF is cleared by writing a 1 to it.
	0 No LIN break character detected.
	1 LIN break character detected.
6	RxD Pin Active Edge Interrupt Flag
RXEDGIF	RXEDGIF is set when an active edge occurs on the RxD pin. The active edge is falling if RXINV = 0, and rising if RXINV=1. RXEDGIF is cleared by writing a 1 to it. See for additional details. RXEDGIF description
	NOTE: The active edge is detected only in two wire mode and on receiving data coming from the RxD pin.
	0 No active edge on the receive pin has occurred.
	1 An active edge on the receive pin has occurred.

UARTx_S2 field descriptions (continued)

Field	Description
5 MCDE	Most Significant Bit First
MSBF	Setting this field reverses the order of the bits that are transmitted and received on the wire. This field does not affect the polarity of the bits, the location of the parity bit, or the location of the start or stop bits. This field is automatically set when C7816[INIT] and C7816[ISO7816E] are enabled and an initial character is detected in T = 0 protocol mode.
	 LSB (bit0) is the first bit that is transmitted following the start bit. Further, the first bit received after the start bit is identified as bit0. MSB (bit8, bit7 or bit6) is the first bit that is transmitted following the start bit, depending on the setting of C1[M] and C1[PE]. Further, the first bit received after the start bit is identified as bit8, bit7, or bit6, depending on the setting of C1[M] and C1[PE].
4	Receive Data Inversion
RXINV	Setting this field reverses the polarity of the received data input. In NRZ format, a one is represented by a mark and a zero is represented by a space for normal polarity, and the opposite for inverted polarity. In IrDA format, a zero is represented by short high pulse in the middle of a bit time remaining idle low for a one for normal polarity. A zero is represented by a short low pulse in the middle of a bit time remaining idle high for a one for inverted polarity. This field is automatically set when C7816[INIT] and C7816[ISO7816E] are enabled and an initial character is detected in T = 0 protocol mode.
	NOTE: Setting RXINV inverts the RxD input for data bits, start and stop bits, break, and idle. When C7816[ISO7816E] is set/enabled, only the data bits and the parity bit are inverted.
	0 Receive data is not inverted.1 Receive data is inverted.
3 RWUID	Receive Wakeup Idle Detect
AWOID	When RWU is set and WAKE is cleared, this field controls whether the idle character that wakes the receiver sets S1[IDLE]. This field must be cleared when C7816[ISO7816E] is set/enabled.
	0 S1[IDLE] is not set upon detection of an idle character.
	1 S1[IDLE] is set upon detection of an idle character.
2 BRK13	Break Transmit Character Length
Brittio	Determines whether the transmit break character is 10, 11, or 12 bits long, or 13 or 14 bits long. See for the length of the break character for the different configurations. The detection of a framing error is not affected by this field. Transmitting break characters
	0 Break character is 10, 11, or 12 bits long.
	1 Break character is 13 or 14 bits long.
1 LBKDE	LIN Break Detection Enable Enables the LIN Break detection feature. While LBKDE is set, S1[RDRF], S1[NF], S1[FE], and S1[PF] are
	prevented from setting. When LBKDE is set, see . Overrun operationLBKDE must be cleared when C7816[ISO7816E] is set.
	0 Break character detection is disabled.
	Break character is detected at length of 11 bit times if C1[M] = 0 or 12 bits time if C1[M] = 1.
0 RAF	Receiver Active Flag
	RAF is set when the UART receiver detects a logic 0 during the RT1 time period of the start bit search. RAF is cleared when the receiver detects an idle character when C7816[ISO7816E] is cleared/disabled.


UARTx_S2 field descriptions (continued)

Field	Description			
	When C7816[ISO7816E] is enabled, the RAF is cleared if the C7816[TTYPE] = 0 expires or the C7816[TTYPE] = 1 expires.			
	NOTE: In case C7816[ISO7816E] is set and C7816[TTYPE] = 0, it is possible to configure the guard time to 12. However, if a NACK is required to be transmitted, the data transfer actually takes 13 ETU with the 13th ETU slot being a inactive buffer. Therefore, in this situation, the RAF may deassert one ETU prior to actually being inactive.			
	UART receiver idle/inactive waiting for a start bit.UART receiver active, RxD input not idle.			

47.3.7 UART Control Register 3 (UARTx_C3)

Writing R8 does not have any effect. TXDIR and TXINV can be changed only between transmit and receive packets.

Address: Base address + 6h offset

UARTx_C3 field descriptions

Field	Description
7 R8	Received Bit 8
	R8 is the ninth data bit received when the UART is configured for 9-bit data format, that is, if C1[M] = 1 or C4[M10] = 1. The R8 value corresponds to the current data value in the UARTx_D register. To read the 9th bit, read the value of UARTx_C3[R8], then read the UARTx_D register.
6 T8	Transmit Bit 8
10	T8 is the ninth data bit transmitted when the UART is configured for 9-bit data format, that is, if C1[M] = 1 or C4[M10] = 1.
	NOTE: If the value of T8 is the same as in the previous transmission, T8 does not have to be rewritten. The same value is transmitted until T8 is rewritten.
	To correctly transmit the 9th bit, write UARTx_C3[T8] to the desired value, then write the UARTx_D register with the remaining data.
5 TXDIR	Transmitter Pin Data Direction in Single-Wire mode
	Determines whether the TXD pin is used as an input or output in the single-wire mode of operation. This field is relevant only to the single wire mode. When C7816[ISO7816E] is set/enabled and C7816[TTYPE] = 1, this field is automatically cleared after the requested block is transmitted. This condition is detected when TL7816[TLEN] = 0 and 4 additional characters are transmitted. Additionally, if C7816[ISO7816E] is set/enabled and C7816[TTYPE] = 0 and a NACK is being transmitted, the hardware automatically overrides this field as needed. In this situation, TXDIR does not reflect the temporary state associated with the NACK.

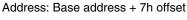
UARTx_C3 field descriptions (continued)

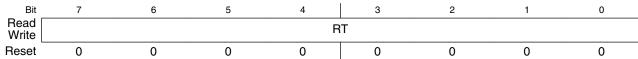
Field	Description
	0 TXD pin is an input in single wire mode.
	1 TXD pin is an output in single wire mode.
4 TXINV	Transmit Data Inversion.
	Setting this field reverses the polarity of the transmitted data output. In NRZ format, a one is represented by a mark and a zero is represented by a space for normal polarity, and the opposite for inverted polarity. In IrDA format, a zero is represented by short high pulse in the middle of a bit time remaining idle low for a one for normal polarity, and a zero is represented by short low pulse in the middle of a bit time remaining idle high for a one for inverted polarity. This field is automatically set when C7816[INIT] and C7816[ISO7816E] are enabled and an initial character is detected in T = 0 protocol mode.
	NOTE: Setting TXINV inverts all transmitted values, including idle, break, start, and stop bits. In loop mode, if TXINV is set, the receiver gets the transmit inversion bit when RXINV is disabled. When C7816[ISO7816E] is set/enabled then only the transmitted data bits and parity bit are inverted.
	0 Transmit data is not inverted.1 Transmit data is inverted.
3	Overrun Error Interrupt Enable
ORIE	Enables the overrun error flag, S1[OR], to generate interrupt requests.
	0 OR interrupts are disabled.
	1 OR interrupt requests are enabled.
2 NEIE	Noise Error Interrupt Enable
	Enables the noise flag, S1[NF], to generate interrupt requests.
	0 NF interrupt requests are disabled.
	1 NF interrupt requests are enabled.
1 FEIE	Framing Error Interrupt Enable
	Enables the framing error flag, S1[FE], to generate interrupt requests.
	0 FE interrupt requests are disabled.
	1 FE interrupt requests are enabled.
0 PEIE	Parity Error Interrupt Enable
	Enables the parity error flag, S1[PF], to generate interrupt requests.
	0 PF interrupt requests are disabled.
	1 PF interrupt requests are enabled.

47.3.8 UART Data Register (UARTx_D)

This register is actually two separate registers. Reads return the contents of the read-only receive data register and writes go to the write-only transmit data register.

NOTE

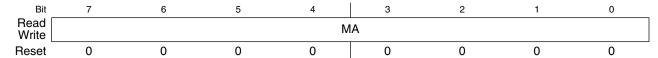

• In 8-bit or 9-bit data format, only UART data register (D) needs to be accessed to clear the S1[RDRF] bit (assuming


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Memory map and registers

receiver buffer level is less than RWFIFO[RXWATER]). The C3 register needs to be read, prior to the D register, only if the ninth bit of data needs to be captured. Similarly, the ED register needs to be read, prior to the D register, only if the additional flag data for the dataword needs to be captured.

- In the normal 8-bit mode (M bit cleared) if the parity is enabled, you get seven data bits and one parity bit. That one parity bit is loaded into the D register. So, for the data bits, mask off the parity bit from the value you read out of this register.
- When transmitting in 9-bit data format and using 8-bit write instructions, write first to transmit bit 8 in UART control register 3 (C3[T8]), then D. A write to C3[T8] stores the data in a temporary register. If D register is written first, and then the new data on data bus is stored in D, the temporary value written by the last write to C3[T8] gets stored in the C3[T8] register.

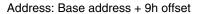

UARTx_D field descriptions

Field	Description
7–0	Reads return the contents of the read-only receive data register and writes go to the write-only transmit
RT	data register.

47.3.9 UART Match Address Registers 1 (UARTx_MA1)

The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated C4[MAEN] field is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded. These registers can be read and written at anytime.

Address: Base address + 8h offset

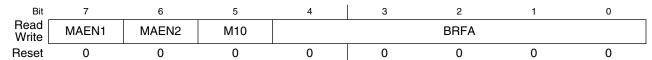


UARTx_MA1 field descriptions

Field	Description
7–0 MA	Match Address

47.3.10 UART Match Address Registers 2 (UARTx_MA2)

These registers can be read and written at anytime. The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated C4[MAEN] field is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded.


Bit	7	6	5	4	3	2	1	0
Read Write				N	1A			
Reset	0	0	0	0	0	0	0	0

UARTx_MA2 field descriptions

Field	Description
7–0 MA	Match Address

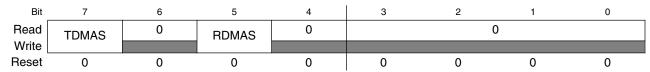
47.3.11 UART Control Register 4 (UARTx_C4)

Address: Base address + Ah offset

UARTx_C4 field descriptions

Field	Description
7	Match Address Mode Enable 1
MAEN1	See Match address operation for more information.
	0 All data received is transferred to the data buffer if MAEN2 is cleared.
	1 All data received with the most significant bit cleared, is discarded. All data received with the most significant bit set, is compared with contents of MA1 register. If no match occurs, the data is discarded. If match occurs, data is transferred to the data buffer. This field must be cleared when C7816[ISO7816E] is set/enabled.
6	Match Address Mode Enable 2
MAEN2	See Match address operation for more information.

Table continues on the next page...


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

UARTx_C4 field descriptions (continued)

Field	Description
	All data received is transferred to the data buffer if MAEN1 is cleared.
	1 All data received with the most significant bit cleared, is discarded. All data received with the most significant bit set, is compared with contents of MA2 register. If no match occurs, the data is discarded. If a match occurs, data is transferred to the data buffer. This field must be cleared when C7816[ISO7816E] is set/enabled.
5	10-bit Mode select
M10	Causes a tenth, non-memory mapped bit to be part of the serial transmission. This tenth bit is generated and interpreted as a parity bit. The M10 field does not affect the LIN send or detect break behavior. If M10 is set, then both C1[M] and C1[PE] must also be set. This field must be cleared when C7816[ISO7816E] is set/enabled.
	See Data format (non ISO-7816) for more information.
	0 The parity bit is the ninth bit in the serial transmission.
	1 The parity bit is the tenth bit in the serial transmission.
4–0	Baud Rate Fine Adjust
BRFA	This bit field is used to add more timing resolution to the average baud frequency, in increments of 1/32. See Baud rate generation for more information.

47.3.12 UART Control Register 5 (UARTx_C5)

Address: Base address + Bh offset

UARTx_C5 field descriptions

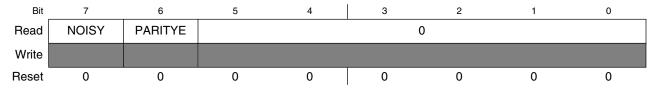
Field	Description
7 TDMAS	Transmitter DMA Select
	Configures the transmit data register empty flag, S1[TDRE], to generate interrupt or DMA requests if C2[TIE] is set.
	 NOTE: If C2[TIE] is cleared, TDRE DMA and TDRE interrupt request signals are not asserted when the TDRE flag is set, regardless of the state of TDMAS. If C2[TIE] and TDMAS are both set, then C2[TCIE] must be cleared, and D must not be written unless a DMA request is being serviced.
	0 If C2[TIE] is set and the S1[TDRE] flag is set, the TDRE interrupt request signal is asserted to request interrupt service.
	1 If C2[TIE] is set and the S1[TDRE] flag is set, the TDRE DMA request signal is asserted to request a DMA transfer.
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 RDMAS	Receiver Full DMA Select

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

UARTx_C5 field descriptions (continued)

Field	Description
	Configures the receiver data register full flag, S1[RDRF], to generate interrupt or DMA requests if C2[RIE] is set.
	NOTE: If C2[RIE] is cleared, and S1[RDRF] is set, the RDRF DMA and RDFR interrupt request signals are not asserted, regardless of the state of RDMAS.
	0 If C2[RIE] and S1[RDRF] are set, the RDFR interrupt request signal is asserted to request an interrupt service.
	1 If C2[RIE] and S1[RDRF] are set, the RDRF DMA request signal is asserted to request a DMA transfer.
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.


47.3.13 UART Extended Data Register (UARTx_ED)

This register contains additional information flags that are stored with a received dataword. This register may be read at any time but contains valid data only if there is a dataword in the receive FIFO.

NOTE

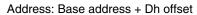
- The data contained in this register represents additional information regarding the conditions on which a dataword was received. The importance of this data varies with the application, and in some cases maybe completely optional. These fields automatically update to reflect the conditions of the next dataword whenever D is read.
- If S1[NF] and S1[PF] have not been set since the last time the receive buffer was empty, the NOISY and PARITYE fields will be zero.

Address: Base address + Ch offset

UARTx_ED field descriptions

Field	Description
7 NOISY	The current received dataword contained in D and C3[R8] was received with noise.

UARTx_ED field descriptions (continued)


Field	Description
	0 The dataword was received without noise.
	1 The data was received with noise.
6 PARITYE	The current received dataword contained in D and C3[R8] was received with a parity error.
	0 The dataword was received without a parity error.
	1 The dataword was received with a parity error.
5–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

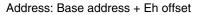
47.3.14 UART Modem Register (UARTx_MODEM)

The MODEM register controls options for setting the modem configuration.

NOTE

RXRTSE, TXRTSPOL, TXRTSE, and TXCTSE must all be cleared when C7816[ISO7816EN] is enabled. This will cause the RTS to deassert during ISO-7816 wait times. The ISO-7816 protocol does not use the RTS and CTS signals.

UARTx_MODEM field descriptions


Field	Description
7–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 RXRTSE	Receiver request-to-send enable Allows the RTS output to control the CTS input of the transmitting device to prevent receiver overrun. NOTE: Do not set both RXRTSE and TXRTSE.
	 The receiver has no effect on RTS. RTS is deasserted if the number of characters in the receiver data register (FIFO) is equal to or greater than RWFIFO[RXWATER]. RTS is asserted when the number of characters in the receiver data register (FIFO) is less than RWFIFO[RXWATER]. See Hardware flow control
2 TXRTSPOL	Transmitter request-to-send polarity Controls the polarity of the transmitter RTS. TXRTSPOL does not affect the polarity of the receiver RTS. RTS will remain negated in the active low state unless TXRTSE is set.
	0 Transmitter RTS is active low.1 Transmitter RTS is active high.

UARTx_MODEM field descriptions (continued)

Field	Description
1 TXRTSE	Transmitter request-to-send enable
.,	Controls RTS before and after a transmission.
	0 The transmitter has no effect on RTS.
	1 When a character is placed into an empty transmitter data buffer, RTS asserts one bit time before the start bit is transmitted. RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit. (FIFO)(FIFO)
0	Transmitter clear-to-send enable
TXCTSE	TXCTSE controls the operation of the transmitter. TXCTSE can be set independently from the state of TXRTSE and RXRTSE.
	0 CTS has no effect on the transmitter.
	1 Enables clear-to-send operation. The transmitter checks the state of CTS each time it is ready to send a character. If CTS is asserted, the character is sent. If CTS is deasserted, the signal TXD remains in the mark state and transmission is delayed until CTS is asserted. Changes in CTS as a character is being sent do not affect its transmission.

47.3.15 UART Infrared Register (UARTx_IR)

The IR register controls options for setting the infrared configuration.


UARTx_IR field descriptions

Field	Description
7–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 IREN	Infrared enable
III.LIV	Enables/disables the infrared modulation/demodulation.
	0 IR disabled.
	1 IR enabled.
1–0 TNP	Transmitter narrow pulse
INF	Enables whether the UART transmits a 1/16, 3/16, 1/32, or 1/4 narrow pulse.
	00 3/16.
	01 1/16.
	10 1/32.
	11 1/4.

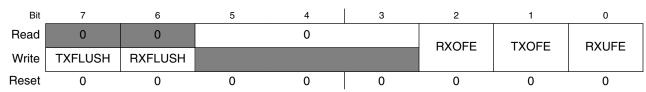
47.3.16 UART FIFO Parameters (UARTx_PFIFO)

This register provides the ability for the programmer to turn on and off FIFO functionality. It also provides the size of the FIFO that has been implemented. This register may be read at any time. This register must be written only when C2[RE] and C2[TE] are cleared/not set and when the data buffer/FIFO is empty.

- * Notes:
- TXFIFOSIZE field: The reset value depends on whether the specific UART instance supports the FIFO and on the size of
 that FIFO. See the Chip Configuration details for more information on the FIFO size supported for each
 UART instance.
- RXFIFOSIZE field: The reset value depends on whether the specific UART instance supports the FIFO and on the size of
 that FIFO. See the Chip Configuration details for more information on the FIFO size supported for each
 UART instance.

UARTx_PFIFO field descriptions

Field	Description
7 TXFE	Transmit FIFO Enable
	When this field is set, the built in FIFO structure for the transmit buffer is enabled. The size of the FIFO structure is indicated by TXFIFOSIZE. If this field is not set, the transmit buffer operates as a FIFO of depth one dataword regardless of the value in TXFIFOSIZE. Both C2[TE] and C2[RE] must be cleared prior to changing this field. Additionally, TXFLUSH and RXFLUSH commands must be issued immediately after changing this field.
	0 Transmit FIFO is not enabled. Buffer is depth 1. (Legacy support).
	1 Transmit FIFO is enabled. Buffer is depth indicated by TXFIFOSIZE.
6–4 TXFIFOSIZE	Transmit FIFO. Buffer Depth
	The maximum number of transmit datawords that can be stored in the transmit buffer. This field is read only.
	000 Transmit FIFO/Buffer depth = 1 dataword.
	001 Transmit FIFO/Buffer depth = 4 datawords.
	010 Transmit FIFO/Buffer depth = 8 datawords.
	011 Transmit FIFO/Buffer depth = 16 datawords.
	100 Transmit FIFO/Buffer depth = 32 datawords.
	101 Transmit FIFO/Buffer depth = 64 datawords.
	110 Transmit FIFO/Buffer depth = 128 datawords.
	111 Reserved.
3 RXFE	Receive FIFO Enable


UARTx_PFIFO field descriptions (continued)

Field	Description						
	When this field is set, the built in FIFO structure for the receive buffer is enabled. The size of the FIFO structure is indicated by the RXFIFOSIZE field. If this field is not set, the receive buffer operates as a FIFO of depth one dataword regardless of the value in RXFIFOSIZE. Both C2[TE] and C2[RE] must be cleared prior to changing this field. Additionally, TXFLUSH and RXFLUSH commands must be issued immediately after changing this field.						
	0 Receive FIFO is not enabled. Buffer is depth 1. (Legacy support)						
	1 Receive FIFO is enabled. Buffer is depth indicted by RXFIFOSIZE.						
2–0 RXFIFOSIZE	Receive FIFO. Buffer Depth						
	The maximum number of receive datawords that can be stored in the receive buffer before an overrun occurs. This field is read only.						
	000 Receive FIFO/Buffer depth = 1 dataword.						
	001 Receive FIFO/Buffer depth = 4 datawords.						
	010 Receive FIFO/Buffer depth = 8 datawords.						
	011 Receive FIFO/Buffer depth = 16 datawords.						
	100 Receive FIFO/Buffer depth = 32 datawords.						
	101 Receive FIFO/Buffer depth = 64 datawords.						
	110 Receive FIFO/Buffer depth = 128 datawords.						
	111 Reserved.						

47.3.17 UART FIFO Control Register (UARTx_CFIFO)

This register provides the ability to program various control fields for FIFO operation. This register may be read or written at any time. Note that writing to TXFLUSH and RXFLUSH may result in data loss and requires careful action to prevent unintended/ unpredictable behavior. Therefore, it is recommended that TE and RE be cleared prior to flushing the corresponding FIFO.

UARTx_CFIFO field descriptions

Field	Description
7 TXFLUSH	Transmit FIFO/Buffer Flush
	Writing to this field causes all data that is stored in the transmit FIFO/buffer to be flushed. This does not affect data that is in the transmit shift register.
	0 No flush operation occurs.
	1 All data in the transmit FIFO/Buffer is cleared out.

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

UARTx_CFIFO field descriptions (continued)

Field	Description					
6 RXFLUSH	Receive FIFO/Buffer Flush					
	Writing to this field causes all data that is stored in the receive FIFO/buffer to be flushed. This does not affect data that is in the receive shift register.					
	0 No flush operation occurs.					
	1 All data in the receive FIFO/buffer is cleared out.					
5–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
2	Receive FIFO Overflow Interrupt Enable					
RXOFE	When this field is set, the RXOF flag generates an interrupt to the host.					
	0 RXOF flag does not generate an interrupt to the host.					
	1 RXOF flag generates an interrupt to the host.					
1 TXOFE	Transmit FIFO Overflow Interrupt Enable					
IXOFE	When this field is set, the TXOF flag generates an interrupt to the host.					
	0 TXOF flag does not generate an interrupt to the host.					
	1 TXOF flag generates an interrupt to the host.					
0 RXUFE	Receive FIFO Underflow Interrupt Enable					
	When this field is set, the RXUF flag generates an interrupt to the host.					
	0 RXUF flag does not generate an interrupt to the host.					
	1 RXUF flag generates an interrupt to the host.					

47.3.18 UART FIFO Status Register (UARTx_SFIFO)

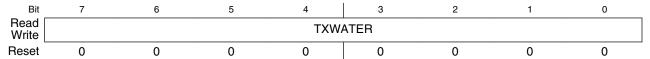
This register provides status information regarding the transmit and receiver buffers/FIFOs, including interrupt information. This register may be written to or read at any time.

Address: Base address + 12h offset

UARTx_SFIFO field descriptions

Field	Description
7 TXEMPT	Transmit Buffer/FIFO Empty
	Asserts when there is no data in the Transmit FIFO/buffer. This field does not take into account data that is in the transmit shift register.

Table continues on the next page...

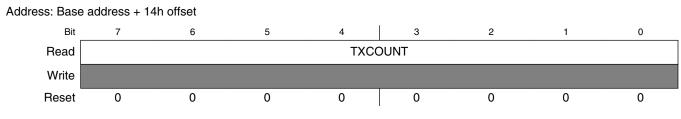

UARTx_SFIFO field descriptions (continued)

Field	Description						
	0 Transmit buffer is not empty.						
	1 Transmit buffer is empty.						
6 RXEMPT	Receive Buffer/FIFO Empty Asserts when there is no data in the receive FIFO/Buffer. This field does not take into account data that is						
	in the receive shift register.						
	0 Receive buffer is not empty.						
	1 Receive buffer is empty.						
5–3	This field is reserved.						
Reserved	This read-only field is reserved and always has the value 0.						
2 RXOF	Receiver Buffer Overflow Flag						
	Indicates that more data has been written to the receive buffer than it can hold. This field will assert regardless of the value of CFIFO[RXOFE]. However, an interrupt will be issued to the host only if CFIFO[RXOFE] is set. This flag is cleared by writing a 1.						
	0 No receive buffer overflow has occurred since the last time the flag was cleared.						
	1 At least one receive buffer overflow has occurred since the last time the flag was cleared.						
1 TXOF	Transmitter Buffer Overflow Flag						
	Indicates that more data has been written to the transmit buffer than it can hold. This field will assert regardless of the value of CFIFO[TXOFE]. However, an interrupt will be issued to the host only if CFIFO[TXOFE] is set. This flag is cleared by writing a 1.						
	No transmit buffer overflow has occurred since the last time the flag was cleared.						
	1 At least one transmit buffer overflow has occurred since the last time the flag was cleared.						
0 RXUF	Receiver Buffer Underflow Flag						
HAOI	Indicates that more data has been read from the receive buffer than was present. This field will assert regardless of the value of CFIFO[RXUFE]. However, an interrupt will be issued to the host only if CFIFO[RXUFE] is set. This flag is cleared by writing a 1.						
	No receive buffer underflow has occurred since the last time the flag was cleared.						
	1 At least one receive buffer underflow has occurred since the last time the flag was cleared.						
Į.	7 th loads one receive butter undernow has occurred since the last time the hag was dealed.						

47.3.19 UART FIFO Transmit Watermark (UARTx_TWFIFO)

This register provides the ability to set a programmable threshold for notification of needing additional transmit data. This register may be read at any time but must be written only when C2[TE] is not set. Changing the value of the watermark will not clear the S1[TDRE] flag.

Address: Base address + 13h offset



UARTx_TWFIFO field descriptions

Field	Description				
7–0	Transmit Watermark				
TXWATER					
	When the number of datawords in the transmit FIFO/buffer is equal to or less than the value in this register				
	field, an interrupt via S1[TDRE] or a DMA request via C5[TDMAS] is generated as determined by				
	C5[TDMAS] and C2[TIE]. For proper operation, the value in TXWATER must be set to be less than the size of the transmit buffer/FIFO size as indicated by PFIFO[TXFIFOSIZE] and PFIFO[TXFE].				

47.3.20 UART FIFO Transmit Count (UARTx_TCFIFO)

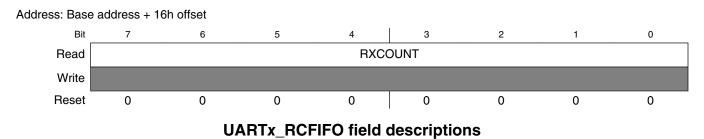
This is a read only register that indicates how many datawords are currently in the transmit buffer/FIFO. It may be read at any time.


UARTx_TCFIFO field descriptions

Field	Description
7–0 TXCOUNT	Transmit Counter
	The value in this register indicates the number of datawords that are in the transmit FIFO/buffer. If a dataword is being transmitted, that is, in the transmit shift register, it is not included in the count. This value may be used in conjunction with PFIFO[TXFIFOSIZE] to calculate how much room is left in the transmit FIFO/buffer.

47.3.21 UART FIFO Receive Watermark (UARTx_RWFIFO)

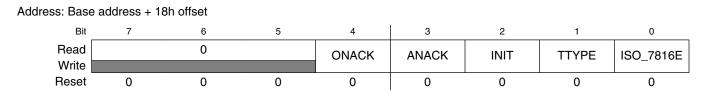
This register provides the ability to set a programmable threshold for notification of the need to remove data from the receiver FIFO/buffer. This register may be read at any time but must be written only when C2[RE] is not asserted. Changing the value in this register will not clear S1[RDRF].



UARTx_RWFIFO field descriptions

Field	Description
7–0 RXWATER	Receive Watermark
	When the number of datawords in the receive FIFO/buffer is equal to or greater than the value in this register field, an interrupt via S1[RDRF] or a DMA request via C5[RDMAS] is generated as determined by C5[RDMAS] and C2[RIE]. For proper operation, the value in RXWATER must be set to be less than the receive FIFO/buffer size as indicated by PFIFO[RXFIFOSIZE] and PFIFO[RXFE] and must be greater than 0.

47.3.22 UART FIFO Receive Count (UARTx_RCFIFO)


This is a read only register that indicates how many datawords are currently in the receive FIFO/buffer. It may be read at any time.

Field	Description
7–0 RXCOUNT	Receive Counter
	The value in this register indicates the number of datawords that are in the receive FIFO/buffer. If a dataword is being received, that is, in the receive shift register, it is not included in the count. This value may be used in conjunction with PFIFO[RXFIFOSIZE] to calculate how much room is left in the receive FIFO/buffer.

47.3.23 **UART 7816 Control Register (UARTx_C7816)**

The C7816 register is the primary control register for ISO-7816 specific functionality. This register is specific to 7816 functionality and the values in this register have no effect on UART operation and should be ignored if ISO_7816E is not set/enabled. This register may be read at any time but values must be changed only when ISO_7816E is not set.

UARTx_C7816 field descriptions

Field	Description						
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.						
4 ONACK	Generate NACK on Overflow						
	When this field is set, the receiver automatically generates a NACK response if a receive buffer overrun occurs, as indicated by S1[OR]. In many systems, this results in the transmitter resending the packet that overflowed until the retransmit threshold for that transmitter is reached. A NACK is generated only if TTYPE=0. This field operates independently of ANACK. See . Overrun NACK considerations						
	The received data does not generate a NACK when the receipt of the data results in an overflow event.						
	1 If the receiver buffer overflows, a NACK is automatically sent on a received character.						
3 ANACK	Generate NACK on Error						
ANACK	When this field is set, the receiver automatically generates a NACK response if a parity error occurs or if INIT is set and an invalid initial character is detected. A NACK is generated only if TTYPE = 0. If ANACK is set, the UART attempts to retransmit the data indefinitely. To stop retransmission attempts, clear C2[TE] or ISO_7816E and do not set until S1[TC] sets C2[TE] again.						
	0 No NACK is automatically generated.						
	A NACK is automatically generated if a parity error is detected or if an invalid initial character is detected.						
2	Detect Initial Character						
INIT	When this field is set, all received characters are searched for a valid initial character. If an invalid initial character is identified, and ANACK is set, a NACK is sent. All received data is discarded and error flags blocked (S1[NF], S1[OR], S1[FE], S1[PF], IS7816[WT], IS7816[CWT], IS7816[BWT], IS7816[ADT], IS7816[GTV]) until a valid initial character is detected. Upon detecting a valid initial character, the configuration values S2[MSBF], C3[TXINV], and S2[RXINV] are automatically updated to reflect the initial character that was received. The actual INIT data value is not stored in the receive buffer. Additionally, upon detection of a valid initial character, IS7816[INITD] is set and an interrupt issued as programmed by IE7816[INITDE]. When a valid initial character is detected, INIT is automatically cleared. This Initial Character Detect feature is supported only in T = 0 protocol mode.						
	0 Normal operating mode. Receiver does not seek to identify initial character.						
	1 Receiver searches for initial character.						
1 TTYPE	Transfer Type						
	Indicates the transfer protocol being used.						
	See ISO-7816 / smartcard support for more details.						
	0 T = 0 per the ISO-7816 specification.						
	1 T = 1 per the ISO-7816 specification.						
0 ISO_7816E	ISO-7816 Functionality Enabled						
	Indicates that the UART is operating according to the ISO-7816 protocol.						
	NOTE: This field must be modified only when no transmit or receive is occurring. If this field is changed during a data transfer, the data being transmitted or received may be transferred incorrectly.						
	 ISO-7816 functionality is turned off/not enabled. ISO-7816 functionality is turned on/enabled. 						
	·						

47.3.24 UART 7816 Interrupt Enable Register (UARTx_IE7816)

The IE7816 register controls which flags result in an interrupt being issued. This register is specific to 7816 functionality, the corresponding flags that drive the interrupts are not asserted when 7816E is not set/enabled. However, these flags may remain set if they are asserted while 7816E was set and not subsequently cleared. This register may be read or written to at any time.

Address: Base address + 19h offset

Bit	7	6	5	4	3	2	1	0
Read Write	WTE	CWTE	BWTE	INITDE	ADTE	GTVE	TXTE	RXTE
Reset	0	0	0	0	0	0	0	0

UARTx_IE7816 field descriptions

Field	Description					
7	Wait Timer Interrupt Enable					
WTE	The assertion of IS7816[WT] does not result in the generation of an interrupt.					
	The assertion of IS7816[WT] does not result in the generation of an interrupt. The assertion of IS7816[WT] results in the generation of an interrupt.					
6 CWTE	Character Wait Timer Interrupt Enable					
OWIL	0 The assertion of IS7816[CWT] does not result in the generation of an interrupt.					
	1 The assertion of IS7816[CWT] results in the generation of an interrupt.					
5 BWTE	Block Wait Timer Interrupt Enable					
	0 The assertion of IS7816[BWT] does not result in the generation of an interrupt.					
	1 The assertion of IS7816[BWT] results in the generation of an interrupt.					
4 INITDE	Initial Character Detected Interrupt Enable					
	0 The assertion of IS7816[INITD] does not result in the generation of an interrupt.					
	1 The assertion of IS7816[INITD] results in the generation of an interrupt.					
3 ADTE	ATR Duration Timer Interrupt Enable					
	0 The assertion of IS7816[ADT] does not result in the generation of an interrupt.					
	1 The assertion of IS7816[ADT] results in the generation of an interrupt.					
2 GTVE	Guard Timer Violated Interrupt Enable					
	0 The assertion of IS7816[GTV] does not result in the generation of an interrupt.					
	1 The assertion of IS7816[GTV] results in the generation of an interrupt.					
1 TXTE	Transmit Threshold Exceeded Interrupt Enable					
	0 The assertion of IS7816[TXT] does not result in the generation of an interrupt.					
	1 The assertion of IS7816[TXT] results in the generation of an interrupt.					
0 RXTE	Receive Threshold Exceeded Interrupt Enable					
	0 The assertion of IS7816[RXT] does not result in the generation of an interrupt.					
	1 The assertion of IS7816[RXT] results in the generation of an interrupt.					

47.3.25 UART 7816 Interrupt Status Register (UARTx_IS7816)

The IS7816 register provides a mechanism to read and clear the interrupt flags. All flags/interrupts are cleared by writing a 1 to the field location. Writing a 0 has no effect. All bits are "sticky", meaning they indicate that only the flag condition that occurred since the last time the bit was cleared, not that the condition currently exists. The status flags are set regardless of whether the corresponding field in the IE7816 is set or cleared. The IE7816 controls only if an interrupt is issued to the host processor. This register is specific to 7816 functionality and the values in this register have no affect on UART operation and should be ignored if 7816E is not set/enabled. This register may be read or written at anytime.

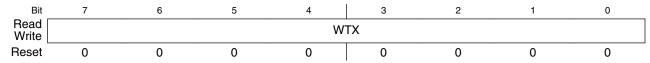
Addrage.	Raco	address +	1 Ah	offcot
Address:	Dase	address +	IAII	onser

Bit	7	6	5	4	3	2	1	0
Read	WT	CWT	BWT	INITD	ADT	GTV	TXT	RXT
Write	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0

UARTx_IS7816 field descriptions

Field	Description
7 WT	Wait Timer Interrupt
	Indicates that the wait time, the time between the leading edge of a character being transmitted and the leading edge of the next response character, has exceeded the programmed value. This flag asserts only when C7816[TTYPE] = 0. This interrupt is cleared by writing 1.
	0 Wait time (WT) has not been violated.
	1 Wait time (WT) has been violated.
6 CWT	Character Wait Timer Interrupt
	Indicates that the character wait time, the time between the leading edges of two consecutive characters in a block, has exceeded the programmed value. This flag asserts only when C7816[TTYPE] = 1. This interrupt is cleared by writing 1.
	0 Character wait time (CWT) has not been violated.
	1 Character wait time (CWT) has been violated.
5 BWT	Block Wait Timer Interrupt
	Indicates that the block wait time, the time between the leading edge of first received character of a block and the leading edge of the last character the previously transmitted block, has exceeded the programmed value. This flag asserts only when C7816[TTYPE] = 1.This interrupt is cleared by writing 1.
	0 Block wait time (BWT) has not been violated.
	1 Block wait time (BWT) has been violated.
4 INITD	Initial Character Detected Interrupt
	Indicates that a valid initial character is received. This interrupt is cleared by writing 1.

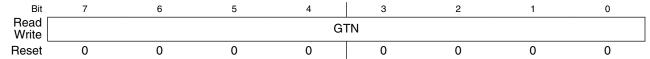

Table continues on the next page...


UARTx_IS7816 field descriptions (continued)

Field	Description
	0 A valid initial character has not been received.
	1 A valid initial character has been received.
3 ADT	ATR Duration Time Interrupt
	Indicates that the ATR duration time, the time between the leading edge of the TS character being received and the leading edge of the next response character, has exceeded the programmed value. This flag asserts only when C7816[TTYPE] = 0. This interrupt is cleared by writing 1.
	0 ATR Duration time (ADT) has not been violated.
	1 ATR Duration time (ADT) has been violated.
2 GTV	Guard Timer Violated Interrupt
	Indicates that one or more of the character guard time, block guard time, or guard time are violated. This interrupt is cleared by writing 1.
	0 A guard time (GT, CGT, or BGT) has not been violated.
	1 A guard time (GT, CGT, or BGT) has been violated.
1 TXT	Transmit Threshold Exceeded Interrupt
	Indicates that the transmit NACK threshold has been exceeded as indicated by ET7816[TXTHRESHOLD]. Regardless of whether this flag is set, the UART continues to retransmit indefinitely. This flag asserts only when C7816[TTYPE] = 0. If 7816E is cleared/disabled, ANACK is cleared/disabled, C2[TE] is cleared/disabled, C7816[TTYPE] = 1, or packet is transferred without receiving a NACK, the internal NACK detection counter is cleared and the count restarts from zero on the next received NACK. This interrupt is cleared by writing 1.
	O The number of retries and corresponding NACKS does not exceed the value in ET7816[TXTHRESHOLD].
	1 The number of retries and corresponding NACKS exceeds the value in ET7816[TXTHRESHOLD].
0 RXT	Receive Threshold Exceeded Interrupt
	Indicates that there are more than ET7816[RXTHRESHOLD] consecutive NACKS generated in response to parity errors on received data. This flag requires ANACK to be set. Additionally, this flag asserts only when C7816[TTYPE] = 0. Clearing this field also resets the counter keeping track of consecutive NACKS. The UART will continue to attempt to receive data regardless of whether this flag is set. If 7816E is cleared/disabled, RE is cleared/disabled, C7816[TTYPE] = 1, or packet is received without needing to issue a NACK, the internal NACK detection counter is cleared and the count restarts from zero on the next transmitted NACK. This interrupt is cleared by writing 1.
	The number of consecutive NACKS generated as a result of parity errors and buffer overruns is less than or equal to the value in ET7816[RXTHRESHOLD].
	1 The number of consecutive NACKS generated as a result of parity errors and buffer overruns is greater than the value in ET7816[RXTHRESHOLD].

47.3.26 UART 7816 Wait Parameter Register (UARTx_WP7816)

The WP7816 register contains the WTX variable used in the generation of the block wait timer. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

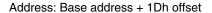

UARTx_WP7816 field descriptions

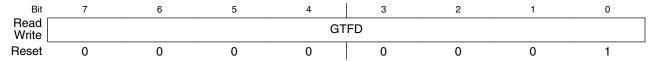
Field	Description
7–0 WTX	Wait Time Multiplier (C7816[TTYPE] = 1)
	Used to calculate the value used for the BWT counter. It represents a value between 0 and 255. This value is used only when C7816[TTYPE] = 1. See Wait time and guard time parameters.

47.3.27 UART 7816 Wait N Register (UARTx_WN7816)

The WN7816 register contains a parameter that is used in the calculation of the guard time counter. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

Address: Base address + 1Ch offset

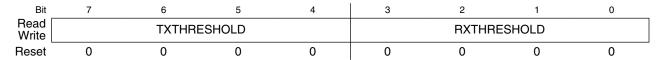



UARTx_WN7816 field descriptions

Field	Description
	Guard Band N Defines a parameter used in the calculation of GT, CGT, and BGT counters. The value represents an integer number between 0 and 255. See Wait time and guard time parameters.

47.3.28 UART 7816 Wait FD Register (UARTx_WF7816)

The WF7816 contains parameters that are used in the generation of various counters including GT, CGT, BGT, WT, and BWT. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.


UARTx_WF7816 field descriptions

Field	Description
GTFD	FD Multiplier Used as another multiplier in the calculation of BWT. This value represents a number between 1 and 255. The value of 0 is invalid. This value is not used in baud rate generation. See Wait time and guard time parameters and Baud rate generation.

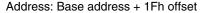
47.3.29 UART 7816 Error Threshold Register (UARTx_ET7816)

The ET7816 register contains fields that determine the number of NACKs that must be received or transmitted before the host processor is notified. This register may be read at anytime. This register must be written to only when C7816[ISO_7816E] is not set.

Address: Base address + 1Eh offset

UARTx_ET7816 field descriptions

Field	Description
7–4	Transmit NACK Threshold
TXTHRESHOLD	
	The value written to this field indicates the maximum number of failed attempts (NACKs) a transmitted character can have before the host processor is notified. This field is meaningful only when C7816[TTYPE] = 0 and C7816[ANACK] = 1. The value read from this field represents the number of consecutive NACKs that have been received since the last successful transmission. This counter saturates at 4'hF and does not wrap around. Regardless of how many NACKs that are received, the UART continues to retransmit indefinitely. This flag only asserts when C7816[TTYPE] = 0. For additional information see the IS7816[TXT] field description.
	0 TXT asserts on the first NACK that is received.
	1 TXT asserts on the second NACK that is received.


Table continues on the next page...

UARTx_ET7816 field descriptions (continued)

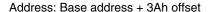
Field	Description
3–0 RXTHRESHOLD	Receive NACK Threshold The value written to this field indicates the maximum number of consecutive NACKs generated as a result of a parity error or receiver buffer overruns before the host processor is notified. After the counter exceeds that value in the field, the IS7816[RXT] is asserted. This field is meaningful only when C7816[TTYPE] = 0. The value read from this field represents the number of consecutive NACKs that have been transmitted since the last successful reception. This counter saturates at 4'hF and does not wrap around. Regardless of the number of NACKs sent, the UART continues to receive valid packets indefinitely. For additional
	information, see IS7816[RXT] field description.

47.3.30 UART 7816 Transmit Length Register (UARTx_TL7816)

The TL7816 register is used to indicate the number of characters contained in the block being transmitted. This register is used only when C7816[TTYPE] = 1. This register may be read at anytime. This register must be written only when C2[TE] is not enabled.

Bit	7	6	5	4	3	2	1	0
Read Write				TLI	EN			
Reset	0	0	0	0	0	0	0	0

UARTx_TL7816 field descriptions


Field	Description
7–0 TLEN	Transmit Length This value plus four indicates the number of characters contained in the block being transmitted. This register is automatically decremented by 1 for each character in the information field portion of the block. Additionally, this register is automatically decremented by 1 for the first character of a CRC in the epilogue field. Therefore, this register must be programmed with the number of bytes in the data packet if an LRC is being transmitted, and the number of bytes + 1 if a CRC is being transmitted. This register is not decremented for characters that are assumed to be part of the Prologue field, that is, the first three characters transmitted in a block, or the LRC or last CRC character in the Epilogue field, that is, the last character transmitted. This field must be programed or adjusted only when C2[TE] is cleared.

47.3.31 UART 7816 ATR Duration Timer Register A (UARTx_AP7816A_T0)

The AP7816A_T0 register contains variables used in the generation of the ATR Duration Timer. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set, except when writing 0 to clear the ADT Counter.

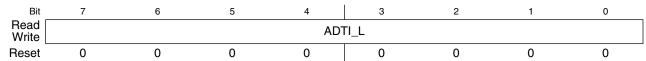
NOTE

The ADT Counter starts counting on detection of the complete TS Character. It must be noted that by this time, exactly 10 ETUs have elapsed since the start bit of the TS character. The user must take this into account while programming this register.

Bit	7	6	5	4	3	2	1	0
Read Write				ADT	ΓI_H			
Reset	0	0	0	0	0	0	0	0

UARTx_AP7816A_T0 field descriptions

Field	Description
7–0	ATR Duration Time Integer High (C7816[TTYPE] = 0)
	Used to calculate the value used for the ADT Counter. This register field provides the most significant byte of the 16 bit ATR Duration Time Integer field ADTI formed by {AP7816A_T0[ADTI_H], AP7816B_T0[ADTI_L]}. Programming a value of ADTI = 0 disables the ADT counter. This value is used
	only when C7816[TTYPE] = 0. See ATR Duration Time Counter.


47.3.32 UART 7816 ATR Duration Timer Register B (UARTx_AP7816B_T0)

The AP7816B_T0 register contains variables used in the generation of the ATR Duration Timer. This register may be read at any time. This register must be written to only when C7816[ISO 7816E] is not set, except when writing 0 to clear the ADT Counter.

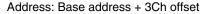
NOTE

The ADT Counter starts counting on detection of the complete TS Character. It must be noted that by this time, exactly 10 ETUs have elapsed since the start bit of the TS character. The user must take this into account while programming this register.

Address: Base address + 3Bh offset

UARTX AP7816B TO field descriptions

Field	Description
7–0 ADTI_L	ATR Duration Time Integer Low (C7816[TTYPE] = 0)


K22F Sub-Family Reference Manual, Rev. 3, 7/2014

UARTx_AP7816B_T0 field descriptions (continued)

Field	Description
	Used to calculate the value used for the ADT counter. This register field provides the least significant byte of the 16 bit ATR Duration Time Integer field ADTI formed by {AP7816A_T0[ADTI_H],
	AP7816B_T0[ADTI_L]}. Programming a value of ADTI = 0 disables the ADT counter. This value is used only when C7816[TTYPE] = 0. See ATR Duration Time Counter.

47.3.33 UART 7816 Wait Parameter Register A (UARTx_WP7816A_T0)

The WP7816A_T0 register contains constants used in the generation of various wait time counters. To save register space, this register is used differently when C7816[TTYPE] = 0 and C7816[TTYPE] = 1. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

Bit	7	6	5	4	3	2	1	0
Read Write				WI	_H			
Reset	0	0	0	0	0	0	0	0

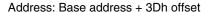
UARTx_WP7816A_T0 field descriptions

Field	Description
WI_H	Wait Time Integer High (C7816[TTYPE] = 0) Used to calculate the value used for the WT counter. This register field provides the most significant byte of the 16 bit Wait Time Integer field WI formed by {WP7816A_T0[WI_H], WP7816B_T0[WI_L]}. The value of WI = 0 is invalid and must not be programmed. This value is used only when C7816[TTYPE] = 0. See
	Wait time and guard time parameters.

47.3.34 UART 7816 Wait Parameter Register A (UARTx_WP7816A_T1)

The WP7816A_T1 register contains constants used in the generation of various wait time counters. To save register space, this register is used differently when C7816[TTYPE] = 0 and C7816[TTYPE] = 1. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

Address: Base address + 3Ch offset


Bit	7	6	5	4	3	2	1	0
Read Write				BW	I_H			
Reset	0	0	0	0	0	0	0	0

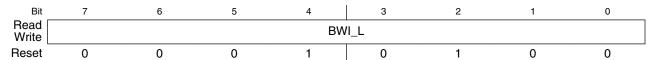
UARTx_WP7816A_T1 field descriptions

Field	Description
7–0 BWI H	Block Wait Time Integer High (C7816[TTYPE] = 1)
	Used to calculate the value used for the BWT counter. This register field provides the most significant byte of the 16 bit Block Wait Time Integer field BWI formed by {WP7816A_T1[BWI_H], WP7816B_T1[BWI_L]}. The value of BWI = 0 is invalid and should not be programmed. This value is used only when C7816[TTYPE] = 1. See Wait time and guard time parameters.

47.3.35 UART 7816 Wait Parameter Register B (UARTx_WP7816B_T0)

The WP7816B_T0 register contains constants used in the generation of various wait time counters. To save register space, this register is used differently when C7816[TTYPE] = 0 and C7816[TTYPE] = 1. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

Bit	7	6	5	4	3	2	1	0
Read Write				W				
Reset	0	0	0	1	0	1	0	0


UARTx_WP7816B_T0 field descriptions

Field	Description
	Wait Time Integer Low (C7816[TTYPE] = 0) Used to calculate the value used for the WT counter. This register field provides the least significant byte of the 16 bit Wait Time Integer field WI formed by {WP7816A_T0[WI_H], WP7816B_T0[WI_L]}. The value
	of WI = 0 is invalid and must not be programmed. This value is used only when C7816[TTYPE] = 0. See Wait time and guard time parameters.

47.3.36 UART 7816 Wait Parameter Register B (UARTx_WP7816B_T1)

The WP7816B_T1 register contains constants used in the generation of various wait time counters. To save register space, this register is used differently when C7816[TTYPE] = 0 and C7816[TTYPE] = 1. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

Address: Base address + 3Dh offset

UARTx_WP7816B_T1 field descriptions

Field	Description
7–0	Block Wait Time Integer Low (C7816[TTYPE] = 1)
BWI_L	Used to calculate the value used for the BWT counter. This register field provides the least significant byte of the 16 bit Block Wait Time Integer field BWI formed by {WP7816A_T1[BWI_H], WP7816B_T1[BWI_L]}. The value of BWI = 0 is invalid and should not be programmed. This value is used only when C7816[TTYPE] = 1. See Wait time and guard time parameters.

47.3.37 UART 7816 Wait and Guard Parameter Register (UARTx_WGP7816_T1)

The WGP7816_T1 register contains constants used in the generation of various wait and guard timer counters. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

Address: Base address + 3Eh offset

Bit	7	6	5	4	3	2	1	0
Read Write	CWI1					В	GI	
Reset	0	0	0	0	0	1	1	0

UARTx_WGP7816_T1 field descriptions

Field	Description
7–4 CWI1	Character Wait Time Integer 1 (C7816[TTYPE] = 1) Used to calculate the value used for the CWT counter. It represents a value between 0 and 15. This value is used only when C7816[TTYPE] = 1. See Wait time and guard time parameters.
3–0 BGI	Block Guard Time Integer (C7816[TTYPE] = 1) Used to calculate the value used for the BGT counter. It represent a value between 0 and 15. This value is used only when C7816[TTYPE] = 1. See Wait time and guard time parameters.

47.3.38 UART 7816 Wait Parameter Register C (UARTx_WP7816C_T1)

The WP7816C_T1 register contains constants used in the generation of various wait timer counters. This register may be read at any time. This register must be written to only when C7816[ISO_7816E] is not set.

Address: Base address + 3Fh offset

UARTx_WP7816C_T1 field descriptions

Field	Description		
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		
CWI2	Character Wait Time Integer 2 (C7816[TTYPE] = 1) Used to calculate the value used for the CWT counter. It represents a value between 0 and 31. This value is used only when C7816[TTYPE] = 1. See Wait time and guard time parameters.		

47.4 Functional description

This section provides a complete functional description of the UART block.

The UART allows full duplex, asynchronous, NRZ serial communication between the CPU and remote devices, including other CPUs. The UART transmitter and receiver operate independently, although they use the same baud rate generator. The CPU monitors the status of the UART, writes the data to be transmitted, and processes received data.

47.4.1 Transmitter

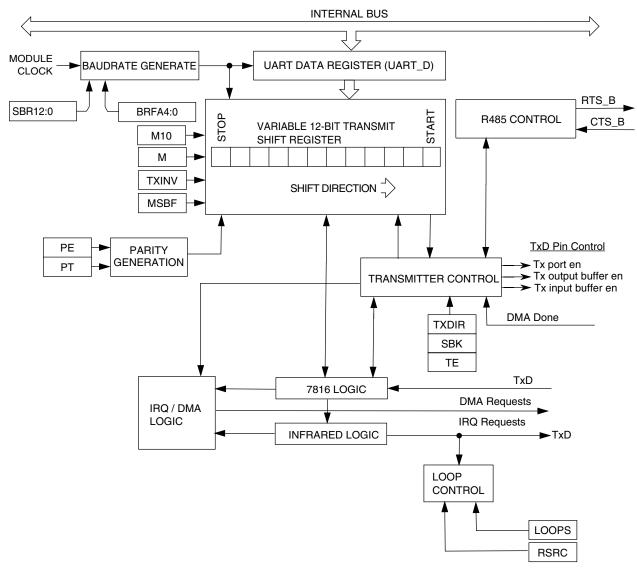


Figure 47-153. Transmitter Block Diagram

47.4.1.1 Transmitter character length

The UART transmitter can accommodate either 8, 9, or 10-bit data characters. The state of the C1[M] and C1[PE] bits and the C4[M10] bit determine the length of data characters. When transmitting 9-bit data, bit C3[T8] is the ninth bit (bit 8).

47.4.1.2 Transmission bit order

When S2[MSBF] is set, the UART automatically transmits the MSB of the data word as the first bit after the start bit. Similarly, the LSB of the data word is transmitted immediately preceding the parity bit, or the stop bit if parity is not enabled. All necessary bit ordering is handled automatically by the module. Therefore, the format of the data written to D for transmission is completely independent of the S2[MSBF] setting.

47.4.1.3 Character transmission

To transmit data, the MCU writes the data bits to the UART transmit buffer using UART data registers C3[T8] and D. Data in the transmit buffer is then transferred to the transmitter shift register as needed. The transmit shift register then shifts a frame out through the transmit data output signal after it has prefaced it with any required start and stop bits. The UART data registers, C3[T8] and D, provide access to the transmit buffer structure.

The UART also sets a flag, the transmit data register empty flag S1[TDRE], and generates an interrupt or DMA request (C5[TDMAS]) whenever the number of datawords in the transmit buffer is equal to or less than the value indicated by TWFIFO[TXWATER]. The transmit driver routine may respond to this flag by writing additional datawords to the transmit buffer using C3[T8]/D as space permits.

See Application information for specific programing sequences.

Setting C2[TE] automatically loads the transmit shift register with the following preamble:

- $10 \log 1 \sin C1[M] = 0$
- 11 logic 1s if C1[M] = 1 and C4[M10] = 0
- 12 logic 1s if C1[M] = 1, C4[M10] = 1, C1[PE] = 1

After the preamble shifts out, control logic transfers the data from the D register into the transmit shift register. The transmitter automatically transmits the correct start bit and stop bit before and after the dataword.

When C7816[ISO_7816E] = 1, setting C2[TE] does not result in a preamble being generated. The transmitter starts transmitting as soon as the corresponding guard time expires. When C7816[TTYPE] = 0, the value in GT is used. When C7816[TTYPE] = 1, the value in BGT is used, because C2[TE] will remain asserted until the end of the block transfer. C2[TE] is automatically cleared when C7816[TTYPE] = 1 and the block being transmitted has completed. When C7816[TTYPE] = 0, the transmitter listens for a NACK indication. If no NACK is received, it is assumed that the character was correctly

Functional description

received. If a NACK is received, the transmitter resends the data, assuming that the number of retries for that character, that is, the number of NACKs received, is less than or equal to the value in ET7816[TXTHRESHOLD].

Hardware supports odd or even parity. When parity is enabled, the bit immediately preceding the stop bit is the parity bit.

When the transmit shift register is not transmitting a frame, the transmit data output signal goes to the idle condition, logic 1. If at any time software clears C2[TE], the transmitter enable signal goes low and the transmit signal goes idle.

If the software clears C2[TE] while a transmission is in progress, the character in the transmit shift register continues to shift out, provided S1[TC] was cleared during the data write sequence. To clear S1[TC], the S1 register must be read followed by a write to D register.

If S1[TC] is cleared during character transmission and C2[TE] is cleared, the transmission enable signal is deasserted at the completion of the current frame. Following this, the transmit data out signal enters the idle state even if there is data pending in the UART transmit data buffer. To ensure that all the data written in the FIFO is transmitted on the link before clearing C2[TE], wait for S1[TC] to set. Alternatively, the same can be achieved by setting TWFIFO[TXWATER] to 0x0 and waiting for S1[TDRE] to set.

47.4.1.4 Transmitting break characters

Setting C2[SBK] loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on C1[M], C1[PE], S2[BRK13] and C4[M10]. See the following table.

S2[BRK13]	C1[M]	C4[M10]	C1[PE]	Bits transmitted
0	0	_	_	10
0	1	1	0	11
0	1	1	1	12
1	0	_	_	13
1	1	_	_	14

Table 47-159. Transmit break character length

As long as C2[SBK] is set, the transmitter logic continuously loads break characters into the transmit shift register. After the software clears C2[SBK], the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. Break bits are not supported when C7816[ISO_7816E] is set/enabled.

NOTE

When queuing a break character, it will be transmitted following the completion of the data value currently being shifted out from the shift register. This means that, if data is queued in the data buffer to be transmitted, the break character preempts that queued data. The queued data is then transmitted after the break character is complete.

47.4.1.5 Idle characters

An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on C1[M], C1[PE] and C4[M10]. The preamble is a synchronizing idle character that begins the first transmission initiated after setting C2[TE]. When C7816[ISO_7816E] is set/enabled, idle characters are not sent or detected. When data is not being transmitted, the data I/O line is in an inactive state.

If C2[TE] is cleared during a transmission, the transmit data output signal becomes idle after completion of the transmission in progress. Clearing and then setting C2[TE] during a transmission queues an idle character to be sent after the dataword currently being transmitted.

Note

When queuing an idle character, the idle character will be transmitted following the completion of the data value currently being shifted out from the shift register. This means that if data is queued in the data buffer to be transmitted, the idle character preempts that queued data. The queued data is then transmitted after the idle character is complete.

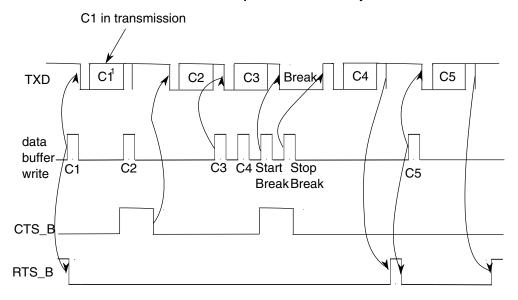
If C2[TE] is cleared and the transmission is completed, the UART is not the master of the TXD pin.

47.4.1.6 Hardware flow control

The transmitter supports hardware flow control by gating the transmission with the value of CTS. If the clear-to-send operation is enabled, the character is transmitted when CTS is asserted. If CTS is deasserted in the middle of a transmission with characters remaining in the receiver data buffer, the character in the shift register is sent and TXD remains in the mark state until CTS is reasserted.

Functional description

If the clear-to-send operation is disabled, the transmitter ignores the state of CTS. Also, if the transmitter is forced to send a continuous low condition because it is sending a break character, the transmitter ignores the state of CTS regardless of whether the clear-to-send operation is enabled.


The transmitter's CTS signal can also be enabled even if the same UART receiver's RTS signal is disabled.

47.4.1.7 Transceiver driver enable

The transmitter can use RTS as an enable signal for the driver of an external transceiver. See Transceiver driver enable using RTS for details. If the request-to-send operation is enabled, when a character is placed into an empty transmitter data buffer, RTS asserts one bit time before the start bit is transmitted. RTS remains asserted for the whole time that the transmitter data buffer has any characters. RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit. Transmitting a break character also asserts RTS, with the same assertion and deassertion timing as having a character in the transmitter data buffer.

The transmitter's RTS signal asserts only when the transmitter is enabled. However, the transmitter's RTS signal is unaffected by its CTS signal. RTS will remain asserted until the transfer is completed, even if the transmitter is disabled mid-way through a data transfer.

The following figure shows the functional timing information for the transmitter. Along with the actual character itself, TXD shows the start bit. The stop bit is also indicated, with a dashed line if necessary.

1. Cn = transmit characters

Figure 47-154. Transmitter RTS and CTS timing diagram

47.4.2 Receiver

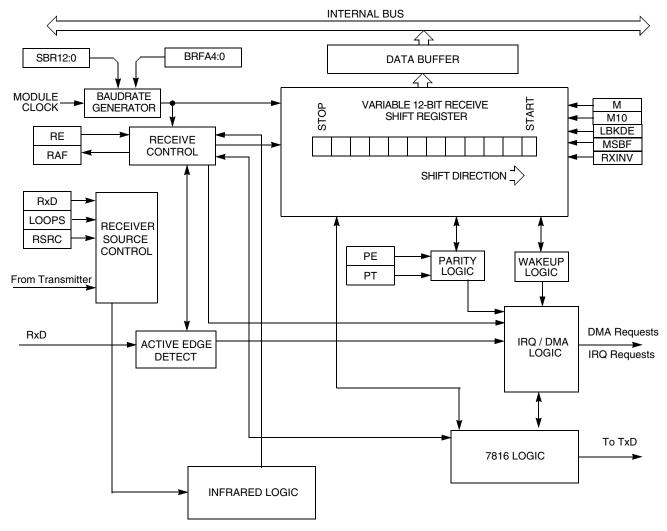


Figure 47-155. UART receiver block diagram

47.4.2.1 Receiver character length

The UART receiver can accommodate 8-, 9-, or 10-bit data characters. The states of C1[M], C1[PE] and C4[M10] determine the length of data characters. When receiving 9 or 10-bit data, C3[R8] is the ninth bit (bit 8).

47.4.2.2 Receiver bit ordering

When S2[MSBF] is set, the receiver operates such that the first bit received after the start bit is the MSB of the dataword. Similarly, the bit received immediately preceding the parity bit, or the stop bit if parity is not enabled, is treated as the LSB for the dataword. All necessary bit ordering is handled automatically by the module. Therefore, the format of the data read from receive data buffer is completely independent of S2[MSBF].

47.4.2.3 Character reception

During UART reception, the receive shift register shifts a frame in from the unsynchronized receiver input signal. After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the UART receive buffer. The receive data buffer is accessible via the D and C3[T8] registers. S1[RDRF] is set if the number of resulting datawords in the receive buffer is equal to or greater than the number indicated by RWFIFO[RXWATER]. If the C2[RIE] is also set, RDRF generates an RDRF interrupt request. Alternatively, by programming C5[RDMAS], a DMA request can be generated.

When C7816[ISO_7816E] is set/enabled and C7816[TTYPE] = 0, character reception operates slightly differently. Upon receipt of the parity bit, the validity of the parity bit is checked. If C7816[ANACK] is set and the parity check fails, or if INIT and the received character is not a valid initial character, then a NACK is sent by the receiver. If the number of consecutive receive errors exceeds the threshold set by ET7816[RXTHRESHOLD], then IS7816[RXT] is set and an interrupt generated if IE7816[RXTE] is set. If an error is detected due to parity or an invalid initial character, the data is not transferred from the receive shift register to the receive buffer. Instead, the data is overwritten by the next incoming data.

When the C7816[ISO_7816E] is set/enabled, C7816[ONACK] is set/enabled, and the received character results in the receive buffer overflowing, a NACK is issued by the receiver. Additionally, S1[OR] is set and an interrupt is issued if required, and the data in the shift register is discarded.

47.4.2.4 Data sampling

The receiver samples the unsynchronized receiver input signal at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock (see the following figure) is re-synchronized:

Functional description

- After every start bit.
- After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0).

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

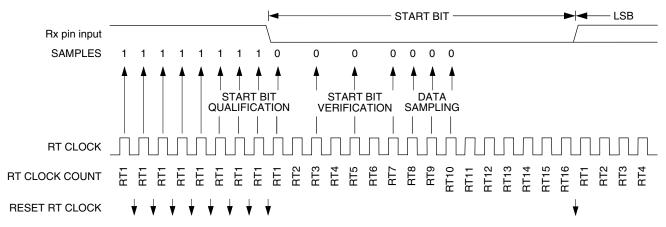


Figure 47-156. Receiver data sampling

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7 when C7816[ISO_7816E] is cleared/disabled and RT8, RT9 and RT10 when C7816[ISO_7816E] is set/enabled. The following table summarizes the results of the start bit verification samples.

RT3, RT5, and RT7 samples RT8, RT9, RT10 samples when 7816E	Start bit verification	Noise flag
000	Yes	0
001	Yes	1
010	Yes	1
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

Table 47-160. Start bit verification

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. The following table summarizes the results of the data bit samples.

Table 47-161. Data bit recovery

RT8, RT9, and RT10 samples	Data bit determination	Noise flag
000	0	0
001	0	1
010	0	1
011	1	1
100	0	1
101	1	1
110	1	1
111	1	0

Note

The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (S1[NF]) is set and the receiver assumes that the bit is a start bit (logic 0). With the exception of when C7816[ISO_7816E] is set/enabled, where the values of RT8, RT9 and RT10 exclusively determine if a start bit exists.

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. The following table summarizes the results of the stop bit samples. In the event that C7816[ISO_7816E] is set/enabled and C7816[TTYPE] = 0, verification of a stop bit does not take place. Rather, starting with RT8 the receiver transmits a NACK as programmed until time RT9 of the following time period. Framing Error detection is not supported when C7816[ISO_7816E] is set/enabled.

Table 47-162. Stop bit recovery

RT8, RT9, and RT10 samples	Framing error flag	Noise flag
000	1	0
001	1	1
010	1	1
011	0	1
100	1	1
101	0	1
110	0	1
111	0	0

Functional description

In the following figure, the verification samples RT3 and RT5 determine that the first low detected was noise and not the beginning of a start bit. In this example C7816[ISO_7816E] = 0. The RT clock is reset and the start bit search begins again. The noise flag is not set because the noise occurred before the start bit was found.

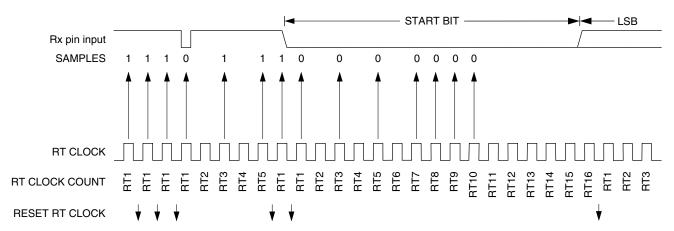


Figure 47-157. Start bit search example 1 (C7816[ISO_7816E] = 0)

In the following figure, verification sample at RT3 is high. In this example C7816[ISO_7816E] = 0. The RT3 sample sets the noise flag. Although the perceived bit time is misaligned, the data samples RT8, RT9, and RT10 are within the bit time and data recovery is successful.

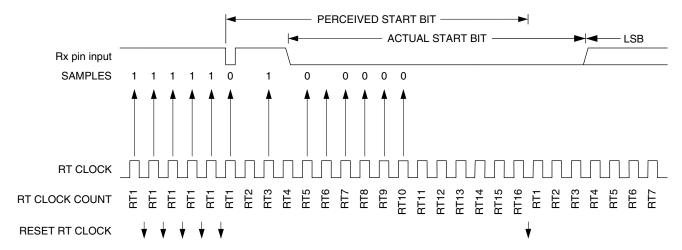


Figure 47-158. Start bit search example 2 (C7816[ISO_7816E] = 0)

In the following figure, a large burst of noise is perceived as the beginning of a start bit, although the test sample at RT5 is high. In this example C7816[ISO_7816E] = 0. The RT5 sample sets the noise flag. Although this is a worst-case misalignment of perceived bit time, the data samples RT8, RT9, and RT10 are within the bit time and data recovery is successful.

Chapter 47 Universal Asynchronous Receiver/Transmitter (UART)

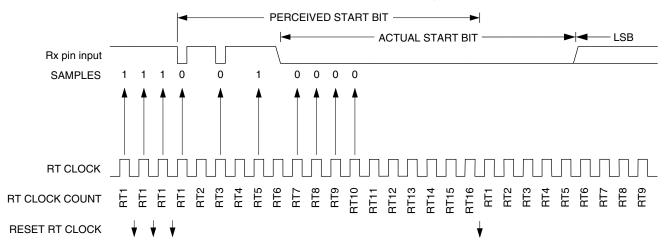


Figure 47-159. Start bit search example 3 (C7816[ISO_7816E] = 0)

The following figure shows the effect of noise early in the start bit time. In this example C7816[ISO_7816E] = 0. Although this noise does not affect proper synchronization with the start bit time, it does set the noise flag.

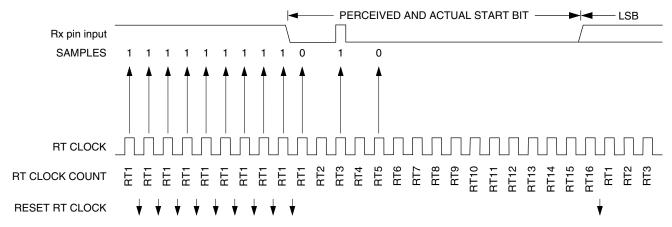


Figure 47-160. Start bit search example 4 (C7816[ISO_7816E] = 0)

The following figure shows a burst of noise near the beginning of the start bit that resets the RT clock. In this example C7816[ISO_7816E] = 0. The sample after the reset is low but is not preceded by three high samples that would qualify as a falling edge. Depending on the timing of the start bit search and on the data, the frame may be missed entirely or it may set the framing error flag.

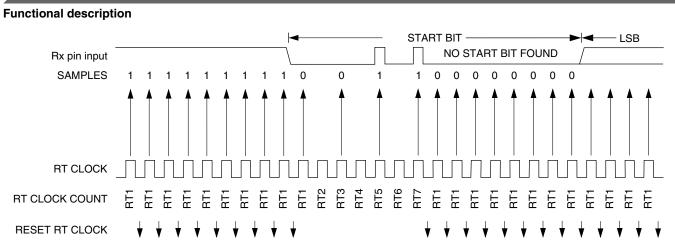


Figure 47-161. Start bit search example 5 (C7816[ISO_7816E] = 0)

In the following figure, a noise burst makes the majority of data samples RT8, RT9, and RT10 high. In this example C7816[ISO_7816E] = 0. This sets the noise flag but does not reset the RT clock. In start bits only, the RT8, RT9, and RT10 data samples are ignored. In this example, if C7816[ISO_7816E] = 1 then a start bit would not have been detected at all since at least two of the three samples (RT8, RT9, RT10) were high.

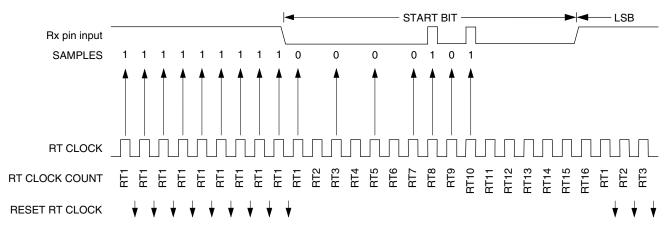


Figure 47-162. Start bit search example 6

47.4.2.5 Framing errors

If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming frame, it sets the framing error flag, S1[FE], if S2[LBKDE] is disabled. When S2[LBKDE] is disabled, a break character also sets the S1[FE] because a break character has no stop bit. S1[FE] is set at the same time that received data is placed in the receive data buffer. Framing errors are not supported when C7816[ISO7816E] is set/enabled. However, if S1[FE] is set, data will not be received when C7816[ISO7816E] is set.

47.4.2.6 Receiving break characters

The UART recognizes a break character when a start bit is followed by eight, nine, or ten logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on UART registers:

- Sets the framing error flag, S1[FE].
- Writes an all 0 dataword to the data buffer, which may cause S1[RDRF] to set, depending on the watermark and number of values in the data buffer.
- May set the overrun flag, S1[OR], noise flag, S1[NF], parity error flag, S1[PE], or the receiver active flag, S2[RAF].

The detection threshold for a break character can be adjusted when using an internal oscillator in a LIN system by setting S2[LBKDE]. The UART break character detection threshold depends on C1[M], C1[PE], S2[LBKDE] and C4[M10]. See the following table.

LBKDE	M	M10	PE	Threshold (bits)
0	0	_	_	10
0	1	0	_	11
0	1	1	1	12
1	0	_	_	11
1	1	_	_	12

Table 47-163. Receive break character detection threshold

While S2[LBKDE] is set, it will have these effects on the UART registers:

- Prevents S1[RDRF], S1[FE], S1[NF], and S1[PF] from being set. However, if they are already set, they will remain set.
- Sets the LIN break detect interrupt flag, S2[LBKDIF], if a LIN break character is received.

Break characters are not detected or supported when C7816[ISO_7816E] is set/enabled.

47.4.2.7 Hardware flow control

To support hardware flow control, the receiver can be programmed to automatically deassert and assert RTS.

Functional description

- RTS remains asserted until the transfer is complete, even if the transmitter is disabled midway through a data transfer. See Transceiver driver enable using RTS for more details.
- If the receiver request-to-send functionality is enabled, the receiver automatically deasserts RTS if the number of characters in the receiver data register is equal to or greater than receiver data buffer's watermark, RWFIFO[RXWATER].
- The receiver asserts RTS when the number of characters in the receiver data register is less than the watermark. It is not affected if RDRF is asserted.
- Even if RTS is deasserted, the receiver continues to receive characters until the receiver data buffer is full or is overrun.
- If the receiver request-to-send functionality is disabled, the receiver RTS remains deasserted.

The following figure shows receiver hardware flow control functional timing. Along with the actual character itself, RXD shows the start bit. The stop bit can also indicated, with a dashed line, if necessary. The watermark is set to 2.

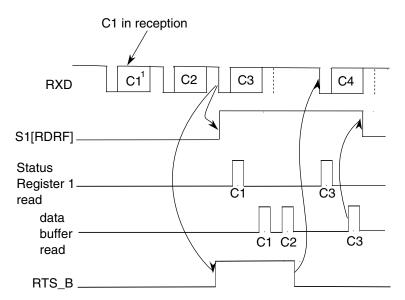


Figure 47-163. Receiver hardware flow control timing diagram

47.4.2.8 Infrared decoder

The infrared decoder converts the received character from the IrDA format to the NRZ format used by the receiver. It also has a 16-RT clock counter that filters noise and indicates when a 1 is received.

47.4.2.8.1 Start bit detection

When S2[RXINV] is cleared, the first rising edge of the received character corresponds to the start bit. The infrared decoder resets its counter. At this time, the receiver also begins its start bit detection process. After the start bit is detected, the receiver synchronizes its bit times to this start bit time. For the rest of the character reception, the infrared decoder's counter and the receiver's bit time counter count independently from each other.

47.4.2.8.2 Noise filtering

Any further rising edges detected during the first half of the infrared decoder counter are ignored by the decoder. Any pulses less than one RT clocks can be undetected by it regardless of whether it is seen in the first or second half of the count.

47.4.2.8.3 Low-bit detection

During the second half of the decoder count, a rising edge is decoded as a 0, which is sent to the receiver. The decoder counter is also reset.

47.4.2.8.4 High-bit detection

At 16-RT clocks after the previous rising edge, if a rising edge is not seen, then the decoder sends a 1 to the receiver.

If the next bit is a 0, which arrives late, then a low-bit is detected according to Low-bit detection. The value sent to the receiver is changed from 1 to a 0. Then, if a noise pulse occurs outside the receiver's bit time sampling period, then the delay of a 0 is not recorded as noise.

47.4.2.9 Baud rate tolerance

A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples (RT8, RT9, and RT10) to fall outside the actual stop bit. A noise error will occur if the RT8, RT9, and RT10 samples are not all the same logical values. A framing error will occur if the receiver clock is misaligned in such a way that the majority of the RT8, RT9, and RT10 stop bit samples are a logic 0.

As the receiver samples an incoming frame, it resynchronizes the RT clock on any valid falling edge within the frame. Resynchronization within frames corrects a misalignment between transmitter bit times and receiver bit times.

47.4.2.9.1 Slow data tolerance

The following figure shows how much a slow received frame can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.

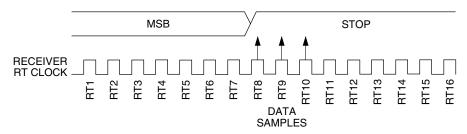


Figure 47-164. Slow data

For an 8-bit data character, data sampling of the stop bit takes the receiver 154 RT cycles (9 bit times \times 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 47-164, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 147 RT cycles (9 bit times × 16 RT cycles + 3 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit data character with no errors is:

$$((154 - 147) \div 154) \times 100 = 4.54\%$$

For a 9-bit data character, data sampling of the stop bit takes the receiver 170 RT cycles (10 bit times × 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 47-164, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 163 RT cycles (10 bit times \times 16 RT cycles + 3 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is:

$$((170 - 163) \div 170) \times 100 = 4.12\%$$

47.4.2.9.2 Fast data tolerance

The following figure shows how much a fast received frame can be misaligned. The fast stop bit ends at RT10 instead of RT16 but is still sampled at RT8, RT9, and RT10.

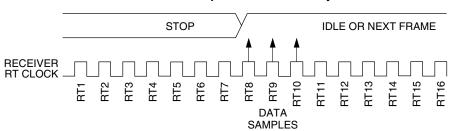


Figure 47-165. Fast data

For an 8-bit data character, data sampling of the stop bit takes the receiver 154 RT cycles (9 bit times \times 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 47-165, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 160 RT cycles (10 bit times \times 16 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is:

$$((154 - 160) \div 154) \times 100 = 3.90\%$$

For a 9-bit data character, data sampling of the stop bit takes the receiver 170 RT cycles (10 bit times × 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 47-165, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 176 RT cycles (11 bit times \times 16 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is:

$$((170 - 176) \div 170) \times 100 = 3.53\%$$

47.4.2.10 Receiver wakeup

C1[WAKE] determines how the UART is brought out of the standby state to process an incoming message. C1[WAKE] enables either idle line wakeup or address mark wakeup.

Receiver wakeup is not supported when C7816[ISO_7816E] is set/enabled because multi-receiver systems are not allowed.

47.4.2.10.1 Idle input line wakeup (C1[WAKE] = 0)

In this wakeup method, an idle condition on the unsynchronized receiver input signal clears C2[RWU] and wakes the UART. The initial frame or frames of every message contain addressing information. All receivers evaluate the addressing information, and

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Functional description

receivers for which the message is addressed process the frames that follow. Any receiver for which a message is not addressed can set its C2[RWU] and return to the standby state. C2[RWU] remains set and the receiver remains in standby until another idle character appears on the unsynchronized receiver input signal.

Idle line wakeup requires that messages be separated by at least one idle character and that no message contains idle characters.

When C2[RWU] is 1 and S2[RWUID] is 0, the idle character that wakes the receiver does not set S1[IDLE] or the receive data register full flag, S1[RDRF]. The receiver wakes and waits for the first data character of the next message which is stored in the receive data buffer. When S2[RWUID] and C2[RWU] are set and C1[WAKE] is cleared, any idle condition sets S1[IDLE] and generates an interrupt if enabled.

Idle input line wakeup is not supported when C7816[ISO_7816E] is set/enabled.

47.4.2.10.2 Address mark wakeup (C1[WAKE] = 1)

In this wakeup method, a logic 1 in the bit position immediately preceding the stop bit of a frame clears C2[RWU] and wakes the UART. A logic 1 in the bit position immediately preceding the stop bit marks a frame as an address frame that contains addressing information. All receivers evaluate the addressing information, and the receivers for which the message is addressed process the frames that follow. Any receiver for which a message is not addressed can set its C2[RWU] and return to the standby state. C2[RWU] remains set and the receiver remains in standby until another address frame appears on the unsynchronized receiver input signal.

A logic 1 in the bit position immediately preceding the stop bit clears the receiver's C2[RWU] after the stop bit is received and places the received data into the receiver data buffer. Note that if Match Address operation is enabled i.e. C4[MAEN1] or C4[MAEN2] is set, then received frame is transferred to receive buffer only if the comparison matches.

Address mark wakeup allows messages to contain idle characters but requires that the bit position immediately preceding the stop bit be reserved for use in address frames.

If module is in standby mode and nothing triggers to wake the UART, no error flag is set even if an invalid error condition is detected on the receiving data line.

Address mark wakeup is not supported when C7816[ISO_7816E] is set/enabled.

47.4.2.10.3 Match address operation

Match address operation is enabled when C4[MAEN1] or C4[MAEN2] is set. In this function, a frame received by the RX pin with a logic 1 in the bit position of the address mark is considered an address and is compared with the associated MA1 or MA2 register.

The frame is transferred to the receive buffer, and S1[RDRF] is set, only if the comparison matches. All subsequent frames received with a logic 0 in the bit position of the address mark are considered to be data associated with the address and are transferred to the receive data buffer. If no marked address match occurs, then no transfer is made to the receive data buffer, and all following frames with logic 0 in the bit position of the address mark are also discarded. If both C4[MAEN1] and C4[MAEN2] are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

Match address operation functions in the same way for both MA1 and MA2 registers. Note that the position of the address mark is the same as the Parity Bit when parity is enabled for 8 bit and 9 bit data formats.

- If only one of C4[MAEN1] and C4[MAEN2] is asserted, a marked address is compared only with the associated match register and data is transferred to the receive data buffer only on a match.
- If C4[MAEN1] and C4[MAEN2] are asserted, a marked address is compared with both match registers and data is transferred only on a match with either register.

Address match operation is not supported when C7816[ISO_7816E] is set/enabled.

47.4.3 Baud rate generation

A 13-bit modulus counter and a 5-bit fractional fine-adjust counter in the baud rate generator derive the baud rate for both the receiver and the transmitter. The value from 1 to 8191 written to SBR[12:0] determines the module clock divisor. The SBR bits are in the UART baud rate registers, BDH and BDL. The baud rate clock is synchronized with the module clock and drives the receiver. The fractional fine-adjust counter adds fractional delays to the baud rate clock to allow fine trimming of the baud rate to match the system baud rate. The transmitter is driven by the baud rate clock divided by 16. The receiver has an acquisition rate of 16 samples per bit time.

Baud rate generation is subject to two sources of error:

- Integer division of the module clock may not give the exact target frequency. This error can be reduced with the fine-adjust counter.
- Synchronization with the module clock can cause phase shift.

The Table 47-164 lists the available baud divisor fine adjust values.

UART baud rate = UART module clock / $(16 \times (SBR[12:0] + BRFD))$

Functional description

The following table lists some examples of achieving target baud rates with a module clock frequency of 10.2 MHz, with and without fractional fine adjustment.

Table 47-164. Baud rates (example: module clock = 10.2 MHz)

Bits	Bits		Receiver	Transmitter	Torget Poud	Error
SBR	BRFA	BRFD value	clock (Hz)	clock (Hz)	Target Baud rate	(%)
(decimal)	DNI A		CIOCK (112)	CIOCK (112)		(/0)
17	00000	0	600,000.0	37,500.0	38,400	2.3
16	10011	19/32=0.59375	614,689.3	38,418.08	38,400	0.047
33	00000	0	309,090.9	19,318.2	19,200	0.62
33	00110	6/32=0.1875	307,344.6	19,209.04	19,200	0.047
66	00000	0	154,545.5	9659.1	9600	0.62
133	00000	0	76,691.7	4793.2	4800	0.14
266	00000	0	38,345.9	2396.6	2400	0.14
531	00000	0	19,209.0	1200.6	1200	0.11
1062	00000	0	9604.5	600.3	600	0.05
2125	00000	0	4800.0	300.0	300	0.00
4250	00000	0	2400.0	150.0	150	0.00
5795	00000	0	1760.1	110.0	110	0.00

Table 47-165. Baud rate fine adjust

BRFA	Baud Rate Fractional Divisor (BRFD)			
00000	0/32 = 0			
0 0 0 0 1	1/32 = 0.03125			
0 0 0 1 0	2/32 = 0.0625			
0 0 0 1 1	3/32 = 0.09375			
00100	4/32 = 0.125			
00101	5/32 = 0.15625			
00110	6/32 = 0.1875			
00111	7/32 = 0.21875			
01000	8/32 = 0.25			
01001	9/32 = 0.28125			
01010	10/32 = 0.3125			
01011	11/32 = 0.34375			
01100	12/32 = 0.375			
01101	13/32 = 0.40625			
01110	14/32 = 0.4375			
01111	15/32 = 0.46875			
1 0 0 0 0	16/32 = 0.5			
1 0 0 0 1	17/32 = 0.53125			
10010	18/32 = 0.5625			

Table 47-165. Baud rate fine adjust (continued)

BRFA	Baud Rate Fractional Divisor (BRFD)
10011	19/32 = 0.59375
10100	20/32 = 0.625
10101	21/32 = 0.65625
10110	22/32 = 0.6875
10111	23/32 = 0.71875
1 1 0 0 0	24/32 = 0.75
1 1 0 0 1	25/32 = 0.78125
11010	26/32 = 0.8125
11011	27/32 = 0.84375
11100	28/32 = 0.875
11101	29/32 = 0.90625
11110	30/32 = 0.9375
11111	31/32 = 0.96875

47.4.4 Data format (non ISO-7816)

Each data character is contained in a frame that includes a start bit and a stop bit. The rest of the data format depends upon C1[M], C1[PE], S2[MSBF] and C4[M10].

47.4.4.1 Eight-bit configuration

Clearing C1[M] configures the UART for 8-bit data characters, that is, eight bits are memory mapped in D. A frame with eight data bits has a total of 10 bits. The most significant bit of the eight data bits can be used as an address mark to wake the receiver. If the most significant bit is used in this way, then it serves as an address or data indication, leaving the remaining seven bits as actual data. When C1[PE] is set, the eighth data bit is automatically calculated as the parity bit. See the following table.

Table 47-166. Configuration of 8-bit data format

UART_C1[PE]	Start	Data	Address	Parity	Stop
	bit	bits	bits	bits	bit
0	1	8	0	0	1
0	1	7	1 ¹	0	1
1	1	7	0	1	1

1. The address bit identifies the frame as an address character. See Receiver wakeup.

47.4.4.2 Nine-bit configuration

When C1[M] is set and C4[M10] is cleared, the UART is configured for 9-bit data characters. If C1[PE] is enabled, the ninth bit is either C3[T8/R8] or the internally generated parity bit. This results in a frame consisting of a total of 11 bits. In the event that the ninth data bit is selected to be C3[T8], it will remain unchanged after transmission and can be used repeatedly without rewriting it, unless the value needs to be changed. This feature may be useful when the ninth data bit is being used as an address mark.

When C1[M] and C4[M10] are set, the UART is configured for 9-bit data characters, but the frame consists of a total of 12 bits. The 12 bits include the start and stop bits, the 9 data character bits, and a tenth internal data bit. Note that if C4[M10] is set, C1[PE] must also be set. In this case, the tenth bit is the internally generated parity bit. The ninth bit can either be used as an address mark or a ninth data bit.

See the following table.

CALIDE	C1[PE] UC1[M]	LIC1[M] C1[M10]	Start	Data	Address	Parity	Stop	
CILLE COLUMN	C1[M10]	bit	bits	bits	bits	bit		
0	0	0		See Eight-bit configuration				
0	0	1		In	valid configurati	on		
0	1	0	1	9	0	0	1	
0	1	0	1	8	1 ¹	0	1	
0	1	1		Invalid Configuration				
1	0	0		See Eight-bit configuration				
1	0	1		Invalid Configuration				
1	1	0	1	8	0	1	1	
1	1	1	1	9	0	1	1	
1	1	1	1	8	1 ²	1	1	

Table 47-167. Configuration of 9-bit data formats

- ${\it 1.} \quad {\it The address bit identifies the frame as an address character.}$
- 2. The address bit identifies the frame as an address character.

Note

Unless in 9-bit mode with M10 set, do not use address mark wakeup with parity enabled.

47.4.4.3 Timing examples

Timing examples of these configurations in the NRZ mark/space data format are illustrated in the following figures. The timing examples show all of the configurations in the following sub-sections along with the LSB and MSB first variations.

47.4.4.3.1 Eight-bit format with parity disabled

The most significant bit can be used for address mark wakeup.

Figure 47-166. Eight bits of data with LSB first

Figure 47-167. Eight bits of data with MSB first

47.4.4.3.2 Eight-bit format with parity enabled

\START BIT 0 \ BIT 1 \ BIT 2 \ BIT 3 \ BIT 4 \ BIT 5 \ BIT 6 \PARITY STOP \START BIT

Figure 47-168. Seven bits of data with LSB first and parity

Figure 47-169. Seven bits of data with MSB first and parity

47.4.4.3.3 Nine-bit format with parity disabled

The most significant bit can be used for address mark wakeup.

Figure 47-170. Nine bits of data with LSB first

Figure 47-171. Nine bits of data with MSB first

47.4.4.3.4 Nine-bit format with parity enabled

START BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 PARITY STOP START

Figure 47-172. Eight bits of data with LSB first and parity

Figure 47-173. Eight bits of data with MSB first and parity

47.4.4.3.5 Non-memory mapped tenth bit for parity

The most significant memory-mapped bit can be used for address mark wakeup.

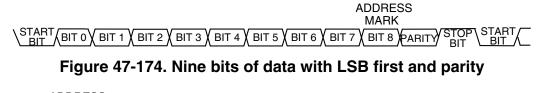


Figure 47-175. Nine bits of data with MSB first and parity

47.4.5 Single-wire operation

Normally, the UART uses two pins for transmitting and receiving. In single wire operation, the RXD pin is disconnected from the UART and the UART implements a half-duplex serial connection. The UART uses the TXD pin for both receiving and transmitting.

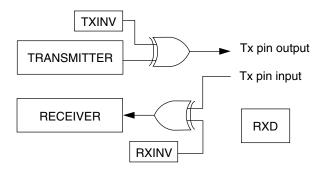


Figure 47-176. Single-wire operation (C1[LOOPS] = 1, C1[RSRC] = 1)

Enable single wire operation by setting C1[LOOPS] and the receiver source field, C1[RSRC]. Setting C1[LOOPS] disables the path from the unsynchronized receiver input signal to the receiver. Setting C1[RSRC] connects the receiver input to the output of the

TXD pin driver. Both the transmitter and receiver must be enabled (C2[TE] = 1 and C2[RE] = 1). When C7816[ISO_7816EN] is set, it is not required that both C2[TE] and C2[RE] are set.

47.4.6 Loop operation

In loop operation, the transmitter output goes to the receiver input. The unsynchronized receiver input signal is disconnected from the UART.

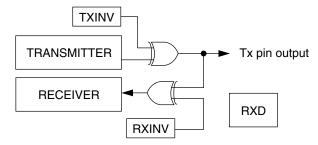


Figure 47-177. Loop operation (C1[LOOPS] = 1, C1[RSRC] = 0)

Enable loop operation by setting C1[LOOPS] and clearing C1[RSRC]. Setting C1[LOOPS] disables the path from the unsynchronized receiver input signal to the receiver. Clearing C1[RSRC] connects the transmitter output to the receiver input. Both the transmitter and receiver must be enabled (C2[TE] = 1 and C2[RE] = 1). When C7816[ISO_7816EN] is set, it is not required that both C2[TE] and C2[RE] are set.

47.4.7 ISO-7816/smartcard support

The UART provides mechanisms to support the ISO-7816 protocol that is commonly used to interface with smartcards. The ISO-7816 protocol is an NRZ, single wire, half-duplex interface. The TxD pin is used in open-drain mode because the data signal is used for both transmitting and receiving. There are multiple subprotocols within the ISO-7816 standard. The UART supports both T = 0 and T = 1 protocols. The module also provides for automated initial character detection and configuration, which allows for support of both direct convention and inverse convention data formats. A variety of interrupts specific to 7816 are provided in addition to the general interrupts to assist software. Additionally, the module is able to provide automated NACK responses and has programmed automated retransmission of failed packets. An assortment of programmable timeouts and guard band times are also supported.

The term elemental time unit (ETU) is frequently used in the context of ISO-7816. This concept is used to relate the frequency that the system (UART) is running at and the frequency that data is being transmitted and received. One ETU represents the time it

Functional description

takes to transmit or receive a single bit. For example, a standard 7816 packet, excluding any guard time or NACK elements is 10 ETUs (start bit, 8 data bits, and a parity bit). Guard times and wait times are also measured in ETUs.,

NOTE

The ISO-7816 specification may have certain configuration options that are reserved. To maintain maximum flexibility to support future 7816 enhancements or devices that may not strictly conform to the specification, the UART does not prevent those options being used. Further, the UART may provide configuration options that exceed the flexibility of options explicitly allowed by the 7816 specification. Failure to correctly configure the UART may result in unexpected behavior or incompatibility with the ISO-7816 specification.

47.4.7.1 Initial characters

In ISO-7816 with T = 0 mode, the UART can be configured to use C7816[INIT] to detect the next valid initial character, referred to by the ISO-7816 specifically as a TS character. When the initial character is detected, the UART provides the host processor with an interrupt if IE7816[INITDE] is set. Additionally, the UART will alter S2[MSBF], C3[TXINV], and S2[RXINV] automatically, based on the initial character. The corresponding initial character and resulting register settings are listed in the following table.

Initial character (bit 1-10)	Initial character (hex)	MSBF	TXINV	RXINV
LHHL LLL LLH	3F	1	1	1
inverse convention				
LHHL HHH LLH	3B	0	0	0
direct convention				

Table 47-168. Initial character automated settings

S2[MSBF], C3[TXINV], and S2[RXINV] must be reset to their default values before C7816[INIT] is set. Once C7816[INIT] is set, the receiver searches all received data for the first valid initial character. Detecting a Direct Convention Initial Character will cause no change to S2[MSBF], C3[TXINV], and S2[RXINV], while detecting an Inverse Convention Initial Character will cause these fields to set automatically. All data received, which is not a valid initial character, is ignored and all flags resulting from the invalid data are blocked from asserting. If C7816[ANACK] is set, a NACK is returned for invalid received initial characters and an RXT interrupt is generated as programmed.

47.4.7.2 Protocol T = 0

When T = 0 protocol is selected, a relatively complex error detection scheme is used. Data characters are formatted as illustrated in the following figure. This scheme is also used for answer to reset and Peripheral Pin Select (PPS) formats.

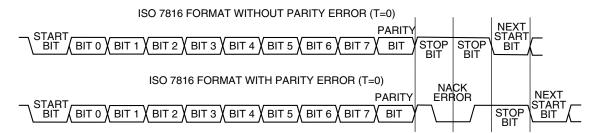


Figure 47-178. ISO-7816 T = 0 data format

As with other protocols supported by the UART, the data character includes a start bit. However, in this case, there are two stop bits rather than the typical single stop bit. In addition to a standard even parity check, the receiver has the ability to generate and return a NACK during the second half of the first stop bit period. The NACK must be at least one time period (ETU) in length and no more than two time periods (ETU) in length. The transmitter must wait for at least two time units (ETU) after detection of the error signal before attempting to retransmit the character.

It is assumed that the UART and the device (smartcard) know in advance which device is receiving and which is transmitting. No special mechanism is supplied by the UART to control receive and transmit in the mode other than C2[TE] and C2[RE]. Initial Character Detect feature is also supported in this mode.

47.4.7.3 Protocol T = 1

When T = 1 protocol is selected, the NACK error detection scheme is not used. Rather, the parity bit is used on a character basis and a CRC or LRC is used on the block basis, that is, for each group of characters. In this mode, the data format allows for a single stop bit although additional inactive bit periods may be present between the stop bit and the next start bit. Data characters are formatted as illustrated in the following figure.

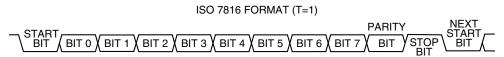


Figure 47-179. ISO 7816 T=1 data format

Functional description

The smallest data unit that is transferred is a block. A block is made up of several data characters and may vary in size depending on the block type. The UART does not provide a mechanism to decode the block type. As part of the block, an LRC or CRC is included. The UART does not calculate the CRC or LRC for transmitted blocks, nor does it verify the validity of the CRC or LRC for received blocks. The 7816 protocol requires that the initiator and the smartcard (device) takes alternate turns in transmitting and receiving blocks. When the UART detects that the last character in a block has been transmitted it will automatically clear C2[TE], C3[TXDIR] and enter receive mode. Therefore, the software must program the transmit buffer with the next data to be transmitted and then enable C2[TE] and set C3[TXDIR], once the software has determined that the last character of the received block has been received. The UART detects that the last character of the transmit block has been sent when TL7816[TLEN] = 0 and four additional characters have been sent. The four additional characters are made up of three prior to TL7816[TLEN] decrementing (prologue) and one after TL7816[TLEN] = 0, the final character of the epilogue.

47.4.7.4 Wait time and guard time parameters

The ISO-7816 specification defines several wait time and guard time parameters. The UART allows for flexible configuration and violation detection of these settings. On reset, the wait time (IS7816[WT]) defaults to 9600 ETUs and guard time (GT) to 12 ETUs. These values are controlled by parameters in the WP7816, WN7816, and WF7816 registers. Additionally, the value of C7816[TTYPE] also factors into the calculation. The formulae used to calculate the number ETUs for each wait time and guard time value are shown in Table 47-169.

Wait time (WT) is defined as the maximum allowable time between the leading edge of a character transmitted by the smartcard device and the leading edge of the previous character that was transmitted by the UART or the device. Similarly, character wait time (CWT) is defined as the maximum allowable time between the leading edge of two characters within the same block. Block wait time (BWT) is defined as the maximum time between the leading edge character of the last block received by the smartcard device and the leading edge of the first character transmitted by the smartcard device.

Guard time (GT) is defined as the minimum allowable time between the leading edge of two consecutive characters. Character guard time (CGT) is the minimum allowable time between the leading edges of two consecutive characters in the same direction, that is, transmission or reception. Block guard time (BGT) is the minimum allowable time between the leading edges of two consecutive characters in opposite directions, that is, transmission then reception or reception then transmission.

The GT and WT counters reset whenever C7816[TTYPE] = 1 or C7816[ISO_7816E] = 0 or a new dataword start bit has been received or transmitted as specified by the counter descriptions. The CWT, CGT, BWT, BGT counters reset whenever C7816[TTYPE] = 0 or C7816[ISO_7816E] = 0 or a new dataword start bit is received or transmitted as specified by the counter descriptions. When C7816[TTYPE] = 1, some of the counter values require an assumption regarding the first data transferred when the UART first starts. This assumption is required when the 7816E is disabled, when transition from C7816[TTYPE] = 0 to C7816[TTYPE] = 1 or when coming out of reset. In this case, it is assumed that the previous non-existent transfer was a received transfer.

The UART will automatically handle GT, CGT, and BGT such that the UART will not send a packet before the corresponding guard time expiring.

Parameter	Reset value	C7816[TTYPE] = 0	C7816[TTYPE] = 1
Parameter	[ETU]	[ETU]	[ETU]
Wait time (WT)	9600	WI × 480	Not used
Character wait time (CWT)	Not used	Not used	2 ^(CWI1) + CWI2
Block wait time (BWT)	Not used	Not used	(11 + (BWI × 960 × GTFD)) * (WTX + 1)
Guard time (GT)	12	GTN not equal to 255	Not used
		12 + GTN	
		GTN equal to 255	
		12	
Character guard time (CGT)	Not used	Not used	GTN not equal to 255
			12 + GTN
			GTN equal to 255
			11
Block guard time (BGT)	Not used	Not used	16 + BGI

Table 47-169. Wait and guard time calculations

NOTE

- User must ensure that the Character Wait time (CWT) programmed using the formula above is atleast 12. Values smaller than 12 are invalid and will lead to unexpected CWT interrupts.
- The 16 bit Wait Time integer WI is formed by concatenation of {WP7816A_T0[WI_H], WP7816B_T0[WI_L]}.
- The 16 bit Block Wait Time integer BWI is formed by concatenation of {WP7816A_T1[BWI_H], WP7816B_T1[BWI_L]}.

47.4.7.5 ATR Duration Time Counter

The ISO-7816 specification defines a specific time (in etus) within which the terminal must receive the ATR (Answer to Reset), failing which the terminal must abort the card session by initiating the deactivation sequence.

UART supports this in hardware via the ATR Duration Time (ATD) Counter which can be programmed using AP7816a_T0 and AP7816b_T0 registers. The value loaded into the ADT (ATR Duration Time) counter is given by the concatenation of the register fields as shown; ADT = {AP7816a_T0[ADTI_H], AP7816a_T0[ADTI_L]}. This counter begins to count on detection of the TS character which is detected when IS7816[INITD] flag is set. Once the ATR process is completed, the ATD Counter must be disabled by writing 0 to AP7816x_T0 registers, in order to prevent the false occurrence of the ATD Duration Time interrupt IS7816[ATD]. Note that this feature is only supported in T = 0 mode.

NOTE

The ADT counter starts counting on detection of the complete TS Character. It must be noted that by this time, exactly 10 ETUs have elapsed since the start bit of the TS character. The user must take this into account while programming AP7816a_T0 and AP7816b_T0 registers.

47.4.7.6 Baud rate generation

The value in WF7816[GTFD] does not impact the clock frequency. SBR and BRFD are used to generate the clock frequency. This clock frequency is used by the UART only and is not seen by the smartcard device. The transmitter clocks operates at 1/16 the frequency of the receive clock so that the receiver is able to sample the received value 16 times during the ETU.

47.4.7.7 UART restrictions in ISO-7816 operation

Due to the flexibility of the UART module, there are several features and interrupts that are not supported while running in ISO-7816 mode. These restrictions are documented within the register field definitions.

47.4.8 Infrared interface

The UART provides the capability of transmitting narrow pulses to an IR LED and receiving narrow pulses and transforming them to serial bits, which are sent to the UART. The IrDA physical layer specification defines a half-duplex infrared communication link for exchanging data. The full standard includes data rates up to 16 Mbits/s. This design covers data rates only between 2.4 kbits/s and 115.2 kbits/s.

The UART has an infrared transmit encoder and receive decoder. The UART transmits serial bits of data that are encoded by the infrared submodule to transmit a narrow pulse for every zero bit. No pulse is transmitted for every one bit. When receiving data, the IR pulses are detected using an IR photo diode and transformed to CMOS levels by the IR receive decoder, external from the MCU. The narrow pulses are then stretched by the infrared receive decoder to get back to a serial bit stream to be received by the UART. The polarity of transmitted pulses and expected receive pulses can be inverted so that a direct connection can be made to external IrDA transceiver modules that use active low pulses.

The infrared submodule receives its clock sources from the UART. One of these two clocks are selected in the infrared submodule to generate either 3/16, 1/16, 1/32, or 1/4 narrow pulses during transmission.

47.4.8.1 Infrared transmit encoder

The infrared transmit encoder converts serial bits of data from transmit shift register to the TXD signal. A narrow pulse is transmitted for a zero bit and no pulse for a one bit. The narrow pulse is sent in the middle of the bit with a duration of 1/32, 1/16, 3/16, or 1/4 of a bit time. A narrow high pulse is transmitted for a zero bit when C3[TXINV] is cleared, while a narrow low pulse is transmitted for a zero bit when C3[TXINV] is set.

47.4.8.2 Infrared receive decoder

The infrared receive block converts data from the RXD signal to the receive shift register. A narrow pulse is expected for each zero received and no pulse is expected for each one received. A narrow high pulse is expected for a zero bit when S2[RXINV] is cleared, while a narrow low pulse is expected for a zero bit when S2[RXINV] is set. This receive decoder meets the edge jitter requirement as defined by the IrDA serial infrared physical layer specification.

47.5 Reset

All registers reset to a particular value are indicated in Memory map and registers.

47.6 System level interrupt sources

There are several interrupt signals that are sent from the UART. The following table lists the interrupt sources generated by the UART. The local enables for the UART interrupt sources are described in this table. Details regarding the individual operation of each interrupt are contained under various sub-sections of Memory map and registers. However, RXEDGIF description also outlines additional details regarding the RXEDGIF interrupt because of its complexity of operation. Any of the UART interrupt requests listed in the table can be used to bring the CPU out of Wait mode.

Table 47-170. UART interrupt sources

Interrupt Source	Flag	Local enable	DMA select
Transmitter	TDRE	TIE	TDMAS = 0
Transmitter	TC	TCIE	-
Receiver	IDLE	ILIE	-
Receiver	RDRF	RIE	RDMAS = 0
Receiver	LBKDIF	LBKDIE	-
Receiver	RXEDGIF	RXEDGIE	-
Receiver	OR	ORIE	-
Receiver	NF	NEIE	-
Receiver	FE	FEIE	-
Receiver	PF	PEIE	-
Receiver	WT	WTWE	-
Receiver	CWT	CWTE	-
Receiver	BWT	BWTE	-
Receiver	INITD	INITDE	-
Receiver	TXT	TXTE	-
Receiver	RXT	RXTE	-
Receiver	GTV	GTVE	-

47.6.1 RXEDGIF description

S2[RXEDGIF] is set when an active edge is detected on the RxD pin. Therefore, the active edge can be detected only when in two wire mode. A RXEDGIF interrupt is generated only when S2[RXEDGIF] is set. If RXEDGIE is not enabled before S2[RXEDGIF] is set, an interrupt is not generated.

47.6.1.1 RxD edge detect sensitivity

Edge sensitivity can be software programmed to be either falling or rising. The polarity of the edge sensitivity is selected using S2[RXINV]. To detect the falling edge, S2[RXINV] is programmed to 0. To detect the rising edge, S2[RXINV] is programmed to 1.

Synchronizing logic is used prior to detect edges. Prior to detecting an edge, the receive data on RxD input must be at the deasserted logic level. A falling edge is detected when the RxD input signal is seen as a logic 1 (the deasserted level) during one module clock cycle, and then a logic 0 (the asserted level) during the next cycle. A rising edge is detected when the input is seen as a logic 0 during one module clock cycle and then a logic 1 during the next cycle.

47.6.1.2 Clearing RXEDGIF interrupt request

Writing a logic 1 to S2[RXEDGIF] immediately clears the RXEDGIF interrupt request even if the RxD input remains asserted. S2[RXEDGIF] remains set if another active edge is detected on RxD while attempting to clear S2[RXEDGIF] by writing a 1 to it.

47.6.1.3 Exit from low-power modes

The receive input active edge detect circuit is still active on low power modes (Wait and Stop). An active edge on the receive input brings the CPU out of low power mode if the interrupt is not masked (S2[RXEDGIF] = 1).

47.7 DMA operation

In the transmitter, S1[TDRE] can be configured to assert a DMA transfer request. In the receiver, S1[RDRF], can be configured to assert a DMA transfer request. The following table shows the configuration field settings required to configure each flag for DMA operation.

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Table 47-171. DMA configuration

Flag	Request enable bit	DMA select bit
TDRE	TIE = 1	TDMAS = 1
RDRF	RIE = 1	RDMAS = 1

When a flag is configured for a DMA request, its associated DMA request is asserted when the flag is set. When S1[RDRF] is configured as a DMA request, the clearing mechanism of reading S1, followed by reading D, does not clear the associated flag. The DMA request remains asserted until an indication is received that the DMA transactions are done. When this indication is received, the flag bit and the associated DMA request is cleared. If the DMA operation failed to remove the situation that caused the DMA request, another request is issued.

47.8 Application information

This section describes the UART application information.

47.8.1 ISO-7816 initialization sequence

This section outlines how to program the UART for ISO-7816 operation. Elements such as procedures to power up or power down the smartcard, and when to take those actions, are beyond the scope of this description. To set up the UART for ISO-7816 operation:

- 1. Select a baud rate. Write this value to the UART baud registers (BDH/L) to begin the baud rate generator. Remember that the baud rate generator is disabled when the baud rate is zero. Writing to the BDH has no effect without also writing to BDL. According to the 7816 specification the initial (default) baud rating setting should be Fi = 372 and Di = 1 and a maximum frequency of 5 MHz. In other words, the BDH, BDL, and C4 registers should be programmed such that the transmission frequency provided to the smartcard device must be 1/372th of the clock and must not exceed 5 MHz.
- 2. Write to set BDH[LBKDIE] = 0.
- 3. Write to C1 to configure word length, parity, and other configuration fields (LOOPS, RSRC) and set C1[M] = 1, C1[PE] = 1, and C1[PT] = 0.
- 4. Write to set S2[RWUID] = 0 and S2[LBKDE] = 0.

- 5. Write to set MODEM[RXRTSE] = 0, MODEM[TXRTSPOL] = 0, MODEM[TXRTSE] = 0, and MODEM[TXCTSE] = 0.
- 6. Write to set up interrupt enable fields desired (C3[ORIE], C3[NEIE], C3[PEIE], and C3[FEIE])
- 7. Write to set C4[MAEN1] = 0 and C4[MAEN2] = 0.
- 8. Write to C5 register and configure DMA control register fields as desired for application.
- 9. Write to set C7816[INIT] = 1,C7816[TTYPE] = 0, and C7816[ISO_7816E] = 1. Program C7816[ONACK] and C7816[ANACK] as desired.
- 10. Write to IE7816 to set interrupt enable parameters as desired.
- 11. Write to ET7816 and set as desired.
- 12. Write to set C2[ILIE] = 0, C2[RE] = 1, C2[TE] = 1, C2[RWU] = 0, and C2[SBK] = 0. Set up interrupt enables C2[TIE], C2[TCIE], and C2[RIE] as desired.

At this time, the UART will start listening for an initial character. After being identified, it will automatically adjust S2[MSBF], C3[TXINV], and S2[RXINV]. The software must then receive and process an answer to reset. Upon processing the answer to reset, the software must write to set C2[RE] = 0 and C2[TE] = 0. The software should then adjust 7816 specific and UART generic parameters to match and configure data that was received during the answer on reset period. After the new settings have been programmed, including the new baud rate and C7816[TTYPE], C2[RE] and C2[TE] can be reenabled as required.

47.8.1.1 Transmission procedure for (C7816[TTYPE] = 0)

When the protocol selected is C7816[TTYPE] = 0, it is assumed that the software has a prior knowledge of who should be transmitting and receiving. Therefore, no mechanism is provided for automated transmission/receipt control. The software must monitor S1[TDRE], or configure for an interrupt, and provide additional data for transmission, as appropriate. Additionally, software should set C2[TE] = 1 and control TXDIR whenever it is the UART's turn to transmit information. For ease of monitoring, it is suggested that only data be transmitted until the next receiver/transmit switchover is loaded into the transmit FIFO/buffer.

47.8.1.2 Transmission procedure for (C7816[TTYPE] = 1)

When the protocol selected is C7816[TTYPE] = 1, data is transferred in blocks. Before starting a transmission, the software must write the size, in number of bytes, for the Information Field portion of the block into TLEN. If a CRC is being transmitted for the block, the value in TLEN must be one more than the size of the information field. The software must then set C2[TE] = 1 and C2[RE] = 1. The software must then monitor S1[TDRE]/interrupt and write the prologue, information, and epilogue field to the transmit buffer. TLEN automatically decrements, except for prologue bytes and the final epilogue byte. When the final epilogue byte has been transmitted, the UART automatically clears C2[TE] and C3[TXDIR] to 0, and the UART automatically starts capturing the response to the block that was transmitted. After the software has detected the receipt of the response, the transmission process must be repeated as needed with sufficient urgency to ensure that the block wait time and character wait times are not violated.

47.8.2 Initialization sequence (non ISO-7816)

To initiate a UART transmission:

- 1. Configure the UART.
 - a. Select a baud rate. Write this value to the UART baud registers (BDH/L) to begin the baud rate generator. Remember that the baud rate generator is disabled when the baud rate is zero. Writing to the BDH has no effect without also writing to BDL.
 - b. Write to C1 to configure word length, parity, and other configuration bits (LOOPS, RSRC, M, WAKE, ILT, PE, and PT). Write to C4, MA1, and MA2 to configure.
 - c. Enable the transmitter, interrupts, receiver, and wakeup as required, by writing to C2 (TIE, TCIE, RIE, ILIE, TE, RE, RWU, and SBK), S2 (MSBF and BRK13), and C3 (ORIE, NEIE, PEIE, and FEIE). A preamble or idle character is then shifted out of the transmitter shift register.
- 2. Transmit procedure for each byte.
 - a. Monitor S1[TDRE] by reading S1 or responding to the TDRE interrupt.
 - b. If the TDRE flag is set, or there is space in the transmit buffer, write the data to be transmitted to (C3[T8]/D). A new transmission will not result until data exists in the transmit buffer.

3. Repeat step 2 for each subsequent transmission.

Note

During normal operation, S1[TDRE] is set when the shift register is loaded with the next data to be transmitted from the transmit buffer and the number of datawords contained in the transmit buffer is less than or equal to the value in TWFIFO[TXWATER]. This occurs 9/16ths of a bit time after the start of the stop bit of the previous frame.

To separate messages with preambles with minimum idle line time, use this sequence between messages.

- 1. Write the last dataword of the first message to C3[T8]/D.
- 2. Wait for S1[TDRE] to go high with TWFIFO[TXWATER] = 0, indicating the transfer of the last frame to the transmit shift register.
- 3. Queue a preamble by clearing and then setting C2[TE].
- 4. Write the first and subsequent datawords of the second message to C3[T8]/D.

47.8.3 Overrun (OR) flag implications

To be flexible, the overrun flag (OR) operates slight differently depending on the mode of operation. There may be implications that need to be carefully considered. This section clarifies the behavior and the resulting implications. Regardless of mode, if a dataword is received while S1[OR] is set, S1[RDRF] and S1[IDLE] are blocked from asserting. If S1[RDRF] or S1[IDLE] were previously asserted, they will remain asserted until cleared.

47.8.3.1 Overrun operation

The assertion of S1[OR] indicates that a significant event has occurred. The assertion indicates that received data has been lost because there was a lack of room to store it in the data buffer. Therefore, while S1[OR] is set, no further data is stored in the data buffer until S1[OR] is cleared. This ensures that the application will be able to handle the overrun condition.

In most applications, because the total amount of lost data is known, the application will attempt to return the system to a known state. Before S1[OR] is cleared, all received data will be dropped. For this, the software does the following.

Application information

- 1. Remove data from the receive data buffer. This could be done by reading data from the data buffer and processing it if the data in the FIFO was still valuable when the overrun event occurred.
- 2. Clear S1[OR].

Note that, in some applications, if an overrun event is responded to fast enough, the lost data can be recovered. For example, when C7816[ISO_7816E] is asserted, C7816[TTYPE]=1 and C7816[ONACK] = 1, the application may reasonably be able to determine whether the lost data will be resent by the device. In this scenario, flushing the receiver data buffer may not be required. Rather, if S1[OR] is cleared, the lost data may be resent and therefore may be recoverable.

When LIN break detect (LBKDE) is asserted, S1[OR] has significantly different behavior than in other modes. S1[OR] will be set, regardless of how much space is actually available in the data buffer, if a LIN break character has been detected and the corresponding flag, S2[LBKDIF], is not cleared before the first data character is received after S2[LBKDIF] asserted. This behavior is intended to allow the software sufficient time to read the LIN break character from the data buffer to ensure that a break character was actually detected. The checking of the break character was used on some older implementations and is therefore supported for legacy reasons. Applications that do not require this checking can simply clear S2[LBKDIF] without checking the stored value to ensure it is a break character.

47.8.4 Overrun NACK considerations

When C7816[ISO_7816E] is enabled and C7816[TTYPE] = 0, the retransmission feature of the 7816 protocol can be used to help avoid lost data when the data buffer overflows. Using C7816[ONACK], the module can be programmed to issue a NACK on an overflow event. Assuming that the smartcard device has implemented retransmission, the lost data will be retransmitted. While useful, there is a programming implication that may require special consideration. The need to transmit a NACK must be determined and committed to prior to the dataword being fully received. While the NACK is being received, it is possible that the application code will read the data buffer such that sufficient room will be made to store the dataword that is being NACKed. Even if room has been made in the data buffer after the transmission of a NACK is completed, the received data will always be discarded as a result of an overflow and the ET7816[RXTHRESHOLD] value will be incremented by one. However, if sufficient space now exists to write the received data which was NACK'ed, S1[OR] will be blocked and kept from asserting.

47.8.5 Match address registers

The two match address registers allow a second match address function for a broadcast or general call address to the serial bus, as an example.

47.8.6 Modem feature

This section describes the modem features.

47.8.6.1 Ready-to-receive using RTS

To help to stop overrun of the receiver data buffer, the RTS signal can be used by the receiver to indicate to another UART that it is ready to receive data. The other UART can send the data when its CTS signal is asserted. This handshaking conforms to the TIA-232-E standard. A transceiver is necessary if the required voltage levels of the communication link do not match the voltage levels of the UART's RTS and CTS signals.

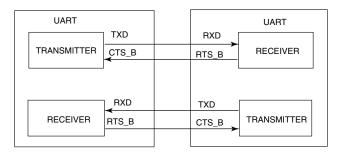


Figure 47-180. Ready-to-receive

The transmitter's CTS signal can be used for hardware flow control whether its RTS signal is used for hardware flow control, transceiver driver enable, or not at all.

47.8.6.2 Transceiver driver enable using RTS

RS-485 is a multiple drop communication protocol in which the UART transceiver's driver is 3-stated unless the UART is driving. The RTS signal can be used by the transmitter to enable the driver of a transceiver. The polarity of RTS can be matched to the polarity of the transceiver's driver enable signal. See the following figure.

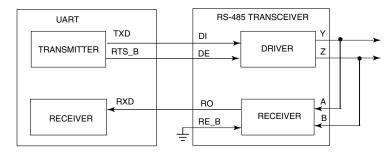


Figure 47-181. Transceiver driver enable using RTS

In the figure, the receiver enable signal is asserted. Another option for this connection is to connect RTS_B to both DE and RE_B. The transceiver's receiver is disabled while driving. A pullup can pull RXD to a non-floating value during this time. This option can be refined further by operating the UART in single wire mode, freeing the RXD pin for other uses.

47.8.7 IrDA minimum pulse width

The IrDA specifies a minimum pulse width of $1.6 \,\mu s$. The UART hardware does not include a mechanism to restrict/force the pulse width to be greater than or equal to $1.6 \,\mu s$. However, configuring the baud rate to $115.2 \,k bit/s$ and the narrow pulse width to $3/16 \,of$ a bit time results in a pulse width of $1.6 \,\mu s$.

47.8.8 Clearing 7816 wait timer (WT, BWT, CWT) interrupts

The 7816 wait timer interrupts associated with IS7816[WT], IS7816[BWT], and IS7816[CWT] will automatically reassert if they are cleared and the wait time is still violated. This behavior is similar to most of the other interrupts on the UART. In most cases, if the condition that caused the interrupt to trigger still exists when the interrupt is cleared, then the interrupt will reassert. For example, consider the following scenario:

- 1. IS7816[WT] is programmed to assert after 9600 cycles of unresponsiveness.
- 2. The 9600 cycles pass without a response resulting in the WT interrupt asserting.
- 3. The IS7816[WT] is cleared at cycle 9700 by the interrupt service routine.
- 4. After the WT interrupt has been cleared, the smartcard remains unresponsive. At cycle 9701 the WT interrupt will be reasserted.

If the intent of clearing the interrupt is such that it does not reassert, the interrupt service routine must remove or clear the condition that originally caused the interrupt to assert prior to clearing the interrupt. There are multiple ways that this can be accomplished, including ensuring that an event that results in the wait timer resetting occurs, such as, the transmission of another packet.

47.8.9 Legacy and reverse compatibility considerations

Recent versions of the UART have added several new features. Whenever reasonably possible, reverse compatibility was maintained. However, in some cases this was either not feasible or the behavior was deemed as not intended. This section describes several differences to legacy operation that resulted from these recent enhancements. If application code from previous versions is used, it must be reviewed and modified to take the following items into account. Depending on the application code, additional items that are not listed here may also need to be considered.

- 1. Various reserved registers and register bits are used, such as, MSFB and M10.
- 2. This module now generates an error when invalid address spaces are used.
- 3. While documentation indicated otherwise, in some cases it was possible for S1[IDLE] to assert even if S1[OR] was set.
- 4. S1[OR] will be set only if the data buffer (FIFO) does not have sufficient room. Previously, the data buffer was always a fixed size of one and the S1[OR] flag would set so long as S1[RDRF] was set even if there was room in the data buffer. While the clearing mechanism has remained the same for S1[RDRF], keeping the OR flag assertion tied to the RDRF event rather than the data buffer being full would have greatly reduced the usefulness of the buffer when its size is larger than one.
- 5. Previously, when C2[RWU] was set (and WAKE = 0), the IDLE flag could reassert up to every bit period causing an interrupt and requiring the host processor to reassert C2[RWU]. This behavior has been modified. Now, when C2[RWU] is set (and WAKE = 0), at least one non-idle bit must be detected before an idle can be detected.

Application information

Chapter 48 Low Power Universal asynchronous receiver/ transmitter (LPUART)

48.1 Introduction

48.1.1 Features

Features of the LPUART module include:

- Full-duplex, standard non-return-to-zero (NRZ) format
- Programmable baud rates (13-bit modulo divider) with configurable oversampling ratio from 4x to 32x
- Transmit and receive baud rate can operate asynchronous to the bus clock:
 - Baud rate can be configured independently of the bus clock frequency
 - Supports operation in Stop modes
- Interrupt, DMA or polled operation:
 - Transmit data register empty and transmission complete
 - Receive data register full
 - Receive overrun, parity error, framing error, and noise error
 - Idle receiver detect
 - Active edge on receive pin
 - Break detect supporting LIN
 - Receive data match
- Hardware parity generation and checking
- Programmable 8-bit, 9-bit or 10-bit character length
- Programmable 1-bit or 2-bit stop bits
- Three receiver wakeup methods:
 - Idle line wakeup
 - Address mark wakeup
 - Receive data match
- Automatic address matching to reduce ISR overhead:

Introduction

- Address mark matching
- Idle line address matching
- Address match start, address match end
- Optional 13-bit break character generation / 11-bit break character detection
- Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle characters
- Selectable transmitter output and receiver input polarity
- Hardware flow control support for request to send (RTS) and clear to send (CTS) signals
- Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse width

48.1.2 Modes of operation

48.1.2.1 Stop mode

The LPUART will remain functional during Stop mode, provided the asynchronous transmit and receive clock remains enabled. The LPUART can generate an interrupt or DMA request to cause a wakeup from Stop mode.

48.1.2.2 Wait mode

The LPUART can be configured to Stop in Wait modes, when the DOZEEN bit is set. The transmitter and receiver will finish transmitting/receiving the current word.

48.1.2.3 Debug mode

The LPUART remains functional in debug mode.

48.1.3 Signal Descriptions

Signal	Description	I/O
	Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data.	I/O

Signal	Description	I/O
LPUART_RX	Receive data.	I
LPUART_CTS	Clear to send.	I
LPUART_RTS	Request to send.	0

48.1.4 Block diagram

The following figure shows the transmitter portion of the LPUART.

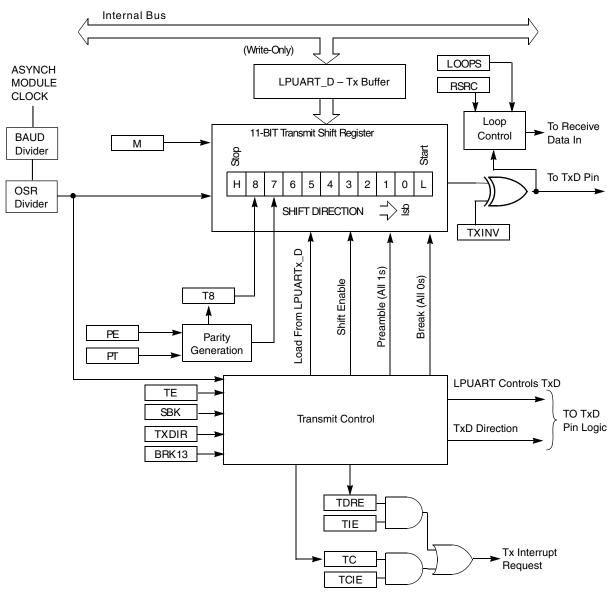


Figure 48-1. LPUART transmitter block diagram

The following figure shows the receiver portion of the LPUART.

Register definition

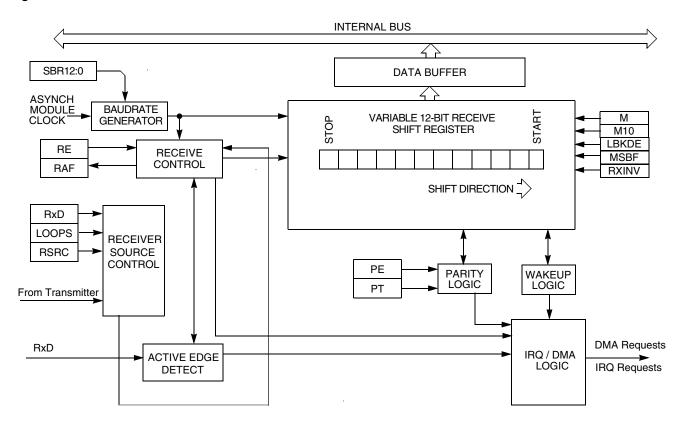
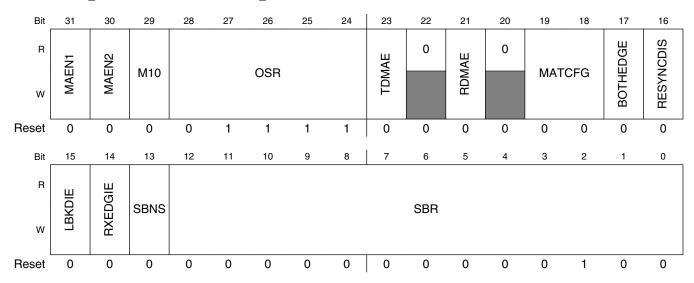


Figure 48-2. LPUART receiver block diagram

48.2 Register definition

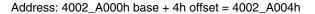

The LPUART includes registers to control baud rate, select LPUART options, report LPUART status, and for transmit/receive data. Accesses to address outside the valid memory map will generate a bus error.

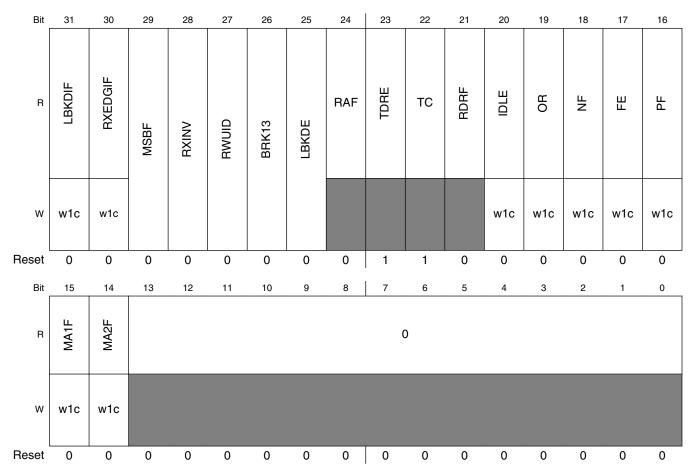
LPUART memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_A000	LPUART Baud Rate Register (LPUART0_BAUD)	32	R/W	0F00_0004h	48.2.1/1289
4002_A004	LPUART Status Register (LPUART0_STAT)	32	R/W	00C0_0000h	48.2.2/1291
4002_A008	LPUART Control Register (LPUART0_CTRL)	32	R/W	0000_0000h	48.2.3/1295
4002_A00C	LPUART Data Register (LPUART0_DATA)	32	R/W	0000_1000h	48.2.4/1300
4002_A010	LPUART Match Address Register (LPUART0_MATCH)	32	R/W	0000_0000h	48.2.5/1302
4002_A014	LPUART Modem IrDA Register (LPUART0_MODIR)	32	R/W	0000_0000h	48.2.6/1302

48.2.1 LPUART Baud Rate Register (LPUARTx_BAUD)

Address: 4002_A000h base + 0h offset = 4002_A000h


LPUARTx_BAUD field descriptions


Field	Description
31 MAEN1	Match Address Mode Enable 1
	0 Normal operation.
	1 Enables automatic address matching or data matching mode for MATCH[MA1].
30 MAEN2	Match Address Mode Enable 2
	0 Normal operation.
	1 Enables automatic address matching or data matching mode for MATCH[MA2].
29 M10	10-bit Mode select
	The M10 bit causes a tenth bit to be part of the serial transmission. This bit should only be changed when the transmitter and receiver are both disabled.
	0 Receiver and transmitter use 8-bit or 9-bit data characters.
	1 Receiver and transmitter use 10-bit data characters.
28–24 OSR	Over Sampling Ratio
	This field configures the oversampling ratio for the receiver between 4x (00011) and 32x (11111). Writing an invalid oversampling ratio will default to an oversampling ratio of 16 (01111). This field should only be changed when the transmitter and receiver are both disabled.
23 TDMAE	Transmitter DMA Enable
	TDMAE configures the transmit data register empty flag, LPUART_STAT[TDRE], to generate a DMA request.
	0 DMA request disabled.
	1 DMA request enabled.

Field	Description
22 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
21 RDMAE	Receiver Full DMA Enable RDMAE configures the receiver data register full flag, LPUART_STAT[RDRF], to generate a DMA request.
	0 DMA request disabled. 1 DMA request enabled.
20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–18 MATCFG	Match Configuration Configures the match addressing mode used.
	00 Address Match Wakeup 01 Idle Match Wakeup 10 Match On and Match Off 11 Enables RWU on Data Match and Match On/Off for transmitter CTS input
17 BOTHEDGE	Both Edge Sampling Enables sampling of the received data on both edges of the baud rate clock, effectively doubling the number of times the receiver samples the input data for a given oversampling ratio. This bit must be set for oversampling ratios between x4 and x7 and is optional for higher oversampling ratios. This bit should only
	be changed when the receiver is disabled. O Receiver samples input data using the rising edge of the baud rate clock. Receiver samples input data using the rising and falling edge of the baud rate clock.
16 RESYNCDIS	Resynchronization Disable When set, disables the resynchronization of the received data word when a data one followed by data zero transition is detected. This bit should only be changed when the receiver is disabled.
	Resynchronization during received data word is supported Resynchronization during received data word is disabled
15 LBKDIE	LIN Break Detect Interrupt Enable LBKDIE enables the LIN break detect flag, LBKDIF, to generate interrupt requests.
	O Hardware interrupts from LPUART_STAT[LBKDIF] disabled (use polling). Hardware interrupt requested when LPUART_STAT[LBKDIF] flag is 1.
14 RXEDGIE	RX Input Active Edge Interrupt Enable Enables the receive input active edge, RXEDGIF, to generate interrupt requests. Changing CTRL[LOOP] or CTRL[RSRC] when RXEDGIE is set can cause the RXEDGIF to set. 0 Hardware interrupts from LPUART_STAT[RXEDGIF] disabled (use polling).
	Hardware interrupt requested when LPUART_STAT[RXEDGIF] flag is 1.
13 SBNS	Stop Bit Number Select SBNS determines whether data characters are one or two stop bits. This bit should only be changed when the transmitter and receiver are both disabled.

Field	Description
	0 One stop bit.
	1 Two stop bits.
12–0 SBR	Baud Rate Modulo Divisor.
	The 13 bits in SBR[12:0] set the modulo divide rate for the baud rate generator. When SBR is 1 - 8191, the baud rate equals "baud clock / $((OSR+1) \times SBR)$ ". The 13-bit baud rate setting [SBR12:SBR0] must only be updated when the transmitter and receiver are both disabled (LPUART_CTRL[RE] and LPUART_CTRL[TE] are both 0).

48.2.2 LPUART Status Register (LPUARTx_STAT)

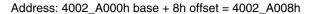
LPUARTx_STAT field descriptions

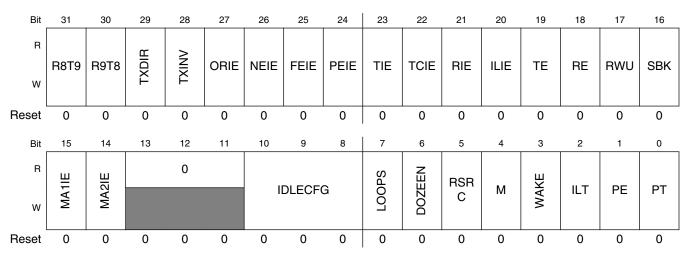
Field	Description
31 LBKDIF	LIN Break Detect Interrupt Flag
	LBKDIF is set when the LIN break detect circuitry is enabled and a LIN break character is detected. LBKDIF is cleared by writing a 1 to it.

Table continues on the next page...

K22F Sub-Family Reference Manual, Rev. 3, 7/2014

Field	Description
	0 No LIN break character has been detected.
	1 LIN break character has been detected.
30 RXEDGIF	LPUART_RX Pin Active Edge Interrupt Flag
TIXEBGII	RXEDGIF is set when an active edge, falling if RXINV = 0, rising if RXINV=1, on the LPUART_RX pin occurs. RXEDGIF is cleared by writing a 1 to it.
	0 No active edge on the receive pin has occurred.
	1 An active edge on the receive pin has occurred.
29 MSBF	MSB First
	Setting this bit reverses the order of the bits that are transmitted and received on the wire. This bit does not affect the polarity of the bits, the location of the parity bit or the location of the start or stop bits. This bit should only be changed when the transmitter and receiver are both disabled.
	0 LSB (bit0) is the first bit that is transmitted following the start bit. Further, the first bit received after the start bit is identified as bit0.
	1 MSB (bit9, bit8, bit7 or bit6) is the first bit that is transmitted following the start bit depending on the setting of CTRL[M], CTRL[PE] and BAUD[M10]. Further, the first bit received after the start bit is identified as bit9, bit8, bit7 or bit6 depending on the setting of CTRL[M] and CTRL[PE].
28 RXINV	Receive Data Inversion
	Setting this bit reverses the polarity of the received data input.
	NOTE: Setting RXINV inverts the LPUART_RX input for all cases: data bits, start and stop bits, break, and idle.
	0 Receive data not inverted.
	1 Receive data inverted.
27	Receive Wake Up Idle Detect
RWUID	For RWU on idle character, RWUID controls whether the idle character that wakes up the receiver sets the
	IDLE bit. For address match wakeup, RWUID controls if the IDLE bit is set when the address does not match. This bit should only be changed when the receiver is disabled.
	O During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character. During address match wakeup, the IDLE bit does not get set when an address does not match.
	During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character. During address match wakeup, the IDLE bit does get set when an address does not match.
26 BRK13	Break Character Generation Length
	BRK13 selects a longer transmitted break character length. Detection of a framing error is not affected by the state of this bit. This bit should only be changed when the transmitter is disabled.
	0 Break character is transmitted with length of 10 bit times (if M = 0, SBNS = 0) or 11 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 12 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 13 (if M10 = 1, SNBS = 1).
	1 Break character is transmitted with length of 13 bit times (if M = 0, SBNS = 0) or 14 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 15 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 16 (if M10 = 1, SNBS = 1).
25	LIN Break Detection Enable
LBKDE	LBKDE selects a longer break character detection length. While LBKDE is set, receive data is not stored in the receive data buffer.


Field	Description
	0 Break character is detected at length 10 bit times (if M = 0, SBNS = 0) or 11 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 12 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 13 (if M10 = 1, SNBS = 1).
	1 Break character is detected at length of 11 bit times (if M = 0, SBNS = 0) or 12 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 14 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 15 (if M10 = 1, SNBS = 1).
24 RAF	Receiver Active Flag
HAI	RAF is set when the receiver detects the beginning of a valid start bit, and RAF is cleared automatically when the receiver detects an idle line.
	0 LPUART receiver idle waiting for a start bit.
	1 LPUART receiver active (LPUART_RX input not idle).
23 TDRE	Transmit Data Register Empty Flag
TURE	TDRE will set when the transmit data register (LPUART_DATA) is empty. To clear TDRE, write to the LPUART data register (LPUART_DATA).
	TDRE is not affected by a character that is in the process of being transmitted, it is updated at the start of each transmitted character.
	0 Transmit data buffer full.
	1 Transmit data buffer empty.
22 TC	Transmission Complete Flag
	TC is cleared when there is a transmission in progress or when a preamble or break character is loaded. TC is set when the transmit buffer is empty and no data, preamble, or break character is being transmitted. When TC is set, the transmit data output signal becomes idle (logic 1). TC is cleared by writing to LPUART_DATA to transmit new data, queuing a preamble by clearing and then setting LPUART_CTRL[TE], queuing a break character by writing 1 to LPUART_CTRL[SBK].
	O Transmitter active (sending data, a preamble, or a break).
	1 Transmitter idle (transmission activity complete).
21	Receive Data Register Full Flag
RDRF	RDRF is set when the receive buffer (LPUART_DATA) is full. To clear RDRF, read the LPUART_DATA register.
	A character that is in the process of being received does not cause a change in RDRF until the entire character is received. Even if RDRF is set, the character will continue to be received until an overrun condition occurs once the entire character is received.
	0 Receive data buffer empty.
	1 Receive data buffer full.
20 IDLE	Idle Line Flag IDLE is set when the LPUART receive line becomes idle for a full character time after a period of activity.
	When ILT is cleared, the receiver starts counting idle bit times after the start bit. If the receive character is all 1s, these bit times and the stop bits time count toward the full character time of logic high, 10 to 13 bit times, needed for the receiver to detect an idle line. When ILT is set, the receiver doesn't start counting idle bit times until after the stop bits. The stop bits and any logic high bit times at the end of the previous character do not count toward the full character time of logic high needed for the receiver to detect an idle line.
	To clear IDLE, write logic 1 to the IDLE flag. After IDLE has been cleared, it cannot become set again until after a new character has been stored in the receive buffer or a LIN break character has set the LBKDIF flag. IDLE is set only once even if the receive line remains idle for an extended period.


0	No idle line detected.
1	
'	Idle line was detected.
	Receiver Overrun Flag
s a Ic	DR is set when software fails to prevent the receive data register from overflowing with data. The OR bit is set immediately after the stop bit has been completely received for the dataword that overflows the buffer and all the other error flags (FE, NF, and PF) are prevented from setting. The data in the shift register is post, but the data already in the LPUART data registers is not affected. If LBKDE is enabled and a LIN Break is detected, the OR field asserts if LBKDIF is not cleared before the next data character is received.
	While the OR flag is set, no additional data is stored in the data buffer even if sufficient room exists. To slear OR, write logic 1 to the OR flag.
0	No overrun.
1	Receive overrun (new LPUART data lost).
18 N	Noise Flag
NF	
a d	The advanced sampling technique used in the receiver takes three samples in each of the received bits. If any of these samples disagrees with the rest of the samples within any bit time in the frame then noise is letected for that character. NF is set whenever the next character to be read from LPUART_DATA was eccived with noise detected within the character. To clear NF, write logic one to the NF.
0	No noise detected.
1	Noise detected in the received character in LPUART_DATA.
17 F	Framing Error Flag
	FE is set whenever the next character to be read from LPUART_DATA was received with logic 0 detected where a stop bit was expected. To clear NF, write logic one to the NF.
0	No framing error detected. This does not guarantee the framing is correct. Framing error.
	Parity Error Flag
е	PF is set whenever the next character to be read from LPUART_DATA was received when parity is enabled (PE = 1) and the parity bit in the received character does not agree with the expected parity value. To clear PF, write a logic one to the PF.
0	No parity error.
1	
15 M	Match 1 Flag
MA1F	
	MA1F is set whenever the next character to be read from LPUART_DATA matches MA1. To clear MA1F, write a logic one to the MA1F.
0	Received data is not equal to MA1
1	
MA2F	Match 2 Flag
	MA2F is set whenever the next character to be read from LPUART_DATA matches MA2. To clear MA2F, write a logic one to the MA2F.
0	Received data is not equal to MA2
	Received data is equal to MA2

Field	Description
13–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

48.2.3 LPUART Control Register (LPUARTx_CTRL)

This read/write register controls various optional features of the LPUART system. This register should only be altered when the transmitter and receiver are both disabled.

LPUARTx_CTRL field descriptions

Field	Description
31 R8T9	Receive Bit 8 / Transmit Bit 9
11013	R8 is the ninth data bit received when the LPUART is configured for 9-bit or 10-bit data formats. When reading 9-bit or 10-bit data, read R8 before reading LPUART_DATA.
	T9 is the tenth data bit received when the LPUART is configured for 10-bit data formats. When writing 10-bit data, write T9 before writing LPUART_DATA. If T9 does not need to change from its previous value, such as when it is used to generate address mark or parity, they it need not be written each time LPUART_DATA is written.
30	Receive Bit 9 / Transmit Bit 8
R9T8	R9 is the tenth data bit received when the LPUART is configured for 10-bit data formats. When reading 10-bit data, read R9 before reading LPUART_DATA
	T8 is the ninth data bit received when the LPUART is configured for 9-bit or 10-bit data formats. When writing 9-bit or 10-bit data, write T8 before writing LPUART_DATA. If T8 does not need to change from its previous value, such as when it is used to generate address mark or parity, they it need not be written each time LPUART_DATA is written.

Field	Description
29	LPUART_TX Pin Direction in Single-Wire Mode
TXDIR	When the LPUART is configured for single-wire half-duplex operation (LOOPS = RSRC = 1), this bit determines the direction of data at the LPUART_TX pin. When clearing TXDIR, the transmitter will finish receiving the current character (if any) before the receiver starts receiving data from the LPUART_TX pin.
	0 LPUART_TX pin is an input in single-wire mode.1 LPUART_TX pin is an output in single-wire mode.
28	Transmit Data Inversion
TXINV	Setting this bit reverses the polarity of the transmitted data output.
	NOTE: Setting TXINV inverts the LPUART_TX output for all cases: data bits, start and stop bits, break, and idle.
	0 Transmit data not inverted.
	1 Transmit data inverted.
27 ORIE	Overrun Interrupt Enable
ONIE	This bit enables the overrun flag (OR) to generate hardware interrupt requests.
	0 OR interrupts disabled; use polling.
	1 Hardware interrupt requested when OR is set.
26 NEIE	Noise Error Interrupt Enable
NEIE	This bit enables the noise flag (NF) to generate hardware interrupt requests.
	0 NF interrupts disabled; use polling.
	1 Hardware interrupt requested when NF is set.
25 FEIE	Framing Error Interrupt Enable
FEIE	This bit enables the framing error flag (FE) to generate hardware interrupt requests.
	0 FE interrupts disabled; use polling.
	1 Hardware interrupt requested when FE is set.
24 PEIE	Parity Error Interrupt Enable
FEIL	This bit enables the parity error flag (PF) to generate hardware interrupt requests.
	0 PF interrupts disabled; use polling).
	1 Hardware interrupt requested when PF is set.
23	Transmit Interrupt Enable
TIE	Enables STAT[TDRE] to generate interrupt requests.
	0 Hardware interrupts from TDRE disabled; use polling.
	1 Hardware interrupt requested when TDRE flag is 1.
22 TCIE	Transmission Complete Interrupt Enable for
	TCIE enables the transmission complete flag, TC, to generate interrupt requests.
	0 Hardware interrupts from TC disabled; use polling.
	1 Hardware interrupt requested when TC flag is 1.

LPUARTx_CTRL field descriptions (continued)

Field	Description			
21	Receiver Interrupt Enable			
RIE	Enables STAT[RDRF] to generate interrupt requests.			
	0 Hardware interrupts from RDRF disabled; use polling.			
	1 Hardware interrupt requested when RDRF flag is 1.			
20	Idle Line Interrupt Enable			
ILIE	ILIE enables the idle line flag, STAT[IDLE], to generate interrupt requests.			
	0 Hardware interrupts from IDLE disabled; use polling.			
	1 Hardware interrupt requested when IDLE flag is 1.			
19 TE	Transmitter Enable			
15	Enables the LPUART transmitter. TE can also be used to queue an idle preamble by clearing and then setting TE. When TE is cleared, this register bit will read as 1 until the transmitter has completed the current character and the LPUART_TX pin is tristated.			
	0 Transmitter disabled.			
	1 Transmitter enabled.			
18	Receiver Enable			
RE	Enables the LPUART receiver. When RE is written to 0, this register bit will read as 1 until the receiver finishes receiving the current character (if any).			
	0 Receiver disabled.			
	1 Receiver enabled.			
17	Receiver Wakeup Control			
RWU	This field can be set to place the LPUART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when CTRL[WAKE] is clear or an address match when CTRL[WAKE] is set with STAT[RWUID] is clear.			
	NOTE: RWU must be set only with CTRL[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by STAT[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the LPUART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted.			
	0 Normal receiver operation.			
	1 LPUART receiver in standby waiting for wakeup condition.			
16	Send Break			
SBK	Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional break characters of 10 to 13, or 13 to 16 if LPUART_STATBRK13] is set, bit times of logic 0 are queued as long as SBK is set. Depending on the timing of the set and clear of SBK relative to the information currently being transmitted, a second break character may be queued before software clears SBK.			
	0 Normal transmitter operation.			
	1 Queue break character(s) to be sent.			
15 MA1IE	Match 1 Interrupt Enable			

LPUARTx_CTRL field descriptions (continued)

Field	Description				
	0 MA1F interrupt disabled				
	1 MA1F interrupt enabled				
14 MA2IE	Match 2 Interrupt Enable				
	0 MA2F interrupt disabled1 MA2F interrupt enabled				
13–11 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.				
10–8 IDLECFG	Idle Configuration				
IDEEOI G	Configures the number of idle characters that must be received before the IDLE flag is set.				
	000 1 idle character				
	001 2 idle characters				
	010 4 idle characters				
	011 8 idle characters				
	100 16 idle characters				
	101 32 idle characters				
	110 64 idle characters				
	111 128 idle characters				
7 LOOPS	Loop Mode Select				
LOOPS	When LOOPS is set, the LPUART_RX pin is disconnected from the LPUART and the transmitter output internally connected to the receiver input. The transmitter and the receiver must be enabled to use the loop function.				
	O N I I I I DUADT DV II DUADT TV				
	Normal operation - LPUART_RX and LPUART_TX use separate pins.				
	1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input (see RSRC bit).				
6 DOZEEN	Doze Enable				
	0 LPUART is enabled in Doze mode.				
	1 LPUART is disabled in Doze mode.				
5 RSRC	Receiver Source Select				
	This field has no meaning or effect unless the LOOPS field is set. When LOOPS is set, the RSRC field determines the source for the receiver shift register input.				
	0 Provided LOOPS is set, RSRC is cleared, selects internal loop back mode and the LPUART does ruse the LPUART_RX pin.				
	1 Single-wire LPUART mode where the LPUART_TX pin is connected to the transmitter output and receiver input.				
4 M	9-Bit or 8-Bit Mode Select				
IVI	O Receiver and transmitter use 8-bit data characters.				
	1 Receiver and transmitter use 9-bit data characters.				
3 WAKE	Receiver Wakeup Method Select				
VVAINE	Determines which condition wakes the LPUART when RWU=1:				
	Address mark in the most significant bit position of a received data character, or				
	An idle condition on the receive pin input signal.				


Chapter 48 Low Power Universal asynchronous receiver/transmitter (LPUART)

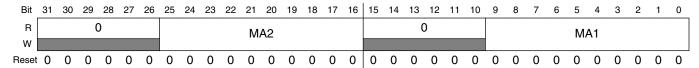
LPUARTx_CTRL field descriptions (continued)

Field	Description				
	0 Configures RWU for idle-line wakeup.				
	1 Configures RWU with address-mark wakeup.				
2 ILT	Idle Line Type Select				
	Determines when the receiver starts counting logic 1s as idle character bits. The count begins either after a valid start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit can cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.				
	NOTE: In case the LPUART is programmed with ILT = 1, a logic 0 is automatically shifted after a received stop bit, therefore resetting the idle count.				
	0 Idle character bit count starts after start bit.				
	1 Idle character bit count starts after stop bit.				
1 PE	Parity Enable				
'-	Enables hardware parity generation and checking. When parity is enabled, the bit immediately before the stop bit is treated as the parity bit.				
	0 No hardware parity generation or checking.				
	1 Parity enabled.				
0 PT	Parity Type				
	Provided parity is enabled (PE = 1), this bit selects even or odd parity. Odd parity means the total number of 1s in the data character, including the parity bit, is odd. Even parity means the total number of 1s in the data character, including the parity bit, is even.				
	0 Even parity.1 Odd parity.				

48.2.4 LPUART Data Register (LPUARTx_DATA)

This register is actually two separate registers. Reads return the contents of the read-only receive data buffer and writes go to the write-only transmit data buffer. Reads and writes of this register are also involved in the automatic flag clearing mechanisms for some of the LPUART status flags.

LPUARTx_DATA field descriptions

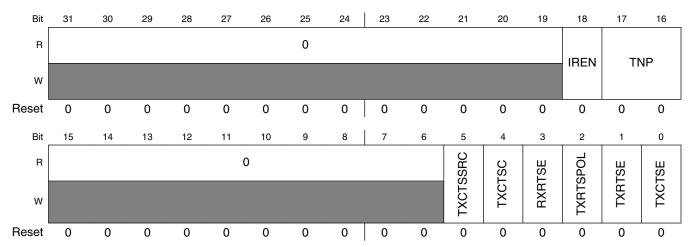

Field	Description			
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
15 NOISY	The current received dataword contained in DATA[R9:R0] was received with noise.			
	0 The dataword was received without noise.			
	1 The data was received with noise.			

LPUARTx_DATA field descriptions (continued)

Field	Description				
14 PARITYE	The current received dataword contained in DATA[R9:R0] was received with a parity error.				
	O The dataword was received without a parity error.				
	The dataword was received with a parity error.				
13 FRETSC	Frame Error / Transmit Special Character				
	For reads, indicates the current received dataword contained in DATA[R9:R0] was received with a frame error. For writes, indicates a break or idle character is to be transmitted instead of the contents in DATA[T9:T0]. T9 is used to indicate a break character when 0 and a idle character when 1, he contents of DATA[T8:T0] should be zero.				
	 The dataword was received without a frame error on read, transmit a normal character on write. The dataword was received with a frame error, transmit an idle or break character on transmit. 				
10					
12 RXEMPT	Receive Buffer Empty				
TIXEWIT	Asserts when there is no data in the receive buffer. This field does not take into account data that is in the receive shift register.				
	Receive buffer contains valid data.				
	Receive buffer is empty, data returned on read is not valid.				
11 IDLINE	Idle Line				
IDLINE	Indicates the receiver line was idle before receiving the character in DATA[9:0]. Unlike the IDLE flag, this bit can set for the first character received when the receiver is first enabled.				
	 Receiver was not idle before receiving this character. Receiver was idle before receiving this character. 				
10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.				
9 R9T9	Read receive data buffer 9 or write transmit data buffer 9.				
8 R8T8	Read receive data buffer 8 or write transmit data buffer 8.				
7 R7T7	Read receive data buffer 7 or write transmit data buffer 7.				
6 R6T6	Read receive data buffer 6 or write transmit data buffer 6.				
5 R5T5	Read receive data buffer 5 or write transmit data buffer 5.				
4 R4T4	Read receive data buffer 4 or write transmit data buffer 4.				
3 R3T3	Read receive data buffer 3 or write transmit data buffer 3.				
2 R2T2	Read receive data buffer 2 or write transmit data buffer 2.				
1 R1T1	Read receive data buffer 1 or write transmit data buffer 1.				
0 R0T0	Read receive data buffer 0 or write transmit data buffer 0.				

48.2.5 LPUART Match Address Register (LPUARTx_MATCH)

Address: 4002_A000h base + 10h offset = 4002_A010h


LPUARTx_MATCH field descriptions

Field	Description
31–26 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
25–16 MA2	Match Address 2 The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated BAUD[MAEN] bit is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded. Software should only write a MA register when the associated BAUD[MAEN] bit is clear.
15–10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
9–0 MA1	Match Address 1 The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated BAUD[MAEN] bit is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded. Software should only write a MA register when the associated BAUD[MAEN] bit is clear.

48.2.6 LPUART Modem IrDA Register (LPUARTx_MODIR)

The MODEM register controls options for setting the modem configuration.

Address: 4002_A000h base + 14h offset = 4002_A014h

LPUARTx_MODIR field descriptions

Field	Description				
31–19	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				
18 IREN	Infrared enable				
	Enables/disables the infrared modulation/demodulation.				
	0 IR disabled.				
	1 IR enabled.				
17–16 TNP	Transmitter narrow pulse				
INP	Enables whether the LPUART transmits a 1/OSR, 2/OSR, 3/OSR or 4/OSR narrow pulse.				
	00 1/OSR.				
	01 2/OSR.				
	10 3/OSR.				
	11 4/OSR.				
15–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.				
5	Transmit CTS Source				
TXCTSSRC	Configures the source of the CTS input.				
	0 CTS input is the LPUART_CTS pin.				
	1 CTS input is the inverted Receiver Match result.				
4 TXCTSC	Transmit CTS Configuration				
	Configures if the CTS state is checked at the start of each character or only when the transmitter is idle.				
	0 CTS input is sampled at the start of each character.				
	1 CTS input is sampled when the transmitter is idle.				
3 RXRTSE	Receiver request-to-send enable				
HARTISE	Allows the RTS output to control the CTS input of the transmitting device to prevent receiver overrun.				
	NOTE: Do not set both RXRTSE and TXRTSE.				
	0 The receiver has no effect on RTS.				
	1 RTS is deasserted if the receiver data register is full or a start bit has been detected that would cause				
	the receiver data register to become full. RTS is asserted if the receiver data register is not full and has not detected a start bit that would cause the receiver data register to become full.				
2	Transmitter request-to-send polarity				
TXRTSPOL	Controls the polarity of the transmitter RTS. TXRTSPOL does not affect the polarity of the receiver RTS. RTS will remain negated in the active low state unless TXRTSE is set.				
	0 Transmitter RTS is active low.				
	1 Transmitter RTS is active high.				
1	Transmitter request-to-send enable				
TXRTSE	Controls RTS before and after a transmission.				

LPUARTx_MODIR field descriptions (continued)

Field	Description		
	0 The transmitter has no effect on RTS.		
	1 When a character is placed into an empty transmitter data buffer, RTS asserts one bit time before the start bit is transmitted. RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit.		
0 TXCTSE	Transmitter clear-to-send enable		
	TXCTSE controls the operation of the transmitter. TXCTSE can be set independently from the state of TXRTSE and RXRTSE.		
	0 CTS has no effect on the transmitter.		
	1 Enables clear-to-send operation. The transmitter checks the state of CTS each time it is ready to send a character. If CTS is asserted, the character is sent. If CTS is deasserted, the signal TXD remains in the mark state and transmission is delayed until CTS is asserted. Changes in CTS as a character is being sent do not affect its transmission.		

48.3 Functional description

The LPUART supports full-duplex, asynchronous, NRZ serial communication and comprises a baud rate generator, transmitter, and receiver block. The transmitter and receiver operate independently, although they use the same baud rate generator. The following describes each of the blocks of the LPUART.

48.3.1 Baud rate generation

A 13-bit modulus counter in the baud rate generator derive the baud rate for both the receiver and the transmitter. The value from 1 to 8191 written to SBR[12:0] determines the baud clock divisor for the asynchronous LPUART baud clock. The SBR bits are in the LPUART baud rate registers, BDH and BDL. The baud rate clock drives the receiver, while the transmitter is driven by the baud rate clock divided by the over sampling ratio. Depending on the over sampling ratio, the receiver has an acquisition rate of 4 to 32 samples per bit time.

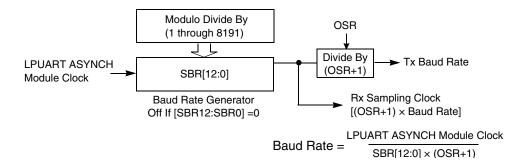


Figure 48-15. LPUART baud rate generation

Baud rate generation is subject to two sources of error:

- Integer division of the asynchronous LPUART baud clock may not give the exact target frequency.
- Synchronization with the asynchronous LPUART baud clock can cause phase shift.

48.3.2 Transmitter functional description

This section describes the overall block diagram for the LPUART transmitter, as well as specialized functions for sending break and idle characters.

The transmitter output (LPUART_TX) idle state defaults to logic high, CTRL[TXINV] is cleared following reset. The transmitter output is inverted by setting CTRL[TXINV]. The transmitter is enabled by setting the CTRL[TE] bit. This queues a preamble character that is one full character frame of the idle state. The transmitter then remains idle until data is available in the transmit data buffer. Programs store data into the transmit data buffer by writing to the LPUART data register.

The central element of the LPUART transmitter is the transmit shift register that is 10-bit to 13 bits long depending on the setting in the CTRL[M], BAUD[M10] and BAUD[SBNS] control bits. For the remainder of this section, assume CTRL[M], BAUD[M10] and BAUD[SBNS] are cleared, selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits, and a stop bit. When the transmit shift register is available for a new character, the value waiting in the transmit data register is transferred to the shift register, synchronized with the baud rate clock, and the transmit data register empty (STAT[TDRE]) status flag is set to indicate another character may be written to the transmit data buffer at LPUART_DATA.

If no new character is waiting in the transmit data buffer after a stop bit is shifted out the LPUART_TX pin, the transmitter sets the transmit complete flag and enters an idle mode, with LPUART_TX high, waiting for more characters to transmit.

Functional description

Writing 0 to CTRL[TE] does not immediately disable the transmitter. The current transmit activity in progress must first be completed (that could include a data character, idle character or break character), although the transmitter will not start transmitting another character.

48.3.2.1 Send break and queued idle

The LPUART_CTRL[SBK] bit sends break characters originally used to gain the attention of old teletype receivers. Break characters are a full character time of logic 0, 10-bit to 12-bit times including the start and stop bits. A longer break of 13-bit times can be enabled by setting LPUART_STAT[BRK13]. Normally, a program would wait for LPUART_STAT[TDRE] to become set to indicate the last character of a message has moved to the transmit shifter, write 1, and then write 0 to the LPUART_CTRL[SBK] bit. This action queues a break character to be sent as soon as the shifter is available. If LPUART_CTRL[SBK] remains 1 when the queued break moves into the shifter, synchronized to the baud rate clock, an additional break character is queued. If the receiving device is another Freescale Semiconductor LPUART, the break characters are received as 0s in all data bits and a framing error (LPUART_STAT[FE] = 1) occurs.

A break character can also be transmitted by writing to the LPUART_DATA register with bit 13 set and the data bits clear. This supports transmitting the break character as part of the normal data stream and also allows the DMA to transmit a break character.

When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake up any sleeping receivers. Normally, a program would wait for LPUART_STAT[TDRE] to become set to indicate the last character of a message has moved to the transmit shifter, then write 0 and then write 1 to the LPUART_CTRL[TE] bit. This action queues an idle character to be sent as soon as the shifter is available. As long as the character in the shifter does not finish while LPUART_CTRL[TE] is cleared, the LPUART transmitter never actually releases control of the LPUART_TX pin.

An idle character can also be transmitted by writing to the LPUART_DATA register with bit 13 set and the data bits also set. This supports transmitting the idle character as part of the normal data stream and also allows the DMA to transmit a break character.

The length of the break character is affected by the LPUART_STAT[BRK13], LPUART_CTRL[M], LPUART_BAUD[M10] and LPUART_BAUD[SNBS] bits as shown below.

Table 48-16. Break character length

BRK13	М	M10	SBNS	Break character length
0	0	0	0	10 bit times
0	0	0	1	11 bit times
0	1	0	0	11 bit times
0	1	0	1	12 bit times
0	X	1	0	12 bit times
0	X	1	1	13 bit times
1	0	0	0	13 bit times
1	0	0	1	13 bit times
1	1	0	0	14 bit times
1	1	0	1	14 bit times
1	X	1	0	15 bit times
1	Х	1	1	15 bit times

48.3.2.2 Hardware flow control

The transmitter supports hardware flow control by gating the transmission with the value of CTS. If the clear-to-send operation is enabled, the character is transmitted when CTS is asserted. If CTS is deasserted in the middle of a transmission with characters remaining in the receiver data buffer, the character in the shift register is sent and LPUART_TX remains in the mark state until CTS is reasserted.

If the clear-to-send operation is disabled, the transmitter ignores the state of CTS.

The transmitter's CTS signal can also be enabled even if the same LPUART receiver's RTS signal is disabled.

48.3.2.3 Transceiver driver enable

The transmitter can use LPUART_RTS as an enable signal for the driver of an external transceiver. See Transceiver driver enable using LPUART_RTS for details. If the request-to-send operation is enabled, when a character is placed into an empty transmitter data buffer, LPUART_RTS asserts one bit time before the start bit is transmitted. LPUART_RTS remains asserted for the whole time that the transmitter data buffer has any characters. LPUART_RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit. Transmitting a break character also asserts LPUART_RTS, with the same assertion and deassertion timing as having a character in the transmitter data buffer.

Functional description

The transmitter's LPUART_RTS signal asserts only when the transmitter is enabled. However, the transmitter's LPUART_RTS signal is unaffected by its LPUART_CTS signal. LPUART_RTS will remain asserted until the transfer is completed, even if the transmitter is disabled mid-way through a data transfer.

48.3.3 Receiver functional description

In this section, the receiver block diagram is a guide for the overall receiver functional description. Next, the data sampling technique used to reconstruct receiver data is described in more detail. Finally, different variations of the receiver wakeup function are explained.

The receiver input is inverted by setting LPUART_STAT[RXINV]. The receiver is enabled by setting the LPUART_CTRL[RE] bit. Character frames consist of a start bit of logic 0, eight to ten data bits (msb or lsb first), and one or two stop bits of logic 1. For information about 9-bit or 10-bit data mode, refer to 8-bit, 9-bit and 10-bit data modes. For the remainder of this discussion, assume the LPUART is configured for normal 8-bit data mode.

After receiving the stop bit into the receive shifter, and provided the receive data register is not already full, the data character is transferred to the receive data register and the receive data register full (LPUART_STAT[RDRF]) status flag is set. If LPUART_STAT[RDRF] was already set indicating the receive data register (buffer) was already full, the overrun (OR) status flag is set and the new data is lost. Because the LPUART receiver is double-buffered, the program has one full character time after LPUART_STAT[RDRF] is set before the data in the receive data buffer must be read to avoid a receiver overrun.

When a program detects that the receive data register is full (LPUART_STAT[RDRF] = 1), it gets the data from the receive data register by reading LPUART_DATA. Refer to Interrupts and status flags for details about flag clearing.

48.3.3.1 Data sampling technique

The LPUART receiver supports a configurable oversampling rate of between 4× and 32× of the baud rate clock for sampling. The receiver starts by taking logic level samples at the oversampling rate times the baud rate to search for a falling edge on the LPUART_RX serial data input pin. A falling edge is defined as a logic 0 sample after three consecutive logic 1 samples. The oversampling baud rate clock divides the bit time into 4 to 32 segments from 1 to OSR (where OSR is the configured oversampling ratio). When a falling edge is located, three more samples are taken at (OSR/2), (OSR/2)+1, and

(OSR/2)+2 to make sure this was a real start bit and not merely noise. If at least two of these three samples are 0, the receiver assumes it is synchronized to a receive character. If another falling edge is detected before the receiver is considered synchronized, the receiver restarts the sampling from the first segment.

The receiver then samples each bit time, including the start and stop bits, at (OSR/2), (OSR/2)+1, and (OSR/2)+2 to determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples taken during the bit time. If any sample in any bit time, including the start and stop bits, in a character frame fails to agree with the logic level for that bit, the noise flag (LPUART_STAT[NF]) is set when the received character is transferred to the receive data buffer.

When the LPUART receiver is configured to sample on both edges of the baud rate clock, the number of segments in each received bit is effectively doubled (from 1 to OSR*2). The start and data bits are then sampled at OSR, OSR+1 and OSR+2. Sampling on both edges of the clock must be enabled for oversampling rates of 4× to 7× and is optional for higher oversampling rates.

The falling edge detection logic continuously looks for falling edges. If an edge is detected, the sample clock is resynchronized to bit times (unless resynchronization has been disabled). This improves the reliability of the receiver in the presence of noise or mismatched baud rates. It does not improve worst case analysis because some characters do not have any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected almost immediately.

48.3.3.2 Receiver wakeup operation

Receiver wakeup and receiver address matching is a hardware mechanism that allows an LPUART receiver to ignore the characters in a message intended for a different receiver.

During receiver wakeup, all receivers evaluate the first character(s) of each message, and as soon as they determine the message is intended for a different receiver, they write logic 1 to the receiver wake up control bit(LPUART_CTRL[RWU]). When RWU bit is set, the status flags associated with the receiver, with the exception of the idle bit, IDLE, when LPUART_S2[RWUID] bit is set, are inhibited from setting, thus eliminating the software overhead for handling the unimportant message characters. At the end of a message, or at the beginning of the next message, all receivers automatically force LPUART_CTRL[RWU] to 0 so all receivers wake up in time to look at the first character(s) of the next message.

Functional description

During receiver address matching, the address matching is performed in hardware and the LPUART receiver will ignore all characters that do not meet the address match requirements.

Table 48-17. Receiver Wakeup Options

RWU	MA1 MA2	MATCFG	WAKE:RWUID	Receiver Wakeup
0	0	X	X	Normal operation
1	0	00	00	Receiver wakeup on idle line, IDLE flag not set
1	0	00	01	Receiver wakeup on idle line, IDLE flag set
1	0	00	10	Receiver wakeup on address mark
1	1	11	X0	Receiver wakeup on data match
0	1	00	X0	Address mark address match, IDLE flag not set for discarded characters
0	1	00	X1	Address mark address match, IDLE flag set for discarded characters
0	1	01	X0	Idle line address match
0	1	10	XO	Address match on and address match off, IDLE flag not set for discarded characters
0	1	10	X1	Address match on and address match off, IDLE flag set for discarded characters

48.3.3.2.1 Idle-line wakeup

When wake is cleared, the receiver is configured for idle-line wakeup. In this mode, LPUART_CTRL[RWU] is cleared automatically when the receiver detects a full character time of the idle-line level. The LPUART_CTRL[M] and LPUART_BAUD[M10] control bit selects 8-bit to 10-bit data mode and the LPUART_BAUD[SBNS] bit selects 1-bit or 2-bit stop bit number that determines how many bit times of idle are needed to constitute a full character time, 10 to 13 bit times because of the start and stop bits.

When LPUART_CTRL[RWU] is one and LPUART_STAT[RWUID] is zero, the idle condition that wakes up the receiver does not set the LPUART_STAT[IDLE] flag. The receiver wakes up and waits for the first data character of the next message that sets the

LPUART_STAT[RDRF] flag and generates an interrupt if enabled. When LPUART_STAT[RWUID] is one, any idle condition sets the LPUART_STAT[IDLE] flag and generates an interrupt if enabled, regardless of whether LPUART_CTRL[RWU] is zero or one.

The idle-line type (LPUART_CTRL[ILT]) control bit selects one of two ways to detect an idle line. When LPUART_CTRL[ILT] is cleared, the idle bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward the full character time of idle. When LPUART_CTRL[ILT] is set, the idle bit counter does not start until after the stop bit time, so the idle detection is not affected by the data in the last character of the previous message.

48.3.3.2.2 Address-mark wakeup

When LPUART_CTRL[WAKE] is set, the receiver is configured for address-mark wakeup. In this mode, LPUART_CTRL[RWU] is cleared automatically when the receiver detects a logic 1 in the most significant bit of a received character.

Address-mark wakeup allows messages to contain idle characters, but requires the MSB be reserved for use in address frames. The logic 1 in the MSB of an address frame clears the LPUART_CTRL[RWU] bit before the stop bits are received and sets the LPUART_STAT[RDRF] flag. In this case, the character with the MSB set is received even though the receiver was sleeping during most of this character time.

48.3.3.2.3 Data match wakeup

When LPUART_CTRL[RWU] is set and LPUART_BAUD[MATCFG] equals 11, the receiver is configured for data match wakeup. In this mode, LPUART_CTRL[RWU] is cleared automatically when the receiver detects a character that matches MATCH[MA1] field when BAUD[MAEN1] is set, or that matches MATCH[MA2] when BAUD[MAEN2] is set.

48.3.3.2.4 Address Match operation

Address match operation is enabled when the LPUART_BAUD[MAEN1] or LPUART_BAUD[MAEN2] bit is set and LPUART_BAUD[MATCFG] is equal to 00. In this function, a character received by the LPUART_RX pin with a logic 1 in the bit position immediately preceding the stop bit is considered an address and is compared with the associated MATCH[MA1] or MATCH[MA2] field. The character is only transferred to the receive buffer, and LPUART_STAT[RDRF] is set, if the comparison matches. All subsequent characters received with a logic 0 in the bit position immediately preceding the stop bit are considered to be data associated with the address and are transferred to the receive data buffer. If no marked address match occurs then no transfer

Functional description

is made to the receive data buffer, and all following characters with logic zero in the bit position immediately preceding the stop bit are also discarded. If both the LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] bits are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

Address match operation functions in the same way for both MATCH[MA1] and MATCH[MA2] fields.

- If only one of LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] is asserted, a marked address is compared only with the associated match register and data is transferred to the receive data buffer only on a match.
- If LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] are asserted, a marked address is compared with both match registers and data is transferred only on a match with either register.

48.3.3.2.5 Idle Match operation

Idle match operation is enabled when the LPUART_BAUD[MAEN1] or LPUART_BAUD[MAEN2] bit is set and LPUART_BAUD[MATCFG] is equal to 01. In this function, the first character received by the LPUART_RX pin after an idle line condition is considered an address and is compared with the associated MA1 or MA2 register. The character is only transferred to the receive buffer, and LPUART_STAT[RDRF] is set, if the comparison matches. All subsequent characters are considered to be data associated with the address and are transferred to the receive data buffer until the next idle line condition is detected. If no address match occurs then no transfer is made to the receive data buffer, and all following frames until the next idle condition are also discarded. If both the LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] bits are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

Idle match operation functions in the same way for both MA1 and MA2 registers.

- If only one of LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] is asserted, the first character after an idle line is compared only with the associated match register and data is transferred to the receive data buffer only on a match.
- If LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] are asserted, the first character after an idle line is compared with both match registers and data is transferred only on a match with either register.

48.3.3.2.6 Match On Match Off operation

Match on, match off operation is enabled when both LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] are set and LPUART_BAUD[MATCFG] is equal to 10. In this function, a character received by the LPUART_RX pin that matches MATCH[MA1] is received and transferred to the receive buffer, and LPUART_STAT[RDRF] is set. All subsequent characters are considered to be data and are also transferred to the receive data buffer, until a character is received that matches MATCH[MA2] register. The character that matches MATCH[MA2] and all following characters are discarded, this continues until another character that matches MATCH[MA1] is received. If both the LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] bits are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

Match on, match off operation requires both LPUART_BAUD[MAEN1] and LPUART_BAUD[MAEN2] to be asserted.

48.3.3.3 Hardware flow control

To support hardware flow control, the receiver can be programmed to automatically deassert and assert LPUART_RTS.

- LPUART_RTS remains asserted until the transfer is complete, even if the transmitter is disabled midway through a data transfer. See Transceiver driver enable using LPUART_RTS for more details.
- If the receiver request-to-send functionality is enabled, the receiver automatically deasserts LPUART_RTS if the number of characters in the receiver data register is full or a start bit is detected that will cause the receiver data register to be full.
- The receiver asserts LPUART_RTS when the number of characters in the receiver data register is not full and has not detected a start bit that will cause the receiver data register to be full. It is not affected if STAT[RDRF] is asserted.
- Even if LPUART_RTS is deasserted, the receiver continues to receive characters until the receiver data buffer is overrun.
- If the receiver request-to-send functionality is disabled, the receiver LPUART_RTS remains deasserted.

48.3.3.4 Infrared decoder

The infrared decoder converts the received character from the IrDA format to the NRZ format used by the receiver. It also has a OSR oversampling baud rate clock counter that filters noise and indicates when a 1 is received.

48.3.3.4.1 Start bit detection

When STAT[RXINV] is cleared, the first falling edge of the received character corresponds to the start bit. The infrared decoder resets its counter. At this time, the receiver also begins its start bit detection process. After the start bit is detected, the receiver synchronizes its bit times to this start bit time. For the rest of the character reception, the infrared decoder's counter and the receiver's bit time counter count independently from each other.

48.3.3.4.2 Noise filtering

Any further rising edges detected during the first half of the infrared decoder counter are ignored by the decoder. Any pulses less than one oversampling baud clock can be undetected by it regardless of whether it is seen in the first or second half of the count.

48.3.3.4.3 Low-bit detection

During the second half of the decoder count, a rising edge is decoded as a 0, which is sent to the receiver. The decoder counter is also reset.

48.3.3.4.4 High-bit detection

At OSR oversampling baud rate clocks after the previous rising edge, if a rising edge is not seen, then the decoder sends a 1 to the receiver.

If the next bit is a 0, which arrives late, then a low-bit is detected according to Low-bit detection. The value sent to the receiver is changed from 1 to a 0. Then, if a noise pulse occurs outside the receiver's bit time sampling period, then the delay of a 0 is not recorded as noise.

48.3.4 Additional LPUART functions

The following sections describe additional LPUART functions.

48.3.4.1 8-bit, 9-bit and 10-bit data modes

The LPUART transmitter and receiver can be configured to operate in 9-bit data mode by setting the LPUART_CTRL[M] or 10-bit data mode by setting LPUART_CTRL[M10]. In 9-bit mode, there is a ninth data bit in 10-bit mode there is a tenth data bit. For the transmit data buffer, these bits are stored in LPUART_CTRL[T8] and

LPUART_CTRL[T9]. For the receiver, these bits are held in LPUART_CTRL[R8] and LPUART_CTRL[R9]. They are also accessible via 16-bit or 32-bit accesses to the LPUART_DATA register.

For coherent 8-bit writes to the transmit data buffer, write to LPUART_CTRL[T8] and LPUART_CTRL[T9] before writing to LPUART_DATA[7:0]. For 16-bit and 32-bit writes to the LPUART_DATA register all 10 transmit bits are written to the transmit data buffer at the same time.

If the bit values to be transmitted as the ninth and tenth bit of a new character are the same as for the previous character, it is not necessary to write to LPUART_CTRL[T8] and LPUART_CTRL[T9] again. When data is transferred from the transmit data buffer to the transmit shifter, the value in LPUART_CTRL[T8] and LPUART_CTRL[T9] is copied at the same time data is transferred from LPUART_DATA[7:0] to the shifter.

The 9-bit data mode is typically used with parity to allow eight bits of data plus the parity in the ninth bit, or it is used with address-mark wakeup so the ninth data bit can serve as the wakeup bit. The 10-bit data mode is typically used with parity and address-mark wakeup so the ninth data bit can serve as the wakeup bit and the tenth bit as the parity bit. In custom protocols, the ninth and/or tenth bits can also serve as software-controlled markers.

48.3.4.2 Idle length

An idle character is a character where the start bit, all data bits and stop bits are in the mark postion. The CTRL[ILT] register can be configured to start detecting an idle character from the previous start bit (any data bits and stop bits count towards the idle character detection) or from the previous stop bit.

The number of idle characters that must be received before an idle line condition is detected can also be configured using the CTRL[IDLECFG] field. This field configures the number of idle characters that must be received before the STAT[IDLE] flag is set, the STAT[RAF] flag is cleared and the DATA[IDLINE] flag is set with the next received character.

Idle-line wakeup and idle match operation are also affected by the CTRL[IDLECFG] field. When address match or match on/off operation is enabled, setting the STAT[RWUID] bit will cause any discarded characters to be treated as if they were idle characters.

48.3.4.3 Loop mode

When LPUART_CTRL[LOOPS] is set, the LPUART_CTRL[RSRC] bit in the same register chooses between loop mode (LPUART_CTRL[RSRC] = 0) or single-wire mode (LPUART_CTRL[RSRC] = 1). Loop mode is sometimes used to check software, independent of connections in the external system, to help isolate system problems. In this mode, the transmitter output is internally connected to the receiver input and the LPUART_RX pin is not used by the LPUART.

48.3.4.4 Single-wire operation

When LPUART_CTRL[LOOPS] is set, the RSRC bit in the same register chooses between loop mode (LPUART_CTRL[RSRC] = 0) or single-wire mode (LPUART_CTRL[RSRC] = 1). Single-wire mode implements a half-duplex serial connection. The receiver is internally connected to the transmitter output and to the LPUART_TX pin (the LPUART_RX pin is not used).

In single-wire mode, the LPUART_CTRL[TXDIR] bit controls the direction of serial data on the LPUART_TX pin. When LPUART_CTRL[TXDIR] is cleared, the LPUART_TX pin is an input to the receiver and the transmitter is temporarily disconnected from the LPUART_TX pin so an external device can send serial data to the receiver. When LPUART_CTRL[TXDIR] is set, the LPUART_TX pin is an output driven by the transmitter, the internal loop back connection is disabled, and as a result the receiver cannot receive characters that are sent out by the transmitter.

48.3.5 Infrared interface

The LPUART provides the capability of transmitting narrow pulses to an IR LED and receiving narrow pulses and transforming them to serial bits, which are sent to the LPUART. The IrDA physical layer specification defines a half-duplex infrared communication link for exchanging data. The full standard includes data rates up to 16 Mbits/s. This design covers data rates only between 2.4 kbits/s and 115.2 kbits/s.

The LPUART has an infrared transmit encoder and receive decoder. The LPUART transmits serial bits of data that are encoded by the infrared submodule to transmit a narrow pulse for every zero bit. No pulse is transmitted for every one bit. When receiving data, the IR pulses are detected using an IR photo diode and transformed to CMOS levels by the IR receive decoder, external from the LPUART. The narrow pulses are then stretched by the infrared receive decoder to get back to a serial bit stream to be received

by the UART. The polarity of transmitted pulses and expected receive pulses can be inverted so that a direct connection can be made to external IrDA transceiver modules that use active high pulses.

The infrared submodule receives its clock sources from the LPUART. One of these two clocks are selected in the infrared submodule to generate either 1/OSR, 2/OSR, 3/OSR, or 4/OSR narrow pulses during transmission.

48.3.5.1 Infrared transmit encoder

The infrared transmit encoder converts serial bits of data from transmit shift register to the LPUART_TX signal. A narrow pulse is transmitted for a zero bit and no pulse for a one bit. The narrow pulse is sent at the start of the bit with a duration of 1/OSR, 2/OSR, 3/OSR, or 4/OSR of a bit time. A narrow low pulse is transmitted for a zero bit when LPUART_CTRL[TXINV] is cleared, while a narrow high pulse is transmitted for a zero bit when LPUART_CTRL[TXINV] is set.

48.3.5.2 Infrared receive decoder

The infrared receive block converts data from the LPUART_RX signal to the receive shift register. A narrow pulse is expected for each zero received and no pulse is expected for each one received. A narrow low pulse is expected for a zero bit when LPUART_STAT[RXINV] is cleared, while a narrow high pulse is expected for a zero bit when LPUART_STAT[RXINV] is set. This receive decoder meets the edge jitter requirement as defined by the IrDA serial infrared physical layer specification.

48.3.6 Interrupts and status flags

The LPUART transmitter has two status flags that can optionally generate hardware interrupt requests. Transmit data register empty LPUART_STAT[TDRE]) indicates when there is room in the transmit data buffer to write another transmit character to LPUART_DATA. If the transmit interrupt enable LPUART_CTRL[TIE]) bit is set, a hardware interrupt is requested when LPUART_STAT[TDRE] is set. Transmit complete (LPUART_STAT[TC]) indicates that the transmitter is finished transmitting all data, preamble, and break characters and is idle with LPUART_TX at the inactive level. This flag is often used in systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt enable (LPUART_CTRL[TCIE]) bit is set, a hardware interrupt is requested when LPUART_STAT[TC] is set. Instead of hardware

Functional description

interrupts, software polling may be used to monitor the LPUART_STAT[TDRE] and LPUART_STAT[TC] status flags if the corresponding LPUART_CTRL[TIE] or LPUART_CTRL[TCIE] local interrupt masks are cleared.

When a program detects that the receive data register is full (LPUART_STAT[RDRF] = 1), it gets the data from the receive data register by reading LPUART_DATA. The LPUART_STAT[RDRF] flag is cleared by reading LPUART_DATA.

The IDLE status flag includes logic that prevents it from getting set repeatedly when the LPUART_RX line remains idle for an extended period of time. IDLE is cleared by writing 1 to the LPUART_STAT[IDLE] flag. After LPUART_STAT[IDLE] has been cleared, it cannot become set again until the receiver has received at least one new character and has set LPUART_STAT[RDRF].

If the associated error was detected in the received character that caused LPUART_STAT[RDRF] to be set, the error flags - noise flag (LPUART_STAT[NF]), framing error (LPUART_STAT[FE]), and parity error flag (LPUART_STAT[PF]) - are set at the same time as LPUART_STAT[RDRF]. These flags are not set in overrun cases.

If LPUART_STAT[RDRF] was already set when a new character is ready to be transferred from the receive shifter to the receive data buffer, the overrun (LPUART_STAT[OR]) flag is set instead of the data along with any associated NF, FE, or PF condition is lost.

If the received character matches the contents of MATCH[MA1] and/or MATCH[MA2] then the LPUART_STAT[MA1F] and/or LPUART_STAT[MA2F] flags are set at the same time that LPUART_STAT[RDRF] is set.

At any time, an active edge on the LPUART_RX serial data input pin causes the LPUART_STAT[RXEDGIF] flag to set. The LPUART_STAT[RXEDGIF] flag is cleared by writing a 1 to it. This function depends on the receiver being enabled (LPUART_CTRL[RE] = 1).

Chapter 49 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

49.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The I²S (or I2S) module provides a synchronous audio interface (SAI) that supports full-duplex serial interfaces with frame synchronization such as I²S, AC97, TDM, and codec/DSP interfaces.

49.1.1 Features

Note that some of the features are not supported across all SAI instances; see the chip-specific information in the first section of this chapter.

NOTE

About data lines and audio channels: Typically there are one or more data lines for TX and RX sides of the SAI peripheral, depending on the device's design. Each SAI data line may support 1 - 32 audio channels (or audio words).

- Transmitter with independent bit clock and frame sync supporting 1 data line
- Receiver with independent bit clock and frame sync supporting 1 data line
- Maximum Frame Size of 16 words
- Word size of between 8-bits and 32-bits
- Word size configured separately for first word and remaining words in frame
- Asynchronous 8×32 -bit FIFO for each transmit and receive channel
- Supports graceful restart after FIFO error

Introduction

- Supports automatic restart after FIFO error without software intervention
- Supports packing of 8-bit and 16-bit data into each 32-bit FIFO word

49.1.2 Block diagram

The following block diagram also shows the module clocks.

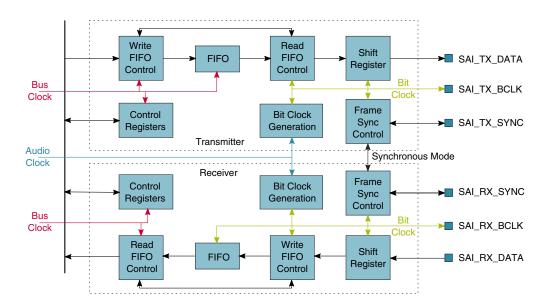


Figure 49-1. I²S/SAI block diagram

49.1.3 Modes of operation

The module operates in these MCU power modes: Run mode, stop modes, low-leakage modes, and Debug mode.

49.1.3.1 Run mode

In Run mode, the SAI transmitter and receiver operate normally.

49.1.3.2 Stop modes

In Stop mode, the SAI transmitter and/or receiver can continue operating provided the appropriate Stop Enable bit is set (TCSR[STOPE] and/or RCSR[STOPE], respectively), and provided the transmitter and/or receiver is/are using an externally generated bit clock or an Audio Master Clock that remains operating in Stop mode. The SAI transmitter and/or receiver can generate an asynchronous interrupt to wake the CPU from Stop mode.

In Stop mode, if the Transmitter Stop Enable (TCSR[STOPE]) bit is clear, the transmitter is disabled after completing the current transmit frame, and, if the Receiver Stop Enable (RCSR[STOPE]) bit is clear, the receiver is disabled after completing the current receive frame. Entry into Stop mode is prevented—not acknowledged—while waiting for the transmitter and receiver to be disabled at the end of the current frame.

49.1.3.3 Low-leakage modes

When entering low-leakage modes, the Stop Enable (TCSR[STOPE] and RCSR[STOPE]) bits are ignored and the SAI is disabled after completing the current transmit and receive Frames. Entry into stop mode is prevented (not acknowledged) while waiting for the transmitter and receiver to be disabled at the end of the current frame.

49.1.3.4 Debug mode

In Debug mode, the SAI transmitter and/or receiver can continue operating provided the Debug Enable bit is set. When TCSR[DBGE] or RCSR[DBGE] bit is clear and Debug mode is entered, the SAI is disabled after completing the current transmit or receive frame. The transmitter and receiver bit clocks are not affected by Debug mode.

49.2 External signals

Name	Function	I/O
	Transmit Bit Clock. The bit clock is an input when externally generated and an output when internally generated.	I/O

Memory map and register definition

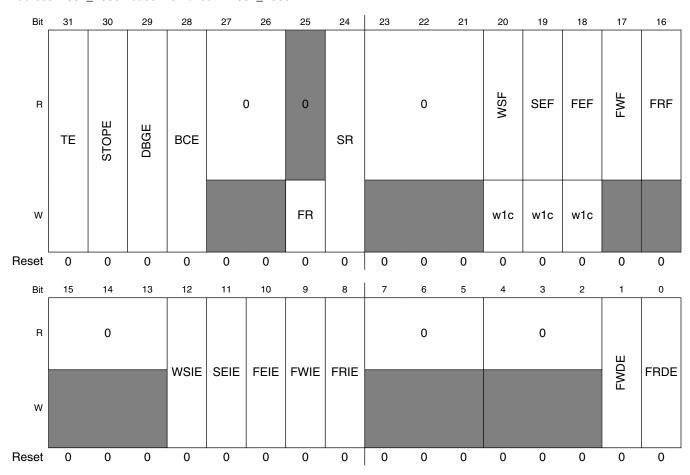
Name	Function	I/O
SAI_TX_SYNC	Transmit Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated.	I/O
SAI_TX_DATA	Transmit Data. The transmit data is generated synchronously by the bit clock and is tristated whenever not transmitting a word.	0
SAI_RX_BCLK	Receive Bit Clock. The bit clock is an input when externally generated and an output when internally generated.	I/O
SAI_RX_SYNC	Receive Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated.	I/O
SAI_RX_DATA	Receive Data. The receive data is sampled synchronously by the bit clock.	I
SAI_MCLK	Audio Master Clock. The master clock is an input when externally generated and an output when internally generated.	I/O

49.3 Memory map and register definition

A read or write access to an address from offset 0x108 and above will result in a bus error.

I2S memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_F000	SAI Transmit Control Register (I2S0_TCSR)	32	R/W	0000_0000h	49.3.1/1324
4002_F004	SAI Transmit Configuration 1 Register (I2S0_TCR1)	32	R/W	0000_0000h	49.3.2/1327
4002_F008	SAI Transmit Configuration 2 Register (I2S0_TCR2)	32	R/W	0000_0000h	49.3.3/1327
4002_F00C	SAI Transmit Configuration 3 Register (I2S0_TCR3)	32	R/W	0000_0000h	49.3.4/1329
4002_F010	SAI Transmit Configuration 4 Register (I2S0_TCR4)	32	R/W	0000_0000h	49.3.5/1330
4002_F014	SAI Transmit Configuration 5 Register (I2S0_TCR5)	32	R/W	0000_0000h	49.3.6/1332
4002_F020	SAI Transmit Data Register (I2S0_TDR0)	32	W (always reads 0)	0000_0000h	49.3.7/1332
4002_F040	SAI Transmit FIFO Register (I2S0_TFR0)	32	R	0000_0000h	49.3.8/1333
4002_F060	SAI Transmit Mask Register (I2S0_TMR)	32	R/W	0000_0000h	49.3.9/1333
4002_F080	SAI Receive Control Register (I2S0_RCSR)	32	R/W	0000_0000h	49.3.10/ 1335


Chapter 49 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

I2S memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_F084	SAI Receive Configuration 1 Register (I2S0_RCR1)	32	R/W	0000_0000h	49.3.11/ 1338
4002_F088	SAI Receive Configuration 2 Register (I2S0_RCR2)	32	R/W	0000_0000h	49.3.12/ 1338
4002_F08C	SAI Receive Configuration 3 Register (I2S0_RCR3)	32	R/W	0000_0000h	49.3.13/ 1340
4002_F090	SAI Receive Configuration 4 Register (I2S0_RCR4)	32	R/W	0000_0000h	49.3.14/ 1341
4002_F094	SAI Receive Configuration 5 Register (I2S0_RCR5)	32	R/W	0000_0000h	49.3.15/ 1343
4002_F0A0	SAI Receive Data Register (I2S0_RDR0)	32	R	0000_0000h	49.3.16/ 1343
4002_F0C0	SAI Receive FIFO Register (I2S0_RFR0)	32	R	0000_0000h	49.3.17/ 1344
4002_F0E0	SAI Receive Mask Register (I2S0_RMR)	32	R/W	0000_0000h	49.3.18/ 1344
4002_F100	SAI MCLK Control Register (I2S0_MCR)	32	R/W	0000_0000h	49.3.19/ 1345
4002_F104	SAI MCLK Divide Register (I2S0_MDR)	32	R/W	0000_0000h	49.3.20/ 1346

49.3.1 SAI Transmit Control Register (I2Sx_TCSR)

Address: 4002_F000h base + 0h offset = 4002_F000h

I2Sx_TCSR field descriptions

Field	Description
31 TE	Transmitter Enable
	Enables/disables the transmitter. When software clears this field, the transmitter remains enabled, and this bit remains set, until the end of the current frame.
	0 Transmitter is disabled.
	1 Transmitter is enabled, or transmitter has been disabled and has not yet reached end of frame.
30 STOPE	Stop Enable Configures transmitter operation in Stop mode. This field is ignored and the transmitter is disabled in all low-leakage stop modes.
	0 Transmitter disabled in Stop mode.1 Transmitter enabled in Stop mode.
29 DBGE	Debug Enable

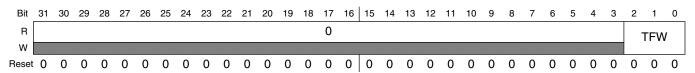
Chapter 49 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

I2Sx_TCSR field descriptions (continued)

Field	Description
	Enables/disables transmitter operation in Debug mode. The transmit bit clock is not affected by debug mode.
	Transmitter is disabled in Debug mode, after completing the current frame.Transmitter is enabled in Debug mode.
28 BCE	Bit Clock Enable Enables the transmit bit clock, separately from the TE. This field is automatically set whenever TE is set. When software clears this field, the transmit bit clock remains enabled, and this bit remains set, until the end of the current frame.
	0 Transmit bit clock is disabled.1 Transmit bit clock is enabled.
27–26 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
25 FR	FIFO Reset Resets the FIFO pointers. Reading this field will always return zero. FIFO pointers should only be reset when the transmitter is disabled or the FIFO error flag is set. 0 No effect. 1 FIFO reset.
24 SR	Software Reset When set, resets the internal transmitter logic including the FIFO pointers. Software-visible registers are not affected, except for the status registers. 0 No effect. 1 Software reset.
23–21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20 WSF	Word Start Flag Indicates that the start of the configured word has been detected. Write a logic 1 to this field to clear this flag. 0 Start of word not detected. 1 Start of word detected.
19 SEF	Sync Error Flag Indicates that an error in the externally-generated frame sync has been detected. Write a logic 1 to this field to clear this flag. O Sync error not detected. Trame sync error detected.
18 FEF	FIFO Error Flag Indicates that an enabled transmit FIFO has underrun. Write a logic 1 to this field to clear this flag. 0 Transmit underrun not detected. 1 Transmit underrun detected.

Memory map and register definition

I2Sx_TCSR field descriptions (continued)

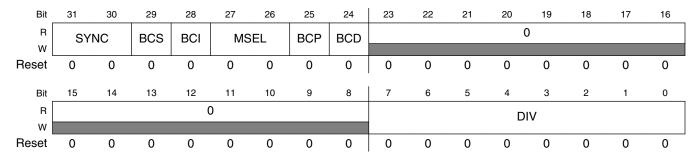

Field	Description
17	FIFO Warning Flag
FWF	Indicates that an enabled transmit FIFO is empty.
	0 No enabled transmit FIFO is empty.
	1 Enabled transmit FIFO is empty.
16 FRF	FIFO Request Flag
	Indicates that the number of words in an enabled transmit channel FIFO is less than or equal to the transmit FIFO watermark.
	0 Transmit FIFO watermark has not been reached.1 Transmit FIFO watermark has been reached.
15–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12	Word Start Interrupt Enable
WSIE	Enables/disables word start interrupts.
	0 Disables interrupt.
	1 Enables interrupt.
11 SEIE	Sync Error Interrupt Enable
SEIE	Enables/disables sync error interrupts.
	0 Disables interrupt.
	1 Enables interrupt.
10 FEIE	FIFO Error Interrupt Enable
. 2.2	Enables/disables FIFO error interrupts.
	0 Disables the interrupt.
	1 Enables the interrupt.
9 FWIE	FIFO Warning Interrupt Enable
	Enables/disables FIFO warning interrupts.
	0 Disables the interrupt.
	1 Enables the interrupt.
8 FRIE	FIFO Request Interrupt Enable
	Enables/disables FIFO request interrupts.
	0 Disables the interrupt.
	1 Enables the interrupt.
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 FWDE	FIFO Warning DMA Enable

I2Sx_TCSR field descriptions (continued)

Field	Description
	Enables/disables DMA requests.
	0 Disables the DMA request.
	1 Enables the DMA request.
0 FRDE	FIFO Request DMA Enable
	Enables/disables DMA requests.
	0 Disables the DMA request.
	1 Enables the DMA request.

49.3.2 SAI Transmit Configuration 1 Register (I2Sx_TCR1)

Address: 4002_F000h base + 4h offset = 4002_F004h


I2Sx_TCR1 field descriptions

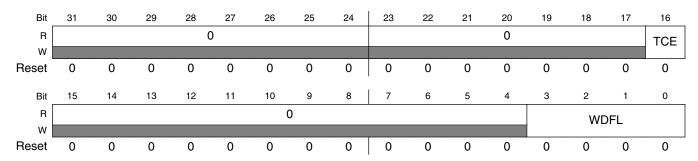
Field	Description
31–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
TFW	Transmit FIFO Watermark Configures the watermark level for all enabled transmit channels.

49.3.3 SAI Transmit Configuration 2 Register (I2Sx_TCR2)

This register must not be altered when TCSR[TE] is set.

Address: 4002_F000h base + 8h offset = 4002_F008h

I2Sx_TCR2 field descriptions

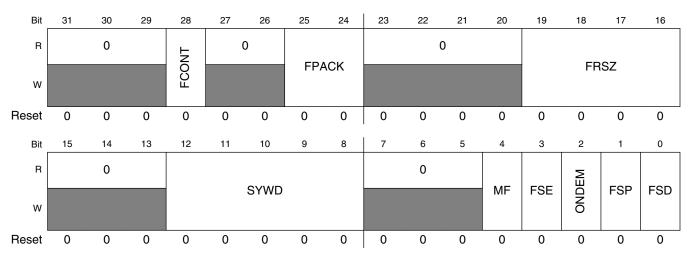

Field	Description
31–30	Synchronous Mode
SYNC	Configures between asynchronous and synchronous modes of operation. When configured for a synchronous mode of operation, the receiver must be configured for asynchronous operation.
	00 Asynchronous mode.
	01 Synchronous with receiver.
	10 Synchronous with another SAI transmitter.
	11 Synchronous with another SAI receiver.
29 BCS	Bit Clock Swap
ВСЗ	This field swaps the bit clock used by the transmitter. When the transmitter is configured in asynchronous mode and this bit is set, the transmitter is clocked by the receiver bit clock (SAI_RX_BCLK). This allows the transmitter and receiver to share the same bit clock, but the transmitter continues to use the transmit frame sync (SAI_TX_SYNC).
	When the transmitter is configured in synchronous mode, the transmitter BCS field and receiver BCS field must be set to the same value. When both are set, the transmitter and receiver are both clocked by the transmitter bit clock (SAI_TX_BCLK) but use the receiver frame sync (SAI_RX_SYNC).
	0 Use the normal bit clock source.
	1 Swap the bit clock source.
28	Bit Clock Input
BCI	When this field is set and using an internally generated bit clock in either synchronous or asynchronous mode, the bit clock actually used by the transmitter is delayed by the pad output delay (the transmitter is clocked by the pad input as if the clock was externally generated). This has the effect of decreasing the data input setup time, but increasing the data output valid time.
	The slave mode timing from the datasheet should be used for the transmitter when this bit is set. In synchronous mode, this bit allows the transmitter to use the slave mode timing from the datasheet, while the receiver uses the master mode timing. This field has no effect when configured for an externally generated bit clock.
	0 No effect.
	1 Internal logic is clocked as if bit clock was externally generated.
27–26	MCLK Select
MSEL	Selects the audio Master Clock option used to generate an internally generated bit clock. This field has no effect when configured for an externally generated bit clock.
	NOTE: Depending on the device, some Master Clock options might not be available. See the chip configuration details for the availability and chip-specific meaning of each option.
	00 Bus Clock selected.
	01 Master Clock (MCLK) 1 option selected.
	10 Master Clock (MCLK) 2 option selected.
	11 Master Clock (MCLK) 3 option selected.
25 BCP	Bit Clock Polarity Configures the polarity of the bit clock.
	0 Bit clock is active high with drive outputs on rising edge and sample inputs on falling edge.
	1 Bit clock is active low with drive outputs on falling edge and sample inputs on rising edge.

I2Sx_TCR2 field descriptions (continued)

Field	Description
24	Bit Clock Direction
BCD	Configures the direction of the bit clock.
	0 Bit clock is generated externally in Slave mode.
	1 Bit clock is generated internally in Master mode.
23–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 DIV	Bit Clock Divide
	Divides down the audio master clock to generate the bit clock when configured for an internal bit clock. The division value is (DIV + 1) * 2.

49.3.4 SAI Transmit Configuration 3 Register (I2Sx_TCR3)

Address: 4002_F000h base + Ch offset = 4002_F00Ch


I2Sx_TCR3 field descriptions

Field	Description
31–24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23–17 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
16 TCE	Transmit Channel Enable Enables the corresponding data channel for transmit operation. A channel must be enabled before its FIFO is accessed. Changing this field will take effect immediately for generating the FIFO request and warning flags, but at the end of each frame for transmit operation. O Transmit data channel N is disabled. Transmit data channel N is enabled.
15–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–0 WDFL	Word Flag Configuration Configures which word sets the start of word flag. The value written must be one less than the word number. For example, writing 0 configures the first word in the frame. When configured to a value greater than TCR4[FRSZ], then the start of word flag is never set.

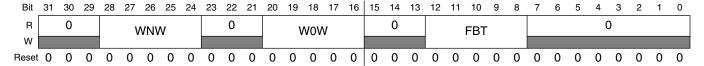
49.3.5 SAI Transmit Configuration 4 Register (I2Sx_TCR4)

This register must not be altered when TCSR[TE] is set.

Address: 4002_F000h base + 10h offset = 4002_F010h

I2Sx_TCR4 field descriptions

Field	Description
31–29 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
28 FCONT	FIFO Continue on Error Configures when the SAI will continue transmitting after a FIFO error has been detected.
	On FIFO error, the SAI will continue from the start of the next frame after the FIFO error flag has been cleared.
	1 On FIFO error, the SAI will continue from the same word that caused the FIFO error to set after the FIFO warning flag has been cleared.
27–26 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
25–24 FPACK	Enables packing of 8-bit data or 16-bit data into each 32-bit FIFO word. If the word size is greater than 8-bit or 16-bit then only the first 8-bit or 16-bits are loaded from the FIFO. The first word in each frame always starts with a new 32-bit FIFO word and the first bit shifted must be configured within the first packed word. When FIFO packing is enabled, the FIFO write pointer will only increment when the full 32-bit FIFO word has been written by software. O FIFO packing is disabled Reserved
23–20	10 8-bit FIFO packing is enabled 11 16-bit FIFO packing is enabled This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

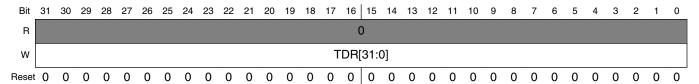

I2Sx_TCR4 field descriptions (continued)

Field	Description
19–16 FRSZ	Frame size Configures the number of words in each frame. The value written must be one less than the number of words in the frame. For example, write 0 for one word per frame. The maximum supported frame size is 16 words.
15–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12–8 SYWD	Sync Width Configures the length of the frame sync in number of bit clocks. The value written must be one less than the number of bit clocks. For example, write 0 for the frame sync to assert for one bit clock only. The sync width cannot be configured longer than the first word of the frame.
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 MF	MSB First Configures whether the LSB or the MSB is transmitted first. 0 LSB is transmitted first. 1 MSB is transmitted first.
3 FSE	Frame Sync Early O Frame sync asserts with the first bit of the frame. 1 Frame sync asserts one bit before the first bit of the frame.
2 ONDEM	On Demand Mode When set, and the frame sync is generated internally, a frame sync is only generated when the FIFO warning flag is clear. O Internal frame sync is generated continuously. Internal frame sync is generated when the FIFO warning flag is clear.
1 FSP	Frame Sync Polarity Configures the polarity of the frame sync. 0 Frame sync is active high. 1 Frame sync is active low.
0 FSD	Frame Sync Direction Configures the direction of the frame sync. 0 Frame sync is generated externally in Slave mode. 1 Frame sync is generated internally in Master mode.

49.3.6 SAI Transmit Configuration 5 Register (I2Sx_TCR5)

This register must not be altered when TCSR[TE] is set.

Address: 4002_F000h base + 14h offset = 4002_F014h

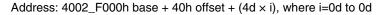


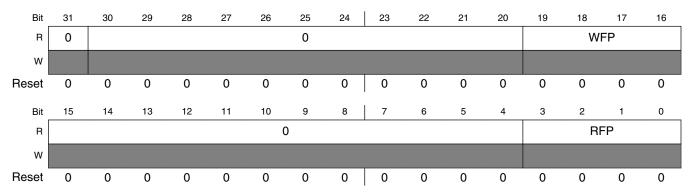
I2Sx_TCR5 field descriptions

Field	Description
31–29 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
28–24 WNW	Word N Width Configures the number of bits in each word, for each word except the first in the frame. The value written must be one less than the number of bits per word. Word width of less than 8 bits is not supported.
23–21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20–16 W0W	Word 0 Width Configures the number of bits in the first word in each frame. The value written must be one less than the number of bits in the first word. Word width of less than 8 bits is not supported if there is only one word per frame.
15–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12–8 FBT	First Bit Shifted Configures the bit index for the first bit transmitted for each word in the frame. If configured for MSB First, the index of the next bit transmitted is one less than the current bit transmitted. If configured for LSB First, the index of the next bit transmitted is one more than the current bit transmitted. The value written must be greater than or equal to the word width when configured for MSB First. The value written must be less than or equal to 31-word width when configured for LSB First.
7–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

49.3.7 SAI Transmit Data Register (I2Sx_TDRn)

Address: 4002_F000h base + 20h offset + (4d × i), where i=0d to 0d




I2Sx_TDRn field descriptions

Field	Description
31–0 TDR[31:0]	Transmit Data Register
	The corresponding TCR3[TCE] bit must be set before accessing the channel's transmit data register. Writes to this register when the transmit FIFO is not full will push the data written into the transmit data FIFO. Writes to this register when the transmit FIFO is full are ignored.

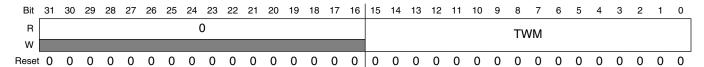
49.3.8 SAI Transmit FIFO Register (I2Sx_TFRn)

The MSB of the read and write pointers is used to distinguish between FIFO full and empty conditions. If the read and write pointers are identical, then the FIFO is empty. If the read and write pointers are identical except for the MSB, then the FIFO is full.

I2Sx_TFRn field descriptions

Field	Description
31 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
30–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–16 WFP	Write FIFO Pointer FIFO write pointer for transmit data channel.
15–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–0 RFP	Read FIFO Pointer FIFO read pointer for transmit data channel.

49.3.9 SAI Transmit Mask Register (I2Sx_TMR)

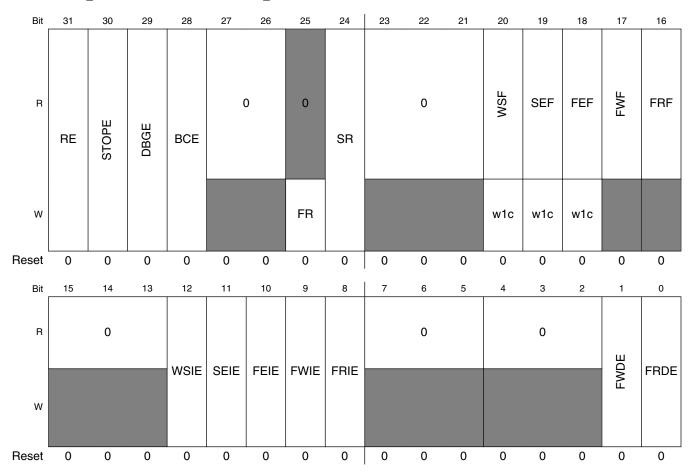

This register is double-buffered and updates:

Memory map and register definition

- 1. When TCSR[TE] is first set
- 2. At the end of each frame.

This allows the masked words in each frame to change from frame to frame.

Address: 4002_F000h base + 60h offset = 4002_F060h



I2Sx_TMR field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 TWM	Transmit Word Mask Configures whether the transmit word is masked (transmit data pin tristated and transmit data not read from FIFO) for the corresponding word in the frame. 0 Word N is enabled.
	1 Word N is masked. The transmit data pins are tri-stated when masked.

49.3.10 SAI Receive Control Register (I2Sx_RCSR)

Address: 4002_F000h base + 80h offset = 4002_F080h

I2Sx_RCSR field descriptions

Field	Description
31 RE	Receiver Enable
-	Enables/disables the receiver. When software clears this field, the receiver remains enabled, and this bit remains set, until the end of the current frame.
	0 Receiver is disabled.
	1 Receiver is enabled, or receiver has been disabled and has not yet reached end of frame.
30 STOPE	Stop Enable Configures receiver operation in Stop mode. This bit is ignored and the receiver is disabled in all low-leakage stop modes.
	O Receiver disabled in Stop mode. Receiver enabled in Stop mode.
29 DBGE	Debug Enable

Memory map and register definition

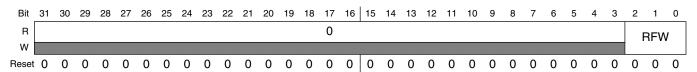
I2Sx_RCSR field descriptions (continued)

Field	Description
	Enables/disables receiver operation in Debug mode. The receive bit clock is not affected by Debug mode.
	 Receiver is disabled in Debug mode, after completing the current frame. Receiver is enabled in Debug mode.
28	Bit Clock Enable
BCE	Enables the receive bit clock, separately from RE. This field is automatically set whenever RE is set. When software clears this field, the receive bit clock remains enabled, and this field remains set, until the end of the current frame.
	0 Receive bit clock is disabled.
	1 Receive bit clock is enabled.
27–26 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
25 FR	FIFO Reset
	Resets the FIFO pointers. Reading this field will always return zero. FIFO pointers should only be reset when the receiver is disabled or the FIFO error flag is set.
	0 No effect.
	1 FIFO reset.
24 SR	Software Reset
- Git	Resets the internal receiver logic including the FIFO pointers. Software-visible registers are not affected, except for the status registers.
	0 No effect.
	1 Software reset.
23–21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20 WSF	Word Start Flag
VVOI	Indicates that the start of the configured word has been detected. Write a logic 1 to this field to clear this flag.
	0 Start of word not detected.
	1 Start of word detected.
19 SEF	Sync Error Flag
) SEF	Indicates that an error in the externally-generated frame sync has been detected. Write a logic 1 to this field to clear this flag.
	0 Sync error not detected.
	1 Frame sync error detected.
18 FEF	FIFO Error Flag
FEF	Indicates that an enabled receive FIFO has overflowed. Write a logic 1 to this field to clear this flag.
	0 Receive overflow not detected.
	1 Receive overflow detected.
17 FWF	FIFO Warning Flag

Chapter 49 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

I2Sx_RCSR field descriptions (continued)

Field	Description
	Indicates that an enabled receive FIFO is full.
	0 No enabled receive FIFO is full.
	1 Enabled receive FIFO is full.
16 FRF	FIFO Request Flag
FNI	Indicates that the number of words in an enabled receive channel FIFO is greater than the receive FIFO watermark.
	0 Receive FIFO watermark not reached.
	1 Receive FIFO watermark has been reached.
15–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12	Word Start Interrupt Enable
WSIE	Enables/disables word start interrupts.
	0 Disables interrupt.
	1 Enables interrupt.
11 SEIE	Sync Error Interrupt Enable
	Enables/disables sync error interrupts.
	0 Disables interrupt.
	1 Enables interrupt.
10 FEIE	FIFO Error Interrupt Enable
PEIE	Enables/disables FIFO error interrupts.
	0 Disables the interrupt.
	1 Enables the interrupt.
9 FWIE	FIFO Warning Interrupt Enable
	Enables/disables FIFO warning interrupts.
	0 Disables the interrupt.
	1 Enables the interrupt.
8 FRIE	FIFO Request Interrupt Enable
ITTIE	Enables/disables FIFO request interrupts.
	0 Disables the interrupt.
	1 Enables the interrupt.
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4–2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1 FWDE	FIFO Warning DMA Enable
FWDE	Enables/disables DMA requests.


Memory map and register definition

I2Sx_RCSR field descriptions (continued)

Field	Description
	0 Disables the DMA request.
	1 Enables the DMA request.
0 FRDE	FIFO Request DMA Enable
	Enables/disables DMA requests.
	0 Disables the DMA request.
	1 Enables the DMA request.

49.3.11 SAI Receive Configuration 1 Register (I2Sx_RCR1)

Address: 4002_F000h base + 84h offset = 4002_F084h

I2Sx_RCR1 field descriptions

Field	Description
31–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2–0 RFW	Receive FIFO Watermark Configures the watermark level for all enabled receiver channels.

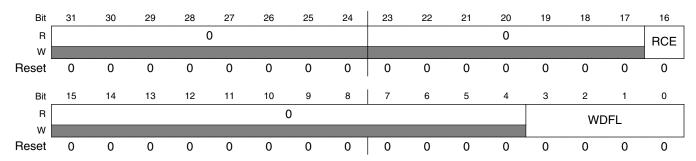
49.3.12 SAI Receive Configuration 2 Register (I2Sx_RCR2)

This register must not be altered when RCSR[RE] is set.

Address: 4002_F000h base + 88h offset = 4002_F088h

I2Sx_RCR2 field descriptions

Field	Description
31–30 SYNC	Synchronous Mode
	Configures between asynchronous and synchronous modes of operation. When configured for a synchronous mode of operation, the transmitter must be configured for asynchronous operation.
	00 Asynchronous mode.
	01 Synchronous with transmitter.
	10 Synchronous with another SAI receiver.
	11 Synchronous with another SAI transmitter.
29	Bit Clock Swap
BCS	This field swaps the bit clock used by the receiver. When the receiver is configured in asynchronous mode and this bit is set, the receiver is clocked by the transmitter bit clock (SAI_TX_BCLK). This allows the transmitter and receiver to share the same bit clock, but the receiver continues to use the receiver frame sync (SAI_RX_SYNC).
	When the receiver is configured in synchronous mode, the transmitter BCS field and receiver BCS field must be set to the same value. When both are set, the transmitter and receiver are both clocked by the receiver bit clock (SAI_RX_BCLK) but use the transmitter frame sync (SAI_TX_SYNC).
	0 Use the normal bit clock source.
	1 Swap the bit clock source.
28	Bit Clock Input
BCI	When this field is set and using an internally generated bit clock in either synchronous or asynchronous mode, the bit clock actually used by the receiver is delayed by the pad output delay (the receiver is clocked by the pad input as if the clock was externally generated). This has the effect of decreasing the data input setup time, but increasing the data output valid time.
	The slave mode timing from the datasheet should be used for the receiver when this bit is set. In synchronous mode, this bit allows the receiver to use the slave mode timing from the datasheet, while the transmitter uses the master mode timing. This field has no effect when configured for an externally generated bit clock.
	0 No effect.
	Internal logic is clocked as if bit clock was externally generated.
27–26	MCLK Select
MSEL	Selects the audio Master Clock option used to generate an internally generated bit clock. This field has no effect when configured for an externally generated bit clock.
	NOTE: Depending on the device, some Master Clock options might not be available. See the chip configuration details for the availability and chip-specific meaning of each option.
	00 Bus Clock selected.
	01 Master Clock (MCLK) 1 option selected.
	10 Master Clock (MCLK) 2 option selected.
	11 Master Clock (MCLK) 3 option selected.
25 BCP	Bit Clock Polarity
DOF.	Configures the polarity of the bit clock.
	Bit Clock is active high with drive outputs on rising edge and sample inputs on falling edge.
	Bit Clock is active low with drive outputs on falling edge and sample inputs on rising edge.

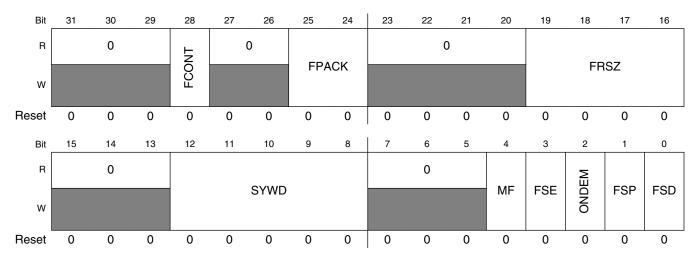

Memory map and register definition

I2Sx_RCR2 field descriptions (continued)

Field	Description
24	Bit Clock Direction
BCD	Configures the direction of the bit clock.
	0 Bit clock is generated externally in Slave mode.
	1 Bit clock is generated internally in Master mode.
23–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 DIV	Bit Clock Divide
	Divides down the audio master clock to generate the bit clock when configured for an internal bit clock. The division value is (DIV + 1) * 2.

49.3.13 SAI Receive Configuration 3 Register (I2Sx_RCR3)

Address: 4002_F000h base + 8Ch offset = 4002_F08Ch


I2Sx_RCR3 field descriptions

Field	Description
31–24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23–17 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
16 RCE	Receive Channel Enable Enables the corresponding data channel for receive operation. A channel must be enabled before its FIFO is accessed. Changing this field will take effect immediately for generating the FIFO request and warning flags, but at the end of each frame for receive operation. O Receive data channel N is disabled. Receive data channel N is enabled.
15–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–0 WDFL	Word Flag Configuration Configures which word the start of word flag is set. The value written should be one less than the word number (for example, write zero to configure for the first word in the frame). When configured to a value greater than the Frame Size field, then the start of word flag is never set.

49.3.14 SAI Receive Configuration 4 Register (I2Sx_RCR4)

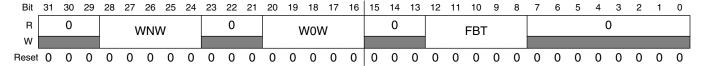
This register must not be altered when RCSR[RE] is set.

Address: 4002_F000h base + 90h offset = 4002_F090h

I2Sx_RCR4 field descriptions

Field	Description
31–29 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
28 FCONT	FIFO Continue on Error Configures when the SAI will continue receiving after a FIFO error has been detected.
	On FIFO error, the SAI will continue from the start of the next frame after the FIFO error flag has been cleared.
	1 On FIFO error, the SAI will continue from the same word that caused the FIFO error to set after the FIFO warning flag has been cleared.
27–26 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
25–24 FPACK	Enables packing of 8-bit data or 16-bit data into each 32-bit FIFO word. If the word size is greater than 8-bit or 16-bit then only the first 8-bit or 16-bits are stored to the FIFO. The first word in each frame always starts with a new 32-bit FIFO word and the first bit shifted must be configured within the first packed word. When FIFO packing is enabled, the FIFO read pointer will only increment when the full 32-bit FIFO word has been read by software. On FIFO packing is disabled Reserved.
	10 8-bit FIFO packing is enabled 11 16-bit FIFO packing is enabled
23–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

Memory map and register definition

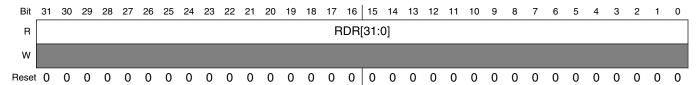

I2Sx_RCR4 field descriptions (continued)

Field	Description			
19–16 FRSZ	Frame Size Configures the number of words in each frame. The value written must be one less than the number of words in the frame. For example, write 0 for one word per frame. The maximum supported frame size is 16 words.			
15–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
12–8 SYWD	Sync Width Configures the length of the frame sync in number of bit clocks. The value written must be one less than the number of bit clocks. For example, write 0 for the frame sync to assert for one bit clock only. The sync width cannot be configured longer than the first word of the frame.			
7–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
4 MF	MSB First Configures whether the LSB or the MSB is received first. 0 LSB is received first. 1 MSB is received first.			
3 FSE	Frame Sync Early 0 Frame sync asserts with the first bit of the frame. 1 Frame sync asserts one bit before the first bit of the frame.			
2 ONDEM	On Demand Mode When set, and the frame sync is generated internally, a frame sync is only generated when the FIFO warning flag is clear. O Internal frame sync is generated continuously. Internal frame sync is generated when the FIFO warning flag is clear.			
1 FSP	Frame Sync Polarity Configures the polarity of the frame sync. 0 Frame sync is active high. 1 Frame sync is active low.			
0 FSD	Frame Sync Direction Configures the direction of the frame sync. 0 Frame Sync is generated externally in Slave mode. 1 Frame Sync is generated internally in Master mode.			

49.3.15 SAI Receive Configuration 5 Register (I2Sx_RCR5)

This register must not be altered when RCSR[RE] is set.

Address: 4002_F000h base + 94h offset = 4002_F094h

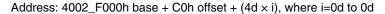

I2Sx_RCR5 field descriptions

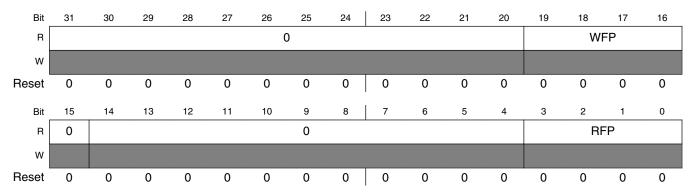
Field	Description
31–29 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
28–24 WNW	Word N Width Configures the number of bits in each word, for each word except the first in the frame. The value written must be one less than the number of bits per word. Word width of less than 8 bits is not supported.
23–21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20–16 W0W	Word 0 Width Configures the number of bits in the first word in each frame. The value written must be one less than the number of bits in the first word. Word width of less than 8 bits is not supported if there is only one word per frame.
15–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12–8 FBT	First Bit Shifted Configures the bit index for the first bit received for each word in the frame. If configured for MSB First, the index of the next bit received is one less than the current bit received. If configured for LSB First, the index of the next bit received is one more than the current bit received. The value written must be greater than or equal to the word width when configured for MSB First. The value written must be less than or equal to 31-word width when configured for LSB First.
7–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

49.3.16 SAI Receive Data Register (I2Sx_RDRn)

Reading this register introduces one additional peripheral clock wait state on each read.

Address: 4002_F000h base + A0h offset + (4d × i), where i=0d to 0d


K22F Sub-Family Reference Manual, Rev. 3, 7/2014


I2Sx_RDRn field descriptions

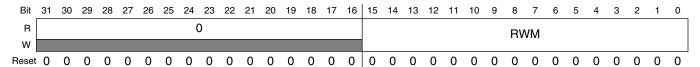
Field	Description
RDR[31:0]	Receive Data Register The corresponding RCR3[RCE] bit must be set before accessing the channel's receive data register. Reads from this register when the receive FIFO is not empty will return the data from the top of the receive FIFO. Reads from this register when the receive FIFO is empty are ignored.

49.3.17 SAI Receive FIFO Register (I2Sx_RFRn)

The MSB of the read and write pointers is used to distinguish between FIFO full and empty conditions. If the read and write pointers are identical, then the FIFO is empty. If the read and write pointers are identical except for the MSB, then the FIFO is full.

I2Sx_RFRn field descriptions

Field	Description
31–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–16 WFP	Write FIFO Pointer FIFO write pointer for receive data channel.
15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
14–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–0 RFP	Read FIFO Pointer FIFO read pointer for receive data channel.

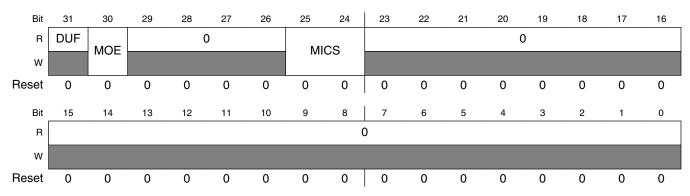

49.3.18 SAI Receive Mask Register (I2Sx_RMR)

This register is double-buffered and updates:

- 1. When RCSR[RE] is first set
- 2. At the end of each frame

This allows the masked words in each frame to change from frame to frame.

Address: 4002_F000h base + E0h offset = 4002_F0E0h


I2Sx_RMR field descriptions

Description
This field is reserved. This read-only field is reserved and always has the value 0.
Receive Word Mask Configures whether the receive word is masked (received data ignored and not written to receive FIFO) for he corresponding word in the frame. Word N is enabled. Word N is masked.
7

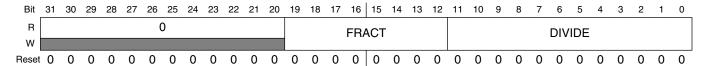
49.3.19 SAI MCLK Control Register (I2Sx_MCR)

The MCLK Control Register (MCR) controls the clock source and direction of the audio master clock.

Address: 4002_F000h base + 100h offset = 4002_F100h

I2Sx_MCR field descriptions

Field	Description
31 DUF	Divider Update Flag
_	Provides the status of on-the-fly updates to the MCLK divider ratio.


I2Sx_MCR field descriptions (continued)

Field	Description			
	MCLK divider ratio is not being updated currently.			
	1 MCLK divider ratio is updating on-the-fly. Further updates to the MCLK divider ratio are blocked while this flag remains set.			
30 MOE	MCLK Output Enable			
	Enables the MCLK divider and configures the MCLK signal pin as an output. When software clears this field, it remains set until the MCLK divider is fully disabled.			
	0 MCLK signal pin is configured as an input that bypasses the MCLK divider.			
	1 MCLK signal pin is configured as an output from the MCLK divider and the MCLK divider is enabled.			
29–26	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
25-24 MICS	MCLK Input Clock Select			
	Selects the clock input to the MCLK divider. This field cannot be changed while the MCLK divider is enabled. See the chip configuration details for information about the connections to these inputs.			
	00 MCLK divider input clock 0 selected.			
	01 MCLK divider input clock 1 selected.			
	10 MCLK divider input clock 2 selected.			
	11 MCLK divider input clock 3 selected.			
23–0	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			

49.3.20 SAI MCLK Divide Register (I2Sx_MDR)

The MCLK Divide Register (MDR) configures the MCLK divide ratio. Although the MDR can be changed when the MCLK divider clock is enabled, additional writes to the MDR are blocked while MCR[DUF] is set. Writes to the MDR when the MCLK divided clock is disabled do not set MCR[DUF].

Address: 4002 F000h base + 104h offset = 4002 F104h

I2Sx_MDR field descriptions

Field	Description
31–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–12 FRACT	MCLK Fraction Sets the MCLK divide ratio such that: MCLK output = MCLK input * ((FRACT + 1) / (DIVIDE + 1)). FRACT must be set equal or less than the value in the DIVIDE field.

I2Sx_MDR field descriptions (continued)

Field	Description				
	NOTE: When using fractional divide values, the MCLK duty cycle will not always be 50/50. See Audio master clock.				
11–0 DIVIDE	MCLK Divide				
	Sets the MCLK divide ratio such that: MCLK output = MCLK input * ((FRACT + 1) / (DIVIDE + 1)). FRACT must be set equal or less than the value in the DIVIDE field.				
	NOTE: When using fractional divide values, the MCLK duty cycle will not always be 50/50. See Audio master clock.				

49.4 Functional description

This section provides a complete functional description of the block.

49.4.1 SAI clocking

The SAI clocks include:

- The audio master clock
- The bit clock
- The bus clock

49.4.1.1 Audio master clock

The audio master clock is used to generate the bit clock when the receiver or transmitter is configured for an internally generated bit clock. The transmitter and receiver can independently select between the bus clock and up to three audio master clocks to generate the bit clock.

Each SAI peripheral can control the input clock selection, pin direction and divide ratio of one audio master clock. The input clock selection and pin direction cannot be altered if an SAI module using that audio master clock has been enabled. The MCLK divide ratio can be altered while an SAI is using that master clock, although the change in the divide ratio takes several cycles. MCR[DUF] can be polled to determine when the divide ratio change has completed.

Functional description

The audio master clock generation and selection is chip-specific. Refer to chip-specific clocking information about how the audio master clocks are generated. A typical implementation appears in the following figure.

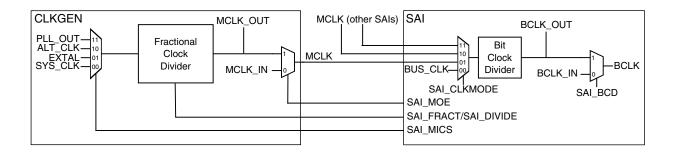


Figure 49-50. SAI master clock generation

The MCLK fractional clock divider uses both clock edges from the input clock to generate a divided down clock that will approximate the output frequency, but without creating any new clock edges. Configuring FRACT and DIVIDE to the same value will result in a divide by 1 clock, while configuring FRACT higher than DIVIDE is not supported. The duty cycle can range from 66/33 when FRACT is set to one less than DIVIDE down to 50/50 for integer divide ratios, and will approach 50/50 for large non-integer divide ratios. There is no cycle to cycle jitter or duty cycle variance when the divide ratio is an integer or half integer, otherwise the divider output will oscillate between the two divided frequencies that are the closest integer or half integer divisors of the divider input clock frequency. The maximum jitter is therefore equal to half the divider input clock period, since both edges of the input clock are used in generating the divided clock.

49.4.1.2 Bit clock

The SAI transmitter and receiver support asynchronous free-running bit clocks that can be generated internally from an audio master clock or supplied externally. There is also the option for synchronous bit clock and frame sync operation between the receiver and transmitter or between multiple SAI peripherals.

Externally generated bit clocks must be:

- Enabled before the SAI transmitter or receiver is enabled
- Disabled after the SAI transmitter or receiver is disabled and completes its current frames

If the SAI transmitter or receiver is using an externally generated bit clock in asynchronous mode and that bit clock is generated by an SAI that is disabled in stop mode, then the transmitter or receiver should be disabled by software before entering stop mode. This issue does not apply when the transmitter or receiver is in a synchronous mode because all synchronous SAIs are enabled and disabled simultaneously.

49.4.1.3 Bus clock

The bus clock is used by the control and configuration registers and to generate synchronous interrupts and DMA requests.

NOTE

Although there is no specific minimum bus clock frequency specified, the bus clock frequency must be fast enough (relative to the bit clock frequency) to ensure that the FIFOs can be serviced, without generating either a transmitter FIFO underrun or receiver FIFO overflow condition.

49.4.2 SAI resets

The SAI is asynchronously reset on system reset. The SAI has a software reset and a FIFO reset.

49.4.2.1 Software reset

The SAI transmitter includes a software reset that resets all transmitter internal logic, including the bit clock generation, status flags, and FIFO pointers. It does not reset the configuration registers. The software reset remains asserted until cleared by software.

The SAI receiver includes a software reset that resets all receiver internal logic, including the bit clock generation, status flags and FIFO pointers. It does not reset the configuration registers. The software reset remains asserted until cleared by software.

49.4.2.2 FIFO reset

The SAI transmitter includes a FIFO reset that synchronizes the FIFO write pointer to the same value as the FIFO read pointer. This empties the FIFO contents and is to be used after TCSR[FEF] is set, and before the FIFO is re-initialized and TCSR[FEF] is cleared. The FIFO reset is asserted for one cycle only.

Functional description

The SAI receiver includes a FIFO reset that synchronizes the FIFO read pointer to the same value as the FIFO write pointer. This empties the FIFO contents and is to be used after the RCSR[FEF] is set and any remaining data has been read from the FIFO, and before the RCSR[FEF] is cleared. The FIFO reset is asserted for one cycle only.

49.4.3 Synchronous modes

The SAI transmitter and receiver can operate synchronously to each other.

49.4.3.1 Synchronous mode

The SAI transmitter and receiver can be configured to operate with synchronous bit clock and frame sync.

If the transmitter bit clock and frame sync are to be used by both the transmitter and receiver:

- The transmitter must be configured for asynchronous operation and the receiver for synchronous operation.
- In synchronous mode, the receiver is enabled only when both the transmitter and receiver are enabled.
- It is recommended that the transmitter is the last enabled and the first disabled.

If the receiver bit clock and frame sync are to be used by both the transmitter and receiver:

- The receiver must be configured for asynchronous operation and the transmitter for synchronous operation.
- In synchronous mode, the transmitter is enabled only when both the receiver and transmitter are both enabled.
- It is recommended that the receiver is the last enabled and the first disabled.

When operating in synchronous mode, only the bit clock, frame sync, and transmitter/receiver enable are shared. The transmitter and receiver otherwise operate independently, although configuration registers must be configured consistently across both the transmitter and receiver.

49.4.4 Frame sync configuration

When enabled, the SAI continuously transmits and/or receives frames of data. Each frame consists of a fixed number of words and each word consists of a fixed number of bits. Within each frame, any given word can be masked causing the receiver to ignore that word and the transmitter to tri-state for the duration of that word.

The frame sync signal is used to indicate the start of each frame. A valid frame sync requires a rising edge (if active high) or falling edge (if active low) to be detected and the transmitter or receiver cannot be busy with a previous frame. A valid frame sync is also ignored (slave mode) or not generated (master mode) for the first four bit clock cycles after enabling the transmitter or receiver.

The transmitter and receiver frame sync can be configured independently with any of the following options:

- Externally generated or internally generated
- Active high or active low
- Assert with the first bit in frame or asserts one bit early
- Assert for a duration between 1 bit clock and the first word length
- Frame length from 1 to 16 words per frame
- Word length to support 8 to 32 bits per word
 - First word length and remaining word lengths can be configured separately
- Words can be configured to transmit/receive MSB first or LSB first

These configuration options cannot be changed after the SAI transmitter or receiver is enabled.

49.4.5 Data FIFO

Each transmit and receive channel includes a FIFO of size 8×32 -bit. The FIFO data is accessed using the SAI Transmit/Receive Data Registers.

49.4.5.1 Data alignment

Data in the FIFO can be aligned anywhere within the 32-bit wide register through the use of the First Bit Shifted configuration field, which selects the bit index (between 31 and 0) of the first bit shifted.

Examples of supported data alignment and the required First Bit Shifted configuration are illustrated in Figure 49-51 for LSB First configurations and Figure 49-52 for MSB First configurations.

Functional description

Figure 49-51. SAI first bit shifted, LSB first

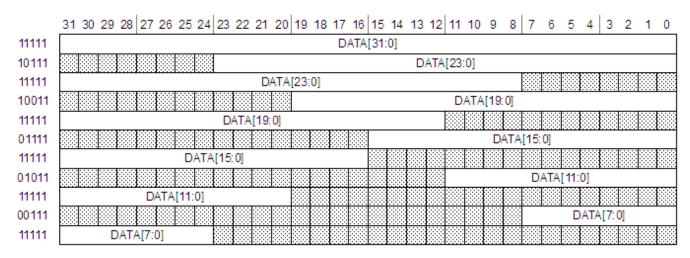


Figure 49-52. SAI first bit shifted, MSB first

49.4.5.2 FIFO pointers

When writing to a TDR, the WFP of the corresponding TFR increments after each valid write. The SAI supports 8-bit, 16-bit and 32-bit writes to the TDR and the FIFO pointer will increment after each individual write. Note that 8-bit writes should only be used when transmitting up to 8-bit data and 16-bit writes should only be used when transmitting up to 16-bit data.

Writes to a TDR are ignored if the corresponding bit of TCR3[TCE] is clear or if the FIFO is full. If the Transmit FIFO is empty, the TDR must be written at least three bit clocks before the start of the next unmasked word to avoid a FIFO underrun.

When reading an RDR, the RFP of the corresponding RFR increments after each valid read. The SAI supports 8-bit, 16-bit and 32-bit reads from the RDR and the FIFO pointer will increment after each individual read. Note that 8-bit reads should only be used when receiving up to 8-bit data and 16-bit reads should only be used when receiving up to 16-bit data.

Reads from an RDR are ignored if the corresponding bit of RCR3[RCE] is clear or if the FIFO is empty. If the Receive FIFO is full, the RDR must be read at least three bit clocks before the end of an unmasked word to avoid a FIFO overrun.

49.4.5.3 FIFO packing

FIFO packing supports storing multiple 8-bit or 16-bit data words in one 32-bit FIFO word for the transmitter and/or receiver. While this can be emulated by adjusting the number of bits per word and number of words per frame (for example, one 32-bit word per frame versus two 16-bit words per frame), FIFO packing does not require even multiples of words per frame and fully supports word masking. When FIFO packing is enabled, the FIFO pointers only increment when the full 32-bit FIFO word has been written (transmit) or read (receive) by software, supporting scenarios where different words within each frame are loaded/stored in different areas of memory.

When 16-bit FIFO packing is enabled for transmit, the transmit shift register is loaded at the start of each frame and after every second unmasked transmit word. The first word transmitted is taken from 16-bit word at byte offset \$0 (first bit is selected by TCFG5[FBT] must be configured within this 16-bit word) and the second word transmitted is taken from the 16-bit word at byte offset \$2 (first bit is selected by TCSR5[FBT][3:0]). The transmitter will transmit logic zero until the start of the next word once the 16-bit word has been transmitted.

When 16-bit FIFO packing is enabled for receive, the receive shift register is stored after every second unmasked received word, and at the end of each frame if there is an odd number of unmasked received words in each frame. The first word received is stored in the 16-bit word at byte offset \$0 (first bit is selected by RCFG5[FBT] and must be configured within this 16-bit word) and the second word received is stored in the 16-bit word at byte offset \$2 (first bit is selected by RCSR5[FBT][3:0]). The receiver will ignore received data until the start of the next word once the 16-bit word has been received.

The 8-bit FIFO packing is similar to 16-bit packing except four words are loaded or stored into each 32-bit FIFO word. The first word is loaded/stored in byte offset \$0, second word in byte offset \$1, third word in byte offset \$2 and fourth word in byte offset \$3. The TCFG5[FBT] and/or RCFG5[FBT] must be configured within byte offset \$0.

49.4.6 Word mask register

The SAI transmitter and receiver each contain a word mask register, namely TMR and RMR, that can be used to mask any word in the frame. Because the word mask register is double buffered, software can update it before the end of each frame to mask a particular word in the next frame.

The TMR causes the Transmit Data pin to be tri-stated for the length of each selected word and the transmit FIFO is not read for masked words.

The RMR causes the received data for each selected word to be discarded and not written to the receive FIFO.

49.4.7 Interrupts and DMA requests

The SAI transmitter and receiver generate separate interrupts and separate DMA requests, but support the same status flags. Asynchronous versions of the transmitter and receiver interrupts are generated to wake up the CPU from stop mode.

49.4.7.1 FIFO request flag

The FIFO request flag is set based on the number of entries in the FIFO and the FIFO watermark configuration.

The transmit FIFO request flag is set when the number of entries in any of the enabled transmit FIFOs is less than or equal to the transmit FIFO watermark configuration and is cleared when the number of entries in each enabled transmit FIFO is greater than the transmit FIFO watermark configuration.

The receive FIFO request flag is set when the number of entries in any of the enabled receive FIFOs is greater than the receive FIFO watermark configuration and is cleared when the number of entries in each enabled receive FIFO is less than or equal to the receive FIFO watermark configuration.

The FIFO request flag can generate an interrupt or a DMA request.

49.4.7.2 FIFO warning flag

The FIFO warning flag is set based on the number of entries in the FIFO.

The transmit warning flag is set when the number of entries in any of the enabled transmit FIFOs is empty and is cleared when the number of entries in each enabled transmit FIFO is not empty.

The receive warning flag is set when the number of entries in any of the enabled receive FIFOs is full and is cleared when the number of entries in each enabled receive FIFO is not full.

The FIFO warning flag can generate an Interrupt or a DMA request.

49.4.7.3 FIFO error flag

The transmit FIFO error flag is set when the any of the enabled transmit FIFOs underflow. After it is set, all enabled transmit channels will transmit zero until TCSR[FEF] is cleared and the next transmit frame starts. All enabled transmit FIFOs must be reset and initialized with new data before TCSR[FEF] is cleared.

When TCR4[FCONT] is set, the FIFO will continue transmitting data following an underflow without software intervention. To ensure that data is transmitted in the correct order, the transmitter will continue from the same word number in the frame that caused the FIFO to underflow, but only after new data has been written to the transmit FIFO. Software should still clear the TCSR[FEF] flag, but without reinitializing the transmit FIFOs.

RCSR[FEF] is set when the any of the enabled receive FIFOs overflow. After it is set, all enabled receive channels discard received data until RCSR[FEF] is cleared and the next next receive frame starts. All enabled receive FIFOs should be emptied before RCSR[FEF] is cleared.

When RCR4[FCONT] is set, the FIFO will continue receiving data following an overflow without software intervention. To ensure that data is received in the correct order, the receiver will continue from the same word number in the frame that caused the FIFO to overflow, but only after data has been read from the receive FIFO. Software should still clear the RCSR[FEF] flag, but without emptying the receive FIFOs.

The FIFO error flag can generate only an interrupt.

49.4.7.4 Sync error flag

The sync error flag, TCSR[SEF] or RCSR[SEF], is set when configured for an externally generated frame sync and the external frame sync asserts when the transmitter or receiver is busy with the previous frame. The external frame sync assertion is ignored and the sync error flag is set. When the sync error flag is set, the transmitter or receiver continues checking for frame sync assertion when idle or at the end of each frame.

The sync error flag can generate an interrupt only.

49.4.7.5 Word start flag

The word start flag is set at the start of the second bit clock for the selected word, as configured by the Word Flag register field.

The word start flag can generate an interrupt only.

Chapter 50 General-Purpose Input/Output (GPIO)

50.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The GPIO registers support 8-bit, 16-bit or 32-bit accesses.

The GPIO data direction and output data registers control the direction and output data of each pin when the pin is configured for the GPIO function. The GPIO input data register displays the logic value on each pin when the pin is configured for any digital function, provided the corresponding Port Control and Interrupt module for that pin is enabled.

Efficient bit manipulation of the general-purpose outputs is supported through the addition of set, clear, and toggle write-only registers for each port output data register.

50.1.1 Features

- Features of the GPIO module include:
 - Port Data Input register visible in all digital pin-multiplexing modes
 - Port Data Output register with corresponding set/clear/toggle registers
 - Port Data Direction register

NOTE

The GPIO module is clocked by system clock.

50.1.2 Modes of operation

The following table depicts different modes of operation and the behavior of the GPIO module in these modes.

Table 50-1. Modes of operation

Modes of operation	Description
Run	The GPIO module operates normally.
Wait	The GPIO module operates normally.
Stop	The GPIO module is disabled.
Debug	The GPIO module operates normally.

50.1.3 GPIO signal descriptions

Table 50-2. GPIO signal descriptions

GPIO signal descriptions	Description	I/O
PORTA31-PORTA0	General-purpose input/output	I/O
PORTB31-PORTB0	General-purpose input/output	I/O
PORTC31-PORTC0	General-purpose input/output	I/O
PORTD31-PORTD0	General-purpose input/output	I/O
PORTE31-PORTE0	General-purpose input/output	I/O

NOTE

Not all pins within each port are implemented on each device. See the chapter on signal multiplexing for the number of GPIO ports available in the device.

50.1.3.1 Detailed signal description

Table 50-3. GPIO interface-detailed signal descriptions

Signal	I/O	Description	
PORTA31-PORTA0	I/O	General-purpose input/output	
PORTB31-PORTB0		State meaning	Asserted: The pin is logic 1.
PORTC31-PORTC0			Deasserted: The pin is logic 0.
PORTD31-PORTD0 PORTE31-PORTE0		Timing	Assertion: When output, this signal occurs on the rising-edge of the system clock. For input, it may occur at any time and input may be asserted asynchronously to the system clock.
			Deassertion: When output, this signal occurs on the rising-edge of the system clock. For input, it may occur at any time and input may be asserted asynchronously to the system clock.

NOTE

Not all pins within each port are implemented on each device. See the chapter on signal multiplexing for the number of GPIO ports available in the device.

50.2 Memory map and register definition

Any read or write access to the GPIO memory space that is outside the valid memory map results in a bus error.

GPIO memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
400F_F000	Port Data Output Register (GPIOA_PDOR)	32	R/W	0000_0000h	50.2.1/1361
400F_F004	Port Set Output Register (GPIOA_PSOR)	32	W (always reads 0)	0000_0000h	50.2.2/1362
400F_F008	Port Clear Output Register (GPIOA_PCOR)	32	W (always reads 0)	0000_0000h	50.2.3/1362
400F_F00C	Port Toggle Output Register (GPIOA_PTOR)	32	W (always reads 0)	0000_0000h	50.2.4/1363

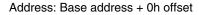
Table continues on the next page...

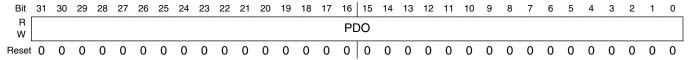
K22F Sub-Family Reference Manual, Rev. 3, 7/2014

GPIO memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
400F_F010	Port Data Input Register (GPIOA_PDIR)	32	R	0000_0000h	50.2.5/1363
400F_F014	Port Data Direction Register (GPIOA_PDDR)	32	R/W	0000_0000h	50.2.6/1364
400F_F040	Port Data Output Register (GPIOB_PDOR)	32	R/W	0000_0000h	50.2.1/1361
400F_F044	Port Set Output Register (GPIOB_PSOR)	32	W (always reads 0)	0000_0000h	50.2.2/1362
400F_F048	Port Clear Output Register (GPIOB_PCOR)	32	W (always reads 0)	0000_0000h	50.2.3/1362
400F_F04C	Port Toggle Output Register (GPIOB_PTOR)	32	W (always reads 0)	0000_0000h	50.2.4/1363
400F_F050	Port Data Input Register (GPIOB_PDIR)	32	R	0000_0000h	50.2.5/1363
400F_F054	Port Data Direction Register (GPIOB_PDDR)	32	R/W	0000_0000h	50.2.6/1364
400F_F080	Port Data Output Register (GPIOC_PDOR)	32	R/W	0000_0000h	50.2.1/1361
400F_F084	Port Set Output Register (GPIOC_PSOR)	32	W (always reads 0)	0000_0000h	50.2.2/1362
400F_F088	Port Clear Output Register (GPIOC_PCOR)	32	W (always reads 0)	0000_0000h	50.2.3/1362
400F_F08C	Port Toggle Output Register (GPIOC_PTOR)	32	W (always reads 0)	0000_0000h	50.2.4/1363
400F_F090	Port Data Input Register (GPIOC_PDIR)	32	R	0000_0000h	50.2.5/1363
400F_F094	Port Data Direction Register (GPIOC_PDDR)	32	R/W	0000_0000h	50.2.6/1364
400F_F0C0	Port Data Output Register (GPIOD_PDOR)	32	R/W	0000_0000h	50.2.1/1361
400F_F0C4	Port Set Output Register (GPIOD_PSOR)	32	W (always reads 0)	0000_0000h	50.2.2/1362
400F_F0C8	Port Clear Output Register (GPIOD_PCOR)	32	W (always reads 0)	0000_0000h	50.2.3/1362
400F_F0CC	Port Toggle Output Register (GPIOD_PTOR)	32	W (always reads 0)	0000_0000h	50.2.4/1363
400F_F0D0	Port Data Input Register (GPIOD_PDIR)	32	R	0000_0000h	50.2.5/1363
400F_F0D4	Port Data Direction Register (GPIOD_PDDR)	32	R/W	0000_0000h	50.2.6/1364
400F_F100	Port Data Output Register (GPIOE_PDOR)	32	R/W	0000_0000h	50.2.1/1361
400F_F104	Port Set Output Register (GPIOE_PSOR)	32	W (always reads 0)	0000_0000h	50.2.2/1362

GPIO memory map (continued)

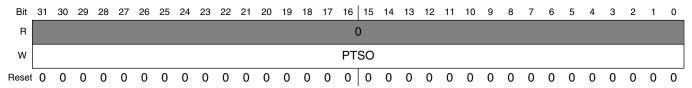

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
400F_F108	Port Clear Output Register (GPIOE_PCOR)	32	W (always reads 0)	0000_0000h	50.2.3/1362
400F_F10C	Port Toggle Output Register (GPIOE_PTOR)	32	W (always reads 0)	0000_0000h	50.2.4/1363
400F_F110	Port Data Input Register (GPIOE_PDIR)	32	R	0000_0000h	50.2.5/1363
400F_F114	Port Data Direction Register (GPIOE_PDDR)	32	R/W	0000_0000h	50.2.6/1364


50.2.1 Port Data Output Register (GPIOx_PDOR)

This register configures the logic levels that are driven on each general-purpose output pins.

NOTE

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

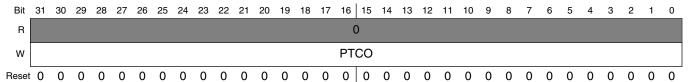

GPIOx_PDOR field descriptions

Field	Description
PDO	Port Data Output Register bits for unbonded pins return a undefined value when read. Under the configured for general-purpose output. Logic level 1 is driven on pin, provided pin is configured for general-purpose output.

50.2.2 Port Set Output Register (GPIOx_PSOR)

This register configures whether to set the fields of the PDOR.

Address: Base address + 4h offset

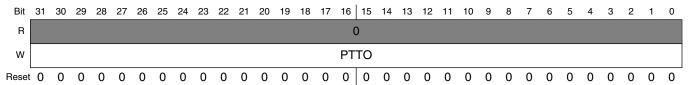

GPIOx_PSOR field descriptions

Field	Description
PTSO	Port Set Output Writing to this register will update the contents of the corresponding bit in the PDOR as follows: 0 Corresponding bit in PDORn does not change. 1 Corresponding bit in PDORn is set to logic 1.

50.2.3 Port Clear Output Register (GPIOx_PCOR)

This register configures whether to clear the fields of PDOR.

Address: Base address + 8h offset



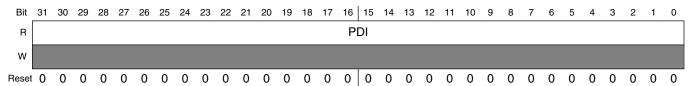
GPIOx_PCOR field descriptions

Field	Description
31–0	Port Clear Output
PTCO	Writing to this register will update the contents of the corresponding bit in the Port Data Output Register (PDOR) as follows:
	0 Corresponding bit in PDORn does not change.
	1 Corresponding bit in PDORn is cleared to logic 0.

50.2.4 Port Toggle Output Register (GPIOx_PTOR)

Address: Base address + Ch offset

GPIOx_PTOR field descriptions

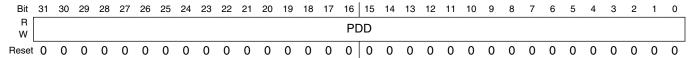

Field	Description
PTTO	Port Toggle Output Writing to this register will update the contents of the corresponding bit in the PDOR as follows:
	 Corresponding bit in PDORn does not change. Corresponding bit in PDORn is set to the inverse of its existing logic state.

50.2.5 Port Data Input Register (GPIOx_PDIR)

NOTE

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

Address: Base address + 10h offset


GPIOx_PDIR field descriptions

Field	Description
31–0 PDI	Port Data Input
	Reads 0 at the unimplemented pins for a particular device. Pins that are not configured for a digital function read 0. If the Port Control and Interrupt module is disabled, then the corresponding bit in PDIR does not update.
	 0 Pin logic level is logic 0, or is not configured for use by digital function. 1 Pin logic level is logic 1.

50.2.6 Port Data Direction Register (GPIOx_PDDR)

The PDDR configures the individual port pins for input or output.

Address: Base address + 14h offset

GPIOx_PDDR field descriptions

Field	Description
31–0 PDD	Port Data Direction Configures individual port pins for input or output. 0 Pin is configured as general-purpose input, for the GPIO function. 1 Pin is configured as general-purpose output, for the GPIO function.

50.3 Functional description

50.3.1 General-purpose input

The logic state of each pin is available via the Port Data Input registers, provided the pin is configured for a digital function and the corresponding Port Control and Interrupt module is enabled.

The Port Data Input registers return the synchronized pin state after any enabled digital filter in the Port Control and Interrupt module. The input pin synchronizers are shared with the Port Control and Interrupt module, so that if the corresponding Port Control and Interrupt module is disabled, then synchronizers are also disabled. This reduces power consumption when a port is not required for general-purpose input functionality.

50.3.2 General-purpose output

The logic state of each pin can be controlled via the port data output registers and port data direction registers, provided the pin is configured for the GPIO function. The following table depicts the conditions for a pin to be configured as input/output.

Chapter 50 General-Purpose Input/Output (GPIO)

A pin is configured for the GPIO function and the corresponding port data direction register bit is clear.	The pin is configured as an input.
A pin is configured for the GPIO function and the corresponding port data direction register bit is set.	The pin is configured as an output and and the logic state of the pin is equal to the corresponding port data output register.

To facilitate efficient bit manipulation on the general-purpose outputs, pin data set, pin data clear, and pin data toggle registers exist to allow one or more outputs within one port to be set, cleared, or toggled from a single register write.

The corresponding Port Control and Interrupt module does not need to be enabled to update the state of the port data direction registers and port data output registers including the set/clear/toggle registers.

Functional description

Chapter 51 JTAG Controller (JTAGC)

51.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The JTAGC block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC block is communicated in serial format.

51.1.1 Block diagram

The following is a simplified block diagram of the JTAG Controller (JTAGC) block. Refer to the chip-specific configuration information as well as Register description for more information about the JTAGC registers.

Introduction

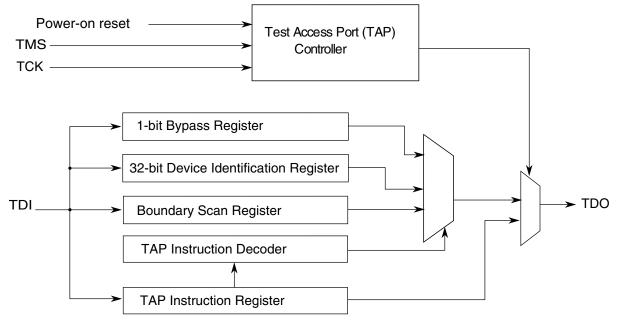


Figure 51-1. JTAG (IEEE 1149.1) block diagram

51.1.2 Features

The JTAGC block is compliant with the IEEE 1149.1-2001 standard, and supports the following features:

- IEEE 1149.1-2001 Test Access Port (TAP) interface
 - 4 pins (TDI, TMS, TCK, and TDO)
- Instruction register that supports several IEEE 1149.1-2001 defined instructions as well as several public and private device-specific instructions. Refer to Table 51-3 for a list of supported instructions.
- Bypass register, boundary scan register, and device identification register.
- TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry.

51.1.3 Modes of operation

The JTAGC block uses a power-on reset indication as its primary reset signals. Several IEEE 1149.1-2001 defined test modes are supported, as well as a bypass mode.

51.1.3.1 Reset

The JTAGC block is placed in reset when either power-on reset is asserted, or the TMS input is held high for enough consecutive rising edges of TCK to sequence the TAP controller state machine into the Test-Logic-Reset state. Holding TMS high for five consecutive rising edges of TCK guarantees entry into the Test-Logic-Reset state regardless of the current TAP controller state. Asserting power-on reset results in asynchronous entry into the reset state. While in reset, the following actions occur:

- The TAP controller is forced into the Test-Logic-Reset state, thereby disabling the test logic and allowing normal operation of the on-chip system logic to continue unhindered
- The instruction register is loaded with the IDCODE instruction

51.1.3.2 IEEE 1149.1-2001 defined test modes

The JTAGC block supports several IEEE 1149.1-2001 defined test modes. A test mode is selected by loading the appropriate instruction into the instruction register while the JTAGC is enabled. Supported test instructions include EXTEST, HIGHZ, CLAMP, SAMPLE and SAMPLE/PRELOAD. Each instruction defines the set of data register(s) that may operate and interact with the on-chip system logic while the instruction is current. Only one test data register path is enabled to shift data between TDI and TDO for each instruction.

The boundary scan register is enabled for serial access between TDI and TDO when the EXTEST, SAMPLE or SAMPLE/PRELOAD instructions are active. The single-bit bypass register shift stage is enabled for serial access between TDI and TDO when the BYPASS, HIGHZ, CLAMP or reserved instructions are active. The functionality of each test mode is explained in more detail in JTAGC block instructions.

51.1.3.3 Bypass mode

When no test operation is required, the BYPASS instruction can be loaded to place the JTAGC block into bypass mode. While in bypass mode, the single-bit bypass shift register is used to provide a minimum-length serial path to shift data between TDI and TDO.

51.2 External signal description

The JTAGC consists of a set of signals that connect to off chip development tools and allow access to test support functions. The JTAGC signals are outlined in the following table and described in the following sections.

Name	I/O	Function	Reset State	Pull
TCK	Input	Test Clock	_	Down
TDI	Input	Test Data In	_	Up
TDO	Output	Test Data Out	High Z ¹	_
TMS	Input	Test Mode Select	_	Up

Table 51-1. JTAG signal properties

51.2.1 TCK—Test clock input

Test Clock Input (TCK) is an input pin used to synchronize the test logic and control register access through the TAP.

51.2.2 TDI—Test data input

Test Data Input (TDI) is an input pin that receives serial test instructions and data. TDI is sampled on the rising edge of TCK.

51.2.3 TDO—Test data output

Test Data Output (TDO) is an output pin that transmits serial output for test instructions and data. TDO is three-stateable and is actively driven only in the Shift-IR and Shift-DR states of the TAP controller state machine, which is described in TAP controller state machine.

51.2.4 TMS—Test mode select

Test Mode Select (TMS) is an input pin used to sequence the IEEE 1149.1-2001 test control state machine. TMS is sampled on the rising edge of TCK.

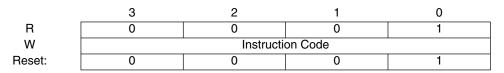
^{1.} TDO output buffer enable is negated when the JTAGC is not in the Shift-IR or Shift-DR states. A weak pull may be implemented at the TDO pad for use when JTAGC is inactive.

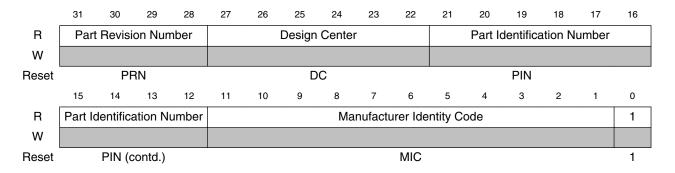
51.3 Register description

This section provides a detailed description of the JTAGC block registers accessible through the TAP interface, including data registers and the instruction register. Individual bit-level descriptions and reset states of each register are included. These registers are not memory-mapped and can only be accessed through the TAP.

51.3.1 Instruction register

The JTAGC block uses a 4-bit instruction register as shown in the following figure. The instruction register allows instructions to be loaded into the block to select the test to be performed or the test data register to be accessed or both. Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state, and latched on the falling edge of TCK in the Update-IR state. The latched instruction value can only be changed in the Update-IR and Test-Logic-Reset TAP controller states. Synchronous entry into the Test-Logic-Reset state results in the IDCODE instruction being loaded on the falling edge of TCK. Asynchronous entry into the Test-Logic-Reset state results in asynchronous loading of the IDCODE instruction. During the Capture-IR TAP controller state, the instruction shift register is loaded with the value 0001b, making this value the register's read value when the TAP controller is sequenced into the Shift-IR state.




Figure 51-2. Instruction register

51.3.2 Bypass register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO when the BYPASS, CLAMP, HIGHZ or reserve instructions are active. After entry into the Capture-DR state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after selecting the bypass register is always a logic 0.

51.3.3 Device identification register

The device identification (JTAG ID) register, shown in the following figure, allows the revision number, part number, manufacturer, and design center responsible for the design of the part to be determined through the TAP. The device identification register is selected for serial data transfer between TDI and TDO when the IDCODE instruction is active. Entry into the Capture-DR state while the device identification register is selected loads the IDCODE into the shift register to be shifted out on TDO in the Shift-DR state. No action occurs in the Update-DR state.

The following table describes the device identification register functions.

Table 51-2. Device identification register field descriptions

Field	Description	
PRN	Part Revision Number. Contains the revision number of the part. Value is On this device, the PIN mirrors bits 9-0 of the SIM_SDID[REVID] field. Please see the SIM_SDID register description for more detail.	
DC	Design Center. Indicates the design center. Value is 0x2C.	
PIN	Part Identification Number. Contains the part number of the device. On this device, the PIN mirrors bits 9-0 of the SIM_SDID register. Please see the SIM_SDID register description for more detail.	
MIC	Manufacturer Identity Code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID. Value is 0x00E.	
IDCODE ID	IDCODE Register ID. Identifies this register as the device identification register and not the bypass register. Always set to 1.	

51.3.4 Boundary scan register

The boundary scan register is connected between TDI and TDO when the EXTEST, SAMPLE or SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, force fixed values on output pins, and select a logic value and direction for bidirectional pins. Each bit of the boundary scan register represents a separate boundary scan register cell, as described in the IEEE 1149.1-2001 standard and discussed in Boundary scan. The size of the boundary scan register and bit ordering is device-dependent and can be found in the device BSDL file.

51.4 Functional description

This section explains the JTAGC functional description.

51.4.1 JTAGC reset configuration

While in reset, the TAP controller is forced into the Test-Logic-Reset state, thus disabling the test logic and allowing normal operation of the on-chip system logic. In addition, the instruction register is loaded with the IDCODE instruction.

51.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC block uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be shared with other TAP controllers on the MCU. Ownership of the port is determined by the value of the currently loaded instruction.

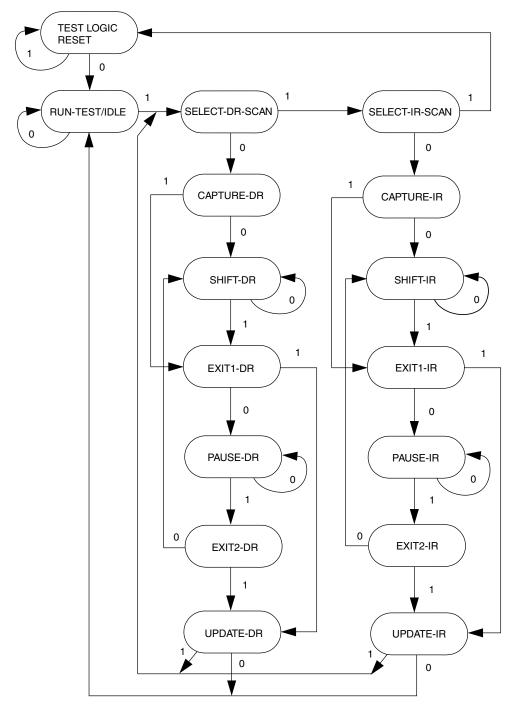

Data is shifted between TDI and TDO though the selected register starting with the least significant bit, as illustrated in the following figure. This applies for the instruction register, test data registers, and the bypass register.

Figure 51-3. Shifting data through a register

51.4.3 TAP controller state machine

The TAP controller is a synchronous state machine that interprets the sequence of logical values on the TMS pin. The following figure shows the machine's states. The value shown next to each state is the value of the TMS signal sampled on the rising edge of the TCK signal. As the following figure shows, holding TMS at logic 1 while clocking TCK through a sufficient number of rising edges also causes the state machine to enter the Test-Logic-Reset state.

The value shown adjacent to each state transition in this figure represents the value of TMS at the time of a rising edge of TCK.

Figure 51-4. IEEE 1149.1-2001 TAP controller finite state machine

51.4.3.1 Enabling the TAP controller

The JTAGC TAP controller is enabled by setting the JTAGC enable to a logic 1 value.

51.4.3.2 Selecting an IEEE 1149.1-2001 register

Access to the JTAGC data registers is achieved by loading the instruction register with any of the JTAGC block instructions while the JTAGC is enabled. Instructions are shifted in via the Select-IR-Scan path and loaded in the Update-IR state. At this point, all data register access is performed via the Select-DR-Scan path.

The Select-DR-Scan path is used to read or write the register data by shifting in the data (LSB first) during the Shift-DR state. When reading a register, the register value is loaded into the IEEE 1149.1-2001 shifter during the Capture-DR state. When writing a register, the value is loaded from the IEEE 1149.1-2001 shifter to the register during the Update-DR state. When reading a register, there is no requirement to shift out the entire register contents. Shifting may be terminated once the required number of bits have been acquired.

51.4.4 JTAGC block instructions

The JTAGC block implements the IEEE 1149.1-2001 defined instructions listed in the following table. This section gives an overview of each instruction; refer to the IEEE 1149.1-2001 standard for more details. All undefined opcodes are reserved.

Instruction Code[3:0] Instruction summary IDCODE 0000 Selects device identification register for shift SAMPLE/PRELOAD 0010 Selects boundary scan register for shifting, sampling, and preloading without disturbing functional operation **SAMPLE** 0011 Selects boundary scan register for shifting and sampling without disturbing functional operation **EXTEST** 0100 Selects boundary scan register and applies preloaded values to output pins. NOTE: Execution of this instruction asserts functional reset. Factory debug reserved 0101 Intended for factory debug only 0110 Factory debug reserved Intended for factory debug only 0111 Factory debug reserved Intended for factory debug only ARM JTAG-DP Reserved 1000 This instruction goes the ARM JTAG-DP controller. See the ARM JTAG-DP documentation for more information. HIGHZ 1001 Selects bypass register and three-states all output pins. NOTE: Execution of this instruction asserts functional reset. 1010 ARM JTAG-DP Reserved This instruction goes the ARM JTAG-DP controller. See the ARM JTAG-DP documentation for more information.

Table 51-3. 4-bit JTAG instructions

Table continues on the next page...

Table 51-3. 4-bit JTAG instructions (continued)

Instruction	Code[3:0]	Instruction summary
ARM JTAG-DP Reserved	1011	This instruction goes the ARM JTAG-DP controller. See the ARM JTAG-DP documentation for more information.
CLAMP	1100	Selects bypass register and applies preloaded values to output pins.
		NOTE: Execution of this instruction asserts functional reset.
EZPORT	1101	Enables the EZPORT function for the SoC
ARM JTAG-DP Reserved	1110	This instruction goes the ARM JTAG-DP controller. See the ARM JTAG-DP documentation for more information.
BYPASS	1111	Selects bypass register for data operations

51.4.4.1 IDCODE instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and TDO. This instruction allows interrogation of the MCU to determine its version number and other part identification data. IDCODE is the instruction placed into the instruction register when the JTAGC block is reset.

51.4.4.2 SAMPLE/PRELOAD instruction

The SAMPLE/PRELOAD instruction has two functions:

- The SAMPLE portion of the instruction obtains a sample of the system data and control signals present at the MCU input pins and just before the boundary scan register cells at the output pins. This sampling occurs on the rising edge of TCK in the Capture-DR state when the SAMPLE/PRELOAD instruction is active. The sampled data is viewed by shifting it through the boundary scan register to the TDO output during the Shift-DR state. Both the data capture and the shift operation are transparent to system operation.
- The PRELOAD portion of the instruction initializes the boundary scan register cells before selecting the EXTEST or CLAMP instructions to perform boundary scan tests. This is achieved by shifting in initialization data to the boundary scan register during the Shift-DR state. The initialization data is transferred to the parallel outputs of the boundary scan register cells on the falling edge of TCK in the Update-DR state. The data is applied to the external output pins by the EXTEST or CLAMP instruction. System operation is not affected.

51.4.4.3 SAMPLE instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input pins and just before the boundary scan register cells at the output pins. This sampling occurs on the rising edge of TCK in the Capture-DR state when the SAMPLE instruction is active. The sampled data is viewed by shifting it through the boundary scan register to the TDO output during the Shift-DR state. There is no defined action in the Update-DR state. Both the data capture and the shift operation are transparent to system operation.

51.4.4.4 EXTEST External test instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It allows testing of off-chip circuitry and board-level interconnections by driving preloaded data contained in the boundary scan register onto the system output pins. Typically, the preloaded data is loaded into the boundary scan register using the SAMPLE/PRELOAD instruction before the selection of EXTEST. EXTEST asserts the internal system reset for the MCU to force a predictable internal state while performing external boundary scan operations.

51.4.4.5 HIGHZ instruction

HIGHZ selects the bypass register as the shift path between TDI and TDO. While HIGHZ is active all output drivers are placed in an inactive drive state (e.g., high impedance). HIGHZ also asserts the internal system reset for the MCU to force a predictable internal state.

51.4.4.6 CLAMP instruction

CLAMP allows the state of signals driven from MCU pins to be determined from the boundary scan register while the bypass register is selected as the serial path between TDI and TDO. CLAMP enhances test efficiency by reducing the overall shift path to a single bit (the bypass register) while conducting an EXTEST type of instruction through the boundary scan register. CLAMP also asserts the internal system reset for the MCU to force a predictable internal state.

51.4.4.7 BYPASS instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI and TDO. BYPASS enhances test efficiency by reducing the overall shift path when no test operation of the MCU is required. This allows more rapid movement of test data to and from other components on a board that are required to perform test functions. While the BYPASS instruction is active the system logic operates normally.

51.4.5 Boundary scan

The boundary scan technique allows signals at component boundaries to be controlled and observed through the shift-register stage associated with each pad. Each stage is part of a larger boundary scan register cell, and cells for each pad are interconnected serially to form a shift-register chain around the border of the design. The boundary scan register consists of this shift-register chain, and is connected between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE/PRELOAD instructions are loaded. The shift-register chain contains a serial input and serial output, as well as clock and control signals.

51.5 Initialization/Application information

The test logic is a static logic design, and TCK can be stopped in either a high or low state without loss of data. However, the system clock is not synchronized to TCK internally. Any mixed operation using both the test logic and the system functional logic requires external synchronization.

To initialize the JTAGC block and enable access to registers, the following sequence is required:

- 1. Place the JTAGC in reset through TAP controller state machine transitions controlled by TMS
- 2. Load the appropriate instruction for the test or action to be performed

Appendix A Revision History

The following table provides a revision history for this document.

Table A-1. Revision History

Rev. No.	Date	Substantial Changes	
3	7/2014	 Document: Added Chapter 13, "Kinetis Flashloader." "Flash Memory Module" chapter: "Flash Access Protection" section: Clarified that FSACC contents do not impact flash command operation. "Read Once Command" section: Clarified wording. "Program Once Command" section: Clarified wording. "Universal Serial Bus Full Speed OTG Controller" chapter: In "Device mode IRC48 operation" section, updated step 5 of IRC48 initialization code sequence to "The USE clock source must choose the output of the divided clock by setting SIM_SOPT2[USBSRC] = 1b" (instead of 0b). "Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)" chapter: In "Features" section, added the following: NOTE: About data lines and audio channels: Typically there are one or more data lines for TX and RX sides of the SAI peripheral, 	
		depending on the device's design. Each SAI data line may support 1 - 32 audio channels (or audio words).	
2	5/2014	Initial public release	

How to Reach Us:

Home Page: freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are the registered trademarks of ARM Limited. © 2014 Freescale Semiconductor, Inc.

Document Number: K22P121M120SF7RM

Rev. 3 7/2014

