
Paradiddle: a code-free meta-GUI for musical performance
with Pure Data

Adam T. Lindsay, Alan P. Parkes
Computing Department, Lancaster University

email: atl@comp.lancs.ac.uk

Abstract
This paper describes a framework that utilizes
existing tools to allow the simple creation of GUIs for
musical performance, initially for Miller Puckette’s
Pd (Pure Data). Paradiddle leverages the Cocoa
frameworks on Mac OS X to allow interface
developers to create native GUIs with Apple’s own
Interface Builder tool, and without writing any
computer code. We examine the requirements for
such a system, touch upon the techniques for
constraining developers in a way that they feel as if
they are unconstrained, and examine the qualities of
Cocoa and Pd that make this so easy to accomplish.

1 Introduction
Miller Puckette’s Pd [1] is a powerful, open-

source, cross-platform system for multimedia
programming. It belongs to the same class of visual
programming languages as Max/MSP and jMax, in
which a program (called a “patch”) is built up by
visually connecting objects that perform functions to
one another.

 Pd’s cross-platform nature, however, has led to a
lowest-common-denominator graphical user
interface. Programmed in Tcl/Tk, the GUI provides
some interface elements, such as sliders and number-
boxes, but as a whole, it does not integrate well with
the computing environment. Its interface is ample for
programming patches, but can be somewhat lacking
when it comes to performance. The sliders and
number boxes are somewhat alien to the native GUI
of the host computer, and do not always include the
same affordances as those offered by native UI
widgets.

Joseph Sarlo [2] addressed the issue of creating a
performance-oriented interface, in the form of GriPD,
but as it also uses a cross-platform GUI, it does not
fully take advantage of the native operating system’s
GUI, which can be a critical factor in leveraging the
user’s familiarity with an interface.

Apple’s Mac OS X introduced far more than a
new GUI; it brought the UNIX core and powerful
frameworks from the NeXT operating system. The
UNIX core allowed Miller Puckette to bring Pd to the
Macintosh. The NeXTStep/OpenStep-derived
frameworks, referred to as “Cocoa” for the purposes

of this paper, brought a highly dynamic, object-
oriented programming model to the Macintosh,
including a very elegant tool for visually building
GUIs [3]. The visual tool, Interface Builder (IB),
allows one to drag widgets to a window, and
graphically make connections amongst the widgets
and between the widgets and the program code. It
occurred to the authors that Pd’s and IB’s visual
programming metaphors were highly compatible, and
that users could easily transfer skills from one to the
other. Paradiddle was conceived to bring the two
worlds together.

2 Use example
It is best to see the capabilities of Paradiddle

through a tutorial example presented to user-
developers.

2.1 Tutorial
To start, double-click on the MainMenu.nib file

that is included in the Paradiddle project template.
This opens up Interface Builder. You should now see
various windows, including a palette with different
Cocoa controls, and a window (labeled “Window”)
with a pre-generated “Connect to Pd” button.

Drag a Cocoa control from the palette to the
Application window. You can use a Button, Slider,
PopUpButton, ComboBox, or TextField, but for now,
we will use a slider with an oval handle (a continuous
slider). Click for the “Cocoa-Other” Palette, and drag
an oval handle slider to the Paradiddle application's
window, as illustrated in figure 1.

Figure 1: Drag a slider from the palette window to the
application window.

Next, open the “Info” window in Interface
Builder, and use the pop-up button in the Info
window to select “Help”. Select the slider control and
label it using the "Tool Tip" field. A label of

“foo_bar” will send messages to a receiver called
“foo_bar” in your patch.

Now you must connect the controller to
Paradiddle framework. Make sure the controller is
selected, and control-drag from the controller to the
cube icon labeled “PDController” in the
MainMenu.nib window. When you release the mouse
over the PDController, the Info window changes to
show “Connections.” The “Outlet” pane should have
“Target” selected with two choices. Click on
“SendToPd:” and then click the “Connect” button at
the bottom of the Info window, as illustrated in figure
2.

Figure 2: Connect the slider to the Paradiddle
controller and its main method.

After this step you should be able to save the
patch, return to Project Builder, and click on the
“Build” icon in Project Builder. The project will link
your interface with the framework, and you can run
the resulting application with Pd receiving “foo_bar
number;” messages.

2.2 Patch design
Paradiddle requires little in the way of

modification to Pd patches in order to be made
compatible. The biggest issue is making sure that
interface elements that need to be accessible for
performance are set to receive messages. Several
recent objects graphical control objects within Pd,
like the Hslider, the Vradio, and the Toggle, do this
for ‘free’; one only needs to assign it a name as a
receiver in the object’s preferences. By using these
objects that offer a degree of performance-oriented
control, the user-developer only needs to give
identifying names to the control elements of the
patch. As organizing and identifying inputs to a
system is a good design principle anyway, it is not
seen as a great burden to place on the user-developer.

Once the patch is designed to receive messages,
one only need to make sure the Pd program is
listening on a socket for input. The easiest way to do
this is with a netreceive object, identifying the port to
listen on, whether to use udp or tcp packets, and to
automatically dispatch messages to receivers in the

patch. The only other issue to consider in making an
internally consistent patch is ensuring that the initial
state of the patch is in synch with the initial state of
the GUI.

3 Paradiddle
In the process of designing Paradiddle, we had a

number of goals:
• Keep the tool usable to people who don’t

consider themselves programmers,
• Keep the visual metaphor, maximizing the

amount of visual interaction with the tool,
• Don’t require any computer code to be written,

and
• Make as many of the Cocoa GUI elements

available to control Pd as possible.
The design was essentially for two levels of user,

the user-developer who would use the Paradiddle tool
to make a GUI for their patches, and for an end user,
who may not necessarily be the person programming
the musical tool in Pd. This second user needed to be
able to perform the patch using a familiar interface
without knowing the internal workings of the patch.

These goals defined the project, and made it of
reasonable scope, leading to a quick initial
implementation, but leaving plenty of opportunity for
further refinement and growth.

3.1 Design
No small part of Pd’s power comes from the

simplicity of the way it interfaces with the outside
world. It connects to both the GUI and other
computers with network sockets, and uses a very
simple protocol, FUDI, for passing messages.
Messages are in ASCII, with the recipient as the first
word, followed by a space and the rest of the
message, which is terminated with a semicolon and a
carriage return. It was quickly apparent that
Paradiddle would have to act primarily as a network
“shim” between the GUI and the Pd client program
that synthesizes music.

This shim was to take the form of a Cocoa
framework (self-contained library, capable of
containing additional resource and configuration
files) that would act as an “engine” underneath the
user-developer’s GUI. The user-developer merely
needs to link their graphically-generated GUI to the
framework to create an application.

Although code was to be avoided, there were a
few parameters that had to be controllable by the
user-programmer. A multi-level preference system
using XML format files was chosen. The user-
developer could interact with the raw XML by hand-
replacing certain parameters, or they could use an
Apple-provided graphical tool for editing these
property list (‘plist’) files. Defaults across all
applications are held in an identically-formatted file
that is kept with the Paradiddle framework.

The actual performance of the application hinges
on Cocoa’s dynamic message-passing. A Cocoa
object need not know what other objects send it a
message until it receives one. At the time of
application launch, Paradiddle reads the XML
preference files and decides what to do. The
initialization code determines the destination and port
for the socket to Pd, opens it, and prepares it for
writing.

We can take further advantage of this dynamism
by having a single object and a single method as the
destination for all GUI elements. A GUI element
sends a SendToPd: message to signify a change. Our
SendToPd: method queries the object as to its name
(which we take as the Pd destination object), and its
type. By knowing the widget’s type, we decide on the
datatype to output, and how exactly to query the
widget for its value. We send the simple message via
the socket to Pd, and wait for another message.

3.2 Packaging
One key to ease-of-use on the Macintosh platform

is the presentation and packaging of programs. If one
is to provide a system that claims ease-of use, one
must not ignore that aspect. In the case of Paradiddle,
it is presented as a framework, as already discussed,
and as a template in Project Builder (Apple’s
integrated development environment). The user-
developer merely needs to open Project Builder,
select the Paradiddle template, and start customizing
it.

4 Analysis

4.1 Pleasant feature interactions
The most striking thing about Paradiddle is the

number of features that we get ‘for free’ from the
underlying Cocoa and Pd systems. A product of
working to accommodate Pd’s socket-oriented
interface is that one only needs to change
Paradiddle’s recipient’s address from localhost to
mycomputer.mydomain.edu to get a network remote
control. Pd could be running on another computer
with a different architecture, and Paradiddle could
control it from a Mac OS X computer. A side effect
that comes from the Macintosh side is the recent
introduction of Rendezvous (Apple’s implementation
of the ZeroConf standard) allows one to name a local
address (e.g., othermac.local.) and connect to the
named computer without needing an intervening
DNS server.

Pd’s extremely straightforward messaging
architecture allows user-developers to interact with
Pd directly. For example, one can incorporate a
control to turn Pd’s audio-rate processing on and off
by simply making a toggle button with the label pd
dsp. Toggling the button to an on state results in the
message “pd dsp 1;” which turns on audio processing.

The rest of the powerful Cocoa framework can be
used by Paradiddle, including subclassing existing
widgets, using images and icons, resizable layouts,
and much more sophisticated programming, if need
be.

4.2 Simplicity and generality
It is most instructive to ask why this system

should work with such a minimum of code. The
clearest answer to the authors lies in the dynamic
messaging of Cocoa. User-programmers can impart
all the information needed by the underlying engine
by working with get-info boxes and typing labels into
fields. That information is queried only at run-time,
so there is no coding or compilation step needed to
integrate that information with the inner workings of
Paradiddle.

The other factor working in Paradiddle’s favor is
the fact that it sets up working conventions, and uses
them as constraints on the user-developer’s behavior.
These constraints are not seen as such by this user,
because they define the capabilities of the program:
the configuration options and the number of Cocoa
GUI widgets available. The range of behavior
allowable using the XML configuration files defines
the features of the system available to the user-
developer. The number of available Cocoa widgets is
the only constraint, and since it exceeds the number
of Pd-native widgets, it is not a limitation at all. It is
possible to support all of these widgets because
Cocoa’s elegant type hierarchy makes the problem
tractable. These two dimensions map out the behavior
of the program that requires a general meta-
programming approach. Allowing for an additional
degree of freedom on the part of the user-developer
may step beyond the bounds of feasibility.

5 Conclusions

5.1 Future work
As of this writing, there are a variety of features

that are planned to be incorporated into Paradiddle.
The first one to come is the automatic launching of
Pd, as mediated by the XML configuration file. The
user-developer identifies the Pd executable (which
may be incorporated into the application bundle
itself, making for a stand-alone application), its run-
time options and the patch to open, and Paradiddle
can launch it on startup.

There is nothing intrinsic about Paradiddle that
ties it to Pd and its communication protocol. It can be
extended to other network remote controls for
musical performance such as Open Sound Control
(OSC) [4]. OSC has been ported to numerous
platforms, synthesis programs, and APIs, and
therefore makes an ideal candidate for increasing
Paradiddle’s utility.

The most obvious feature to add to Paradiddle is
to make it a message receiver as well as a message

sender. The greatest barrier to implementation is not
technical but designing the interface to the user-
developer. In order to suppress control feedback
loops (potentially bringing controls to a standstill),
we must provide a means of giving widgets different
message input labels from their output labels.
Interface builder provides no easy way of doing this,
so alternative methods of identification must be
found.

5.2 Summary
In this paper we discussed a framework that

leverages as much as possible from the underlying Pd
and Mac OS X Cocoa systems to make it possible for
users to develop native interfaces for performance.
There is great stress placed on simplicity of use for
the user-developer, and is designed in a way to
maximize flexibility without requiring any additional
code to be written. This is achieved by using Cocoa’s
dynamic messaging and pre-formatted configuration
files. By using one simple message dispatch method,
a large range of control messages can be sent to a
client patch. The Paradiddle framework is simple and
extensible, and shows good potential for
incorporating extra features.

At the time of writing, Paradiddle is distributed
without any source, mostly for the purpose of making
the point that no adjustments to source code are
needed in order to get it to work. By the time of
publication, it is expected that the full source code for

the project will be available to all. For more details
and to download, see:

http://homepage.mac.com/atl/pd/paradiddle.html

6 Acknowledgments
The authors wishes to thank Miller Puckette for

making Pd so freely and openly available, and the Pd
community for being exemplary in its generosity,
supportiveness, and enthusiasm. The primary author
also wishes to thank the computing department at
Lancaster University, for affording him the freedom
to pursue projects such as this, and Adrian Friday,
who offered valuable feedback on short notice.

References
[1] Puckette, M. 1996. “Pure Data: another integrated

computer music environment.” Proceedings,
International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 269-272.

[2] Sarlo, J.A. 2003, “GriPD: A Graphical Interface Editing
Tool and Run-time Environment for Pure Data.”
Submitted to ICMC2003.
http://crca.ucsd.edu/~jsarlo/gripd/

[3] Apple Computer, Inc. http://developer.apple.com/
[4] Wright, M. and Freed, A. 1997. “Open SoundControl:

A New Protocol for Communicating with Sound
Synthesizers.” International Computer Music
Conference, 1997.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Adam T. Lindsay
	Alan P Parkes

