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Abstract 
A synthesis and sound-modeling system is 

introduced. The design philosophy is to be “good 
enough most of the time” in an extremely wide 
variety of real-world scenarios at the possible 
expense of being the best in any one particular aspect 
- including speed and reliability. Sound design and 
synthesis system design goals and decisions are 
discussed, and we consider the appropriateness of 
using pure Java as an implementation language for 
such systems. 

1 Design Constraints 
There are a plethora of software synthesizers and 

sound development environments to choose between 
today, and each has its own strengths and weaknesses 
in meeting the many different design goals for a 
sound design and synthesis (SDS) system. Often the 
design goals support conflicting decisions in 
implementation. For example, the goal of 
expressivity may support the invention of a new 
language oriented specifically toward sonic and 
musical tasks, while the goal of learnability may be 
better addressed by using a language already familiar 
to many people. We have developed an SDS system, 
called Asound, with maximum usability being the 
primary design criteria, written in pure Java. 

Common design objectives for SDS systems 
revolve around the following issues: 

• Speed – for real-time performance and 
shortest delay between input audio or control 
signals and audio output. 

• Reliability – dependable delivery of 
uninterrupted audio to the output device.   

• Expressivity– the ability for the code to 
written in the musical and/or sonic terms in 
which composers and sound designers think. 

• Power – the range of available tools (e.g. a 
large number of unit generators, or sound 
producing and filtering routines)  

• Learnability – the system needs to be as 
usable as possible by musicians and sound 
designers, even if they are not expert 
programmers. This is part of the motivation 

for graphical interfaces such as MAX 
(Puckette, 1991). 

• Fast development times – The time it takes to 
develop bug free sound models should be 
minimized.  

• Development support – a good integrated 
development  and debugging environment. 

• Usability in education – a combination of 
expressivity and learnability. 

• Ubiquity – the system should be inexpensive 
and not require special purpose hardware and 
software.  

• Support for complexity – the ability to write 
richly structured sound models in readable 
code and to “hide” complexity in functions 
and objects. 

• Absence of musical and sonic structure biases 
– the system should bias the user as little as 
possible as to the genre of music or sonic 
style. For example, it should be possible to 
integrate algorithms for event and sound 
generation. 

• Extensibilty – Sound developers and users 
need to be able to extend the capabilities of 
an SDS system since no particular one will 
ever meet all the needs of designers and 
composers. Furthermore, sound modeling is 
an active field, and an SDS system needs to 
be designed to grow as new needs and 
possibilities arise.   

• Cross-platform potential -  It should be 
possible to develop sound and musical 
objects on which ever platform is most 
convenient for the composer or developer, 
and run them on most others. 

• Integrability – Sound objects should be 
runnable from a maximum number of other 
applications environments – code written in 
languages other than the one used to develop 
the sound object, MIDI controllers, and 
should enable control from and if necessary, 
return audio to other applications such as 
sequencers, audio editors, graphical 
applications, games, multimedia development 
environments such as Macromedia Director 
& Flash, 3DS Max.  



• Maintainabilty – easy to upgrade and modify 
with the minimum amount of effort.  Argues 
against graphical interfaces. 

• Small bandwidth requirements – a concern 
when downloading the system and/or sound 
models is required for applets, interactive 
Macromedia applications, and online or 
downloadable games. 

• Low security risk  - client computers must be 
safe from the possibility of downloading 
malicious code  

 

2 Meeting Design Requirements 
with Java  

By building the SDS system in pure Java, many 
of the above requirements are automatically met. The 
core of the system that address the sound design 
requirements per se are addressed below. Addressing 
ubiquity and learnability, Java is a free, commonly 
used and widely taught language. For the many 
thousands of programmers, only the specific library 
of classes for sound need be learned. For 
development support, there are commercially 
supported online manuals, and extensive tutorial 
material available across the Web. There are free and 
commercial IDE’s (integrated development 
environments) that support object viewing, graphical 
interface design, and state-of-the-art debugging tools. 
It is considerably faster to develop code in Java than 
in C or C++, something we now have the luxury to 
consider with the execution speeds that modern 
desktop computers are achieving. 

Having the full power of a general-purpose 
language is important for several reasons. It helps 
circumvent biases built in to the sound and musical 
construction process that are hard or impossible to 
work around in more constrained task-specific 
languages. It permits elegant coding style and the 
possibility of developing with manageable 
complexity. 

Both the core ASound system and Sound Models 
run without modification on any platform with a 
modern Java VM. By creating a core set of sound and 
musical classes for programming, and not providing a 
graphical coding environment, the system is both 
easy to use and easy to maintain.  

Design pressures on SDS systems that have been 
growing in importance have to do with the growing 
need to send applications, plug-ins and/or sound 
models over the network. The core ASound system is 
under 60 Kb, and sound models that don’t require 
audio file resources are typically from 2 to 5 Kb. 
These are manageable numbers for even the most 
limited memory devices, and make download time 
negligible.  

A Java-based system also poses no security threat 
to clients. ASound sound models are executable Java 
byte code (not simply parameters for predefined 

synthesizers). For a core engine it is at least feasible 
to require end users to grant a one-time security 
certificate, but many different sound models are used 
in typical applications and can they come from many 
different developers and vendors. This would create 
an insurmountable security problem for sound models 
written in C, for example. 

 

3 Meeting Design Constraints 
with Modular System Design 

The central design unit of the system is the Sound 
Model. A standard interface affords Play(), Stop() 
and Release() events, and continuous parameter 
access (setting and getting) in both natural units, and 
in normalized floating point [0,1] units. Rather than 
have sound model-specific and parameter-specific 
methods for control, the interface methods for control 
use a parameter index retrieved from the sound using 
the parameter string name so that the interface 
methods are the same for all sound models. 

Sound Models return audio with a call to a 
Generate() method that takes an empty buffer and a 
requested number of samples to fill it with as 
arguments.  

A separate object, the SoundManager, controls a 
back-end output engine with an audio buffer and a 
timer. The SoundManager  manages a list of sound 
models by periodically calling their Generate() 
methods, and summing the results into the audio 
output buffer. This backend is entirely separate from 
the sound model and need not be used at all. An 
application can manage the Generate() calls itself. 
This situation arises, for example, if an application 
has access to a machine-specific buffer architecture 
(e.g. Creative EAX buffers on Wintel environments). 
Another example of not using the SoundManager 
synthesis backend is a non-realtime application for 
creating audio files from a musical score. Such an 
application calls sound model Generate() methods at 
whatever (possibly irregular) intervals are appropriate 
for the time stamps of the events in the score and 
concatenates the returned audio to the end of a file. 

Input control is similarly separate from sound 
models. For example, sound models never contain 
MIDI specific (or even more confounding, graphical 
interface) code. An entirely separate MIDI 
synthesizer application manages MIDI input and 
mappings to a list of sound models, and is used as a 
recipient for messages streaming from a commercial 
midi sequencer application. By separating the 
backend timer/buffer engine and the front-end control 
systems from the sound models, the sound models are 
clean, small, and useful in a maximum variety of 
contexts. 

 



4 Sound Model Design 
A library of classes for standard structures and 

unit generators (e.g. oscillators, filters) is used to 
build a sound model. A key feature of the system is 
that event generation and audio generation are 
supported on an equal footing. The Sound Model 
Generate() method basically calls two methods in 
sequence; GenerateEvents() and GenerateAudio(). 
Both perform their computation up to a specified time 
corresponding to the length of the buffer fill 
requested from Generate(). The event generator uses 
the standard model interface (parameter changes, 
starts, stops, releases as described above) with an 
additional time stamp to send events to a “submodel” 
which puts them on a queue that is managed with 
sample accuracy. If the model uses event generation 
for a submodel, then its audio generator typically 
takes responsibility for getting the audio from the 
submodel by calling the submodel Generate() 
method. The structure is shown in Figure 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

4 Common Sound Model Structures 
Single-event Audio Generation – this is the 

standard parameterized synthesizer paradigm that 
generates a single “event” in response to a “play” 
command and offers realtime parametric control. 
When the Generate method on such a model is called, 
the Event Generator does nothing, and the Audio 

Generator return the audio.  The Audio Generator 
synthesis algorithm may have many dimensions of 
control to which the exposed model parameters are 
mapped.  

 
Single synthesis algorithm with event pattern 

control – uses the model-with-a-model structure as 
shown Figure 1, but with a single submodel. Often, 
parameters of the audio-only generating submodel are 
exposed without modification by the top level model, 
and additional parameters are exposed to control the 
event pattern generation. Such a structure is suitable 
for, as an example, an engine sound where the audio-
only submodel just generates a burst of noise, and the 
event generating “wrapper” manages piston firings. 
Parameters for the noise burst submodel, such as 
filter or envelope characteristics, can be exposed by 
the wrapper model and passed through to the 
submodel. This structure is so typical, that an 
ASound core class provides just that capability. The 
Sound Model developer only has to provide the 
synthesis submodel, create the control parameters and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mappings, and override the event generating method.  
 
Multiple submodels, audio postprocessing –  The 

top-level model generates events and parameter 
patterns that coordinate the sound synthesis across 
many elementary component models. The 
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Figure 1. The basic (recursive) model structure.  
 



GenerateAudio() method at the top level retrieves the 
submodel audio and can then post-process (add 
reverb, filtering, panning, or any arbitrary processing 
or synthesis code) before returning the buffer to the 
original caller. This hierarchical method of building 
up models by coordinating events and control 
parameters across simpler models has proven to be a 
very powerful, efficient and intuitive way to construct 
rich and complex sound and musical objects. 

 
In addition to the audio and event generator 

methods, sound design typically involves determining 
what parameters to expose. This is done by creating a 
parameter object with a string name, minimum, 
maximum and default values, and adding it to the 
sound in an initialization method. Once this is done, 
the parameter is automatically available to the sound 
model interface as described above.  

Several other methods are often overridden by a 
particular sound model: 
• OnInitialize() – executed once only after a sound 

is loaded and before it is used, 
• OnParameterUpdate() – This is where any 

mapping is done between parameters exposed by 
the model and controls for the audio and event 
generators can be done, 

• OnPlay() – executed when a play event is 
received and before audio generation begins, 

• OnRelease() – overridden if the sound should 
enter a release segment rather than stop 
generating sound immediately, 

• OnStop() – executed when the sound actually 
stops generating audio, 

• OnK() – executed periodically at a per-sound 
settable rate assumed to be slower than the 
sampling rate.  

 
The expressivity design goal is thus addressed by 

appropriately hiding the bookkeeping of event queue 
management, providing methods that correspond to 
logical components of a sound model, and the 
modular separation of synthesis and specific input 
controls form the sound modeling code. With a 
surprisingly small number of sound & music oriented 
classes, coding in Java can be as expressive as coding 
in a special purpose language such as SAOL . At the 
same time, no new language constructs need be 
learned (sometimes considered a hurdle to the 
otherwise powerful and expressive SuperCollider 
(McCartney 2002)), no new integrated development 
environments need be developed (simply lacking in 
most special-purpose languages), and the full power 
of a general purpose language is still available as 
needed.  

 

5 Other design issues 
Sound model file formats in ASound are 

essentially jar files that include the sound model and 

any subsound model classes, any other classes not 
defined in ASound, and any audio resources the 
models might use. The core system includes a special 
Java class loader to manage the format, but since it is 
essentially a jar file, the Java language itself provides 
most of the tools for building the class loader. The jar 
format includes a certain amount of compression, and 
the sound model file format can be entirely self-
contained, with no dependencies beyond the core 
system. 

The core system comes with only a small set of 
unit generators; those that are very commonly used 
such as a table reader, oscillators, and filters. This 
helps keep the core system small by not including 
rarely used classes, but comes at the minor cost of 
possibly having to download a sound-specific unit 
generator class (for example) twice if two different 
sounds in a single application make use of it.  

Finally, sound developers will find the system is 
easy to extend with additional classes by simply 
compiling them, jarring them together and putting the 
jar file in the Java classpath. There is no need to 
change any  “glue” code, or recompile any part of the 
core system as there is in some other special purpose 
synthesis languages. ASound can also be called from 
C programs via a static library wrapper written with 
JNI (Java Native Interface). The wrapper code is 
technical and tedious to write, and compiled to a 
machine-specific form, but such a burden would not 
fall on the music and sound developers who do their 
sound-oriented development once and for all. 

One of the most well-known music languages is 
Csound which is in the MUSIC N (Mathews, 1969)  
lineage of languages specifically designed for audio 
processing and synthesis. Csound is fast, has a vast 
collection of unit generators available, is free and 
used widely as an educational tool and has a broad 
user base. However, it is quite limited compared with 
modern high-level computer languages like C and 
Java in areas such as data structures, control 
structures, and integrated development environments 
for supporting coding and debugging.  

Jsyn (Burk) combines the best of both worlds by 
having native method backends, while sound and 
music developers work in Java. Other than the core 
system that comes from a single vender, only Java 
code is shared between developers and users of 
sounds. This solves the security issues associated 
with having to download native code for sounds, and 
provides a speed advantage. However, with modern 
Java environments, the speed advantage this 
architecture would have provided a few years ago 
isn’t as significant today. The worst of both worlds 
comes with Java/native hybrid systems, too. They are 
more difficult to maintain and to make cross platform 
than are pure Java systems, and are still subject to 
realtime disruption from Java garbage collection. 

There are, of course, several reasons why pure 
Java SDS systems are not wide spread. One drawback 
is speed (we typically see execution speeds about 1.4 



times that of comparable native code), and another is 
the unpredictable garbage collection in Java that 
makes such a system simply unusable in some 
musical contexts. Furthermore, the current 
implementation of the Java millisecond timer (as of 
Java SDK v1.4.2) is still quite poor on most Windows 
platforms, accurate only to within about 60 ms.  It is 
far more reliable on other platforms (Linux and Mac), 
and a temporary workaround (in native Windows 
code) provides timer accuracy to within about 1 ms. 
Finally, it is still unclear whether Microsoft will 
finally provide a standard Java virtual machine with 
their operating systems. Currently their customers 
must download and install one themselves, a 
successful impediment to cross-platform 
development in general.  

For non-realtime music generation from complex 
models and scores, the speed and realtime reliability 
are not a factor, making the design constraints that 
the ASound system best addresses entirely 
appropriate. For sounds embedded in realtime games 
and applications, the occasional hiccup that random 
garbage collection or poor timer implementations can 
cause have to be weighed against the value of the 
benefits of security, size, platform, development 
support, etc. For professional realtime music 
performance, the system cannot compare to more 
specialized systems – but the demands of the network 
environment, faster computers, just-in-time 
compilers, and ever better JVM’s are making a well-
designed Java class library SDS system a very viable 
option for most of the people most of the time. 
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