
Page 1 of 8

The Gestures of Flowing 15.03.03

The Gestures of Flowing

Using PureData as a Backbone for
Interactive Sculpture Animation,Video and Sound

Dr. Andreas Mahling
University of Music and Performing Arts Stuttgart

Urbanstraße 25, 70182 Stuttgart
Germany

email: andreas_mahling@hotmail.com

Abstract

The Gestures of Flowing is an installation which exhibits animated sculptures driven by sensoric input
taken from an audience. Video as well as audio is considered as input and output and is processed in
realtime by a PureData program patch. Furthermore sensor data is used to control hardware like
motors, lamps, pumps and ventiles via a memory programmable control unit (SPS). The way how
sensor input influences video, audio and control output is specified in scenario patches, out of which
three will be described in detail i n this article. To verify correctness of interaction scenarios even if
sculpture hardware is not available, a small simulator will be introduced.

Introduction

This paper describes a project, which is about developing an installation for controlli ng the
change of a buildings facades appearance due to changes in its sourrounding interactively. The
property of facades to change appearance over time in general is nothing new: depending on the
shaping and material used, facades appear different when sun is shining or when it's raining. They
cast shadows which change over time if light source is moving, light is reflected differently by the
walls depending on whether they are wet or dry and they may even emit different sound
depending on the strength of wind. Architects are aware of this aspect of building design since
centuries: projecting figures on facades of baroque churches for instance were, among other
objectives, consciously created under the aspect of how they would cast shadows and not just for
to show themselves.

Thinking about this quality of facades as being some kind of interactiveness, our projects target is
to raise the level of interactivity of facades by introducing sensoric/input and actoric/output
elements and to control them actively. Sensors have the task to watch what is happening near
specific locations of the facade and actors do react on that input, e.g. if a person bends down itself
in front of a facade, this motion might be detected and tracked by a live-video input module and
the data produced by this module might be used to have surfaces on the facade follow this
movement by means of a spinmotor. Among the list of sensors are microphones and cameras but
also some non-obvious ones like a "virtual ear" li stening to continuously updated wheather data
accessed through an internet link. Stepmotors for moving and turning surfaces, TV- and audio
monitors for visual and aural feedback, coloured lights, pumps, ventiles and rotors belong to the
list of actors and the striving possibilit y to actively play with different aggregate states of
substances (gaseous, liquid, solid) as a part of an animated facade extends the scope of influence
on its appearance even further; e.g. remember how hoarfrost may change a surfaces look.

Page 2 of 8

The Gestures of Flowing 15.03.03

Project Overview

The project Gesture of Flowing is a cooperation between the faculties of architecture and
informatics at the university and the music conservatory at Stuttgart. It was launched and is lead
by the Institut für Darstellen und Gestalten 2 (IDG2), a division of the faculty of architecture
headed by Prof. Herbert Traub. The Department of Image Understanding, headed by Prof. Paul
Levy, a division of the Institute of Parallel and Distributed High Performance Systems (IPVR),
adds expertise and development resources in the field of picture processing and recognition and is
responsible for what kind of control-data is extracted from the live video sources. This control
data can be used for instance to detect movements or even stereotypes of movements, i.e. human
gestures. The music conservatory originally was asked to take over all audio-related processing,
e.g. tracking, manipulation and output of sound and to support the selection process of audio hard-
and software. This responsibility has been extended to develop and maintain the central software
platform used for receiving sensor input, for manipulating and computing control data and to
control actors through this control data.

The IDG2 is the initiator of the project and responsible for overall project organization, the
projects underlying ideas and the creation of animated facade prototype modules. Although a
couple of different types of animated facade modules have already been manufactured it is
sufficient for this article to concentrate on three instances of a single facade prototype to clarify
the projects basic ideas, approaches and their realization. These animated facade prototypes are
organized into two sideframes and one central frame. Each frame has shaped couloured surfaces
which can be moved horizontally through stepmotors or turned up and down via spinmotors,
coloured lamps, pumps, ventiles, a camera, piezo and dynamic microphones. The central frame
also incorporates a rotor which may spread/dissipate liquid inside a basin conveyed by pumps.
Fig. 1 shows the centerframe and a 3D illustration of a three-frame installation.

Fig.1: Photo of centerframe and 3D illustration of three-frame installation.

So far the three frames constitute an installation where the central frame is placed opposite to and
sideframes are placed to the left and to the right of a potential visitor. This arrangement is used to
make the visitor feel like being an integral part of the installation and to facilitate 3D motion
tracking. At a later time prototypes should migrate into a twisted quader entirely made of glass
which itself should become part of a facade.

Page 3 of 8

The Gestures of Flowing 15.03.03

All actors except those for video and sound input/output are controlled through a modular PC
based SPS. Currently the project works with two interface cards providing control channels for 16
motors and a multitude of digital and analog outputs for controlling lamps, ventiles, pumps and
rotors. On the PC side a dynamic link library (DLL) running under Windows 2000 provides
access to the functionality of the SPS. This library is interfaced through a proprietary wrapper-
DLL to a real-time multimedia processing software (PureData) responsible for taking sensor
input, realtime data manipulation and generating control output.

Video input is handled via proprietary software. There have been several versions of this software
each focussing on a different approach of how motion-data can be extracted from the live-video
input in realtime. The current version, at a glance, allows for placing sensitive rectangular regions
on top of the video window which get triggered if pixel-data underneath the trigger-region
exceeds a defined amount of change(s), e.g. if all pixel contained by the trigger-region change
their color from grey to red. Trigger-regions may have arbitrary size and position and the number
of triggers to be used is determined by the user. Trigger constellations can be saved to and reload
from disk and because data is stored in ASCII format one might even generate trigger clusters like
spirals by external programs. The program also provides many features for tuning the program to
properties of the environment "looked at", e.g. whether there is more or less light or adjusting
itself to a specific color distribution prevailing the live video input. Due to higher demands with
respect to computational ressources the video preprocessing software is running on three separate
PCs, one for each frame, communicating their trigger data via MIDI to the main PC (containing
the SPS and running PureData). Fig. 2 shows an example trigger setup and its settings dialog.

Fig.2: Viewport window showing an example trigger setup and its trigger settings dialog.

Audio and MIDI is interfaced through a Midiman Delta 1010 breakout box which offers 8
channels of electrically balanced analog inputs and outputs. The current setup uses a dynamic
microphone for each frame, two audio monitors for the center frame and a single audio monitor
per sideframe, thus leaving 4 free audio channels for future extensions. Additionally, contact
microphones will be used to provide for some immediate audio feedback either caused by
loudspeakers or stepmotor sounds. On the software side, PureData provides all what the project

needs for processing audio and MIDI.

Backbone Architecture and Design Principles

The first team meetings in 2002, which also constituted the first contact of the music conservatory
with the project, raised a couple of constraints typical to projects in general and particularly

Page 4 of 8

The Gestures of Flowing 15.03.03

specific to projects in arts and music: few time and resources to realize what already had come in
mind and the impossibilit y to specify in detail what should exist finally because it could not be
known in advance whether scenario drafts would actually function in reality. Thus, the project
operating environment would have to remain as flexible as possible especially because it was
intended to gradually increase the number of scenarios at a later time. The lack of enough
manpower also urged the use of standards and open software whenever possible.

The decision to use PureData was initially ruled by the request for processing audio, because
programming environment resembles an interpreter, e.g. no compile-link-run cycle, because
complete program sources were available, because program could be operated in a distributed
manner on a PC cluster if additional computing resources would be needed in the future, because
it was running on multiple platforms and because it represented a kind of standard which already
had proven to run stable for more than ten years. Later, the idea came up to also control the SPS
through PureData by interfacing the dynamic link library (DLL) of the SPS with a wrapper DLL
meeting the requirements for PureData externals and to communicate preprocessed video data via
MIDI, which significantly reduced the amount of proprietary programming. At that stage,
PureData definitely became a backbone for the entire project because it was planed to be used for
receiving all relevant sensor input - video cameras, microphones and incoming SPS messages -
processing it and, except for video monitors, to control all actors mentioned in the introduction of
this article. The availabilit y of an OpenGL external for visualizing simulations of system behavior
in a virtual 3D space extended the usefullness of PureData even further. On the other side, most
application programming would have to be done in PureData, requiring know-how which was not
available to project members other than those from the music conservatory. This came out to be a
bottleneck which is currently solved by employing students of the music conservatory.

Many of the actors used, e.g. the stepmotors, provide a multitude of commands for moving and
state requests, e.g. to set position, speed, acceleration to target speed or to ask for a motors current
position. Commands are sent by writing values into specific registers. To set the movement speed
of a stepmotor to 500, for instance, 500 will be written to register 1x103, where x=2..9, specifies
the motor whose speed is to be set and 103 is the command to set speed. To set a motors target
position a value has to be written into register 1x102, i.e. 102 represents the set-target-position
command.

An early version for controlli ng actors written in C listed all relevant registers in a commented
table, e.g. it contained registers 11102, 12102, 13102,..,19102 for controlli ng the target positions
of the corresponding stepmotors along with a value field for supplying new positions
interactively. Besides the fact that it is impossible to realize complex scenarios with internal
interrelationships between sensors and actors that way, this table represented an abstraction level
insuff icient for flexible control and interactive scenario experimentation. The current PureData
implementation, therefore, invented a device abstraction layer in which each actor is represented
by a separate patch (Fig.3). Each such patch encapsulates an actors functionality in a more
descriptive way, including means for command parsing, value range normalization, initialization
and handling of internal dependencies or peculiarities. Actors can be addressed symbolically
which is easier to handle and leads to more independence from hardware implementation and
system software settings, i.e. changes in the underlying association of actors with their registers
will not influence any scenario communicating with the SPS via the device abstraction layer.
Commands are sent to actors by using these symbolic addreses and can be in a mnemonic or
simple numeric style, however mnemonic commands always use normalized parameter values
whereas the numeric style supports absolute values only. Normalization of parameter values
vastly facilit ates exploiting new ideas, because absolute value ranges, which do not just vary
between distinct parameters but also between same parameters of actors located on distinct
frames, don't have to be in mind at any time. 1.0 is always the maximum, independent of whether
it is used for setting a motors target position or its driving speed.

Page 5 of 8

The Gestures of Flowing 15.03.03

Fig.3: The backbone architecture.

Communication with the wrapper DLL is handled through one patch for sending commands and
one for sending status requests. Both patches act like a blackboard, i.e. any control objects send
their commands to a single instance of the patch making program space needed for
communicating with the SPS independent from the number of actors and scenarios used. The
wrapper DLL itself is instantiated twice, because two SPS cards have to be accessed.

To be able to verify correctness of scenario message flows even without having access to frame
hardware, a patch for simulating hardware activity has been added. The simulation kernel, which
is separated from the visualization of the simulation, is seamlessly integrated by providing the
same communication interface as the program module used for accessing the SPS. Therefore a
single switch is all that is needed to activate or deactivate the simulation.

Video input is currently received as MIDI note messages. That might seem strange but it was a
straightforward approach, because it was easy to be implemented on the video preprocessing
softwares side and was already well supported on PureDatas side, i.e. this approach saved a lot of
time. Furthermore data resulting from the video preprocessing software had a structure that could
easily be mapped on selected types of MIDI messages, e.g. information about the viewport
quadrant from which a specific motion vector was computed was easy to be kept by the MIDI
channel bits of MIDI channel messages. Last but not least MIDI was already well known by the
developers of the video software.

Besides the features of realtime video processing offered by this software via DirectShow, two
ways of extracting high level information from the video signal were choosen. The first one tries
to detect points of motions in the camera viewport. Many such points of motion may exist at a

Page 6 of 8

The Gestures of Flowing 15.03.03

time. Upon detection of a point of motion, a MIDI note on message is sent, encoding a two
dimensional vector specifying strength and direction of the motion detected where big values of x
and y coordinates mean a strong or fast motion. Color information associated with each motion
vector is through the note-off part of the MIDI note message. The second approach makes use of
triggers which can be arbitrarily placed within the cameras viewport and is already described
indepth in the project overview of this article.

Scenarios

A scenario is a specific setup of how actors are controlled, usually influenced by sensor input and
realized as a PureData patch. Generally, two categories of scenarios can be identified: those which
are acting autonomuous and those which react on sensor input. Autonomuous scenarios are well
suited to still let the environment act and be perceived interesting by the audience, if few or no
significant input is received by the sensors or at least if no output is generated by the algorithms
used to evaluate sensor input. Current scenarios have been built mainly to check proper working
of interfaces, e.g. for video, audio and the SPS. Three of them will be described in the following
sections of this chapter.

Direct Control

The DirectControl scenario is a means for direct manipulation of actors. It provides a window
containing user interface widgets like sliders, knobs or toggles for indiviudal control of each
actors parameters (Fig.4). For selected parameters common to a group of actors, like for instance
the speed parameter of stepmotors, a global control is possible too. The DirectControl scenario
serves very well if specific states of frame actoric have to be setup. In conjunction with the
possibility to memorize such setups, actoric sequences can be designed and played back, which
otherwise could not have been realized through a simple algorithmic automation. The playing of
such sequences can be synchronized either to an internal clock or can be triggered by external
events. Because PureData does not provide a preset storage mechanism like MAX so far, a
proprietary solution was developed as a collection of PureData patches.

Fig. 4: The User Interface of the DirectControl Scenario.

For efficiency reasons, design and testing of scenarios, i.e. PureData patches, even without access
to actors, was a project requirement originating from the amount of people working at different
locations, the impossibility to make copies of the hardware in a cheap and easy way and last but
not least because of the immobility of the frame environment itself. Therefore the DirectControl
scenario is complemented by a simple simulation of actor activity, which can be used if real frame
hardware is not present, providing visual feedback of each virtual frames current state through a

Page 7 of 8

The Gestures of Flowing 15.03.03

monitor window. Currently only stepmotor movements at constant speed are simulated but even
at this early development stage of the simulator its operation has facilitated the verification of
message flows of PureData scenario patches enormously. An advanced version of the simulator,
planned for the near future, will be based on GEM, an OpenGL external for PureData. It will
cover more properties of the hardware for simulation and by using 3D representations of frames
and actors, hardware independent demonstrations of the entire project or specific scenarios will be
possible.

MIDIKeyToSpeed

MIDIKeyToSpeed is a scenario which uses MIDI data for controlling movement speed of
stepmotors. It uses a proprietary PureData patch for playback of polyphonic MIDI sequences.
Because PureData is unable to import MIDI Standard Files directly they are primarily converted to
ASCII before playback relevant data is loaded. This data is stored in a numeric table to allow
random access to sequence data for generating time synchronuous variations in realtime. Current
scenario version uses pitch data for controlling the speed of transversal stepmotors of the
centerframe, i.e. motor speed is proportional to a notes pitch. Because the centerframe of the
installation incorporates four transversal stepmotors, compositions with up to four voices can be
used. This can be increased to 8 voice polyphony if transversal motors of sideframes are
considered too.

An interesting feature of this scenario is that stepmotors themselves make sound when spinning
and that perceived pitch of this sound is related to the spinning speed. This leads to a playback of
the MIDI data through stepmotors instead of loudspeakers which, due to nonlinearities inherent to
this "reproduction system", introduces an interesting deviation from the original composition
while still keeping significant resemblance with it at the same time.

TrackMotionInVideo

As mentioned in the introduction of this paper, one of the initial ideas for the entire project
environment was, although rather idealistic, to let frames look at the audience, detect specific
predefined stereotype movements or gestures of people and let frames react on that in a
deterministic manner. To increase reliability of motion tracking a setup of three video-cameras,
one on each frame, was used. Due to the positioning of the frames - one each to the front, left and
right side - tracking of motion in all three directions is possible.

TrackMotionInVideo is a single frame scenario, i.e. it considers motion vectors based on the video
signal of a single camera only. It is based on an early version of a proprietary video preprocessing
software, refered to earlier in this article, which detects points of motion in the video signal and
transmits the corresponding motion vectors via MIDI. Over a given timespan, lets say the
accumulation interval, motion vector components are accumulated within the PureData patch for
each direction separately, left, right, up, and down, starting with a value of zero. Then, if
accumulated value exceeds a specific threshold, a stepmotor is told to move in that direction. To
avoid intersections in responsibility of actors for responding on tracked motions, camera viewport
is splitted into 4 quadrants: top-left, top-right, bottom-left and bottom right, each acting as a
source for corresponding stepmotors of the centerframe, i.e. motion vectors stemming from
analyzing video signal in the top-left quadrant control the top-left pair of stepmotors, one for
traversal along the horizontal axes and one for spinning up and down. A collision control
algorithm prevents traversal stepmotors from moving across boundaries, i.e. the end of the shaft,
which already is a natural physical limit, on one side and the vertical boundary of the
corresponding viewport quadrant on the other side. Rotating stepmotors cannot interfere with one
another. By using at least two instances of TrackMotionInVideo, one per frame orthogonal to each
other, a complete motion tracking in 3D space is possible.

Page 8 of 8

The Gestures of Flowing 15.03.03

A limitation of the current implementation of this scenario is that, if there is a predominating
direction over a period of time, stepmotors will j ust move up to their boundaries and stop and are
likely not to move back unless enough motion is detected in the opposite direction. This might be
resolved by means of a reset which moves motors to an initial position, e.g. the mid of each
viewport quadrant, if motors did not move over some time even though enough motion was
detected.

Future Work

One of the main objectives of the project is to have the environment act interactively depending
on visual and aural sensor input. Cooperation with the music conservatory was initially started to
support selection of audio hard- and software to process audio input in realtime. Selecting
PureData for audio processing however quickly lead to the point to also use it for controlli ng the
SPS and processing (high-level) video input. This caused a significant increase in expenditure for
patch design and implementation. Sampled audio, so far, has been neglected badly. Therefore an
important next step will be to add scenarios. e.g. for alternating recording and playback of audio.
Before playback, audio will be processed in a variety of ways, li ke reordering of record-sample
slices, filtering etc.

Currently the project operates on two types of sensor input - video and audio - and three types of
actor output - video, audio and the SPS. Interdependencies exist only between video input and
SPS output and video in- to video output. This will be extended to also incorporate audio input to
SPS output and video input to audio output.

The kernel for simulating hardware activity will be amended to also simulate lamps, ventiles,
pumps and rotors. For the stepmotors, additional parameters like driving speed and acceleration
will be included for a more realistic simulation. A three dimensional visualization for
demonstrating simulated hardware activity will be developed and based on GEM, an OpenGL
external for PureData. Last but not least, the number of available scenarios will be increased to
allow more variation in environment activity and to improve its adaptabilit y to distinct exhibition
places.

References

[Levi2003]
Paul Levi, Director of the Department of Image Understanding, a division of the Institute
of Parallel and Distributed High Performance Systems (IPVR): http://www.informatik.uni-
stuttgart.de/ipvr/bv/bv_home.html

[Puckette2002]
Miller Puckette. PureData 0.36 Software Link: http://crca.ucsd.edu/~msp/software.html

[Traub2002]
Herbert Traub, Institut für Darstellen und Gestalten (IDG2): http://www.uni-
stuttgart.de/idg2/fra_inst.html , Gestures of Flowing Project Link:http://www.kunst.uni-
stuttgart.de/traub/gestus/html/frame.html

[Zicarelli2001]
David Zicarelli, MAX Reference Manual: Tutorial and Topics. Published by Cycling '74,
2001

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Andreas Mahling

