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Abstract

This paper proposes a selective sound segregation model for
separating target musical instrument sound from the mixed
sound of various musical instruments. The model consists of
two blocks: a model of segregating two acoustic sources based
on auditory scene analysis as bottom-up processing, and a selec-
tive processing based on knowledge sources as top-down pro-
cessing. Two simulations were carried out to evaluate the pro-
posed model. Results showed that the model could selectively
segregate not only the target instrument sound, but also the tar-
get performance sound, from the mixed sound of various instru-
ments. This model, therefore, can also be adapted to computa-
tionally model the mechanisms of a human’s selective hearing
system.

1. Introduction

Let us consider the problem of selective sound segregation (Fig.
1). Here, the sound of three musical performances, indepen-
dently played by flute, piano, and violin, are mixed together.
When we try to listen separately to the target sound (e.g., the
piano sound) from among the mixed sound, we can easily se-
lectively segregate the target sound if we know what the target
is and have previously listened to it. In general, this type of
situation arises from what is called the “cocktail party effect”
[3] and is an important issue not only with regard to automatic
music description systems, but also regarding various types of
signal processing such as that of hearing aid systems and robust
speech-recognition systems. In practice, though, it is difficult to
construct a computational model that can process signals in this
way, because the signals exist in a concurrent time-frequency
region and this problem is an ill-inverse problem. Therefore,
we need to use reasonable constraints to solve the problem.

Recently, sound segregation models based on “computa-
tional auditory scene analysis (CASA)” have been proposed to
solve the above problem by using Bregman’s regularities [2].
In particular, in the case of musical sound, CASA are called
“music scene analysis” [6], and models have been proposed for
extracting significant information (musical sequences, rhythm,
etc.) regarding a target sound from a mixed sound and to un-
derstand the target [4, 5, 6]. The underlying concept of these
models is to computationally model the ability of the auditory
system as a function of active scene analysis [2]. There are two
main types of segregation models, based on either bottom-up
(e.g., [7]) or top-down (e.g., [4, 6]) processes.

To realize a selective sound segregation model as shown in
Fig. 1, we have to resolve two issues: (1) how to precisely select
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Figure 1: The selective sound segregation problem.

the target sound within a real environment, and (2) how to com-
pletely separate the target sound from the mixed sound in which
overlapped components exist in a concurrent time-frequency re-
gion. However, since bottom-up and top-down processes focus
only on either issue (1) or (2), respectively, each alone cannot be
used to realize a selective sound segregation model. This paper
proposes a model concept for selectively segregating a target in-
strument sound from a mixture of various sounds by combining
top-down and bottom-up processing.

2. Selective sound segregation model

The proposed selective segregation model is shown in Fig. 2.
This model is based on the two types of processing: top-down
processing to select the position of the target sound in the mixed
sound (to resolve (1), as shown by the dashed-line in Fig.2),
and bottom-up processing to separate the target from the other
sounds in the concurrent time-frequency region (to resolve (2),
the dotted line in Fig. 2). The bottom-up processing is the same
method proposed [7], but it has been modified so that it can be
combined with top-down processing.

2.1. Model concept and definition

In this model, the original signals (f1(t), f2(t), f3(t), and so
on) are not known, nor it is known how many different sounds
there are. The only model inputs are the observed mixed sig-
nal f(t) and a knowledge key such as the symbol for the target
instrument name (here this is f1(t)). To deal with top-down
information, we assume that the exact target sound can exist



f(t) (observable)

|

|

Filterbank :
(K-channels) |

|

1 |
3

Bottom-up

Knowledge
sources

133>

Sk@~ o®

Event detection )——@@tl_/
generator

\

Separation block J;

I

- r-—""""r1

A () By ()

Grouping block )‘

Figure 2: Selective sound segregation model.

in anywhere in the mixed sound, and knowledge about the tar-
get sound can be represented through the acoustical features.
Thus, the key enables the model to obtain information regarding
the acoustical features of the target sound from the knowledge
sources.

This model concept is based on the problems associated
with segregating two acoustic sources. This fundamental prob-
lem is defined as follows [7].

First, only the mixed signal f(t), where f(t) = fi(t) +
f2(t), can be observed and f(t) is, then, decomposed into its
frequency components by a K-channel filterbank. The output
of the k-th channel X (t) is represented by

Xi(t) = Sk(t) exp(jwrt + jor (1)), (1)

where Sy (t) and ¢ (t) are the instantaneous amplitude and
phase, respectively. If the outputs of the k-th channel,
which correspond to fi1(t) and fa2(t), are assumed to be
A (t) exp(jwit + j01x(t)), and By (t) exp(jwit + jO2x(t)),
then the instantaneous amplitudes A (t) and By (t) can be de-
termined as

Ap(t) = Sk(t)sin(fx(t) — ¢(t))/sinOx(t), (2)
Bi(t) = Sk(t)sin(¢w(t) — 01k (t))/sin0k(t), (3)

where 0 (t) = O21(t) — 011 (t), Ok (t) # nmw,n € Z, and wy, is
the center frequency of the k-th channel.

However, Ag(t), Bi(t), 01x(t), and 61 (t) cannot be
uniquely determined without some constraints. This is easily
understood by considering the above equations. The problem,
therefore, is the ill-inverse problem. To solve this problem, we
previously proposed a basic model that uses constrains related
to the four Bregman’s regularities [7], as shown in Table 1.

2.2. Model implementation

The basic problem given above is for two-sound segregation.
Thus, in this paper, the problem is set so that f1(¢) is the target
sound selected by top-down processing and fa(t) is the other
mixed sound (i.e., f2(t) + f3(t) + - - + fn(t)). The problem

Table 1: Constraints corresponding to Bregman’s regularities.

Regularity (Bregman, 1993)  Constraint (Unoki, 1999)

(1) common onset/offset |Ts — Th,on| < AT,
T8 — Tron| < Alg

(ii) gradualness of change dAy(t)/dt = Cr,r(t)

(slowness) d61x(t)dt = Dy, r(t)
dFy(t)/dt = Eo,r(t)
(smoothness) f:j (AU ()]2dt = min
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Figure 3: Typical template for the target instrument.

is then solved using the solution based on the Auditory Scene
Analysis [7].

The proposed model is implemented in six blocks: the fil-
terbank, F-note estimation, template generation, event detec-
tion, separation block, and grouping block (Fig. 2).

This filterbank decomposes the observed signal f(t) into
complex spectra Xy (t). It is designed as a constant narrow-
bandwidth filterbank with X = 500, a 20-Hz bandwidth, a
FIR-type bandpass filter, and a 20-kHz sampling frequency.
Sk (t) and ¢y (t) are determined by using the Hilbert transform
of X« (t) [7].

The F-note estimation block determines the candidates for
the fundamental frequency of the musical instrument sound ob-
taining some peaks in the auto-correlation function in terms of
the frequency region at each time of Sk (¢)s. The histograms for
each candidate are then calculated according to the time axes in
the time-frequency region. Some of the candidates with higher
histogram values are passed to the event-detection block and the
final estimated F-note, Fy(t), is determined in this block. In this
paper, Fo(t) fluctuates in steps, and the temporal differentiation
of Fy(t) is zero in all segments. As a result, this paper assumes
that Fo,r(t) = 0 in Table 1 (ii) for each segment. Most of
the segments correspond to each F-note duration in the target
instrument sound.

The template generator produces an acoustical template
from the knowledge sources, depending on the target sound
symbol. The generated template is composed of the shape of
the instantaneous amplitude in the time-frequency region, based
on the fundamental frequency, duration, and general acoustical
feature of the musical instrument sound. The shapes of the stan-
dard template for flute, piano, and violin are shown in Fig. 3. In
this paper, templates were obtained from the averaged instan-
taneous amplitude of the target under various conditions (nor-
malized duration and normalized harmonicity etc.). This can be
extended by analyzing all of the sounds as was done in [6].

The event detection block uses a template of the target to
determine the concurrent time-frequency region of the target



sound. In this block, the F-note is selected from the candi-
dates of F-note Fy(t) while this block searches whether the ex-
tracted amplitude based on the harmonicity of each candidate
of F-note matches the template based on the correlations. This
corresponds to constraint (iii). The estimated event of the target
can then be obtained from a candidate with the highest correla-
tion. The onset and offset of the target instrument sound, T on
and T} o, are determined from the estimated instantaneous am-
plitude based on the harmonicity of the selected fundamental
frequency. This corresponds to constraint (i).

The separation block determines A (t), Bk (t), 01x(t), and
021 (t) from Sk (t) and ¢ (t) using constraints (ii) and (iv) in
the determined concurrent time-frequency region. Constraint
(ii) is implemented such that C r(t) and Dy r(t) are linear
(R = 1) polynomials, in order to reduce the computational
cost of estimating Cy r(t) and Dg r(t). In this assumption,
Apg(t) and 61x(t), which can be allowed to undergo a tempo-
ral change in region, constrain the second-order polynomials
(Ar(t) = [ Cra(t)dt+Cy g and 014 (t) = [ Dr1(t)+Dj, o).
Then, by substituting dAx(t)/dt = Cj r(t) into Eq. (2), we
end up with the linear differential equation of the input phase
difference 0y (t) = O2x(t) — 01%(t). By solving this equation, a
general solution is determined by

01 (t) = arctan < Sk(t) sin(¢x(t) — 01k (t)) ) ’

Sk (t) cos(x(t) — 61 (1)) + Ci(t)

where Ck(t) = — [ Ckvn(t)dt — Ck70 = —Ak(t) [7].

In the segment 73, — 1)1 of each instrument duration
which can be determined by Eo,r(t) = 0, Ax(t), Bi(t),
01 (t), and 021 (t) are determined through the following steps.
First, the estimated regions, Cro(t) — Pe(t) < Cra(t) <
Cr,o(t) + Py(t) and Dy,o(t) — Qk(t) < Di,a1(t) < Dro(t) +
Qk(t), are determined by using the Kalman filter, where
Cr.o(t) and Dy, o(t) are the estimated values and Py (t) and
Qr(t) are the estimated errors. Next, the candidates of Cy, 1 (t)
at any Dy, 1 (t) are selected by using spline interpolation in the
estimated error region. Then, C 1 (t) is determined by using

A < Ak, ATMP,k >
Cra1 = arg max _—

Cr,0—Pr<Cr,1<Cl,0+Ps [ A&l - [[ATmp ]|

®)

where Ap(t) is obtained through spline interpolation and
Arwmp k(t) is template such as one shown in Fig. 3. Finally,
Dy, 1(t) is determined by using

R < Ay, Armp i >
Dy = arg max — 7

— . (6
PNy S TR S
The difference between our proposed model and the previous
model is that we use a template of Armp,k(t) instead of the
averaged Ak(t) [7]. These equations mean we can determine a
unique solution from among the candidates. Since 0 (t) and
01 (t) are determined from Dy 1 (t) and Cy 1 (t), we can de-
termine Ay (t), Bi(t), and 021 (t) from Eq. (2), Eq. (3), and
021, (t) = Ok (t) + 015 (t), respectively.

The grouping block merges the instantaneous amplitudes
Ay (t)s and phases 01, (¢) in the concurrent time-frequency re-
gion of the target using constraints (i) and (iii) from Table 1,
and then reconstructs them into the segregated signal fl (t).
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Figure 4: Segregation accuracy when segregating a piano sound
from a mixed sound: (a) SNR and (b) precision.

3. Simulations

First, to show that the proposed model can selectively and pre-
cisely segregate the target instrument sound fi1(t) from the ob-
served sound f(t), we carried out simulations of the segregation
of each sound from four mixed sounds (piano, flute, horn, and
violin). Five types of mixed signal f(t) were used as simula-
tion stimuli in each simulation, where the SNRs of f(¢) ranged
from -10 to 20 dB in 10-dB steps. These original signals were
generated using a Tone-generator (YAMAHA, MU-2000).

To evaluate the segregation performance of our proposed
method, we used the following two measures. Both measures
show improvement if they become positive higher values.

S fi()at
JTh@) = fre)

T K F /2
Ar(t) dt
Precision = %/ <1Olog10 szfl k(1) 2) g
0 Dope1 (Ar(t) — Ax(2))

SNR = 101log, )

®)

Moreover, to show the advantages of the proposed model,
we compared the performance of the model when (a) using only
top-down processing (only extracting the harmonic component
of the target sound, not segregating it in each channel) and (b)
using bottom-up processing (i.e., using a previous model [7]).

The results of the first simulations for piano (G3) are shown
in Fig. 4, where f(t) was the target piano (G3) sound mixed
with flute (A4), violin (C4), and horn (Eb2). For example, when
the SNR of the mixed signal was 0 dB, it was possible to im-
prove the SNR by about 12 dB from f(t), and to improve the
SNR by about 2 dB and the precision by about 5 dB as segre-
gation accuracy, compared with the top-down processing. This
comparison shows the importance of separating each compo-
nent from the overlapped components in each channel. Our re-
sults show that the proposed model can selectively segregate
the target, using the key of the target sound, with high accu-
racy. For the other target sounds (flute, horn, violin), the results
were similar to those shown in Fig. 4. When the SNR of the
mixed signal was 0 dB, we could improve the SNR for the flute,
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Figure 5: Overview of signal processing for the proposed
model.

horn, and violin sounds, by about 16.7 dB, 7.3 dB, and 13.6
dB , respectively, from f(t), and improve the SNR by about
2.0 dB, 3.6 dB, and 0.9 dB and the precision by about 9.9 dB,
9.3 dB, and 0.3 dB as segregation accuracy compared with the
top-down processing.

Next, to demonstrate that the proposed model can be ap-
plied to a realistic problem where the target performance sound
must be segregated from mixed sound as shown in Fig. 1
(which is a typical situation resulting from the cocktail party
effect), we carried out the following simulation. The origi-
nal signals were as follows. Target f1(t) was a piano sound
played “chu-rippu” (six notes: CDECDE), f2(t) was a flute
sound played “kirakiraboshi” (seven notes: CCGGAAG), f3(t)
was a violin sound played “choucho” (six notes: GEEFEE), and
fa(t) was white noise. These were musical sounds taken from
Japanese songs (except for f4(t)). Inputs were the mixed sig-
nal f(t) = fi(t) + f2(t) + f3(t) + fa(t) and the keys of the
symbol (piano) and notes (CDECDE, not including any time in-
formation) of the target. The task was to selectively segregate
the target sound (“chu-rippu” of the piano sound) from f(t).

Figure 5 shows an example of the signal processing of the
proposed model for this task. In this figure, panels A and B
show each original signal and the mixed signal f(¢) at an SNR
of 0 dB, respectively. The instantaneous amplitudes S (t)s and
phase ¢ (t)s (panel C) are decomposed from f(t) using the fil-
terbank and then the candidates of the F-note (panel D) are ex-
tracted from S (t)s. The template of the target sound (panel E)
is generated from the knowledge sources using keys. The seg-
regated amplitude Ay (t)s (panel F) and phase 014(t)s are ob-
tained from S (t) and ¢ (t) using the constraints and template,
and then the selective-segregated signal f1 (t) is reconstructed
by the grouping block.

In this simulation, the proposed model improved the SNR
about 10.6 dB from f(¢). Moreover, the accuracy of the seg-
regated target sound was improved by about 1.5 dB because of
the better SNR and by about 2 dB because of the greater preci-
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sion, compared with top-down processing. In this simulation, it
was difficult to selectively segregate the target sound from the
mixed sound using bottom-up processing without having some
prior information. We have thus shown that our proposed model
can be used to selectively segregate the sound of a target musi-
cal instrument performance sound from a mix of various sounds
such as one resulting from the cocktail party effect.

4. Conclusions

In this paper, we have proposed a selective sound segregation
model that combines top-down and bottom-up processing. We
carried out two segregation simulations to evaluate the proposed
model - one in which a target sound was segregated from a
mix of four instrument sounds, and one in which a musical per-
formance sound was segregated from a mixed musical perfor-
mance. Our results in the first case showed that our model can
selectively and highly accurately segregate a target instrument
sound from a mix of various sounds. Our results also showed
that combining top-down and bottom-up processing is useful
for selective sound segregation. The results of our second simu-
lation showed that the proposed model can be applied to a more
realistic sound segregation problem, such as the sort of situation
that results from the cocktail party effect. The advantages of our
proposed model make it applicable to preprocessing for a mu-
sical scene analysis system and for replaying of a target sound.
This model, therefore, can also be adapted to computationally
model the mechanisms of a human’s selective hearing system.
In our future work, we hope to establish a means of con-
structing a standard template for any instrument sound (e.g., op-
timization between the template and a real sound), and then we
will adapt the model for various musical performance sounds.
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