
Mapping Sound Synthesis in a Virtual Score
Guy E. Garnett , Timothy Johnson, Kyongmee Choi

School of Music

University of Illinois. Nevada St, Urbana IL 61801

garnett, tejohnso, kchoi3@uiuc.edu

ABSTRACT
 The Virtual Score Project is currently running in a CAVE
(Cave Automatic Virtual Environment) [3] located in the
Beckman Institute of the University of Illinois in Urbana-
Champaign. While a variety of research has been done in the
CAVE to produce applications for science or industry, there has
been relatively little artistic exploration. The CAVE has a highly
developed and supported visual environment, but the
development and support in the area of sound has been much less
emphasized. One approach is described in [1]. Part of the impetus
for this project is to bring these two things more into balance, and
to explore the latent artistic possibilities in such a rich new
technological medium. This paper describes the approaches to
sound production we have recently been exploring.

1.1 Technical Description
Cave
The CAVE is a four-sided graphic environment encompassing
three walls and the floor. Users wear special glasses which allow
them to see images in three dimensions. The glasses have a
MotionStar [7] sensor attached to them that sends out six data
streams, the three positional axes Horizontal (X), Vertical (Y),
and Depth (Z), which are measured in absolute distance, and the
three orientation axes Azimuth (A), Elevation (E) , and Roll (R),
which are measured in degrees. Users interface with the system
by wielding a special wand which has three buttons, a joystick
(push controller), and a second MotionStar sensor. The graphics
and computation engine of the CAVE is an SGI named Cassatt
equipped with an Onyx2 Reality Monster consisting of 12 250
MHz R10K MIPS CPUs, 9 Gigabytes of physical RAM and 4
InfiniteReality2 graphics boards. [5]

1.2 Overview of Program
The VirtualScore is designed to utilize the graphics and motion
tracking features of the CAVE to create an immersive 3-D
representation of a musical score. The user is inside the score and
events flow past under user control. Each event is associated with
certain sonic behaviors.

1. 3 Soniblui
Our graphics software, called Soniblui

1
, is menu driven, and these

options are selected using the leftmost two buttons on the wand.

1 Soniblui was de veloped initially from a graphics only program called

AlaskaBlui, which allowed a user to create 3-dimensional blue swirley

shapes in the CAVE, without any sound.

The rightmost button is used to initiate a sound event. As the user
draws an image in the CAVE with the wand, the gesture is
recorded by Soniblui in a linked list of nodes, and is immediately
displayed as a colored object in the shape of the gesture, with the
orientation axes of the wand recorded and rendered visible as
short white lines protruding from each node. In addition to
creating the individual note events, the joystick is used to edit the
position of an event or group of events, or to adjust the display of
a group of events. A grid is displayed on all four projection
surfaces to allow the user to measure increments of time spatially
(objects that are farther away are further back in time). As the
image is displayed, Soniblui sends out relative position and
orientation values received from the wand to our Macintosh
Titanium G4 running Max/MSP. (The wand sensor values are
scaled in relation to the glasses sensor, allowing the user to stand
anywhere in the space.) Using Max/MSPs and the OSC protocol
[6], the position, orientation, and button values are accessed by
our Max/MSP patch, and a corresponding sound event is
produced. The CAVE can theoretically handle eight channels of
audio and our system was originally designed to exploit this, but
was later simplified to two channels.

1.4 Edit and Performance paradigms
There are two user modes in our system: Edit mode and Play
mode. In Edit mode the user creates and edits events with
gestures. In Play mode the user performs the stored composition,
shaping its temporal and dynamic unfolding using basic
conducting gestures. As in [4] a beat detecting algorithm is used
to calculate the tempo of the playback from the
conductor/performer’s gestures. During playback, the score
moves past the user, whose position determines the current “now”
of the score. In order to have multiple sounds playing
simultaneously we have used the MSP object ~poly [8] . ~poly
allocates a specified number of copies (voices) of all the patches
contained within it. It works much the same way as synthesizer
polyphony. This was necessary to accommodate playback of
stored compositions. For our purposes, we found that having 16
voices was sufficient, although in the future much more
computing power will be needed to fully implement our projected
system. Our choice of FM [2] allows us to handle all the sound
processing on our Macintosh. [9]

1.5 Prototype Development
Using the Max/MSP system made it very easy for us to prototype
and develop different sonic responses to the gestural data we were
generating. A few of these varied approaches are presented next.

In September of 2001 we began the CAVE and Virtual Conductor
projects. The first major decision was to add OSC [8] to the
CAVE app. This allowed us to transmit the wand sensor data

directly and simply to the Macintosh running Max/MSP. In our
earliest prototype we were using the absolute wand sensor values,
that is, numbers referring to absolute locations in the CAVE. This
forced us to locate and remember a position in the room where the
user would be required to stand in order for our scaling ranges to
work. This proved to be overly cumbersome, so code was added
to calculate the wand sensor values relative to the head sensor.
These relative wand sensor values were much easier to work with,
and made the system much more user friendly. However, some
parameters, mostly having to do with time points, are still referred
to location in the time grid which is independent of the user. This
is helpful becaue then the user can move around physically in
space in order to gain access to different time locations.

1. Event updates vs. continuous control
As in many realtime systems, we were faced with decisions about
whether we would allow parameter updates continuously or only
at discrete event boundaries: “note on” versus “continuous
controller” data in MIDI parlance. In our first version of the
system, the sound was continuous, and the user was able to play
the space which represented one big FM sound environment. It
was exciting to be able to shape the synthesis output gesturally,
but we found this became tiring relatively quickly, and we wanted
to have control over the initiation, duration and termination of a
sound. So we decided to use the wand Button #3 to initiate and
terminate an event, much like a mouse click. Even though we
would still be receiving continuous data from the tracking
devices, this gave us the opportunity to get the sensor values at
the moment of initiation of the sound (which we refer to as
instantaneous values). Using these numbers for some parameters
makes it easy to keep certain aspects of the sound constant for its
entire duration, without any special effort on the part of the user.
Every time we receive a Button #3 On message we store the wand
values in float boxes and bang them through once. Button #3 also
allocates a new ~poly instance to handle the synthesis for that
particular sound. The continuous values are coming through all
the time, and for certain parameters we use these (mapping
continuous Y values into frequency, for example).

In order to keep the synthesis demands to a minimum and focus
on the scoring and control functionality, we developed a set of 8
FM timbres, which consist of fixed modulation index and
amplitude envelopes, along with default harmonicity values and a
fixed duration. This gives the user eight choices for timbral
starting points, though many of the timbres behave similarly
depending on the user's gestures. Later, three variations of the
fixed modulation index and amplitude envelopes were developed
for each timbre. In this version the user could toggle through this
family of three envelopes by positioning the wand within one of
three zones on the E (elevation) axis, each encompassing a 60
degree portion. We therefore use only 180 degrees out of the
possible 360 since the wrist is not able physically to bend over
backward, though of course we could have allowed for flipping
the wand as a drum major twirls his baton. These envelopes added
richness to the environment but were cumbersome and difficult to
edit with all the hard-coded data. A set of Max patches was
created to address this problem. Two fixed envelopes are created
off-line and stored in a Max coll object in the FM synthesis
engine patch. The FM engine interpolates between these fixed
envelopes in real time. The original hard-coded envelopes were
incorporated into this system. Now, by positioning the wand
along the E axis, an FM sound is generated with interpolated
envelopes for its modulation index and its local amplitude. Using

these patches the user can easily create any number of fixed
envelopes for any of the FM timbres. The user need only draw the
desired envelopes and store them in the patch.

1.6 Gestural Mapping/Sound Synthesis
We have two signal processing engines: FM synthesis and sample
playback. Most of the research into gestural mapping strategies
was done with FM synthesis in mind. However, when we later
added the sound sample option, we tried to keep our gestural
model as similar as possible to the FM approach. Aiming at what
would be most intuitive for the user, the gestural model evolved
gradually. The mapping used in the first prototype was: frequency
(X), amplitude (Y), modulation index (Z), panning (A), and
on/off cue (E). We soon changed to frequency (Y), which, along
with panning (A) are so intuitively natural that they have
remained until the present. By trial and error we found
appropriate scaling ranges for our FM parameters. Our design was
guided by our desire to minimize any intuitive discrepancy
between the gesture and the sonic effect, knowing that it was
necessary to keep things simple enough for the user to be able to
get meaningful results from their movement. Our second
prototype featured the following mapping scheme (the Sampler
synthesis portion of the table refers to an alternative synthesis
engine that was developed as an alternative to FM):

 Play mode :

X - overall dynamic control

 Y - speed control (~pvoc [10])

Z - reverb

A - panning

 Edit mode :

FM synthesis :

X - carrier frequency

Y - amplitude

Z - modulation index/harmonicity

A - panning

 Sampler synthesis :

X - time compression

Y - amplitude

Z - chorus effect

A - panning

Some things were hard to hear, like the chorus effect in sampler
mode, and the values had to undergo a lot of tweaking. Other
things seemed to work well from the start. In FM synthesis, it is
difficult to predict the effects of certain parameter changes, such
as harmonicity. It required a lot of experimentation to be able to
reliably produce certain timbral qualities. In our original sampler
mode we only had one pre-loaded sample. Now we have eight
different samples, and , as in FM mode, changing the current
sample or changing the FM timbre has to be done manually by

someone at the computer keyboard. After our most recent spate of
research we have settled on the following mapping arrangement
for FM synthesis:

Table of Mappings for FM Synthesis (in Edit Mode)

Instantaneous Values:

X harmonicity quadrant (scaling range)

global amplitude scaling vector (see below)

Y global amplitude scaling vector

Z reverb (dry/wet mix)

global amplitude scaling vector

E interpolated envelopes (see above)

R harmonicity value

Continuous Values:

Y carrier frequency

A panning

In our sample playback model, the sensor values are mapped into
parameters that control the quality of the sample playback. The
table of mappings is as follows:

Table of Mappings for Sample Playback

Instantaneous Values:

X chorus quadrant (scaling range)

global amplitude scaling vector

Y sample playback duration (frequency tuning)

global amplitude scaling vector

Z reverb (dry/wet mix)

global amplitude scaling vector

E low pass filter

R chorus depth

Continuous Values:

A panning

In Sample Playback, X and R are used in the same manner as FM,
with X delineating three quadrants of scaling ranges and R
producing the specific value within a particular scaling. The
mapping of Y is also analogous to the FM model: here it maps
into a parameter that controls the perceived pitch of the sample. E
has been mapped into a low pass filter allowing the user to lighten
or darken the sound with a twist of the wrist, a simple but
effective technique. The rest of the mapping is the same as FM.
The mapping for both methods of signal processing was chosen to
give the user intuitive gestural control over a rich sound
environment that would be computationally inexpensive.

In an attempt to extend the capabilities of the system in an
intuitive way we found it useful to pair position values with an
analogous orientation value: (X/R, Y/E, and Z/A). In this scenario
the position value would control the coarse range of values for a
parameter and the analogous orientation value would control the
specific fine values. The first FM parameter we applied this to
was harmonicity, mapping into it from the horizontal axis (X) and
its corresponding orientation value roll (R). We divided the user’s
portion of the X axis (the part that fits within an average arm
span) into three quadrants. From left to right each quadrant
represents a harmonicity range that is progressively more
sideband-rich. So the first quadrant only allows a spectrum of
harmonicity ratios that produce a range of FM sounds from very
pure to mildly sideband-rich. The third quadrant encompasses
fairly to extremely rich sounds (noise). The instantaneous X value
sets the scaling ranges for the appropriate quadrant and the
instantaneous R value gives us a specific value within that
quadrant. This allows the user to work with a specific family of
timbres without having to worry about minute changes in the X
position drastically changing the sound. We found that mapping
orientation values into expressive parameters like harmonicity
allows the user to obtain a wide variety of timbres while keeping
most other parameters the same. Another parameter besides
harmonicity that controls the richness of the sound is the
modulation index, which is mapped into from E (elevation).
Again, this allows the user to change the quality of sound while
other parameters like frequency, reverb, etc. remain the same. The
range of E values (from -90° to 90°) corresponds to interpolated
envelopes, using the previously mentioned Max patches. There
are two sets of these envelopes, one for the modulation index and
the other for the local amplitude envelope of the current FM
timbre. Z (the depth axis) maps into reverb. The further away the
wand is from the user at the moment the sound is initiated, the
more reverb is applied to the signal. The raionale for this choice is
simply our perception that dry sounds are close and wet sounds
are distant. And finally we have an absolute distance vector
mapped into global amplitude. This 'global amplitude scaling
vector' is a vector computed using X, Y and Z which measures the
absolute distance from the head sensor to the wand sensor. This
value controls the amplitude of the sound just before it is sent to
the ~dac, (the global amplitude). The closer you bring the wand to
the head, from any direction, the quieter the sound.

Future Work
Future plans include making more use of the available data.
Besides the relative sensor values coming from the wand, we
could also make use of the absolute values of both the wand and
head sensors. (For example, we could divide the space into
quadrants and base the synthesis paradigm upon which quadrant
the user is currently occupying.) We will refine our playback
model to more expressively scale the stored values in a
composition (amplitude, reverb, panning, etc.) with conducting
gestures. Another addition could be having the user enter a size
value, reflecting their basic arm span (small, med, large) which
will globally scale all of the individual scale objects and bring the
system into the reach of the current user. And we are currently
developing a voice control method of choosing these options,
with the help of Tom Bonura of Apple computer. To make the
system widely usable we need to be able to insure users have

reliable access to a CAVE, give them the ability to take their
work with them and create opportunities for performance within
the practical means of a composer.

ACKNOWLEDGMENTS
Thanks to the National Center for Supercomputing Applications,
and the Critical Research Initiative of the Uniiversity of Illinois
for their support of this project.

REFERENCES
 [1] Bargar, R. et al. Coney Island: Combining jMax, Spat
and VSS for Acoustic Integration of Spatial and Temporal
Models in a Virtual Reality Installation. Proceedings of the
International computer Music Conference, ICMA, San Francisco,
2000.
[2] J. Chowning, "The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation," Journal of the
Audio Engineering Society 21(7), 1973; reprinted in Computer
Music Journal 1(2), 1977.
[3] Cruz-Niera, C., Sandin, D., DeFanti, T., Kenyon, R.,
and Hart, J. "The Cave Audio Visual Experience Automatic
Virtual Environment," Communications of the ACM, Jun. 1992,
vol. 35, No. 6, pp. 65-72.
[4] Garnett, G., Jonnalagadda, M., Elezovic, I., Johnson, T.,
and Small, K. Technological Advances for Conducting a Virtual
Ensemble. Proceedings of the International Computer Music
Conference. 2001, pp. 167-169.
[5] Leetaru, K. EasyDemo Maunal.
http://easydemo.ncsa.uiuc.edu/easydemomanualpdf.pdf
[6] Wright, M. and Freed, A. "OpenSound Control: A New
Protocol for Communicating with Sound Synthesizers."
Proceedings of the 1997 ICMC, Thessaloniki, 1997. ICMA. pp.
101-104.
[7] See www.hi-res800.com/Info/MotionStar.pdf for
specification and contact information
[8] See
www.synthesisters.com/download/WhatsNewInMSP2.pdf for an
introduction to the ~poly object and MSP.
[9] For a complete discussion of the basic features and

rationale of the Virtual Score system see Garnett, G., et al.,
“VirtualScore: Exploring Music in an Immersive Virtual
Environment.” SIMS 02, UC Santa Barbara, June 2002.

[10] For details of the MSP phase vocoder patch ~pvoc, see
MSP tutorials.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Guy Garnett
	Tim Johnson
	Kyongmee Choi

