
Recent Developments in Siren: Modeling, Control, and
Interaction for Large-scale Distributed Music Software

Stephen Travis Pope and Chandrasekhar Ramakrishnan
Center for Research in Electronic Art Technology (CREATE)

University of California, Santa Barbara (UCSB)

email: {stp, sekhar}@create.ucsb.edu

Abstract
This paper describes recent advances in platform-

independent object-oriented software for music and
sound processing. The Siren system is the result of
almost 20 years of continuous development in the
Smalltalk programming language; it incorporates an
abstract music representation language, interfaces for
real-time I/O in several media, a user interface frame-
work, and connections to object databases. To sup-
port ambitious compositional and performance appli-
cations, the system is integrated with a scalable real-
time distributed processing framework.

Rather than presenting a system overview (Siren is
exhaustively documented elsewhere), we discuss the
new features of the system here, including its integra-
tion with new DSP frameworks, new I/O interfaces,
and its use in several recent compositions.

1 Introduction
Siren is a general-purpose software framework for

sound and music composition and production; it
traces its roots back to 1984. Siren is a library of
about 350 Smalltalk classes for building sound/music
applications; it is platform-independent and runs on
Macintosh, Windows, and UNIX-based computers.
The core elements of Siren are:

- the Smoke music representation language
(classes for music magnitudes, events, event
lists, generators, functions, and sounds);

- voices, schedulers and I/O drivers (real-time and
file-based I/O for sound, OSC, and MIDI);

- user interface components for musical applica-
tions (UI tools and music/sound widgets); and

- several built-in applications (various editors and
browsers for Siren objects).

The best references for Siren are (Pope 1987,
1992, 2001). This paper will not present the basic
framework (which has been quite stable since 1989),
but will discuss the recent evolution and applications
of the system, including the port to VisualWorks non-
commercial Smalltalk, the new support for I/O using
the OSC protocol, database back-ends, and the sys-
tem's use in several compositions.

2 Music Representation in Smoke
When the Smoke representation was developed

(1988), it was designed as a language-independent
representation for music. Yet the syntax of Smoke
(and to some extent, its semantics) is that of Small-
talk, the language used for the first implementation.

At the time, Smalltalk was a natural choice of lan-
guage; there were not many object-oriented lan-
guages with substantial user bases, and of those lan-
guages, Smalltalk was by far the most mature. In the
intervening 15 years, the language landscape has
changed. The reality of today—much to our disap-
pointment as Smalltalk fans— is that Smalltalk is a
language that many have heard of, but few know.
Today, mainstream object-orientation means C++,
Java, C#, ObjectiveC, Ruby, or Python.

This implies a new set of choices when it comes to
moving Siren forward. If the goal is to make Siren
available to the greatest number of users, one of the
more widely known languages would be a better
choice than Smalltalk. If the goal is to experiment
and see how new language features can be applied to
representation of music, other options may or may
not be indicated. Class-based object-orientation is no
longer novel, and languages with different features,
such as prototype-based OO languages like Self or
CommonLISP, have potential to bear fruit in the
search of a flexible and elegant representation of
music. If the goal is a strict interpretation of the tim-
ing information specified in a Smoke event list, then
still other languages become natural choices. Timely
processing of event lists requires a language designed
for use in a real-time setting, such as SuperCollider
or Erlang. Of course, there remains another possibil-
ity of designing and developing our own language
aimed at music representation, using Smoke as a
starting point.

While we continue to use the Smalltalk implemen-
tation of Siren for the bulk of our development (for
reasons detailed in the Evaluation section below), we
have begun tackling the goals mentioned above. To
that end, we have made experimental versions of the
Siren core in Ruby, Self, and SuperCollider.

Of the languages we determined would give Siren
the widest distribution, we eliminated C++, Java, and
C# because they are (usually) statically compiled,
making them unsuitable for interactive use. Of the
remaining two, we chose Ruby over Python because
it is more different from Smalltalk. Ruby offers fea-
tures like “continuations” that could be profitable
employed in music representation (cf. SuperCollider
patterns). For the exploration of new language para-
digms, we chose Self because it is exotic enough to
contain interesting language features, but stable
enough to have a simple installation process and offer
a powerful development environment. For real-time
performance, we chose SuperCollider because it is
widely used in the computer music community. We
would still, at some point, like to try an Erlang imple-
mentation of Siren.

Moving Siren away from its Smalltalk origins has
forced a re-evaluation of some assumptions inherent
in the original description of Smoke. Though the
Smoke specification indicates that Smoke is both a
class-library specification and a syntax, we have cho-
sen to abandon the syntax and retain only the class-
library specification. To retain the syntax would, first
of all, require the implementation of Smalltalk vir-
tual machine to handle the Smalltalk block-closures
which are permitted in Smoke events, but, more to
the point, retaining the syntax would force the users
to learn Smalltalk, which defeats the goal of bringing
Siren to a wider audience. So, we have chosen to
keep only the class-library specification. Thus,
Smoke event lists are written in the same language as
the implementation which is being used.

This recent work is altering some aspects of Siren,
but the basic character of flexible representation and
processing of musical information remains. We will
have more to report on this front in the future.

3 Siren on Squeak (1996-2001)
The original platform for main-stream develop-

ment in Smalltalk was Xerox PARC Smalltalk-80
version 2 (1982), which became an expensive com-
mercial product when ParcPlace Systems, Inc. spun
off from Xerox in 1988. In 1996, the sound/music
framework then called MODE was ported to Squeak
(http://www.squeak.org), a then-new open-source
Smalltalk implementation. I renamed MODE to Siren
at that time. Squeak is a wonderful, open system, and
added many features not found in other Smalltalks,
including a novel (though slow and buggy) GUI
framework called Morphic, a Smalltalk-to-C transla-
tor for making native methods, and toy versions of
sound synthesis and graphical rendering frameworks.

The final version of Siren on Squeak (3.0, which

was released on a CD-ROM in 2001 [Pope 2001])
incorporated a set of low-level MIDI functions,
streaming sound I/O, GUI applications based on
Morphic, and an interface to the MinneStore object
database system.

Even after six years of development, however,
Squeak still lacks the performance, solidity, and
interoperability of commercial Smalltalk environ-
ments, and suffers from the lack of clear manage-
ment that is common to many open-source projects.
Since Squeak is based on Smalltalk -80 version 1, it
is missing all of the enhancements made at PARC
since 1981, including integrated exception handling,
the unified I/O framework, the improved Smalltalk
compiler, the parser compiler (akin to YACC), and
the addition of namespaces to the language. These
factors (especially the system’s mediocre virtual
machine performance) became increasingly frustrat-
ing as time went on.

4 Siren on VisualWorks
In 2000 or so, ParcPlace released a free non-com-

mercial versions of their flagship VisualWorks/
Smalltalk system (called VisualWorks non-commer-
cial or VWNC), the true descendent of the PARC
Smalltalk-80 lineage. The Siren system has now been
ported from Squeak “back” to VWNC. The main dif-
ferences are not in the core system classes (which are
largely compatible between all Smalltalk implemen-
tations), but in the facilities for file and socket I/O,
and especially in the GUI frameworks. The Visual-
Works tool set is also a good deal more sophisticated
than that of Squeak; it includes a much better (multi-
threaded) debugger, and tools for configuration man-
agement, team programming, etc.

5 Siren I/O: MIDI, OSC, etc.
One of the persistent problems with making cross-

platform music tools has been the lack of good porta-
ble libraries and APIs for sound and MIDI I/O. In
recent years, this has been greatly helped by the
emergence of the cross-platform PortAudio (http://
www.portaudio.com), PortMIDI (http://www-2.cs.
cmu.edu/~music/portmusic), and LibSndFile (http://
www.zip.com.au/~erikd/libsndfile) packages.

VisualWorks Smalltalk includes a powerful facil-
ity for constructing interfaces between Smalltalk and
C libraries called the “Dynamic Linked Library and
C Connect” package, or DLLCC. The DLLCC tools
can read C header files, parsing data type definitions,
macros, and function prototypes, creating equivalent
methods in special Smalltalk classes called “external
interfaces.” The DLLCC loader can then be directed
to load a given shared object file whenever an

instance of an external interface class is created.
DLLCC has now been used to integrate Siren with
the LibSndFile, PortAudio, PortMIDI, and FFTW
(http://www.fftw.org) packages.

For simpler network- and file-oriented I/O, new
voice objects have been developed to allow Siren to
communicate over the OSC network protocol and to
generate note-list files for use by programs written in
the SuperCollider programming language.

Because of Siren’s separation of musical data from
the interpretation of abstract musical properties into
concrete parameters (this is the gist of the event/voice
distinction in Siren), these new voice classes were
immediately usable by existing compositions.

6 Siren and CSL
One of our recent projects has been to use Siren as

a front-end to the CREATE Signal Library (CSL,
pron. “sizzle”) (see [Pope and Ramakrishnan 2003]
elsewhere in these Proceedings). Specifically, Siren
applications that play back stored scores, implement
generative algorithms, or map in-coming gesture data
can send OSC messages to one or many CSL-based
server programs, and can dynamically create, start/
stop, and monitor CSL server instances.

7 Siren and CRAM
In other projects on distributed software for real-

time object-oriented applications, we have developed
a software infrastructure we call the CREATE Real-
time Application Manager (CRAM) (Pope et al.
2001). CRAM consists of a description language, a
software framework, a tool-set, and a server infra-
structure for large-scale distributed processing.

Siren and CSL are designed from the ground up to
be used in distributed systems, with several CSL pro-
grams running as servers on a local-area network, all
controlled by Common Object Request Broker Archi-
tecture (CORBA, http://www.omg.org) and OSC
messages sent from Siren programs. These CSL DSP
servers receive control commands via the network
and send their output sample blocks to other servers
over the network. (Control in CSL is transmitted via
OSC network messages, and any “wire” between ele-
ments in a CSL DSP graph can be deferred over a
network socket.) A typical multi-server CSL/Siren
configuration is illustrated in Figure 1 below.

In this example, each of the round-edged rectan-
gles is a separate server program. The top four serv-
ers are CSL programs (written in C++); the larger
box in the middle is the CRAM system manager
(written in Smalltalk), and the Siren server at the bot-
tom sends OSC messages to the CSL servers.

The control links (shown as dotted lines) use the

CORBA and OSC protocols, and the inter-program
sample streams (drawn as arrows) use the CSL sam-
ple streaming protocol. CRAM manages the distrib-
uted CSL/Siren application; it starts up the individ-
ual CSL servers, and monitors them during run-time.

The heart of a large-scale synthesis system is a
Smalltalk server running both Siren and the CRAM
manager. Figure 2 on the next page shows the CRAM
system monitor screen, in which one can see three
main panes in the view:

- top: the table of available nodes with their char-
acteristics (read in from the configuration data-
base);

- middle: the list of running services on the
selected machine (CRAM manages these); and

- bottom: the text of recent messages from the
selected service (accessed via the node’s Log-
ging service).

8 Composition with Siren
The first author has used Siren (and its predeces-

sors) in all of his compositions since 1984. Recently,
new class libraries have been developed to support
large speech databases with phoneme segmentation
and detailed feature extraction for the works Four
Magic Sentences (2000) , Sensing/Speaking Space
(2001/2), Gates Still Open (2002), Eternal Dream
(2002/03), and Leur Songe de la Paix (2003).

The analysis core of the Siren speech database is
the segmenter, which uses a combination of time-
domain and spectral-domain features to break contin-
uous speech into individual phonemes. Figure 3
below shows an example of the debugging screen of

40 singers
(sound file
playback)

16 drums
(filtered noise)

16-channel mixer,
reverb, spatializer

32 violins
(waveguide
physical models)

methods, input devices
and gesture mapping

16-channel output

Control

Sample
streams

hardware interface

Siren scores, compositional

“CRAM” distributed application
framework for process management,
dynamic load-balancing and run-time
OSC control message routing

the segmenter. In this case, the input was the sen-
tence “Ice melts.” The lower part of the view shows
the detailed spectrum and windowed RMS ampli-
tude. The upper part of the view shows the octave-
band spectrum and segment points (the vertical lines
in the upper plot; this is what the segmenter gener-
ates).

The system then stores a set of properties for each
phoneme: file name, start/stop samples, duration,
max ampl., rms ampl., spectral centroid, spectral
width, spectral bands, noise level, pitch estimate,
pitch trajectory, and envelope class. A database has
been created with over 20,000 phonemes.

In typical usage, the database is be queried (from
Smalltalk or SuperCollider) by supplying a target
phoneme and a distance metric function.

9 Database Interfaces
The Squeak-based version of Siren was integrated

with the MinneStore (http://minnestore.source-
forge.net) object database system. Under heavy
usage, however, the system proved not to have suffi-
cient performance to support multimedia data being
manipulated by interactive applications. With the port
to VisualWorks, we have moved to the server-based
Gemstone database (http://www.gemstone.com). The
ramifications of this are both that the database is
more invisible to the user (a very large set of objects
is simply persistent between user sessions), provides
much higher performance, and can be accessed from
C++ programs (via the Gemstone C API). The goal
(not yet fully realized) is that all of a user’s data—
scores, sounds, edit scripts, etc.—be stored in a uni-

fied database, that it be available in any studio (or at
home), and that it support modern database features
such as replication-on-demand, versioning, query-by-
example, roll-backs etc.

10 Future Siren Applications
There are several areas of active development of

Siren by the authors. The new interfaces to CSL-
based analysis/synthesis servers permit us to inte-
grate Siren into ever more sophisticated composi-
tional and signal processing applications.

One area of interest is developing new front-ends
for extended granular synthesis in order to augment,
and eventually replace, the CREATE PulsarGenera-
tor program (http://www.create.ucsb.edu/PulsarGen-
erator).

As Siren can now read and write OSC messages,
and one of our graduate students (Garry Kling) has
implemented an OSC interface to the Macromedia
Director program (see http://www.mat.ucsb.edu/
~g.kling/OSC/oscar.html), we look forward to con-
trolling graphical animation programs from Siren in
the near future.

Spatial sound is one of the prime R&D topics at
CREATE, and we are now in a position to integrate
Siren, a CSL-based many-channel panner, and our
existing multi-modal input devices (e.g., Overholt
2002) to create interactive spatialization tools for
composers.

An external interface is currently being built to
access the linear prediction functions in the TSP sig-
nal processing package (http://www.tsp.ece.mcgill.
ca/MMSP/Documents/Software/libtsp/libtsp.html).

11 Evaluation
So, given this very compelling sales pitch, would

we recommend that all of you use Siren? Yes and no.
On the “yes” side, Smalltalk adherents have long

claimed that (1) it is the simplest imaginable pro-
gramming language (all data is of the same type, and
there is only one technique of method activation), (2)
the class library is quite compact given its functional-
ity, especially when compared to the competition: the
total lack of useful C++ class libraries, and the com-
plementary flood of mutually inconsistent Java APIs,
(3) the development environment with code brows-
ers, a rapid-turn-around compiler, an in-place debug-
ger, and integrated code versioning and team pro-
gramming tools allow for quite unequalled productiv-
ity, and (4) the language, libraries, and IDE have
been mature and stable for a long time (you can still
use the 20-year-old reference books for the core of
today’s system). In our opinion, these last two issues
outweigh the first two.

Nevertheless, Smalltalk currently falls in the cate-
gory of “semi-obscure” programming languages; it
has consistently failed to gain market-share to match
its mind-share.

The VisualWorks\Smalltalk implementation is a
large, complicated, but also very sophisticated sys-
tem. The base-line virtual image (akin to a Java .jar
file) contains over 2000 classes; and Siren adds over
300 more. This is not a system that one learns over a
weekend. The tools are also delivered in a cross-plat-
form development environment, which is a valuable
boon to the seasoned user, but increases the slope of
the initial learning curve.

Like Java, Smalltalk programs are generally com-
piled to a virtual machine (VM) language, which
might then be interpreted, translated, or cross-com-
piled at run-time. This provides for cross-platform
portability of object code, but costs some level of
run-time performance. Modern Smalltalk virtual
machines use similar optimization techniques (e.g.,
polymorphic in-line caching and cross-method opti-
mization) to best-of-breed Java VMs (and are actu-
ally much better than “average” Java VMs).

Both Smalltalk and Java also assume automatic
storage reclamation (garbage collection), which
makes development easier, but adds (often unpredict-
able) run-time overhead.

Lastly, the Siren package itself is large, complex,
and implements a set of very specific design
approaches to music representation, performance,
sound and signal processing, and user interfaces.
Many of the standard features of computer music
software (e.g., simple MIDI sequencing or common-
practise music notation editors) are still not present in
Siren, due to lack of interest on the part of the
authors. We choose to do with Siren that which we
cannot do with some combination of SuperCollider,
Peak, Finale, and ProTools.

12 Summary
Given my past schedule of “5-yearly” updates on

Siren (1987, 1992, 1997), I’m a year late this time.
This report introduces the current status of the Siren
system, and the tools we’ve built at UCSB to interop-
erate with it.

We continue to develop and use Siren in Small-
talk, even as we experiment with implementations of
systems based on the principles of Siren (and the
Smoke music representation language) in other lan-
guages. The programming language situation (Small-
talk vs. other languages) reminds one of Winston
Churchill’s description of democracy: “it’s the worst
possible system, aside from every other one we’ve
ever tried.”

The demonstration at ICMC 2003 will illustrate
many of the new features and applications of Siren.

13 References
(See the more complete reference list in the companion

paper [Pope and Ramakrishnan, 2003] elsewhere in
these proceedings.)

Overholt, Dan. 2002 “New Musical Mappings for the
MATRIX Interface. “Proc. 2002 ICMC. (See also Dan’s
other projects described in http://www.create.ucsb.edu/
~dano.)

Pope, S. T. 1987. “A Smalltalk-80-based Music Toolkit.”
Proc. 1987 ICMC.

Pope, S. T. 1992. “The Interim DynaPiano: An Integrated
Computer Tool and Instrument for Composers.” Com-
puter Music Journal 16(3).

Pope, S. T. 1997. “Siren: Software for Music Composition
and Performance in Squeak.” Proc. 1997 ICMC.

Pope, S. T. 2001. “Music and Sound Processing in Squeak
Using Siren.” in Guzdial, Mark and Kim Rose. Squeak:
Open Personal Computing and Multimedia. (book and
CD-ROM) Prentice-Hall.

Pope, S. T., A. Engberg, F. Holm, and A.Wolf. 2001. “The
Distributed Processing Environment for High-Perfor-
mance Distributed Multimedia Applications.” Proc.
2001 IEEE Multimedia Technology and Applications
Conf., U. C. Irvine.

Pope, S. T. and C. Ramakrishnan, 2003. “The CREATE
Signal Library (“Sizzle”): Design, Issues, and Applica-
tions.” Proc. 2003 ICMC.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Chandrasekhar Ramakrishnan
	Stephen Pope

