
ChucK: A Concurrent, On-the-fly, Audio Programming Language

Ge Wang and †Perry R. Cook

Computer Science Department, †(also Music)
Princeton University

{gewang,prc}@cs.princeton.edu

Abstract
ChucK is a new audio programming language for
real-time synthesis, composition, and performance,
which runs on commodity operating systems. ChucK
natively supports concurrency, multiple,
simultaneous, dynamic control rates, and the ability
to add, remove, and modify code, on-the-fly, while the
program is running, without stopping or restarting.
It offers composers and performers a powerful and
flexible programming tool for building and
experimenting with complex audio synthesis
programs, and real-time interactive control.

1. Ideas in ChucK
In this paper we present four key ideas that form

the foundation of ChucK. The goal is to design a
natural audio programming language (1) to
concurrently and accurately represent complex audio
synthesis, (2) to enable fine-grain, flexible control
over time, (3) to provide the capability to operate on
multiple, dynamic and simultaneous control rates,
and (4) to make possible an on-the-fly style of
programming. ChucK runs on commodity operating
systems (Linux, Windows, Solaris, MacOS).

Four major ideas form the basis of ChucK.

• A unifying, massively overloaded operator.
• A precise timing model that is capable of true

concurrency and arbitrarily fine granularity. The
language semantic supports multiple,
simultaneous, and dynamic control rates, and
naturally amortizes operations over time.

• Native language support of arbitrarily many
input/output sources, MIDI, network, serial,
USB, graphics, and any input/output device you
can connect to the computer.

• On-the-fly programming enables dynamically
modifiable programs for performance and
experimentation.

We present ChucK with respect to these four

major facets. We provide some informal 'rules' of
ChucK, each of which embodies some key aspect of
the programming language. In Section 2, we look in
detail at the ChucK operator. In Section 3, we present
the ChucK timing model, introduce the concept of

shreds and concurrency in ChucK, and demonstrate
multiple and simultaneous control paths and control
rates. Section 4 presents an overview of the
integration of many types of input/output related
devices and operations into the language. Section 5
presents a special aspect of ChucK: its ability to be
programmed on-the-fly during run-time. ChucK is
implemented as a virtual machine running with a
special run-time compiler with low-level audio
engine. Section 6 takes a step back and reasons about
the performance benefits/drawbacks of ChucK.

2. The ChucK Operator
ChucK is a strongly-typed, imperative

programming language. Its syntax and semantics are
governed by a flexible type system. ChucK includes
standard features (arithmetic, bit-wise, memory
operations, etc…) and control flow mechanisms (if,
for, while, switch, goto, break, continue, etc…)
common to most modern imperative programming
languages. But the heart of ChucK's syntax is based
around the ChucK operator (written as =>).

1st rule of ChucK: make use of the left-to-right
ChucK operator. => originates from the slang term
"chuck", meaning to throw an entity into or at another
entity. The language uses this notion to help express
sequential operations and data flow.

(440 => osc) => env => filt => audio[0];

The above code fragment constructs a simple
synthesis instrument using a series of unit generators
(Mathews 1969) (their declarations are omitted for
the moment): an oscillator, an envelope, a filter, and,
finally, audio channel 0. Notice that the single line
captures the flow of the signals from left to right - the
same order as we read and type.

A ChucK statement can be composed of any

appropriate types of objects (including user-defined),
unit generators, operations, values, and variables.
The semantic of the statement depends on the types
of the objects, and the overloading of the ChucK
operator on those types.

The main ideas behind the ChucK operator are (1)

it locally captures the left-to-right nature of program

flow (with the exception of nested ChucK
statements), representing the order of sequential
operations more faithfully, (2) it can be chained to
any arbitrary length, and (3) it reacts, or behaves,
differently depending on the types of the objects
being chucked. =>’s behavior is defined/altered
through overloading using the ChucK type system.

The basic ChucK operation takes place between

two entities, the ChucKer and the ChucKee:

x => y

The operation performed depends on the types of

x (ChucKer) and of y (ChucKee), the combination of
which maps to a particular action that is overloaded
on the ChucK operator. For example, it might assign
the value to a variable, or connect/disconnect one unit
generator to/from another, or anything depending on
the particular overloading. For example, the notion
of behavioral abstraction in Nyquist (Dannenberg
1997) can be realized through this type of
overloading =>.

The following are some sample ChucK

statements, where the identifiers x, y etc. can be any
well-typed entities.

Binary ChucK: the simplest ChucK statement,
chucking object/value x to object/value y.

x => y;

Chain ChucK: ChucK statements can be a sequence
of ChucK operations of arbitrary length. The
operations are performed left to right, in exactly the
same order as written.

w => x => y => z;

Nested ChucK: evaluation of ChucK expressions
gives local precedence to parenthesis. In the
statement below, the operation v=>w is evaluated,
then x=>y, and the result of v=>w is chucked to the
result of x=>y. Finally, that result is chucked to z.

v => w => (x => y) => z;

Cross ChucK: cross-chucking allows one or more
ChucKer objects/values to be chucked to more than
one ChucKee. In the statement below, the
object/value w is chucked to x, then y, and then z.
(This can also be achieved by a more verbose
sequence of three ChucK statements.)

w => (x, y, z);

The ChucK programming language has no

assignment operator (=), but unifies this operation
under the ChucK operator, as seen here:

5 => int x;

With the ChucK operator, we represent any

sequence of operations in a left-to-right manner. As
shown below, a piece of code is chucked over TCP to
a remote host (also running ChucK), waits for a
message, and prints out the result.

code_seg => tcp(140.180.141.103:8888)
 => local_receiver => stdout;

The ChucK operator can also naturally

synchronize on events and objects. Synchronization
primitives such as semaphores, condition variables,
and monitors (Lampson 1980) can be inserted into
ChucK chains as clear points of synchronization.

code_seg => mutex => machine;

button[0] => play_note();

In the next sections, we will look at the issues of

timing and concurrency, input/output, and on-the-fly
programming, each of which employs some aspect of
the ChucK operator.

3. Time, Shreds, Rates
The notions of time, duration, synchronization,

control rates, and simultaneity are captured
automatically by ChucK’s timing mechanism.
ChucK allows the programmer, composer, and
performer to write truly concurrent code using the
framework of the timing semantic. There is no fixed
notion of control rate – the control rate is a natural
product of using the timing constructs. The timing
semantic, along with concurrency leads to the ability
to dynamically change control rate, as well as have
many different control rates.

3.1 Time and Duration
The now keyword (of type time) is defined to

always hold the exact, current ChucK time. The
keyword dur refers to the duration between points in
time. These allow the programmer to do precise
arithmetic with time and duration as we see in the
following examples.

Each duration value has a unit attached to it and is

declared in the following way:

0.01:second => dur midi_rate;

In the above example, we chuck a value of

0.01:second to a newly declared variable of type
dur, called midi_rate. The "built-in" units are samp
(duration of one sample), ms, second, minute,
hour, day, week. We can also use any variable of
type dur as a unit to inductively construct other
durations:

0.7:second => dur quarter;
4:<quarter> => dur whole;

The above statement constructs a duration value

of 4:<quarter> (quarter defined in the previous
statement) and chucks a relationship (symbolized by
the angle brackets) to a new variable called whole. In
this case, chucking a new dur value to quarter will
automatically change whole. With this system, we
can easily define and use any duration greater than or
equal to the duration of a single sample.

Time is defined in terms of existing time values.

We can perform arithmetic using time and duration to
obtain new time values. Here we calculate the time
value for 10:second after now, and store this value
in a new variable called later.

10:second after now => time later;

We can do comparisons of time values:

while(now < later)
{
 now orma ec => stdout; => f t_s
 1:second => now;
}

The above code prints out the current values of

now, once every second (in real-time), for 10 seconds.
It not only demonstrates the comparison of time
values, but also shows several key features of the
language, which are summarized by the next two
"rules" of ChucK:

2nd rule of ChucK: you always code in suspended

animation. This rule guarantees that time in ChucK
does not change unless the programmer explicitly
advances it. The value of now can remain constant
for an arbitrarily long block of code, which has the
programmatic benefits of (1) guaranteeing a
deterministic timing structure to use and reason about
the system and (2) giving a simple and natural
mechanism of complete timing control to the
programmer. The deterministic nature of timing in
ChucK also ensures that the program will flow
identically across different executions and machines,
free from the underlying hardware timing (processor,
memory, bus) and non-deterministic scheduling
delays in the kernel scheduler.

In the previous code segment, the value of now is

guaranteed to remain constant from the evaluation of
the while condition through the first statement in the
loop body. The last statement in the while loop has a
special semantic, in that it updates the value of now,
by one second, with the side effect of blocking the
process for that amount of time. Once control is
returned from blocking, now holds the updated value.

3rd rule of ChucK: you are responsible for

keeping up with time. The programmer is given the

responsibility for deciding when to "step out" of
suspended animation and advance time. He/she can
do it in one of two ways. In the first method (chuck-
to-now) the programmer can allow time to advance
by explicitly chucking a duration value or a time
value to now, as shown above. This allows for a
natural programming approach that embeds the
timing control directly in the language, giving the
programmer the ability to perform computations at
arbitrary points in time, and to "move forward" in
ChucK time in a precise manner.

The second method to advance time in ChucK is
by waiting on some event(s). These could be
synchronization mechanisms (such as mutexes,
semaphores, and/or condition variables), input
devices, or any asynchronous event(s) such as MIDI
input or packets arriving over TCP or UDP.
Execution will resume when the synchronization
condition is fulfilled. Wait-on-event is similar in
spirit to chuck-to-now, except events have no pre-
computable time of arrival.

Timing and duration are traditionally conveyed as

parameters to entities (functions and objects that are
internally scheduled) in existing sound synthesis
languages, such as Nyquist (Dannenberg 1997) and
SuperCollider (McCartney 1996). ChucK also allows
the programmer to manage the timing of computation
itself. Furthermore, the timing mechanism allows
operations to be naturally amortized over time. An
envelope, for example, can be generated dynamically
as time moves on, in addition to being declared and
calculated entirely up-front. The following sample
sets up a chain of unit generators, “plays” it for 2
seconds, and then dynamically changes the envelope
value:

osc => filt => (1.0 => env) => audio[0];
2:second => now;

until(env--(0.02) < min)
 1:ms => now;

In line 1, unit generators (declared elsewhere) are

connected in the desired order. Note this line only
connects the unit generators, and does not start
generating samples until time is advanced, which
happens in line 2. This statement advances time by
two seconds, and "allows" the unit generators to
compute and play samples for that duration. After
exactly the number of samples in 2 seconds, control
is returned and we enter the until loop, which
decreases the value of env by 0.02 every millisecond,
gradually silencing the unit generator chain.

There is another nice property afforded by the

ChucK timing mechanism. Statements that appear in
code before the time advancement are guaranteed to
evaluate beforehand (desirable side-effects may
remain, such as connections of unit generators), and

those that appear after the time advancement will
evaluate only after the timing or synchronization
operation is fulfilled. This method, like the ChucK
operator, encourages a strong sense of order in the
program.

3.2 Dynamic Control Rate
The amount of time advancement is the control

rate in ChucK. Since the amount of time to advance
at each point is determined by the programmer, the
control rate can be (1) as high (same as sample rate)
or as low (any multiple of a sample duration, such as
milliseconds, days, or even months) as the application
desires, and (2) dynamically varying with time - since
the programmer can compute or lookup the value of
each time advancement. Additionally, the power of
this dynamic, arbitrary control rate is greatly
extended by ChucK's concurrency model, as we will
see in Sections 3.3 and 3.4.

It is possible in ChucK to calculate each sample
completely from within the language (though low-
level built-in and add-in ChucK modules may be
more suitable for such low-level tasks). All external
events, such as MIDI, input devices, and other
asynchronous events, are internally synchronized at a
coarser granularity proportional to a tunable latency,
determined by the underlying hardware and OS.
Program logic, of course, can be placed at any
granularity relative to the audio. Thus, the same
ChucK timing mechanism can be used to build low-
level instruments, as well as high-level compositional
elements.

The practice of enabling the programmer to
operate on an arbitrarily fine granularity is derived, in
practice, from the Synthesis Tool Kit (STK) (Cook
and Scavone 1999), which exposes a manageable
programming interface for efficient single sample
operations, with additional levels of internal
buffering. ChucK builds on this notion to support
sample-level computations as well as computations at
arbitrarily large intervals.

Thus far, we have only discussed programming

ChucK using one path of execution. ChucK is a
concurrent language, which allows multiple
independent paths of computation to be executed in
parallel. The flexibility and power of the timing
mechanism is greatly extended by ChucK’s
concurrency model, which allows multiple, precisely
timed paths of computation.

3.3 Programming with Shreds
The ChucK programming language natively

enables the chuckist to write code that operates either
in series or in parallel via ChucK's concurrency
model. It is also this mechanism that provides fine-
grain, multiple, and simultaneous control rates. We

now introduce a primitive called shreds. A shred,
much like a thread, is an independent, lightweight
process, which operates concurrently and can share
data with other shreds. However, unlike traditional
threads, whose execution is interleaved in a non-
deterministic manner by a preemptive scheduler, a
shred is a deterministic piece of computation that has
sample-accurate control over audio timing, and is
naturally synchronized with all other shreds via the
same timing mechanism.

ChucK shreds are programmed in much the same

spirit that traditional threads are, with the exception
of several key differences:

• A ChucK shred cannot be preempted by another

shred. (Preemptive threads are also available in
ChucK, but are not discussed here.) This not only
enables a single shred to be locally deterministic,
but also an entire set of shreds to be globally
deterministic in their timing and order of execution.

• A ChucK shred must voluntarily relinquish the

processor for other shreds to run (In this they are
like non-preemptive threads). But it does not do so
with yield(). Shreds, by design, directly use
ChucK's timing mechanism: when a shred
advances time or waits for an event, it is, in effect,
shreduled by the shreduler (which interacts with
the audio engine), and relinquishes the processor.
This is powerful in that it can naturally synchronize
shreds to each other by time, without using any
traditional synchronization primitives.

• ChucK shreds are implemented completely as user-

level primitives. The entire virtual machine runs in
user-space. User-level parallelism has significant
performance benefits over kernel threads
(Anderson et al. 1992), finding that "even fine-
grain processes can achieve good performance if
the cost of creation and managing parallelism is
low." Indeed, ChucK shreds are lightweight - each
only contains minimal state. The cost of context
switching between ChucK shreds is also very low
since no kernel interaction is required.
Furthermore, a user-level shreduler is more easily
modifiable.

An advantage of the shred approach is that the

programmer has complete control over timing and the
interaction of shreds. We gain the performance
advantages from user-level parallelism. Furthermore,
real-time scheduling optimizations (Dannenberg
1988) can be readily implemented by the shreduler
without any kernel modifications. One potential
drawback is that a single shred could hang the
program if it fails to relinquish the processor.
However, there are ways to alleviate this drawback:

• Any hanging shreds can easily by identified by the
ChucK Virtual Machine, as the currently running
thread, and the ChucK timing semantic makes it
easy to locate and correct such issues for the
programmer. On-the-fly programming allows for
hanging shreds to be removed/corrected during
run-time without stopping or restarting the system.
We will see how this is accomplished in Section 5.

• It is possible to group shreds into separate,

autonomous sets, which operate independently.
This is analogous to the notion of zones in the Aura
System (Dannenberg and Brandt 1996). Aura
separates synchronous sound objects into
asynchronous zones. Objects in a single zone
cannot preempt each other, while one zone can
preempt another zone on demand. Similarly,
ChucK shreds behave deterministically within a
set, while one set (given a higher priority) can
preempt another. ChucK extends the notion of
zones by grouping shreds (instead of objects),
which are fully programmable and interactive.

Multi-shredded programs, in the Turing Machine

sense, are not more powerful than single-shredded
programs. But they can make the task of managing
concurrency and timing much easier (and more
enjoyable), just as threads make concurrent
programming manageable, and potentially increase
throughput. In this sense, shreds are more powerful
programming constructs. We argue that the
flexibility of shreds to empower the programmer to
do deterministic, precisely timed, concurrent audio
programming significantly outweighs the potential
drawbacks.

The following example (Figure 1) shows the code

for three shreds, all of which can be run singly or in
parallel. The first shred is generating a sine tone at
control rate = sample rate. The second shred sends a
MIDI noteon message every 80 milliseconds. The
third shred prints the value of a sensor every minute.

0 =>
while(true)

float t;

{
 sin(t*FC)
 => lineout;
 t+1 => t;
 1:samp
 => now;
}

while(true)
{
 midimsg(c1,
 note_on,
 80, 96)
 = mid> i;
 80:ms => now;
}

while(true)
{
 sensor[9]
 => stdout;
 1:minute
 => now;
}

Figure 1. Three concurrent shreds.

In order to realize shreds, the ChucK Virtual
Machine implements a shreduler, which is
responsible for shreduling the shreds, taking into
account time advancement, duration, synchronization,
and audio sample generation. The shreduler, along
with the ChucK audio engine, clocks the entire
ChucK Virtual Machine.

Most existing audio programming languages
handle simultaneity as parameterized objects and
function invocations. Timing and duration values are
often passed as arguments to synthesis entities.
SuperCollider, for example, (McCartney 1996, Pope
1997) takes a highly parameterized approach to
dealing with simultaneity, with the ability to schedule
asynchronous, simultaneous events, but lacks the
ability to write semi-autonomous code. In Nyquist
(Dannenberg 1997), a degree of simultaneity is
achieved by the sim construct, followed by a set of
synthesis entities to be rendered simultaneously. The
JSyn (Burk 1998) library inherently supports
concurrency under Java's threading model, but
because of the nature of this threading model, it has
no determinism in timing, nor a high level of
granularity in inter-thread communication and
scheduling. ChucK adds full concurrency, with the
ability to naturally and precisely synchronize and
schedule all shreds of execution.

In a high level sense, the idea of concurrency in

ChucK is similar to the idea of mixing independent
"tracks" of audio samples in CMIX (Lansky 1987)
and other languages. Lansky’s original idea was to
provide a programming environment where the
composer can deal with and perfect individual parts
independently (Pope 1993). ChucK extends this idea
by allowing full programmability for each shred.

A ChucK program is completely deterministic in
nature (aside from asynchronous input events) - there
is never any preemptive background processing, nor
any implicit scheduling. The order that shreds and
the virtual machine subsystem executes are
determined completely by the timing and
synchronization specified in the shreds. This makes
it easy to reason about the global sequence of
operations and timing in ChucK. The concurrency
model also enables multiple shreds to run at arbitrary
control rates.

3.4 Multiple Concurrent Control Rates
4th rule of ChucK: make use of multiple control

paths and control rates using shreds.

Computer music synthesis and performance is
most often the simultaneity of many parallel
sequences of operations, potentially happening at
many distinct rates. Shreds naturally separate each
set of independent tasks into concurrent entities each
running on its own control rate. For example, as
shown in Figure 2, many different streams of audio
samples are being generated; MIDI messages arrive
at a rate of 10 ms per message from a variety of
sources, which control parameters in the synthesis.
Concurrently, datagram packets arrive over the
network every 20 ms, while an array of mice and
joysticks send serial data over USB.

Figure 2. Three chuckists in session.

ChucK imposes no boundaries on the timing
structure of a program - it does not make any decision
about control rate or timing but instead integrates this
decision into the language semantics (which the
programmer can easily control). This enables the
programmer to create and simultaneously execute any
number of shreds - each potentially running at a
different control rate.

4. Input/Output Devices
ChucK natively supports communicating with,

and synchronizing on an arbitrary number of input
and output devices. This includes physical devices
and controllers such as mice, keyboards, game
controllers, and MIDI devices. The language
provides support for MIDI input/output, serial
communication, and networking - in particular TCP
byte-streams, and UDP and IP datagrams, and high-
level network music protocols such as Open Sound
Control (Wright and Freed 1997).

The advantage of using ChucK for I/O operations

comes naturally from the availability of the multi-
shredded, precision-timed language mechanism, and
from the characteristics of the ChucK operator. For
example, a shred may want to synchronize on events,
or wait for messages to arrive over MIDI, or perhaps
UDP. This is accomplished by taking advantage of
the chaining nature of the ChucK operator and the
timing mechanism. For example, consider the
following statement:

msg => some_event =>

 => udp(140.180.141.103:1500);

Here, the msg is chucked to synchronize on
some_event, which could be a signal generated from
another shred, the availability of a mutex, an input
event, or simply a statement advancing time. After
some_event is fulfilled, the statement continues. The
synchronization mechanism can be used as a 'gate' to
allow objects to be chucked after the fulfillment of
events or some amount of time.

ChucK enables the programmer to easily and

quickly write code to synchronize with and
communicate with input devices. For that reason,
ChucK can be an ideal tool to easily use or rapidly
prototype new controllers, or to write network or
synchronization code.

5. On-the-fly Programming
The ChucK programming language natively

supports the ability to write, compile, and execute
code while the program is running. In fact, an on-the-
fly, “real-time” compiler is part of the ChucK Virtual
Machine (see Figure 3).

The goal of on-the-fly programming is to allow

the chuckist to actively modify the program they are
running without having to stop, re-code, and restart.
For example, performers could add modules to their
synthesis or composition programs, or a new
controller during a live performance. Similarly,
composers can experiment with their programs on-
line, modifying synthesis components, adding a new
instrument, or changing compositional elements,
without having to restart. In fact, coding, composing,
and performing are identical in ChucK.

Figure 3. ChucK Virtual Machine runtime layout.

5th rule of ChucK: use modularity of shreds to

program on-the-fly. ChucK is able to accomplish on-
the-fly programming via the shredding model, =>, the
virtual machine, and special objects in the language.
The ChucK Virtual Machine has complete control
over the shreduling, addition, and removal of shreds.
New shreds can be programmed, compiled, and
added into the shreduler on-the-fly. Existing shreds
can be selected (via language constructs or the virtual
machine), modified, or removed.

The language constructs that enable on-the-fly

programming are based on the availability of the
compiler (via the compiler object) and the virtual
machine (via the machine object) in the language
itself. New code can be added either externally, via
interfacing the virtual machine from the OS or a shell,
or from within the language. code is a native type,
which allows programs to write and compile other
programs on-the-fly.

The ChucK Virtual Machine can, at any moment,
integrate a new shred into the overall ChucK runtime
process. This practice in ChucK is called
assimilation. The most basic way to do this is by
writing new shreds and sending them via the shell to
the currently running virtual machine process. New,
augmented, or otherwise modified shreds or even an
entire program can be seamlessly assimilated into the
ChucK Virtual Machine, without stopping, restarting,
or interrupting (audio) the virtual machine.

Additionally, shreds in the ChucK Virtual
Machine can themselves read (from storage),
generate, or accept shreds from remote hosts over the
network and assimilate them. Again, the special
machine object is used to interface with the virtual
machine.

Shreds can also be removed (dissimilated) or
suspended from the virtual machine - through similar

facilities as those used for assimilation (from the shell
via currently running code). The dissimilated or
suspended shreds can then be modified and re-
assimilated into the virtual machine.

One concern of on-the-fly programming is the

efficiency of the programmer in constructing his/her
program, from idea to algorithm to code, especially
during time-critical situations such as performance or
continuous composition session. Once again, the left-
to-right => lends itself to this task by allowing the
programmer to input the sequence of operations in
the general typing direction. Indeed, => is a helpful
entity in the language, for it conceptually and
syntactically binds data-flow representation and lends
itself naturally to timing and synchronization.

6. In Summary

6.1 Performance vs. Flexibility
The ChucK runtime system is implemented as a

virtual machine (with audio engine and I/O manager
implemented in C/C++) and a special virtual
instruction set, with the ability to dynamically link-in
compiled code from other languages. This virtual
machine approach is in stark contrast with most real-
time computer music programming languages and
libraries. Given the performance impact, this is
nothing to boast about, except that a pure virtual
instruction set and VM allows for highly flexible and
elegant (albeit slower) audio programming constructs
at the language level. Furthermore, the language
constructs provide a way to gauge and schedule
resources and time in a way that the programmer can
easily understand, manage, and debug.

Implementing a user-level virtual machine has

enabled us ultimate flexibility in the language
construct of shreds and shreduling. We are able to
seamlessly, and with sample-width precision, write
multi-shredded audio synthesis and composition
programs that operate at multiple and simultaneous
control rates.

The features of ChucK make it natural for a

variety of applications. We present a few examples
where various ChucK facilities can be useful.

Granular synthesis: this synthesis technique

(Roads 1985) can be implemented directed in the
language (without special-purpose unit generators or
plug-in modules), by using one or more shreds and
moving each along in small time intervals via the
timing mechanism and performing the overlap/add
operations and computations for the control data
dynamically.

Collaborative composition/performance: The on-

the-fly programming model easily allows for multiple

Execution
Unit

Shreduler

Audio
Engine

I/O
Manager

shred shred shred

ChucK code

ChucK process

On-the-fly
compiler

chuckists to write shreds on different (possibly
remote) hosts and to assimilate them via networking
into a single Chuck Virtual Machine instance, on-the-
fly. This model also facilitates the reverse process,
allowing shreds to be distributed among hosts for
real-time load balancing.

Real-time graphics: the multi-shredded model
makes it straightforward to embed real-time graphics
into audio programs. One or more shreds can be
devoted to controlling 2D/3D rendering (using the
same timing mechanism and at appropriate control
rates) while sharing state with the rest of the program,
making it easy to integrate audio and graphics with
precise timing.

6.2 Conclusion
ChucK is not a loose collection of unrelated ideas,

but a group of entities that work off of each other.
The timing mechanism provides a precise and
flexible method to work with time-based operations.
Shreds empower programmers to write truly
concurrent synthesis programs, while the timing
semantic makes concurrency work correctly and
efficiently without additional synchronization
mechanisms. Together, shreds and timing allows
simultaneity of multiple control rates. Shreds also
offer a modular approach to make on-the-fly
programming possible and manageable. The ChucK
operator - a simple language construct - unifies the
overall syntax and semantics of the language in a left-
to-right manner, and provides natural synchronization
points with events and input devices.

In conclusion, ChucK is a concurrent, on-the-fly

language, built for real-time audio synthesis and
performance. The ChucK operator encourages a
more accurate language representation of sequential
operations. Shreds allow for concurrency, as well as
multiple and simultaneous control rates, each of
which, using the timing mechanism, can be as fine as
the audio sample rate, or as long as hours, days, even
years. The ChucK timing mechanism provides a
deterministic view and control of time, duration, and
the notion of 'now'. It embeds the ability to advance
time and synchronize on various events, and naturally
synchronizes all shreds. ChucK's on-the-fly
programming abilities enable programmers,
composers, and performers to add, modify, and
remove code as their programs are running,
fundamentally enhancing the amount of real-time
interaction in the process of audio programming.

ChucK is freely available from the authors at:

 http://soundlab.cs.princeton.edu/research/chuck/

References

Anderson, T. E., B. N. Bershad, E. D. Lazowska, and

Henry M. Levy. 1992. "Scheduler Activations:
Effective Kernel Support for the User-Level
Management of Parallelism." ACM Transactions on
Computer Systems, 10(1):53-79.

Burk, P. 1998. "JSyn - A Real-time Synthesis API for
Java." In Proceedings of the International Computer
Music Conference. International Computer Music
Association, pp. 252-255.

Cook, P. R. and G. Scavone. 1999. "The Synthesis Toolkit
(STK)." In Proceedings of the International Computer
Music Conference. International Computer Music
Association, pp. 164-166.

Dannenberg, R B. 1988. "A Real Time
Scheduler/Dispatcher." In Proceedings of the
International Computer Music Conference.
International Computer Music Association, pp. 239-
242.

Dannenberg, R. B. and E. Brandt. 1996. "A Flexible Real-
Time Software Synthesis System." In Proceedings of
the International Computer Music Conference.
International Computer Music Association, pp. 270-
273.

Dannenberg, R. B. 1997. "Machine Tongues XIX: Nyquist,
a Language for Composition and Sound Synthesis."
Computer Music Journal 21(3):50-60.

Lampson, B. W. and D. D. Redell. 1980. "Experience with
Process and Monitors in Mesa." Communications of
the ACM 23(2):105-117.

Lansky, P. 1987. "CMIX" Program Documentation.
Princeton, New Jersey: Princeton University.
http://silvertone.princeton.edu/winham/man/

Mathews, M. V. 1969. The Technology of Computer
Music. Cambridge, Massachusetts: MIT Press.

McCartney, J. 1996. "SuperCollider: A New Real-Time
Synthesis Language." In Proceedings of the
International Computer Music Conference.
International Computer Music Association, pp. 257-
258.

Pope, S. T. 1993. "Machine Tongues XV: Three Packages
for Software Sound Synthesis." Computer Music
Journal. 17(2):23-54.

Pope, S. T. 1997. Sound and Music Processing in
SuperCollider. University of California, Santa Barbara.
http://www.create.ucsb.edu/htmls/sc.book.html

Roads, C. 1985. “Granular Synthesis of Sound.” In C.
Roads and J. Strawn, eds. 1985. Foundations of
Computer Music. Cambridge, Massachusetts: MIT
Press. pp.145-159.

Wright, M. and A. Freed. 1997. “Open Sound Control: A
New Protocol for Communicating with Sound
Synthesizers.” In Proceedings of the International
Computer Music Conference. International Computer
Music Association, pp. 101-104.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Ge Wang
	Perry Cook

