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Abstract 
ChucK is a new audio programming language for 
real-time synthesis, composition, and performance, 
which runs on commodity operating systems.  ChucK 
natively supports concurrency, multiple, 
simultaneous, dynamic control rates, and the ability 
to add, remove, and modify code, on-the-fly, while the 
program is running, without stopping or restarting.  
It offers composers and performers a powerful and 
flexible programming tool for building and 
experimenting with complex audio synthesis 
programs, and real-time interactive control. 

1. Ideas in ChucK 
In this paper we present four key ideas that form 

the foundation of ChucK. The goal is to design a 
natural audio programming language (1) to 
concurrently and accurately represent complex audio 
synthesis, (2) to enable fine-grain, flexible control 
over time, (3) to provide the capability to operate on 
multiple, dynamic and simultaneous control rates, 
and (4) to make possible an on-the-fly style of 
programming.  ChucK runs on commodity operating 
systems (Linux, Windows, Solaris, MacOS). 
 
Four major ideas form the basis of ChucK. 

 
• A unifying, massively overloaded operator. 
• A precise timing model that is capable of true 

concurrency and arbitrarily fine granularity.  The 
language semantic supports multiple, 
simultaneous, and dynamic control rates, and 
naturally amortizes operations over time.  

• Native language support of arbitrarily many 
input/output sources, MIDI, network, serial, 
USB, graphics, and any input/output device you 
can connect to the computer. 

• On-the-fly programming enables dynamically 
modifiable programs for performance and 
experimentation. 

 
We present ChucK with respect to these four 

major facets.  We provide some informal 'rules' of 
ChucK, each of which embodies some key aspect of 
the programming language.  In Section 2, we look in 
detail at the ChucK operator.  In Section 3, we present 
the ChucK timing model, introduce the concept of 

shreds and concurrency in ChucK, and demonstrate 
multiple and simultaneous control paths and control 
rates.  Section 4 presents an overview of the 
integration of many types of input/output related 
devices and operations into the language.  Section 5 
presents a special aspect of ChucK: its ability to be 
programmed on-the-fly during run-time.  ChucK is 
implemented as a virtual machine running with a 
special run-time compiler with low-level audio 
engine.  Section 6 takes a step back and reasons about 
the performance benefits/drawbacks of ChucK. 

2. The ChucK Operator 
ChucK is a strongly-typed, imperative 

programming language.  Its syntax and semantics are 
governed by a flexible type system.  ChucK includes 
standard features (arithmetic, bit-wise, memory 
operations, etc…) and control flow mechanisms (if, 
for, while, switch, goto, break, continue, etc…) 
common to most modern imperative programming 
languages.  But the heart of ChucK's syntax is based 
around the ChucK operator (written as =>). 
 

1st rule of ChucK: make use of the left-to-right 
ChucK operator.  => originates from the slang term 
"chuck", meaning to throw an entity into or at another 
entity.  The language uses this notion to help express 
sequential operations and data flow. 
 

(440 => osc) => env => filt => audio[0]; 
 

The above code fragment constructs a simple 
synthesis instrument using a series of unit generators 
(Mathews 1969) (their declarations are omitted for 
the moment): an oscillator, an envelope, a filter, and, 
finally, audio channel 0.  Notice that the single line 
captures the flow of the signals from left to right - the 
same order as we read and type. 

 
A ChucK statement can be composed of any 

appropriate types of objects (including user-defined), 
unit generators, operations, values, and variables.  
The semantic of the statement depends on the types 
of the objects, and the overloading of the ChucK 
operator on those types. 

 
The main ideas behind the ChucK operator are (1) 

it locally captures the left-to-right nature of program 



flow (with the exception of nested ChucK 
statements), representing the order of sequential 
operations more faithfully, (2) it can be chained to 
any arbitrary length, and (3) it reacts, or behaves, 
differently depending on the types of the objects 
being chucked.  =>’s behavior is defined/altered 
through overloading using the ChucK type system. 

 
The basic ChucK operation takes place between 

two entities, the ChucKer and the ChucKee: 
 
x => y 
 
The operation performed depends on the types of 

x (ChucKer) and of y (ChucKee), the combination of 
which maps to a particular action that is overloaded 
on the ChucK operator.  For example, it might assign 
the value to a variable, or connect/disconnect one unit 
generator to/from another, or anything depending on 
the particular overloading.  For example, the notion 
of behavioral abstraction in Nyquist  (Dannenberg 
1997) can be realized through this type of 
overloading =>.  

 
The following are some sample ChucK 

statements, where the identifiers x, y etc. can be any 
well-typed entities. 

 
Binary ChucK: the simplest ChucK statement, 
chucking object/value x to object/value y. 

 
x => y; 
 

Chain ChucK: ChucK statements can be a sequence 
of ChucK operations of arbitrary length.  The 
operations are performed left to right, in exactly the 
same order as written. 

 
w => x => y => z; 
 

Nested ChucK: evaluation of ChucK expressions 
gives local precedence to parenthesis.  In the 
statement below, the operation v=>w is evaluated, 
then x=>y, and the result of v=>w is chucked to the 
result of x=>y.  Finally, that result is chucked to z. 

 
v => w => ( x => y ) => z; 
 

Cross ChucK: cross-chucking allows one or more 
ChucKer objects/values to be chucked to more than 
one ChucKee.  In the statement below, the 
object/value w is chucked to x, then y, and then z.  
(This can also be achieved by a more verbose 
sequence of three ChucK statements.) 

 
w => ( x, y, z ); 
 
The ChucK programming language has no 

assignment operator (=), but unifies this operation 
under the ChucK operator, as seen here: 

 

5 => int x; 
 
With the ChucK operator, we represent any 

sequence of operations in a left-to-right manner.  As 
shown below, a piece of code is chucked over TCP to 
a remote host (also running ChucK), waits for a 
message, and prints out the result. 
 

code_seg => tcp(140.180.141.103:8888)    
         => local_receiver => stdout; 

 
The ChucK operator can also naturally 

synchronize on events and objects.  Synchronization 
primitives such as semaphores, condition variables, 
and monitors (Lampson 1980) can be inserted into 
ChucK chains as clear points of synchronization. 

 
code_seg => mutex => machine; 
 
button[0] => play_note(); 
 
In the next sections, we will look at the issues of 

timing and concurrency, input/output, and on-the-fly 
programming, each of which employs some aspect of 
the ChucK operator. 

3. Time, Shreds, Rates 
The notions of time, duration, synchronization, 

control rates, and simultaneity are captured 
automatically by ChucK’s timing mechanism.  
ChucK allows the programmer, composer, and 
performer to write truly concurrent code using the 
framework of the timing semantic.  There is no fixed 
notion of control rate – the control rate is a natural 
product of using the timing constructs.  The timing 
semantic, along with concurrency leads to the ability 
to dynamically change control rate, as well as have 
many different control rates. 

3.1 Time and Duration 
The now keyword (of type time) is defined to 

always hold the exact, current ChucK time. The 
keyword dur refers to the duration between points in 
time.  These allow the programmer to do precise 
arithmetic with time and duration as we see in the 
following examples. 

 
Each duration value has a unit attached to it and is 

declared in the following way: 
 
0.01:second => dur midi_rate; 

 
In the above example, we chuck a value of 

0.01:second to a newly declared variable of type 
dur, called midi_rate.  The "built-in" units are samp 
(duration of one sample), ms, second, minute, 
hour, day, week.  We can also use any variable of 
type dur as a unit to inductively construct other 
durations: 

 



0.7:second => dur quarter;  
4:<quarter> => dur whole; 
 
The above statement constructs a duration value 

of 4:<quarter> (quarter defined in the previous 
statement) and chucks a relationship (symbolized by 
the angle brackets) to a new variable called whole.  In 
this case, chucking a new dur value to quarter will 
automatically change whole.  With this system, we 
can easily define and use any duration greater than or 
equal to the duration of a single sample. 

 
Time is defined in terms of existing time values.  

We can perform arithmetic using time and duration to 
obtain new time values.  Here we calculate the time 
value for 10:second after now, and store this value 
in a new variable called later.   
 

10:second after now => time later; 
 
We can do comparisons of time values: 

 
while( now < later ) 
{ 
    now orma ec => stdout;  => f t_s
    1:second => now; 
} 

 
The above code prints out the current values of 

now, once every second (in real-time), for 10 seconds.  
It not only demonstrates the comparison of time 
values, but also shows several key features of the 
language, which are summarized by the next two 
"rules" of ChucK: 

 
2nd rule of ChucK: you always code in suspended 

animation.  This rule guarantees that time in ChucK 
does not change unless the programmer explicitly 
advances it.  The value of now can remain constant 
for an arbitrarily long block of code, which has the 
programmatic benefits of (1) guaranteeing a 
deterministic timing structure to use and reason about 
the system and (2) giving a simple and natural 
mechanism of complete timing control to the 
programmer.  The deterministic nature of timing in 
ChucK also ensures that the program will flow 
identically across different executions and machines, 
free from the underlying hardware timing (processor, 
memory, bus) and non-deterministic scheduling 
delays in the kernel scheduler. 

 
In the previous code segment, the value of now is 

guaranteed to remain constant from the evaluation of 
the while condition through the first statement in the 
loop body.  The last statement in the while loop has a 
special semantic, in that it updates the value of now, 
by one second, with the side effect of blocking the 
process for that amount of time.  Once control is 
returned from blocking, now holds the updated value. 

 
3rd rule of ChucK: you are responsible for 

keeping up with time.  The programmer is given the 

responsibility for deciding when to "step out" of 
suspended animation and advance time.  He/she can 
do it in one of two ways.  In the first method (chuck-
to-now) the programmer can allow time to advance 
by explicitly chucking a duration value or a time 
value to now, as shown above.  This allows for a 
natural programming approach that embeds the 
timing control directly in the language, giving the 
programmer the ability to perform computations at 
arbitrary points in time, and to "move forward" in 
ChucK time in a precise manner. 
 

The second method to advance time in ChucK is 
by waiting on some event(s).  These could be 
synchronization mechanisms (such as mutexes, 
semaphores, and/or condition variables), input 
devices, or any asynchronous event(s) such as MIDI 
input or packets arriving over TCP or UDP.  
Execution will resume when the synchronization 
condition is fulfilled.  Wait-on-event is similar in 
spirit to chuck-to-now, except events have no pre-
computable time of arrival. 

 
Timing and duration are traditionally conveyed as 

parameters to entities (functions and objects that are 
internally scheduled) in existing sound synthesis 
languages, such as Nyquist (Dannenberg 1997) and 
SuperCollider (McCartney 1996).  ChucK also allows 
the programmer to manage the timing of computation 
itself.  Furthermore, the timing mechanism allows 
operations to be naturally amortized over time.  An 
envelope, for example, can be generated dynamically 
as time moves on, in addition to being declared and 
calculated entirely up-front.  The following sample 
sets up a chain of unit generators, “plays” it for 2 
seconds, and then dynamically changes the envelope 
value: 

 
osc => filt => (1.0 => env) => audio[0]; 
2:second => now; 
 
until( env--(0.02) < min ) 
    1:ms => now; 
 
In line 1, unit generators (declared elsewhere) are 

connected in the desired order.  Note this line only 
connects the unit generators, and does not start 
generating samples until time is advanced, which 
happens in line 2.  This statement advances time by 
two seconds, and "allows" the unit generators to 
compute and play samples for that duration.  After 
exactly the number of samples in 2 seconds, control 
is returned and we enter the until loop, which 
decreases the value of env by 0.02 every millisecond, 
gradually silencing the unit generator chain.  

 
There is another nice property afforded by the 

ChucK timing mechanism.  Statements that appear in 
code before the time advancement are guaranteed to 
evaluate beforehand (desirable side-effects may 
remain, such as connections of unit generators), and 



those that appear after the time advancement will 
evaluate only after the timing or synchronization 
operation is fulfilled.  This method, like the ChucK 
operator, encourages a strong sense of order in the 
program. 

3.2 Dynamic Control Rate 
The amount of time advancement is the control 

rate in ChucK.  Since the amount of time to advance 
at each point is determined by the programmer, the 
control rate can be (1) as high (same as sample rate) 
or as low (any multiple of a sample duration, such as 
milliseconds, days, or even months) as the application 
desires, and (2) dynamically varying with time - since 
the programmer can compute or lookup the value of 
each time advancement. Additionally, the power of 
this dynamic, arbitrary control rate is greatly 
extended by ChucK's concurrency model, as we will 
see in Sections 3.3 and 3.4. 
 

It is possible in ChucK to calculate each sample 
completely from within the language (though low-
level built-in and add-in ChucK modules may be 
more suitable for such low-level tasks).   All external 
events, such as MIDI, input devices, and other 
asynchronous events, are internally synchronized at a 
coarser granularity proportional to a tunable latency, 
determined by the underlying hardware and OS. 
Program logic, of course, can be placed at any 
granularity relative to the audio.  Thus, the same 
ChucK timing mechanism can be used to build low-
level instruments, as well as high-level compositional 
elements. 
 

The practice of enabling the programmer to 
operate on an arbitrarily fine granularity is derived, in 
practice, from the Synthesis Tool Kit (STK) (Cook 
and Scavone 1999), which exposes a manageable 
programming interface for efficient single sample 
operations, with additional levels of internal 
buffering.  ChucK builds on this notion to support 
sample-level computations as well as computations at 
arbitrarily large intervals. 

 
Thus far, we have only discussed programming 

ChucK using one path of execution.  ChucK is a 
concurrent language, which allows multiple 
independent paths of computation to be executed in 
parallel.  The flexibility and power of the timing 
mechanism is greatly extended by ChucK’s 
concurrency model, which allows multiple, precisely 
timed paths of computation. 

3.3 Programming with Shreds 
The ChucK programming language natively 

enables the chuckist to write code that operates either 
in series or in parallel via ChucK's concurrency 
model.  It is also this mechanism that provides fine-
grain, multiple, and simultaneous control rates.  We 

now introduce a primitive called shreds.  A shred, 
much like a thread, is an independent, lightweight 
process, which operates concurrently and can share 
data with other shreds.  However, unlike traditional 
threads, whose execution is interleaved in a non-
deterministic manner by a preemptive scheduler, a 
shred is a deterministic piece of computation that has 
sample-accurate control over audio timing, and is 
naturally synchronized with all other shreds via the 
same timing mechanism. 

 
ChucK shreds are programmed in much the same 

spirit that traditional threads are, with the exception 
of several key differences: 
  
• A ChucK shred cannot be preempted by another 

shred.  (Preemptive threads are also available in 
ChucK, but are not discussed here.)  This not only 
enables a single shred to be locally deterministic, 
but also an entire set of shreds to be globally 
deterministic in their timing and order of execution.   

 
• A ChucK shred must voluntarily relinquish the 

processor for other shreds to run (In this they are 
like non-preemptive threads).  But it does not do so 
with yield().  Shreds, by design, directly use 
ChucK's timing mechanism: when a shred 
advances time or waits for an event, it is, in effect, 
shreduled by the shreduler (which interacts with 
the audio engine), and relinquishes the processor.  
This is powerful in that it can naturally synchronize 
shreds to each other by time, without using any 
traditional synchronization primitives. 

 
• ChucK shreds are implemented completely as user-

level primitives.  The entire virtual machine runs in 
user-space.  User-level parallelism has significant 
performance benefits over kernel threads  
(Anderson et al. 1992), finding that "even fine-
grain processes can achieve good performance if 
the cost of creation and managing parallelism is 
low."  Indeed, ChucK shreds are lightweight - each 
only contains minimal state.  The cost of context 
switching between ChucK shreds is also very low 
since no kernel interaction is required. 
Furthermore, a user-level shreduler is more easily 
modifiable. 

 
An advantage of the shred approach is that the 

programmer has complete control over timing and the 
interaction of shreds.  We gain the performance 
advantages from user-level parallelism.  Furthermore, 
real-time scheduling optimizations (Dannenberg 
1988) can be readily implemented by the shreduler 
without any kernel modifications.  One potential 
drawback is that a single shred could hang the 
program if it fails to relinquish the processor.  
However, there are ways to alleviate this drawback: 

 



• Any hanging shreds can easily by identified by the 
ChucK Virtual Machine, as the currently running 
thread, and the ChucK timing semantic makes it 
easy to locate and correct such issues for the 
programmer.  On-the-fly programming allows for 
hanging shreds to be removed/corrected during 
run-time without stopping or restarting the system.  
We will see how this is accomplished in Section 5. 

 
• It is possible to group shreds into separate, 

autonomous sets, which operate independently.  
This is analogous to the notion of zones in the Aura 
System (Dannenberg and Brandt 1996).  Aura 
separates synchronous sound objects into 
asynchronous zones.  Objects in a single zone 
cannot preempt each other, while one zone can 
preempt another zone on demand.  Similarly, 
ChucK shreds behave deterministically within a 
set, while one set (given a higher priority) can 
preempt another.  ChucK extends the notion of 
zones by grouping shreds (instead of objects), 
which are fully programmable and interactive. 

  
Multi-shredded programs, in the Turing Machine 

sense, are not more powerful than single-shredded 
programs.  But they can make the task of managing 
concurrency and timing much easier (and more 
enjoyable), just as threads make concurrent 
programming manageable, and potentially increase 
throughput.  In this sense, shreds are more powerful 
programming constructs.  We argue that the 
flexibility of shreds to empower the programmer to 
do deterministic, precisely timed, concurrent audio 
programming significantly outweighs the potential 
drawbacks. 

 
The following example (Figure 1) shows the code 

for three shreds, all of which can be run singly or in 
parallel.  The first shred is generating a sine tone at 
control rate = sample rate.  The second shred sends a 
MIDI noteon message every 80 milliseconds.  The 
third shred prints the value of a sensor every minute. 

 
 
0 =>  
while( true ) 

float t; 

{ 
  sin( t*FC )   
    => lineout; 
  t+1 => t; 
  1:samp  
    => now; 
} 
 

 
 
while( true ) 
{ 
  midimsg( c1, 
    note_on,  
    80, 96 ) 
    = mid> i; 
  80:ms => now; 
} 

 
 
while( true ) 
{ 
  sensor[9] 
    => stdout; 
  1:minute  
    => now;    
} 

Figure 1. Three concurrent shreds. 
 

In order to realize shreds, the ChucK Virtual 
Machine implements a shreduler, which is 
responsible for shreduling the shreds, taking into 
account time advancement, duration, synchronization, 
and audio sample generation.  The shreduler, along 
with the ChucK audio engine, clocks the entire 
ChucK Virtual Machine.  

Most existing audio programming languages 
handle simultaneity as parameterized objects and 
function invocations.  Timing and duration values are 
often passed as arguments to synthesis entities. 
SuperCollider, for example, (McCartney 1996, Pope 
1997) takes a highly parameterized approach to 
dealing with simultaneity, with the ability to schedule 
asynchronous, simultaneous events, but lacks the 
ability to write semi-autonomous code.  In Nyquist 
(Dannenberg 1997), a degree of simultaneity is 
achieved by the sim construct, followed by a set of 
synthesis entities to be rendered simultaneously.  The 
JSyn (Burk 1998) library inherently supports 
concurrency under Java's threading model, but 
because of the nature of this threading model, it has 
no determinism in timing, nor a high level of 
granularity in inter-thread communication and 
scheduling.  ChucK adds full concurrency, with the 
ability to naturally and precisely synchronize and 
schedule all shreds of execution. 

 
In a high level sense, the idea of concurrency in 

ChucK is similar to the idea of mixing independent 
"tracks" of audio samples in CMIX (Lansky 1987) 
and other languages.  Lansky’s original idea was to 
provide a programming environment where the 
composer can deal with and perfect individual parts 
independently (Pope 1993).  ChucK extends this idea 
by allowing full programmability for each shred. 
 

A ChucK program is completely deterministic in 
nature (aside from asynchronous input events) - there 
is never any preemptive background processing, nor 
any implicit scheduling.  The order that shreds and 
the virtual machine subsystem executes are 
determined completely by the timing and 
synchronization specified in the shreds.  This makes 
it easy to reason about the global sequence of 
operations and timing in ChucK.  The concurrency 
model also enables multiple shreds to run at arbitrary 
control rates. 

3.4 Multiple Concurrent Control Rates 
4th rule of ChucK: make use of multiple control 

paths and control rates using shreds. 
 

Computer music synthesis and performance is 
most often the simultaneity of many parallel 
sequences of operations, potentially happening at 
many distinct rates.   Shreds naturally separate each 
set of independent tasks into concurrent entities each 
running on its own control rate.  For example, as 
shown in Figure 2, many different streams of audio 
samples are being generated; MIDI messages arrive 
at a rate of 10 ms per message from a variety of 
sources, which control parameters in the synthesis.  
Concurrently, datagram packets arrive over the 
network every 20 ms, while an array of mice and 
joysticks send serial data over USB.  



Figure 2.  Three chuckists in session. 
 

ChucK imposes no boundaries on the timing 
structure of a program - it does not make any decision 
about control rate or timing but instead integrates this 
decision into the language semantics (which the 
programmer can easily control).  This enables the 
programmer to create and simultaneously execute any 
number of shreds - each potentially running at a 
different control rate. 

4. Input/Output Devices 
ChucK natively supports communicating with, 

and synchronizing on an arbitrary number of input 
and output devices.  This includes physical devices 
and controllers such as mice, keyboards, game 
controllers, and MIDI devices.  The language 
provides support for MIDI input/output, serial 
communication, and networking - in particular TCP 
byte-streams, and UDP and IP datagrams, and high-
level network music protocols such as Open Sound 
Control (Wright and Freed 1997). 

 
The advantage of using ChucK for I/O operations 

comes naturally from the availability of the multi-
shredded, precision-timed language mechanism, and 
from the characteristics of the ChucK operator.  For 
example, a shred may want to synchronize on events, 
or wait for messages to arrive over MIDI, or perhaps 
UDP.  This is accomplished by taking advantage of 
the chaining nature of the ChucK operator and the 
timing mechanism.  For example, consider the 
following statement: 

 
msg => some_event =>  

       => udp(140.180.141.103:1500); 
 

Here, the msg is chucked to synchronize on 
some_event, which could be a signal generated from 
another shred, the availability of a mutex, an input 
event, or simply a statement advancing time.  After 
some_event is fulfilled, the statement continues.  The 
synchronization mechanism can be used as a 'gate' to 
allow objects to be chucked after the fulfillment of 
events or some amount of time. 

 
ChucK enables the programmer to easily and 

quickly write code to synchronize with and 
communicate with input devices.  For that reason, 
ChucK can be an ideal tool to easily use or rapidly 
prototype new controllers, or to write network or 
synchronization code. 

5. On-the-fly Programming 
The ChucK programming language natively 

supports the ability to write, compile, and execute 
code while the program is running.  In fact, an on-the-
fly, “real-time” compiler is part of the ChucK Virtual 
Machine (see Figure 3). 

 
The goal of on-the-fly programming is to allow 

the chuckist to actively modify the program they are 
running without having to stop, re-code, and restart.  
For example, performers could add modules to their 
synthesis or composition programs, or a new 
controller during a live performance.  Similarly, 
composers can experiment with their programs on-
line, modifying synthesis components, adding a new 
instrument, or changing compositional elements, 
without having to restart.  In fact, coding, composing, 
and performing are identical in ChucK. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3. ChucK Virtual Machine runtime layout. 

 
5th rule of ChucK: use modularity of shreds to 

program on-the-fly.  ChucK is able to accomplish on-
the-fly programming via the shredding model, =>, the 
virtual machine, and special objects in the language.  
The ChucK Virtual Machine has complete control 
over the shreduling, addition, and removal of shreds.  
New shreds can be programmed, compiled, and 
added into the shreduler on-the-fly.  Existing shreds 
can be selected (via language constructs or the virtual 
machine), modified, or removed. 

 
The language constructs that enable on-the-fly 

programming are based on the availability of the 
compiler (via the compiler object) and the virtual 
machine (via the machine object) in the language 
itself.  New code can be added either externally, via 
interfacing the virtual machine from the OS or a shell, 
or from within the language.   code is a native type, 
which allows programs to write and compile other 
programs on-the-fly. 
  

The ChucK Virtual Machine can, at any moment, 
integrate a new shred into the overall ChucK runtime 
process.  This practice in ChucK is called 
assimilation.  The most basic way to do this is by 
writing new shreds and sending them via the shell to 
the currently running virtual machine process.  New, 
augmented, or otherwise modified shreds or even an 
entire program can be seamlessly assimilated into the 
ChucK Virtual Machine, without stopping, restarting, 
or interrupting (audio) the virtual machine. 
 

Additionally, shreds in the ChucK Virtual 
Machine can themselves read (from storage), 
generate, or accept shreds from remote hosts over the 
network and assimilate them.  Again, the special 
machine object is used to interface with the virtual 
machine. 
 

Shreds can also be removed (dissimilated) or 
suspended from the virtual machine - through similar 

facilities as those used for assimilation (from the shell 
via currently running code).  The dissimilated or 
suspended shreds can then be modified and re-
assimilated into the virtual machine. 

 
One concern of on-the-fly programming is the 

efficiency of the programmer in constructing his/her 
program, from idea to algorithm to code, especially 
during time-critical situations such as performance or 
continuous composition session.  Once again, the left-
to-right => lends itself to this task by allowing the 
programmer to input the sequence of operations in 
the general typing direction.  Indeed, => is a helpful 
entity in the language, for it conceptually and 
syntactically binds data-flow representation and lends 
itself naturally to timing and synchronization. 

6. In Summary 

6.1 Performance vs. Flexibility 
The ChucK runtime system is implemented as a 

virtual machine (with audio engine and I/O manager 
implemented in C/C++) and a special virtual 
instruction set, with the ability to dynamically link-in 
compiled code from other languages.  This virtual 
machine approach is in stark contrast with most real-
time computer music programming languages and 
libraries.  Given the performance impact, this is 
nothing to boast about, except that a pure virtual 
instruction set and VM allows for highly flexible and 
elegant (albeit slower) audio programming constructs 
at the language level.  Furthermore, the language 
constructs provide a way to gauge and schedule 
resources and time in a way that the programmer can 
easily understand, manage, and debug. 

 
Implementing a user-level virtual machine has 

enabled us ultimate flexibility in the language 
construct of shreds and shreduling.  We are able to 
seamlessly, and with sample-width precision, write 
multi-shredded audio synthesis and composition 
programs that operate at multiple and simultaneous 
control rates.   

 
The features of ChucK make it natural for a 

variety of applications.  We present a few examples 
where various ChucK facilities can be useful. 

 
Granular synthesis: this synthesis technique 

(Roads 1985) can be implemented directed in the 
language (without special-purpose unit generators or 
plug-in modules), by using one or more shreds and 
moving each along in small time intervals via the 
timing mechanism and performing the overlap/add 
operations and computations for the control data 
dynamically. 

 
Collaborative composition/performance: The on-

the-fly programming model easily allows for multiple 

Execution 
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Shreduler 

Audio 
Engine 

I/O 
Manager 

shred shred shred

ChucK code 

ChucK process 

On-the-fly 
compiler 



chuckists to write shreds on different (possibly 
remote) hosts and to assimilate them via networking 
into a single Chuck Virtual Machine instance, on-the-
fly.  This model also facilitates the reverse process, 
allowing shreds to be distributed among hosts for 
real-time load balancing. 
 

Real-time graphics: the multi-shredded model 
makes it straightforward to embed real-time graphics 
into audio programs.  One or more shreds can be 
devoted to controlling 2D/3D rendering (using the 
same timing mechanism and at appropriate control 
rates) while sharing state with the rest of the program, 
making it easy to integrate audio and graphics with 
precise timing. 

6.2 Conclusion 
ChucK is not a loose collection of unrelated ideas, 

but a group of entities that work off of each other.  
The timing mechanism provides a precise and 
flexible method to work with time-based operations.  
Shreds empower programmers to write truly 
concurrent synthesis programs, while the timing 
semantic makes concurrency work correctly and 
efficiently without additional synchronization 
mechanisms.  Together, shreds and timing allows 
simultaneity of multiple control rates.  Shreds also 
offer a modular approach to make on-the-fly 
programming possible and manageable.  The ChucK 
operator - a simple language construct - unifies the 
overall syntax and semantics of the language in a left-
to-right manner, and provides natural synchronization 
points with events and input devices.  

 
In conclusion, ChucK is a concurrent, on-the-fly 

language, built for real-time audio synthesis and 
performance.  The ChucK operator encourages a 
more accurate language representation of sequential 
operations.  Shreds allow for concurrency, as well as 
multiple and simultaneous control rates, each of 
which, using the timing mechanism, can be as fine as 
the audio sample rate, or as long as hours, days, even 
years.  The ChucK timing mechanism provides a 
deterministic view and control of time, duration, and 
the notion of 'now'.  It embeds the ability to advance 
time and synchronize on various events, and naturally 
synchronizes all shreds.  ChucK's on-the-fly 
programming abilities enable programmers, 
composers, and performers to add, modify, and 
remove code as their programs are running, 
fundamentally enhancing the amount of real-time 
interaction in the process of audio programming.   
 

ChucK is freely available from the authors at: 
 

  http://soundlab.cs.princeton.edu/research/chuck/ 
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