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Abstract 
Getting computers to understand and process audio 
recordings in terms of their musical content is a 
difficult challenge. We describe a method in which 
general, polyphonic audio recordings of music can be 
aligned to symbolic score information in standard 
MIDI files. Because of the difficulties of polyphonic 
transcription, we perform matching directly on 
acoustic features that we extract from MIDI and 
audio. Polyphonic audio matching can be used for 
polyphonic score following, building intelligent 
editors that understand the content of recorded audio, 
and the analysis of expressive performance. 

1 Introduction 
Many interesting music processing tasks rely 

upon symbolic representations of music. Scores, 
MIDI, and note lists can be manipulated in many 
interesting ways. In contrast, audio data is relatively 
opaque and unstructured, limiting how we can use it. 
For example, the task “play from measure 3” is 
simple with a score representation but extremely 
problematic with just audio data. 

In many applications, one has access to both 
symbolic and audio representations. For example, in a 
score-following application, the task is to match 
audio to symbolic data. Similarly, in studio 
recordings, performers often read music notation 
from a music notation program, where the music 
exists in symbolic form. 

If we could align polyphonic audio with symbolic 
notation, we could enable many interesting 
applications. Of particular interest are computer 
accompaniment, in which a computer synchronizes 
computer-generated audio with live performers, and 
intelligent audio editors where audio from recordings 
can be automatically aligned with notation. Another 
application is the analysis of expressive performance, 
for example comparing expressive tempo changes in 
different recordings of Beethoven symphonies. 

There are many interesting applications of music 
transcription. Our work recognizes that in many 
cases, full transcription is not necessary, because a 
transcription of the score already exists. By aligning 
the performance with the score, we obtain the 
equivalent of a transcription of the performance. 

Unlike automated polyphonic music transcription, 
which has been largely unsuccessful to date, our 
techniques are effective and fairly easy to implement. 

The problem is simply stated: given an audio 
recording and a corresponding standard MIDI file, 
find the best correspondence between them. We 
assume that the timing of the MIDI data does not 
correspond exactly to the timing of the audio 
recording. Otherwise, the problem would be trivial. 
For example the MIDI data may be a “flat” 
performance using exact tempo markings from a 
score, while the audio may be an expressive 
performance by musicians. 

A “standard” approach to this problem might be 
to perform some sort of polyphonic transcription on 
the music and then use a symbolic score-matching 
algorithm (Bloch & Dannenberg, 1985). 
Unfortunately, accurate polyphonic transcription is 
yet to be achieved, and the error rates of the best 
systems are sufficiently high as to make matching 
difficult in many cases. 

We present an alternative in which matching is 
performed on acoustic features rather than symbolic 
ones. In the simplest approach, we convert MIDI data 
to audio, extract audio features, and use a dynamic 
time warping algorithm (Sankoff & Kruskal, 1983) to 
align the resulting sequences. The result tells us the 
correspondence between the audio and MIDI data. 
We can optimize this approach by extracting acoustic 
features directly from MIDI. 

Our work is closely related to that of Orio and 
Schwarz (2001), who also use dynamic time warping 
to align polyphonic music to scores. They obtain 
accurate alignment using small (5.8ms) analysis 
windows. Orio and Schwarz use a measure called 
Peak Structure Distance, which is derived from the 
spectrum of audio and from synthetic spectra 
computed from score data, whereas we use the 
chromagram, described below. Another novel aspect 
of our work is that we have demonstrated success 
with popular vocal music, in spite of obvious 
discrepancies between MIDI data and vocal 
performance. 

In the next section, we describe the matching 
process in more detail. In Section 3, we discuss an 
optimization that bypasses the synthesis of audio 
from MIDI. Since our approach never fails to 



generate a maximum likelihood match, it is important 
to evaluate whether the matches are really correct in a 
musical sense. Section 4, presents several evaluation 
strategies and the results we have obtained. Section 5 
describes some possible applications and future work. 
Finally, we present a summary and conclusions in 
Section 6. 

2 Matching Audio to MIDI 
Our task is to align MIDI data with audio data. 

This is accomplished in three steps. First, we convert 
MIDI data to audio using a MIDI synthesizer. For 
these experiments, we use Timidity (Toivonen & 
Izumo, 1999), which generates audio files from 
standard MIDI files. 

2.1 The Chroma Representation 
The second step is to convert audio data into 

discrete chromagrams: sequences of chroma vectors. 
The chroma vector representation is a 12-element 
vector, where each element represents the spectral 
energy corresponding to one pitch class (i.e. C, C#, 
D, D#, etc.).  To compute a chroma vector from a 
magnitude spectrum, we assign each bin of the FFT 
to the pitch class of the nearest step in the chromatic 
equal-tempered scale. Then, given a pitch class, we 
average the magnitude of the corresponding bins. The 
12 values that result are called the chroma vector. 
Each chroma vector in this work represents 0.25 
seconds of audio data (non-overlapping). 

The exact details of the chroma computation 
concerning how to deal with low-frequency bins that 
span more than one half-step, whether to average 
magnitude or sum power, etc., are not critical. Our 
work differs from the original chroma vector work 
(Bartsch & Wakefield, 2001) in that we use linear 
rather than logarithmic amplitudes.  

The reason chroma might be good for this 
application is that the chroma vector depends on the 
pitch classes of strong partials in the signal. By 
design, chroma vectors are sensitive to prominent 
pitches and chords, but since all spectral energy is 
collapsed into one octave, chroma vectors are not 
very sensitive to spectral shape. Since we are 
comparing MIDI data to acoustic data, it is good to 
focus on pitch classes and more-or-less ignore details 
of timbre and spectral shape. Further experiments 
(Hu, Dannenberg & Tzanetakis, 2003) proved that 
chromagrams are the best choice for this task among 
several common acoustic features including MFCC 
(Logan, 2000) and Pitch Histograms (Tzanetakis, 
Ermolinskyi & Cook, 2002). 

2.2 Comparing and Aligning Chroma 
After computing chroma for each audio signal 

(one of which is derived from MIDI data), we obtain 
two sequences of chroma vectors. We want to find a 
correspondence between the two sequences such that 

corresponding chroma vectors are similar. One way 
to think about this problem is that we will modify the 
tempo of the MIDI data in order to obtain the best 
agreement between the resulting sequences of chroma 
vectors. 

We must first define what “agreement between 
chroma vectors” means. We first normalize the 
vectors to have a mean of zero and a variance of one. 
The normalization reduces differences due to absolute 
magnitude (loudness), which seems to be a good idea 
because loudness in MIDI files is rarely calibrated to 
control absolute levels. We then calculate the 
Euclidean distance between the vectors. The distance 
is zero if there is perfect agreement. Figure 1 shows a 
similarity matrix where the vertical axis is a time 
index into the acoustic recording, and the horizontal 
axis is a time index into the audio rendered from 
MIDI. The intensity of each point is the distance 
between the corresponding chroma vectors, where 
black represents a distance of zero. 

 Figure 1. Similarity Matrix for Beethoven’s 5th 
Symphony, first movement. 

The dark diagonal represents a path where the 
chroma vectors are near one another. This path is the 
alignment we are after. Notice that the tempo of the 
MIDI performance (Viens, 2000) is substantially 
faster than the audio (North German Radio 
Symphony Orchestra, 1992), so the acoustic 
recording is much longer than the audio from MIDI. 
Also notice that the repetition at the beginning of the 
movement yields additional off-diagonal paths where 
the first time of the acoustic data matches the second 
time of the MIDI data and vice versa.  

Although the path is visually clear in the figure, 
we need an automated method to locate the path. 
Alignment is computed using a dynamic time 
warping (DTW) algorithm. DTW computes a path in 
a matrix where the rows correspond to one chroma 
vector sequence (chromagram) and columns 
correspond to the other. The path is a sequence of 
adjacent cells, where each cell indicates a 
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correspondence between the two sequences, and 
DTW finds the path with the smallest sum of 
distances. 

For DTW, each matrix cell (i,j) represents the sum 
of distances along the best path from (0,0) to (i,j).  
We use the calculation pattern shown in Figure 2 for 
each cell. The best path up to location (i,j) in the 
matrix (labeled “D” in the figure) depends only on 
the adjacent cells (A, B, and C)  and the distance 
between the chroma vectors corresponding to row i 
and column j. The DTW algorithm requires a single 
pass through the matrix to compute the cost of the 
best path. Then, a backtracking step is used to 
identify the actual path. Other formulations of DTW 
are possible (Hu & Dannenberg, 2002), but we have 
not explored them in this application. 

Figure 2. The calculation pattern for cell (i,j) in the 
matrix. 

Using dynamic time warping, we can use the 
similarity matrix in Figure 1 to identify the path as 
shown by the white line in Figure 3. 

 Figure 3. The optimal alignment path is shown in 
white over the similarity matrix of Figure 1. 

3 From MIDI to Chroma 
One optimization of this work is to avoid 

synthesizing MIDI to obtain audio. Why compute and 
process so many audio samples when the ultimate 
goal is to obtain the very reduced chromagram 
representation? It is possible to associate a chroma 
vector with each pitch class. Then, where there is 
polyphony in the MIDI data, the chroma vectors can 
simply be added and normalized. 

We have found that the chromagram is relatively 
insensitive to these details. For example, we can 
substitute a piano sound for all instruments in an 
MIDI file and still obtain good matching to audio. 
Figure 4 was computed using the same recording and 
same MIDI data as Figure 3, except all MIDI 
instruments were changed to use a generic piano 
sound. As the figure illustrates, this change had little 
impact on the results. 

Taking this one step further, rather than 
synthesizing piano tones, we can simply map each 
pitch to a chroma vector. Polyphony is handled by 
summing vectors and then normalizing. Of course, 
this ignores many details that would be present in 
synthesized sound, including envelopes, instrument 
(MIDI program change), and vibrato. Nevertheless, 
we have obtained good results with this approach. 
Details on this work are forthcoming (Hu, 
Dannenberg & Tzanetakis, 2003). 

 Figure 4. The optimal alignment path computed using 
a piano synthesizer to create audio from MIDI rather 
than using the original symphonic instrumentation. 

4 Why not HMMs? 
Readers familiar with hidden Markov models 

(HMMs) may wonder why we did not chose this 
formalism. For example, Christopher Raphael has 
used HMMs for computer accompaniment (Raphael, 
1999) and demonstrated a polyphonic score-
following system at ISMIR 2002 (Raphael, 2003). 
Others have also used HMMs for score following. 
(Cano, Loscos, & Bonada, 1999; Orio & Dechelle, 
2001) We should point out that dynamic time 
warping is a particular form of HMM, where cells in 
the matrix correspond to states and the chroma vector 
distance serves as the output probability for a given 
state. (Durbin, Eddy, Krogh, & Mitchison, 1998) 

The advantages of an HMM might be the 
possibility of more general state transitions and 
probabilities and the ability to train output probability 
distributions. On the other hand, an HMM would 



typically output discrete symbols rather than 
continuous chroma vectors. This requires some sort 
of vector quantization, and there is a tradeoff between 
the number of parameters to learn and the coarseness 
of quantization. Successful HMMs typically “tie” 
states to simplify training, but this introduces still 
more design decisions. 

We plan to investigate HMMs and believe that a 
careful design could lead to improved performance 
over our DTW approach. However, we have achieved 
good results with a simple model and no training, and 
we believe the simplicity makes this approach very 
attractive for a variety of applications. 

5 Evaluation and Results 
Figures 3 and 4 illustrate successful matching 

between audio and MIDI data. The roughly diagonal 
lines show the correspondence. Of course, we could 
simply draw a diagonal line and the result would be 
approximately correct. How can we evaluate whether 
our matching is really working? 

One method of evaluation is to try matching 
against a random MIDI file. If the best alignment is 
not a smooth diagonal, it indicates that the dynamic 
time warping path is at least being guided by the data. 
Figure 5 shows the same audio as in Figure 1, but 
matched against a MIDI file containing the second 
movement of Beethoven’s Fifth Symphony. 

 Figure 5. Matching the first movement (acoustic 
audio) to second movement (audio from MIDI). 

As shown in the figure, the path is fairly erratic 
because no “true” match was found between the two 
audio signals. Since the DTW algorithm searches for 
the optimal path, the path wanders quite a bit, 
avoiding highly dissimilar pairs of chroma vectors, 
and seeking out locally similar sequences. Of course, 
the overall shape is still roughly diagonal, and 
without knowing the music, one could imagine that 
even this erratic path is a plausible match between 
two performances. 

To test whether bends in the path are random or 
meaningful, we can introduce artificial tempo 
changes into MIDI data and compute the new path. 
Figure 6 shows a match using the same data 
(Beethoven’s Fifth Symphony, first movement), but 
where part of the MIDI file has a slower tempo. The 
artificially changed tempo is clearly visible. 

A final method of evaluation is to compare the 
average distance along the path for matching vs. non-
matching MIDI data. When matching and alignment 
are possible, we would expect to see a low average 
distance along the alignment path. On the other hand, 
if we use MIDI data that is unrelated to the audio, 
then even the best path should exhibit a large average 
distance. Table 1 shows data for matched and 
mismatched audio/MIDI pairs. The average distance 
is much higher in the mismatched case (3.63 > 2.10). 
These averages are computed over path lengths of 
1882 and 2148, respectively. This is further evidence 
that the chroma vector alignment is real. Moreover, 
the average distance might be useful to predict when 
matching is successful. 

 Figure 6. Matching against MIDI file with artificially 
varied tempo. 

 
Acoustic MIDI Avg. Dist. Ratio 

Beeth. 1st Mvt. same 2.10 0.175 
Beeth. 1st Mvt. same (piano) 2.25 0.187 
Beeth. 1st Mvt. 2nd Mvt. 3.63 0.302 
Beeth. 1st Mvt. same, with tempo 

change 
2.00 0.167 

“Let It Be” same 2.41 0.673 

Table 1. Average distance along path. “Ratio” is the 
ratio of average distance along path to the average 
distance value in the entire similarity matrix. 

The last column of the table shows the ratio 
between the average distance along the path and the 
average distance value in the matrix. The average 
distance along the path is lower than the average 
matrix value as indicated by ratio values less than 
one. 



We have also evaluated alignment accuracy by 
comparing automatic alignment data to manual 
alignment. Because manual alignment is very time-
consuming, we chose 5 points in each of three pieces 
and computed the average error and standard 
deviation, as shown in Table 2. The error seems to be 
entirely due to quantization effects of the analysis 
frames, so we might get better results with shorter 
frames. 

 
Test Name Avg. Error Std. Deviation 
Beeth. 0.052s 0.111s 
Beeth.-vary tempo 0.034 0.056 
“Let It Be” 0.076 0.112 

Table 2. Alignment error averaged over 5 points in 
each test. 

As indicated in Tables 1 and 2, we have applied 
our matching technique to a popular song, the 
Beatles’ “Let It Be.” This is an interesting test case 
because the song features vocals prominently, 
whereas the corresponding MIDI must use MIDI 
notes to approximate the vocals. We expected to have 
severe problems with vocal music, but our matching 
technique handles the data quite well. The alignment 
path is shown in Figure 7.  

6 Applications and Future Work 
One obvious application of this work is 

polyphonic score following. Using techniques first 
introduced by Dannneberg (Dannenberg, 1985), the 
DTW algorithm can be implemented as an on-line 
algorithm, enabling real-time score following. This 
would enable a computer to follow an orchestra or 
smaller ensemble, synchronizing sound, digital audio 
effects processing, animation, or other time-based 
processes. 

 Figure 7. “Let It Be” with vocals matched with MIDI 
data. 

Another application is to bridge between symbolic 
and audio representations in music editors. Imagine 
the following scenario: a composer creates a score 
and parts using a music notation editor. The parts are 
given to musicians who perform them in a recording 
studio. The parts are also transferred electronically to 
an “intelligent audio editor”. As music is recorded in 
the studio, the editor matches each “take” to MIDI 
data extracted from the electronic score. After 
everything has been recorded, often with multiple 
takes, the various takes are aligned with the MIDI 
data and displayed on multiple tracks (see Figure 8) 
below music notation. The composer or conductor 
can then easily browse through the score, auditioning 
various takes to select the best versions. The score 
can also help to find natural places to make “splices.” 

 
 
Figure 8. Mock-up of an intelligent editor. Multiple takes are automatically aligned beneath music notation. 



We believe this feature would be easy to add to audio 
editors and would greatly simplify the management 
of recording projects. 

Score-following has been used for the study of 
expressive performance. (Hoshishiba, Horiguchi, & 
Fujinaga, 1996; Large, 1993) Typically, researchers 
must either restrict their examples to keyboard 
performances where MIDI output is available, or 
manually label beats in audio. With our alignment 
technique, tempo variations in symphonic 
performances can be tracked automatically. We 
suspect there may be interesting differences between 
the expressive performance techniques used by 
pianists and those used by orchestras waiting to be 
discovered. Although one might argue that analysis is 
only possible after creating a MIDI representation, 
most standard orchestral works are already freely 
available in MIDI format on the Web.  

The original idea for this work came from 
problems of music search (Birmingham et al., 2001). 
To search for melodies, we need transcriptions of 
audio, but transcription has yet to be automated well 
enough for this application. However, transcriptions 
already exist for most popular music in the form of 
MIDI files that can be obtained on the Web. The 
problem is to find MIDI files that correspond to 
recordings. (File names are not reliable in our 
experience.) By computing the average distance 
along the path, we can search a MIDI database for a 
match to audio. Once a match is found, melodic lines 
can be easily extracted. (Meek & Birmingham, 2001) 
This approach might also be used to identify various 
acoustic performances of works for which MIDI 
representations exist, for example, find all the live 
recordings of a song in a recording archive. 

There are many possible directions for future 
research. We need to test this method on more music 
to learn what types of music are especially difficult. 
We know for example, that jazz is difficult because 
MIDI files do not typically transcribe improvised 
solos which strongly affect the chromagram. We have 
not attempted any contemporary music, but if the 
music can be reasonably rendered by MIDI, 
alignment should work well. On the other hand, 
music that emphasizes extended techniques that 
cannot be approximated by MIDI tones may not 
exhibit strong similarities we can use for alignment. 
We can also experiment with variations on the 
chromagram or try entirely new features. The 
applications discussed in this section have not been 
implemented, although we have begun working on an 
intelligent editor. (Tzanetakis, Hu, & Dannenberg, 
2003) It would be interesting to make a careful 
comparison between the dynamic programming and 
hidden Markov model approaches. 

7 Summary and Conclusions 
Polyphonic music in audio form presents a great 

barrier to any number of music processing tasks. 

Without polyphonic transcription, we are almost 
always forced to treat polyphonic audio as a time-
varying spectrum in which individual instruments 
cannot be distinguished. Gross features such as 
tempo, beat strength, and average spectrum can be 
estimated, but a more detailed analysis is frustratingly 
difficult. 

In this work, we show how to align polyphonic 
audio with a symbolic (MIDI) representation. The 
technique uses the chromagram representation, which 
carries information about harmony and prominent 
pitches, but otherwise tends to suppress spectral 
details. We convert MIDI data to audio, then convert 
both audio representations to sequences of chroma 
vectors. These sequences can then be aligned using 
dynamic time warping. We also note that it is 
possible to convert directly from MIDI to 
chromagrams, avoiding intermediate synthesis and 
analysis steps. 

The alignment provides a bridge from signal to 
symbol, almost as if we had a transcription of the 
polyphonic audio. While a true transcription would 
provide both pitch sequences and timing, we assume 
the correct pitch sequence is given and only deduce 
the timing. This is still enough information to be 
useful in several applications. 

Polyphonic score following in real time is a 
promising application. Unlike most current systems 
that follow monophonic instruments or polyphonic 
MIDI keyboard performances, our technique should 
be able to follow an orchestra or other ensemble. 
Another intriguing possibility is to use our matching 
procedures to align audio with music notation in a 
music editor. This would greatly simplify many 
editing and browsing tasks. We also see applications 
in music information retrieval. 
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