
Polyphonic Audio Matching for Score Following and
Intelligent Audio Editors

 Roger B. Dannenberg and Ning Hu

School of Computer Science, Carnegie Mellon University
email: dannenberg@cs.cmu.edu, ninghu@cs.cmu.edu, web: www.cs.cmu.edu/~music

Abstract
Getting computers to understand and process audio
recordings in terms of their musical content is a
difficult challenge. We describe a method in which
general, polyphonic audio recordings of music can be
aligned to symbolic score information in standard
MIDI files. Because of the difficulties of polyphonic
transcription, we perform matching directly on
acoustic features that we extract from MIDI and
audio. Polyphonic audio matching can be used for
polyphonic score following, building intelligent
editors that understand the content of recorded audio,
and the analysis of expressive performance.

1 Introduction
Many interesting music processing tasks rely

upon symbolic representations of music. Scores,
MIDI, and note lists can be manipulated in many
interesting ways. In contrast, audio data is relatively
opaque and unstructured, limiting how we can use it.
For example, the task “play from measure 3” is
simple with a score representation but extremely
problematic with just audio data.

In many applications, one has access to both
symbolic and audio representations. For example, in a
score-following application, the task is to match
audio to symbolic data. Similarly, in studio
recordings, performers often read music notation
from a music notation program, where the music
exists in symbolic form.

If we could align polyphonic audio with symbolic
notation, we could enable many interesting
applications. Of particular interest are computer
accompaniment, in which a computer synchronizes
computer-generated audio with live performers, and
intelligent audio editors where audio from recordings
can be automatically aligned with notation. Another
application is the analysis of expressive performance,
for example comparing expressive tempo changes in
different recordings of Beethoven symphonies.

There are many interesting applications of music
transcription. Our work recognizes that in many
cases, full transcription is not necessary, because a
transcription of the score already exists. By aligning
the performance with the score, we obtain the
equivalent of a transcription of the performance.

Unlike automated polyphonic music transcription,
which has been largely unsuccessful to date, our
techniques are effective and fairly easy to implement.

The problem is simply stated: given an audio
recording and a corresponding standard MIDI file,
find the best correspondence between them. We
assume that the timing of the MIDI data does not
correspond exactly to the timing of the audio
recording. Otherwise, the problem would be trivial.
For example the MIDI data may be a “flat”
performance using exact tempo markings from a
score, while the audio may be an expressive
performance by musicians.

A “standard” approach to this problem might be
to perform some sort of polyphonic transcription on
the music and then use a symbolic score-matching
algorithm (Bloch & Dannenberg, 1985).
Unfortunately, accurate polyphonic transcription is
yet to be achieved, and the error rates of the best
systems are sufficiently high as to make matching
difficult in many cases.

We present an alternative in which matching is
performed on acoustic features rather than symbolic
ones. In the simplest approach, we convert MIDI data
to audio, extract audio features, and use a dynamic
time warping algorithm (Sankoff & Kruskal, 1983) to
align the resulting sequences. The result tells us the
correspondence between the audio and MIDI data.
We can optimize this approach by extracting acoustic
features directly from MIDI.

Our work is closely related to that of Orio and
Schwarz (2001), who also use dynamic time warping
to align polyphonic music to scores. They obtain
accurate alignment using small (5.8ms) analysis
windows. Orio and Schwarz use a measure called
Peak Structure Distance, which is derived from the
spectrum of audio and from synthetic spectra
computed from score data, whereas we use the
chromagram, described below. Another novel aspect
of our work is that we have demonstrated success
with popular vocal music, in spite of obvious
discrepancies between MIDI data and vocal
performance.

In the next section, we describe the matching
process in more detail. In Section 3, we discuss an
optimization that bypasses the synthesis of audio
from MIDI. Since our approach never fails to

generate a maximum likelihood match, it is important
to evaluate whether the matches are really correct in a
musical sense. Section 4, presents several evaluation
strategies and the results we have obtained. Section 5
describes some possible applications and future work.
Finally, we present a summary and conclusions in
Section 6.

2 Matching Audio to MIDI
Our task is to align MIDI data with audio data.

This is accomplished in three steps. First, we convert
MIDI data to audio using a MIDI synthesizer. For
these experiments, we use Timidity (Toivonen &
Izumo, 1999), which generates audio files from
standard MIDI files.

2.1 The Chroma Representation
The second step is to convert audio data into

discrete chromagrams: sequences of chroma vectors.
The chroma vector representation is a 12-element
vector, where each element represents the spectral
energy corresponding to one pitch class (i.e. C, C#,
D, D#, etc.). To compute a chroma vector from a
magnitude spectrum, we assign each bin of the FFT
to the pitch class of the nearest step in the chromatic
equal-tempered scale. Then, given a pitch class, we
average the magnitude of the corresponding bins. The
12 values that result are called the chroma vector.
Each chroma vector in this work represents 0.25
seconds of audio data (non-overlapping).

The exact details of the chroma computation
concerning how to deal with low-frequency bins that
span more than one half-step, whether to average
magnitude or sum power, etc., are not critical. Our
work differs from the original chroma vector work
(Bartsch & Wakefield, 2001) in that we use linear
rather than logarithmic amplitudes.

The reason chroma might be good for this
application is that the chroma vector depends on the
pitch classes of strong partials in the signal. By
design, chroma vectors are sensitive to prominent
pitches and chords, but since all spectral energy is
collapsed into one octave, chroma vectors are not
very sensitive to spectral shape. Since we are
comparing MIDI data to acoustic data, it is good to
focus on pitch classes and more-or-less ignore details
of timbre and spectral shape. Further experiments
(Hu, Dannenberg & Tzanetakis, 2003) proved that
chromagrams are the best choice for this task among
several common acoustic features including MFCC
(Logan, 2000) and Pitch Histograms (Tzanetakis,
Ermolinskyi & Cook, 2002).

2.2 Comparing and Aligning Chroma
After computing chroma for each audio signal

(one of which is derived from MIDI data), we obtain
two sequences of chroma vectors. We want to find a
correspondence between the two sequences such that

corresponding chroma vectors are similar. One way
to think about this problem is that we will modify the
tempo of the MIDI data in order to obtain the best
agreement between the resulting sequences of chroma
vectors.

We must first define what “agreement between
chroma vectors” means. We first normalize the
vectors to have a mean of zero and a variance of one.
The normalization reduces differences due to absolute
magnitude (loudness), which seems to be a good idea
because loudness in MIDI files is rarely calibrated to
control absolute levels. We then calculate the
Euclidean distance between the vectors. The distance
is zero if there is perfect agreement. Figure 1 shows a
similarity matrix where the vertical axis is a time
index into the acoustic recording, and the horizontal
axis is a time index into the audio rendered from
MIDI. The intensity of each point is the distance
between the corresponding chroma vectors, where
black represents a distance of zero.

 Figure 1. Similarity Matrix for Beethoven’s 5th
Symphony, first movement.

The dark diagonal represents a path where the
chroma vectors are near one another. This path is the
alignment we are after. Notice that the tempo of the
MIDI performance (Viens, 2000) is substantially
faster than the audio (North German Radio
Symphony Orchestra, 1992), so the acoustic
recording is much longer than the audio from MIDI.
Also notice that the repetition at the beginning of the
movement yields additional off-diagonal paths where
the first time of the acoustic data matches the second
time of the MIDI data and vice versa.

Although the path is visually clear in the figure,
we need an automated method to locate the path.
Alignment is computed using a dynamic time
warping (DTW) algorithm. DTW computes a path in
a matrix where the rows correspond to one chroma
vector sequence (chromagram) and columns
correspond to the other. The path is a sequence of
adjacent cells, where each cell indicates a

C D

A B

D = Mi,j = min(A,B,C)+dist(i,j)

i

j

correspondence between the two sequences, and
DTW finds the path with the smallest sum of
distances.

For DTW, each matrix cell (i,j) represents the sum
of distances along the best path from (0,0) to (i,j).
We use the calculation pattern shown in Figure 2 for
each cell. The best path up to location (i,j) in the
matrix (labeled “D” in the figure) depends only on
the adjacent cells (A, B, and C) and the distance
between the chroma vectors corresponding to row i
and column j. The DTW algorithm requires a single
pass through the matrix to compute the cost of the
best path. Then, a backtracking step is used to
identify the actual path. Other formulations of DTW
are possible (Hu & Dannenberg, 2002), but we have
not explored them in this application.

Figure 2. The calculation pattern for cell (i,j) in the
matrix.

Using dynamic time warping, we can use the
similarity matrix in Figure 1 to identify the path as
shown by the white line in Figure 3.

 Figure 3. The optimal alignment path is shown in
white over the similarity matrix of Figure 1.

3 From MIDI to Chroma
One optimization of this work is to avoid

synthesizing MIDI to obtain audio. Why compute and
process so many audio samples when the ultimate
goal is to obtain the very reduced chromagram
representation? It is possible to associate a chroma
vector with each pitch class. Then, where there is
polyphony in the MIDI data, the chroma vectors can
simply be added and normalized.

We have found that the chromagram is relatively
insensitive to these details. For example, we can
substitute a piano sound for all instruments in an
MIDI file and still obtain good matching to audio.
Figure 4 was computed using the same recording and
same MIDI data as Figure 3, except all MIDI
instruments were changed to use a generic piano
sound. As the figure illustrates, this change had little
impact on the results.

Taking this one step further, rather than
synthesizing piano tones, we can simply map each
pitch to a chroma vector. Polyphony is handled by
summing vectors and then normalizing. Of course,
this ignores many details that would be present in
synthesized sound, including envelopes, instrument
(MIDI program change), and vibrato. Nevertheless,
we have obtained good results with this approach.
Details on this work are forthcoming (Hu,
Dannenberg & Tzanetakis, 2003).

 Figure 4. The optimal alignment path computed using
a piano synthesizer to create audio from MIDI rather
than using the original symphonic instrumentation.

4 Why not HMMs?
Readers familiar with hidden Markov models

(HMMs) may wonder why we did not chose this
formalism. For example, Christopher Raphael has
used HMMs for computer accompaniment (Raphael,
1999) and demonstrated a polyphonic score-
following system at ISMIR 2002 (Raphael, 2003).
Others have also used HMMs for score following.
(Cano, Loscos, & Bonada, 1999; Orio & Dechelle,
2001) We should point out that dynamic time
warping is a particular form of HMM, where cells in
the matrix correspond to states and the chroma vector
distance serves as the output probability for a given
state. (Durbin, Eddy, Krogh, & Mitchison, 1998)

The advantages of an HMM might be the
possibility of more general state transitions and
probabilities and the ability to train output probability
distributions. On the other hand, an HMM would

typically output discrete symbols rather than
continuous chroma vectors. This requires some sort
of vector quantization, and there is a tradeoff between
the number of parameters to learn and the coarseness
of quantization. Successful HMMs typically “tie”
states to simplify training, but this introduces still
more design decisions.

We plan to investigate HMMs and believe that a
careful design could lead to improved performance
over our DTW approach. However, we have achieved
good results with a simple model and no training, and
we believe the simplicity makes this approach very
attractive for a variety of applications.

5 Evaluation and Results
Figures 3 and 4 illustrate successful matching

between audio and MIDI data. The roughly diagonal
lines show the correspondence. Of course, we could
simply draw a diagonal line and the result would be
approximately correct. How can we evaluate whether
our matching is really working?

One method of evaluation is to try matching
against a random MIDI file. If the best alignment is
not a smooth diagonal, it indicates that the dynamic
time warping path is at least being guided by the data.
Figure 5 shows the same audio as in Figure 1, but
matched against a MIDI file containing the second
movement of Beethoven’s Fifth Symphony.

 Figure 5. Matching the first movement (acoustic
audio) to second movement (audio from MIDI).

As shown in the figure, the path is fairly erratic
because no “true” match was found between the two
audio signals. Since the DTW algorithm searches for
the optimal path, the path wanders quite a bit,
avoiding highly dissimilar pairs of chroma vectors,
and seeking out locally similar sequences. Of course,
the overall shape is still roughly diagonal, and
without knowing the music, one could imagine that
even this erratic path is a plausible match between
two performances.

To test whether bends in the path are random or
meaningful, we can introduce artificial tempo
changes into MIDI data and compute the new path.
Figure 6 shows a match using the same data
(Beethoven’s Fifth Symphony, first movement), but
where part of the MIDI file has a slower tempo. The
artificially changed tempo is clearly visible.

A final method of evaluation is to compare the
average distance along the path for matching vs. non-
matching MIDI data. When matching and alignment
are possible, we would expect to see a low average
distance along the alignment path. On the other hand,
if we use MIDI data that is unrelated to the audio,
then even the best path should exhibit a large average
distance. Table 1 shows data for matched and
mismatched audio/MIDI pairs. The average distance
is much higher in the mismatched case (3.63 > 2.10).
These averages are computed over path lengths of
1882 and 2148, respectively. This is further evidence
that the chroma vector alignment is real. Moreover,
the average distance might be useful to predict when
matching is successful.

 Figure 6. Matching against MIDI file with artificially
varied tempo.

Acoustic MIDI Avg. Dist. Ratio

Beeth. 1st Mvt. same 2.10 0.175
Beeth. 1st Mvt. same (piano) 2.25 0.187
Beeth. 1st Mvt. 2nd Mvt. 3.63 0.302
Beeth. 1st Mvt. same, with tempo

change
2.00 0.167

“Let It Be” same 2.41 0.673

Table 1. Average distance along path. “Ratio” is the
ratio of average distance along path to the average
distance value in the entire similarity matrix.

The last column of the table shows the ratio
between the average distance along the path and the
average distance value in the matrix. The average
distance along the path is lower than the average
matrix value as indicated by ratio values less than
one.

We have also evaluated alignment accuracy by
comparing automatic alignment data to manual
alignment. Because manual alignment is very time-
consuming, we chose 5 points in each of three pieces
and computed the average error and standard
deviation, as shown in Table 2. The error seems to be
entirely due to quantization effects of the analysis
frames, so we might get better results with shorter
frames.

Test Name Avg. Error Std. Deviation
Beeth. 0.052s 0.111s
Beeth.-vary tempo 0.034 0.056
“Let It Be” 0.076 0.112

Table 2. Alignment error averaged over 5 points in
each test.

As indicated in Tables 1 and 2, we have applied
our matching technique to a popular song, the
Beatles’ “Let It Be.” This is an interesting test case
because the song features vocals prominently,
whereas the corresponding MIDI must use MIDI
notes to approximate the vocals. We expected to have
severe problems with vocal music, but our matching
technique handles the data quite well. The alignment
path is shown in Figure 7.

6 Applications and Future Work
One obvious application of this work is

polyphonic score following. Using techniques first
introduced by Dannneberg (Dannenberg, 1985), the
DTW algorithm can be implemented as an on-line
algorithm, enabling real-time score following. This
would enable a computer to follow an orchestra or
smaller ensemble, synchronizing sound, digital audio
effects processing, animation, or other time-based
processes.

 Figure 7. “Let It Be” with vocals matched with MIDI
data.

Another application is to bridge between symbolic
and audio representations in music editors. Imagine
the following scenario: a composer creates a score
and parts using a music notation editor. The parts are
given to musicians who perform them in a recording
studio. The parts are also transferred electronically to
an “intelligent audio editor”. As music is recorded in
the studio, the editor matches each “take” to MIDI
data extracted from the electronic score. After
everything has been recorded, often with multiple
takes, the various takes are aligned with the MIDI
data and displayed on multiple tracks (see Figure 8)
below music notation. The composer or conductor
can then easily browse through the score, auditioning
various takes to select the best versions. The score
can also help to find natural places to make “splices.”

Figure 8. Mock-up of an intelligent editor. Multiple takes are automatically aligned beneath music notation.

We believe this feature would be easy to add to audio
editors and would greatly simplify the management
of recording projects.

Score-following has been used for the study of
expressive performance. (Hoshishiba, Horiguchi, &
Fujinaga, 1996; Large, 1993) Typically, researchers
must either restrict their examples to keyboard
performances where MIDI output is available, or
manually label beats in audio. With our alignment
technique, tempo variations in symphonic
performances can be tracked automatically. We
suspect there may be interesting differences between
the expressive performance techniques used by
pianists and those used by orchestras waiting to be
discovered. Although one might argue that analysis is
only possible after creating a MIDI representation,
most standard orchestral works are already freely
available in MIDI format on the Web.

The original idea for this work came from
problems of music search (Birmingham et al., 2001).
To search for melodies, we need transcriptions of
audio, but transcription has yet to be automated well
enough for this application. However, transcriptions
already exist for most popular music in the form of
MIDI files that can be obtained on the Web. The
problem is to find MIDI files that correspond to
recordings. (File names are not reliable in our
experience.) By computing the average distance
along the path, we can search a MIDI database for a
match to audio. Once a match is found, melodic lines
can be easily extracted. (Meek & Birmingham, 2001)
This approach might also be used to identify various
acoustic performances of works for which MIDI
representations exist, for example, find all the live
recordings of a song in a recording archive.

There are many possible directions for future
research. We need to test this method on more music
to learn what types of music are especially difficult.
We know for example, that jazz is difficult because
MIDI files do not typically transcribe improvised
solos which strongly affect the chromagram. We have
not attempted any contemporary music, but if the
music can be reasonably rendered by MIDI,
alignment should work well. On the other hand,
music that emphasizes extended techniques that
cannot be approximated by MIDI tones may not
exhibit strong similarities we can use for alignment.
We can also experiment with variations on the
chromagram or try entirely new features. The
applications discussed in this section have not been
implemented, although we have begun working on an
intelligent editor. (Tzanetakis, Hu, & Dannenberg,
2003) It would be interesting to make a careful
comparison between the dynamic programming and
hidden Markov model approaches.

7 Summary and Conclusions
Polyphonic music in audio form presents a great

barrier to any number of music processing tasks.

Without polyphonic transcription, we are almost
always forced to treat polyphonic audio as a time-
varying spectrum in which individual instruments
cannot be distinguished. Gross features such as
tempo, beat strength, and average spectrum can be
estimated, but a more detailed analysis is frustratingly
difficult.

In this work, we show how to align polyphonic
audio with a symbolic (MIDI) representation. The
technique uses the chromagram representation, which
carries information about harmony and prominent
pitches, but otherwise tends to suppress spectral
details. We convert MIDI data to audio, then convert
both audio representations to sequences of chroma
vectors. These sequences can then be aligned using
dynamic time warping. We also note that it is
possible to convert directly from MIDI to
chromagrams, avoiding intermediate synthesis and
analysis steps.

The alignment provides a bridge from signal to
symbol, almost as if we had a transcription of the
polyphonic audio. While a true transcription would
provide both pitch sequences and timing, we assume
the correct pitch sequence is given and only deduce
the timing. This is still enough information to be
useful in several applications.

Polyphonic score following in real time is a
promising application. Unlike most current systems
that follow monophonic instruments or polyphonic
MIDI keyboard performances, our technique should
be able to follow an orchestra or other ensemble.
Another intriguing possibility is to use our matching
procedures to align audio with music notation in a
music editor. This would greatly simplify many
editing and browsing tasks. We also see applications
in music information retrieval.

8 Acknowledgments
This work was supported by NSF Award

#0085945. We would like to thank Greg Wakefield
and Mark Bartsch for their chromagram code and
discussions, and Christopher Rafael for his insights
into the workings of HMM score following models.

References
Bartsch, M., & Wakefield, G. H. (2001). "To Catch a

Chorus: Using Chroma-Based Representations For
Audio Thumbnailing." Proceedings of the Workshop on
Applications of Signal Processing to Audio and
Acoustics. IEEE.

Birmingham, W. P., Dannenberg, R. B., Wakefield, G. H.,
Bartsch, M., Bykowski, D., Mazzoni, D., Meek, C.,
Mellody, M., & Rand, W. (2001). "MUSART: Music
Retrieval Via Aural Queries." International Symposium
on Music Information Retrieval. pp. 73-81.

Bloch, J., & Dannenberg, R. B. (1985). "Real-Time
Accompaniment of Polyphonic Keyboard Performance."
Proceedings of the 1985 International Computer Music
Conference. International Computer Music Association,
pp. 279-290.

Cano, P., Loscos, A., & Bonada, J. (1999). "Score-
Performance Matching using HMMs." Proceedings of
the 1999 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 441-444.

Dannenberg, R. B. (1985). "An On-Line Algorithm for
Real-Time Accompaniment." Proceedings of the 1984
International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 193-198.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998).
Biological sequence analysis: Cambridge University
Press.

Hoshishiba, T., Horiguchi, S., & Fujinaga, I. (1996). "Study
of Expression and Individuality in Music Performance
Using Normative Data Derived from MIDI Recordings
of Piano Music." International Conference on Music
Perception and Cognition. pp. 465-470.

Hu, N., & Dannenberg, R. B. (2002). "A Comparison of
Melodic Database Retrieval Techniques Using Sung
Queries." Joint Conference on Digital Libraries.
Association for Computing Machinery.

Hu, N., Dannenberg, R. B., & Tzanetakis, G. (2003).
"Polyphonic Audio Matching and Alignment for Music
Retrieval." Proceedings of the Workshop on
Applications of Signal Processing to Audio and
Acoustics. IEEE. (to appear).

Large, E. W. (1993). "Dynamic programming for the
analysis of serial behaviors." Behavior Research
Methods, Instruments, and Computers, 25(2), 238-241.

Logan, B. (2000). "Mel Frequency Cepstral Coefficients for
Music Modeling." First International Symposium on
Music Information Retrieval. Plymouth, Massachusetts.

Meek, C., & Birmingham, W. P. (2001). "Thematic
Extractor." 2nd Annual International Symposium on
Music Information Retrieval. Bloomington: Indiana
University, pp. 119-128.

North German Radio Symphony Orchestra. (1992).
Beethoven's Fifth Symphony, First Movement: RCA Red
Seal.

Orio, N., & Dechelle, F. (2001). "Score Following Using
Spectral Analysis and Hidden Markov Models."
Proceedings of the 2001 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 151-154.

Orio, N., & Schwarz, D. (2001). "Alignment of
Monophonic and Polyphonic Music to a Score."
Proceedings of the 2001 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 155-158.

Raphael, C. (1999). "Automatic Segmentation of Acoustic
Musical Signals Using Hidden Markov Models." IEEE
Transactions on PAMI, 21(4), 360-370.

Raphael, C. (2003). Personal Communication.
Sankoff, D., & Kruskal, J. B. (1983). Time Warps, String

Edits, and Macromolecules: The Theory and Practice of
Sequence Comparison. Reading, MA: Addison-Wesley.

Toivonen, T., & Izumo, M. (1999). TiMidity.
http://www.onicos.com/staff/iz/timidity/index.html.

Tzanetakis, G., Ermolinskyi, A., & Cook, P. (2002). "Pitch
Histograms in Audio and Symbolic Music Information
Retrieval." ISMIR 2002 Conference Proceedings. Paris:
IRCAM, pp. 31-38.

Tzanetakis, G., Hu, N., & Dannenberg, R. B. (2003).
"Toward an Intelligent Editor for Jazz Music." Digital
Media Processing for Multimedia Interactive Services
(Proceedings of the 4th International Workshop on
Image Analysis for Multimedia Interactive Services,
WIAMIS 2003). World Scientific Press.

Viens, D. L. (2000). Beethoven's Fifth Symphony, First
Movement [Standard MIDI File]. dlviens@empire.net.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Roger Dannenberg
	Ning Hu

