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Abstract 
Digital video offers an interesting source of control 
information for musical applications. A novel 
synthesis technique is introduced where digital video 
controls sound spectra in real time. Light intensity 
modulates the amplitudes of 32 harmonics in each of 
several synthesized “voices.”  Problems addressed 
include how to map from video to sound, dealing 
with global variations in light level, dealing with low 
frame rates of video relative to high sample rates of 
audio, and overall system implementation. In one 
application, images of light reflected from a shallow 
pool of water are used to control sound, offering a 
rich tactile interface to sound synthesis. 

1 Introduction 
The connection between images, light, and sound 

has been made countless times. This work uses video 
to control time-varying spectra, creating an 
interesting timbre in constant “motion”  as the image 
changes. We describe a working system that controls 
the time-varying spectra of several voices using live 
video. 

Section 2 describes related work. Section 3 
presents the new synthesis method, and Section 4 
describes the implementation, which uses off-the-
shelf hardware. Section 5 presents ideas for future 
work and our conclusions.  

2 Related Work 
Fred Collopy (2003) has written an excellent 

annotated bibliography, and quoting from his web-
site, “ the fine art of playing images in the way the 
musicians play with sound … has gone by a variety 
of names—visual music, color music, audio-visual-
music, motion graphics, synchromy, and lumia.”  
Often, images are derived from sounds, depicting 
sonic gestures with visual ones. Disney’s “Fantasia”  
is a popular example. In other work, sound is derived 
from images. For example, Meijer (1992) created a 
system for the blind in which video images are 
mapped to audio. Many composers have been 
inspired by paintings, such as William Kraft in his 
“Kandinsky Variations.”  In the computer music 
domain, MetaSynth (U & I Software, 2003) uses 
images to control note parameters and Kieren (2003) 
uses a proprietary image-to-sound conversion system. 

Penrose’s (1992) Hyperupic system converts still 
images to audio. 

Video has been used by many composers as a 
sensing device, allowing movement to control music. 
Examples include Rokeby’s Very Nervous System 
(Rokeby, 1998) and some of Winkler’s dance and 
installation pieces (Winkler, 1998). STEIM’s Big Eye 
software (Demeyer, 1996) has enabled many 
composers to incorporate video sensing into their 
work. Unlike many of these efforts, our approach 
uses video to control spectral variation within notes 
rather than to trigger notes or select pitches. 

There are a variety of related synthesis techniques 
that use one- and two-dimensional data, not 
necessarily video, as part of the synthesis algorithm. 
In terrain synthesis, as described and implemented by 
Rich Gold (Bischoff, Gold, & Horton, 1978), a real or 
imaginary terrain is scanned in a closed path, and 
movement of the path causes variations in the 
generated waveform. Borgonovo and Haus (1985) 
describe a similar system in which the terrain and 
path are generated by various mathematical formulas. 
Scanned synthesis (Boulanger, Smaragdis, & Ffitch, 
2000; Verplank, Mathews, & Shaw, 2000) allows the 
terrain (sometimes in just one dimension) to vary or 
vibrate at a very low rate, causing interesting 
variations in the audio waveform.  

All of these ideas served as inspiration for our 
work, which was first described by Dannenberg, et al. 
(Dannenberg, Bernstein, Zeglin, &  Neuendorffer, 
2003). While the earlier paper describes an artistic 
application of the technique, this paper provides 
complete detail about the implementation. 

3 Sound Synthesis from Video 
A natural extension to Gold’s technique uses 

video intensity as a source of “ terrain”  for synthesis. 
Imagine moving a photocell in a circle over the video 
image. If the circular path is completed at audio rates 
(faster than 20 cycles per second), then a quasi-
periodic waveform will be generated by the photocell, 
giving rise to a perceptible pitch. As the image 
changes, the generated waveform will also change. 

We decided to use images from moving water to 
drive our synthesis engine. Water exhibits interesting 
wave motion and has obvious parallels to the 
vibrating shapes in scanned synthesis. To capture 
water motion, we constructed a shallow pool of water 



using a wooden frame lined with plastic. We 
determined that interesting images can be obtained 
either by shining a light on the water at a shallow 
angle of incidence in which case light reflects from 
the water surface, or by using a greater angle in 
which case light refracts through the water and is 
reflected from silvered mylar underneath the plastic 
pool liner. Reflections from the pool can be observed 
by placing a screen behind the pool (see Figure 1). 
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Figure 1. Light reflected from water forms moving 
images on a screen. These are visible to the audience 
and captured by a video camera interfaced to a 
computer. 

3.1 Time Domain vs. Spectral Domain 
Using video captured from this setup, we 

determined that time-domain interpolation was not as 
interesting as we had hoped. One would expect a 
decrease in high-frequency sound energy as the water 
waves dissipate. In practice, the high frequencies, 
represented by small ripples, continue to reflect back 
and forth for many seconds. At least with water 
images as an input, the sound is “buzzy” : full of high 
frequencies and lacking in low harmonics. Even 
though there was obvious wave motion in the image, 
the generated sound was relatively static, and the 
connection to the image was not at all obvious. We 
decided to try a different approach. 

Captured video shows that the main image 
movement is in the form of horizontal bands of light 
moving vertically (See Figure 2.), due to the position 
of the light. It occurred to us that time variations 
along the vertical axis might make an interesting 
time-varying spectrum. This is the basis for the 
synthesis technique. 

3.2 Computing Time-Varying Spectra 
The video images used in this work are 256 pixels 

square (the power of two is advantageous for texture 
mapping when the data is also used for animation; the 
dimensions are not critical for audio synthesis.) A 
vertical strip 8 pixels wide and 256 pixels high is 
used to compute each spectrum. For example, we 
generate three voices using the three strips shown at 
the bottom of Figure 2. To reduce the noise inherent 
in video data, each 8-by-8 block of pixels is averaged 
to a single value, for a total of 32 floating point 
numbers per strip. (See Figure 3.) These numbers 
represent the amplitudes of 32 harmonics. 

Absolute light levels are difficult to control, so the 
video processing includes a simple automatic gain 
control mechanism: the vectors are low-pass filtered 
in time to obtain an estimate of local average light 
intensity. The difference between the current vector 
and this local average estimate is used for synthesis. 
This will result in some negative amplitudes, and 
these are replaced by zero. 

 

 

 
 

Figure 2. Light reflected from water, captured by 
digital video. The vertical strips in the bottom picture 
show which video is used to compute audio spectra. 

 
Figure 3. Each 8x8 square of pixels is averaged to 
obtain one value, resulting in a 32-element vector. 

3.3 From Spectra to Sound 
Although it might be possible to synthesize using 

an Inverse Fourier Transform, there are well-known 
problems associated with discontinuities between 
successive frames. Also, video frames arrive at a 
relatively low rate (15 to 30 frames per second) that is 
not synchronous with audio. Therefore, we use the 
video data to determine a waveform and then use 
spectral interpolation synthesis to generate sound. 



Spectral interpolation synthesis (Dannenberg, 
Serra, & Rubine, 1990) was originally developed to 
model the time-varying spectra of acoustic 
instruments (Dannenberg & Derenyi, 1998). It works 
by interpolating between waveform tables that store 
single periods of the waveform. Interpolation results 
in a smoothly varying spectrum at a low computation 
cost because, typically, each waveform table is read 
for many periods. 

Specifically, there is a linear cross-fade from table 
1 to table 2, then from table 2 to table 3, etc. Figure 4 
illustrates the spectral interpolation algorithm, and 
Figure 5 shows how amplitude functions are 
coordinated with waveform changes. In our 
implementation, we read a video frame every 40ms, 
so each waveform table will be used for many 
fundamental periods. Since video frames are not 
synchronized with audio, special attention must be 
paid to synchronization. Each cross-fade must not 
begin until (1) the previous cross-fade finishes (so 
that interpolation is always between just two 
waveforms), and (2) the next waveform has been 
computed from new spectral data (so that there is 
something to interpolate to). Even if a new waveform 
is unavailable, the synthesis algorithm continues to 
generate a tone, and the delay is inaudible. In Figure 
5, observe that the cross-fade from wavetable 5 is 
delayed slightly until wavetable 6 is available. 
Alternatively, we could sample-and-hold the video 
data, synchronizing it to the audio, but that would add 
undesirable latency. 
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Figure 4. Spectral Interpolation Synthesis algorithm. 
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Figure 5. Coordination of waveforms (numbered in 
sequence) with amplitude control (dashed lines). 
Waveform 6 arrives later than expected. 

Another important point is that only one phase is 
computed for both tables (again, see Figure 4). If the 
phases of corresponding harmonics in the two tables 
are equal, then linear interpolation of the table data is 
equivalent to an interpolation of their spectra. Notice 
also that the fundamental frequency is independent of 
the spectrum, allowing pitch decisions to be made 
independently from the spectral control. 

4 Implementation 
An implementation was created for the first 

author’s composition, “The Watercourse Way,”  in 
which a dancer creates waves in a pool of water 

(Figure 1) to control the synthesized sound. Video is 
“grabbed”  using a BTTV8x8 series chipset on a 
commercial video capture card in a Linux PC, which 
does all of the sound generation in software. Aura 
(Dannenberg & Lageweg, 2001) was extended with 
new objects to perform all video and audio 
processing. The current implementation generates 
three voices in stereo at a 44.1kHz sampling rate, and 
the entire computation uses about 10% of a 2.4GHz 
Pentium-4 processor. 

The video processing consists of reading a frame 
of video, computing three vectors of 32 harmonic 
amplitudes, and sending these via Aura messages to 
software instruments running in a high priority audio 
synthesis thread.  

The audio computation is implemented in C++ 
and manages wavetable construction, management of 
wavetables, interpolation control, actual sample 
computation, amplitude envelopes and stereo 
panning. Many parameters can be controlled via Aura 
messages, allowing other parts of the system to 
control fundamental pitch, turn “notes”  on and off, 
and control panning. 

 The C++ instrument computes 512-sample tables 
containing 32 harmonics, which are derived from the 
video as described above. At any given moment, 
there are at most three tables: two tables are involved 
in a cross-fade while the third is computed based on 
the next spectrum. An even simpler approach would 
just wait until the next wave table is needed, then 
compute the table from the video data. This would 
cause a large computational demand (512 samples × 
32 harmonics = 16K samples) that is undesirable in a 
real-time system. To avoid this, we spread the 
computation over time, using the third wave table to 
hold the intermediate data until it is ready. In the 
current system, audio is computed in blocks of 32 
samples, so every time we compute a block of output 
samples, we also add one harmonic to the third wave 
table. After 32 blocks of 32 samples (32×32/44100= 
23ms), the new table is ready. Even when the new 
table is ready, the instrument must still wait until the 
interpolation factor ramps to its endpoint. Then we 
swap tables and begin interpolating to the new one. 
This leaves the previous table free to use in 
constructing the next wave table. 

The latest version of Aura runs under Linux and 
benefits enormously from the human and software 
resources at PlanetCCRMA (Lopez-Lezcano, 2002), 
which provides low-latency patches as well as a 
number of critical device drivers for work in 
computer music, animation, and video. 

5 Discussion and Conclusion 
In “The Watercourse Way,”  three of these Aura 

instruments are allocated and take spectra from three 
different parts of the image. Because the water’s 
general texture is similar at all three locations, the 
general behavior of the three sounds is similar, but 



each is unique. Algorithmic composition techniques 
are used to select pitches, but the instruments could 
be driven easily by MIDI or other data. 

The result is a very interesting sound. As water 
waves travel up and down the screen, the listener 
hears a sweep through the harmonics, somewhat like 
a swept filter or a flanging effect. With multiple 
waves, this gives the sound a very animated character 
that has a very strong correlation with the moving 
water image, which was the main goal. 

There is no reason to limit input images to light 
reflected from water. Any motion will create spectral 
changes, and moving one’s hand in front of the 
camera gives a very pleasing control over spectra, as 
if one can touch the harmonics themselves. Another 
amusing effect is to cover the camera lens, creating 
silence. Removing the cover creates sound, as if one 
has just let the sound escape from inside the camera. 

This work suggests many possibilities for the 
future. First, there are many choices of synthesis 
algorithms. One could also use video to control filters 
to process live audio. The mapping from vertical 
position to harmonic number gives fairly intuitive and 
certainly interesting results; by analogy, one might 
look for other sound processes that are naturally 
controlled by a one- or two-dimensional vector. 

The sounds produced in this work have a 
distinctive, scintillating “analog”  or “ filter-sweep”  
sound. One could add additional controls to limit or 
shape the overall spectrum, or one could use the 
video input to control weights on more natural spectra 
captured from acoustic instruments, for example. 

Overall, like many other artists, we find the 
control information available through video to be 
very interesting and full of possibilities. This work is 
fairly original in that is focuses on using video for 
time-varying control of audio processing as opposed 
to triggering events or gating sounds on and off. With 
current laptop and desktop computers, it is relatively 
simple to obtain time-varying controls from video. 
We hope this work will encourage and enable others 
to explore many new possibilities. 

Short examples of sounds from this work are 
available at 
http://www.cs.cmu.edu/~music/examples.html. 
Source code is freely available from the authors. 
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