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Abstract

This paper presents work on changepoint detection in musi-
cal audio signals, focusing on the case where there are note
changes with low associated energy variation. Several meth-
ods are described and results of the best are presented.

1 Introduction

Theissueof onsetdetectionin soundsignalsis onewhich
hasapplicationsin speechprocessing,audiomanipulation(cod-
ing, for instance)as well as the plethoraof applicationsin
music processing. Until recently, only the issueof abrupt
changesin signal power, usually called transientdetection,
hasbeenconsidered.Thisdetectseitherconsonantsin speech
or sharponsetssuchaspercussionsoundsin music. It does
not, however, addressthechangeof harmoniccontent,with-
out anassociatedstrongpower transient,which is a common
occurrencein somegenres(e.g.choralmusic,stringquartets,
soloflute). We will addressthis problem.

Specifically, the aim is to extract changepointsin musi-
cal signalswhich areequivalentto the humanperceptionof
a new note(or notes)starting.This maybeaccompaniedby
a changein amplitudebut the currentpaperconcentrateson
the casein which thereis not an associatedpower change.
Theeventualapplicationin mind is beattrackingin musical
signalsandhenceimportanceis assignedto minimisingfalse
detectionsratherthanmaximisingtruedetections.If onewere
consideringsignalmanipulation,thereversewould probably
betrue. 1

Work to datein theareaof musicalchangedetectionmainly
centresaroundenergy change. The typical approach(e.g.
(Dixon 2001))is to takethesoundsignal,createapowerevo-
lution function, ��� (usuallyvia smoothing)andfind onsets
in this, often by searchingfor peaksin the differencefunc-
tion, � �	� � ��
 � ���� . This methodwill obviously miss
changepointswherethereis little energy change. More re-
cently, severalapproacheshavebeenproposedwhichaddress�
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1For the overall beat-trackingcode,the power transientonsetsarealso

consideredbut the methodof extractingthemis not novel andis hencenot
reportedhere.

this andlook for harmonicchange.Duxbury (Duxbury, San-
dler, andDavies2002)describedasystemwhichusedenergy
changedetectionin threebandsabove 1.1kHzbut a method
which looked for spectralchangebelow this. His spectral
changemeasurewasa modifiedEuclideandistancemeasure
betweensuccessiveSTFTframesonabin by bin basis,where
only positivepowerchangewasconsideredin orderto ignore
decreasesin energy. Davy (Davy andGodsill2002)proposed
amethodbaseduponbilineartime-frequency representations
andsupportvectormachineclassificationof resultingspectra
to classifythenovelty of a new time slice. It is, however, un-
clearhow muchof the changedetectionis dueto harmonic
changeandhow muchis dueto amplitudevariation. Abdal-
lah (Abdallah and Plumbley 2003) hasalso recently inves-
tigatedthe problemanduseda combinationof independent
componentanalysis(ICA) to evaluatethe“surprise”measure
of anew framegiventherecentpastandHMMs to detectthe
onsetsfrom this measure.Klapuri (Klapuri 1998)alsoinves-
tigatednoteonsetdetectionanddevelopedamethodfor refin-
ing thelocationof anonsetby examiningtherelative energy
differencefunctionin variousfrequency bands.

2 Methods Using Harmonic Models

In this section,severalmethodsfor changedetectionwill
be discussedandreasonspresentedwhy they have not been
pursuedin thecurrentstudy.

2.1 Traditional Change Detection

Theareaof changedetectionis well researchedandthere
aremany booksonthesubject(e.g.(Gustafsson2000)).Sev-
eral importantassumptionsarehowevermadein thesemeth-
ods: firstly, it is assumedthat the signalis generatedby one
of a small numberof modelsandthat thesemodelsarewell
defined.Secondly, it is generallyassumedthat theprocessis
thencorruptedby noisewhich is not correlatedwith thepro-
cess.Fromtheseassumptions,theusualapproachis to usea
likelihoodfunctionto evaluatetheprobabilityof thedatabe-
ing generatedbyeachof themodelsandto useBayestheorem
to incorporateany prior knowledge,suchasminimumlength



of timebetweenchangepointsor theprobabilityof changing
from onemodelto another.

Thereasonwhy it is not practicalto usethesemethodsis
becausein music,theassumptionsgivenabovedo not hold -
thereis an infinity of modelsto considerbecausethereis an
infinite numberof combinationsof notesthatcouldbeplayed
simultaneously. To solve the problemwould requirean ex-
tra stageof modelselectionin orderto determinehow many
sinusoidalcomponentsare presentat any one time andde-
fine hyperparametersfor this. Punskaya(Punskaya,Andrieu,
Doucet,andFitzgerald2002)hasinvestigatedthis for speech
signals,usingMCMC estimationmethods,but this provesto
beextremelycomputationallyexpensive.

2.2 Harmonic detection approaches

As we areinterestedin the changingof sinusoidalcom-
ponents,a sensibleapproachmight beto performsinusoidal
detectionandevaluatethe changein thesemeasures.Serra
(Serra1997)givesasimplesinusoidaldetectorwhile aslightly
morerigorousandaccuratebutmorecomputationallydemand-
ing algorithmis usedhere(Macleod1998).

Oncethe parametersof detectedsinusoidshave beenes-
timatedfor all frames,it remainsto find whetherthereis any
changefrom oneframeto the next. A list of sinusoidalfre-
quenciesandtheir associatedamplitudesis not a helpful rep-
resentationhere. Two methodsfor further processingwere
investigated:thefirst involvedproducinga pseudospectrum
for eachtime frame by convolving the delta functionsrep-
resentingthe sinusoidalfrequencieswith a suitablewindow
function (e.g. a Gaussian)andthenapplyingdistancemea-
suresto these,asdescribedbelow. The motivation for this
is thehopethat thesepseudospectrawill becleaned-up,de-
noisedversionsof theoriginal spectrogramframeswith only
theharmonicinformationpresent.

Thesecondmethodinvolvedtrackingthesinusoidalcom-
ponentsover time to form harmonictracks. A multiple hy-
pothesistracking algorithm was developedfrom the theory
presentedby Blackman(BlackmanandPopoli1999).Detec-
tion was performedby examining wheretracksstartedand
clusteringtogethertrackswhich hadcloseonsets.

It turnedout that neithermethodwas very satisfactory.
Thisis becausethesinusoidaldetectionfunctionbreaksdown
atthecrucialpointof interest- thestartof notes.Here,thepa-
rametersareoftenmaskedby transientnoiseandtake a few
tensof millisecondsto attain reasonablystablecharacteris-
tics. During this period,which is thetime we areattempting
to estimate,the sinusoidaldetectorwill often not producea
detectionandhencesubsequentprocessingwill befundamen-
tally flawed. This canbe seenin Fig. 1 at all changepoints
for a choralpiecewith very little transientpower; the effect
is even more pronouncedwhen thereare significantpower
transientsin thesignal.
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Figure1: Plot of theoutputfrom theharmonicextractional-
gorithmwith handlabelledchangepointssuperimposed.The
exampleusedis shown in Fig 2a,asa spectrogram.

3 Fourier Transform approaches

Attentionis thusturnedtoapproachesbasedonmorecom-
plete signal representations.The signal, when plotted as a
spectrogram(eg Fig.2a)producesatime-frequency represen-
tation in which the eye canpick out sinusoidalcomponents
and transients. It is thereforereasonableto assumethat a
computercanalsobeprogrammedto detectthechangepoints
from this representation.

The first stepis to producea measureof novelty, or dif-
ferencefor thesignal.Variousmeasuresexist to evaluatethe
“distance”betweentwo vectors,the simplestof thesebeing
theEuclideandistance
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where & � is the STFT of the �#.�/ frame of data,length 0
bins.OtherssuchastheKullback-Liebler(K-L) distance
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aremorecomplex. Foote (FooteandUchihashi2001)also
proposesa measurespecificallyfor spectraldifferencing
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where I-S K S N denotesthe inner or scalarproductand the de-
nominatorallows the measureto benormalisedto the range
[0,1].

Theaim is to detectincreasesin energy for givenbinsof
thespectrogramwhile ignoringdecreasesof energywhichare



associatedwith theendof notes2. TheK-L measureis theone
whichaccentuatesthechangeof amplitudemost,but weights
it with thebin amplitudeof thesecondframe.Thefollowing
measure,denotedtheMKL or modifiedKullback-Lieblerdis-
tance,is thereforeproposedwhich simply reflectstherateof
positiveamplitudeevolutionbetweentwo successive frames.T �*'�� � 5R7U9 , ; $ & � �*'��+$$ & ���� �*'<�)$*? (4)
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Resultsfor thesedistancemeasuresareshown in Fig. 2b.
Fromthis, onecanseethat theMKL measureis performing
significantlybetterthantheothermeasures,with clearpeaks
wheretherearespectralchanges.This exampleis anexcerpt
from Byrd’s4 PartMassandhasalmostnoamplitudechange,
exceptwhenvoice partsaddor leave the texture. However,
the measuresin Fig. 2b arestill not very clearandreliably
detectingonsetswould befairly hard. This is dueto thefact
thaton a frameby framebasis,thereis a fair degreeof vari-
ation.To overcomethis,multiple frameswerehistogrammed
together. A bilinearly decreasingweightingfunctionwasap-
plied to givepreferenceto dataimmediatelyaroundthepoint
underconsideration.Also,alow FFThoprate(1/8of aframe,
correspondingto an87.5%overlap)wasusedto decreasethe
frameby framevariationandincreasethetimeresolution.

The resultingspectraldistancemeasurescanbe seenin
Fig. 2c. Onceagain, the MKL measuregives the clearest
resultsandnow, peaksareclearlydelineatedwith little noise.

3.1 Detection of changes

Producingameasurewhich reflectsthechangein thesig-
nal is only half theproblem.Reliablydetectingpeaksin the
measureis a tricky task in itself. A simpletwo stagestrat-
egy was adoptedwhich seemedto work well. Firstly, the
measurewassmoothedvia convolutionwith a Hanningwin-
dow of a suitablelength. Then, betweeneachcrossingof
this smoothedfunction andthe meanvalueof the function,
thehighestpeakin theunsmoothedfunctionwaspickedasa
changepoint.This hastheadvantageof producinga number
of changepointswhich is roughly proportionalto the com-
plexity of thedata.

However, this did tendto over-fit so a secondstagewas
introducedwherethespectraldifferencebetweentwo sequen-
tial inter-changepointregions was comparedusing Foote’s
measureasin Eqn.3. Foote’smeasurewaschosenbecauseit
is normalisedto therange[0,1] andhenceallowseasythresh-
olding. If any two sequentialregionsproduceda difference
measureof lessthan0.1,thechangepointwasdiscarded.

2On thewhole,theendof notesis not a reliableindicationof beatdueto
sustain,reverbor effectssuchasstaccato.
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Figure2: Plotof thevariousmeasureslistedin section3 with
and without histogrammingfor the exampleshown in a) .
TheMKL, K-L andFootemeasuresaredescribedin thetext,
while theDuxbury measureis a Euclideandistancemeasure
which ignoresnegativeenergy change.



4 Results
The eventualalgorithm also usedband-wiseprocessing

to extract harmoniconsetsfrom differentbands:30-300Hz,
300Hz-1kHzand1-5kHzwerechosento representbass,low-
mid and high-mid frequencies. Above 5kHz, someinstru-
mentsmaintainclearharmonicpower (e.g. trumpets)but in
many examples,the harmonicinformationat thesefrequen-
cies is unclearandhenceignored. Detailsof the algorithm
areasfollows: an STFT framelengthof 4096sampleswas
usedwith histogrammingperformedover +/- 10 frames;the
smoothingkernelfor detectionwasof length20 frames;and
processingof long sampleswas broken into individual 10s
samples(mainly for computationalpurposes).

Figure3 shows the resultsof the completealgorithmfor
thechoralexampleusedthroughoutthepaper. Only onetrue
change(at 3.9s)out of 20 is completelymissedin all bands,
while therearenofalsedetections.It shouldbenotedthatthe
missedchangewasdiscardedby the 2nd detectionstagein
this example.

Thislevelof accuracy is maintainedoverexamplesfrom a
widevarietyof styleswith noextraadaptionof thealgorithm.
Often,theseexamplescontainpercussiveonsetswhichwould
be adequatelydetectedusing existing techniques. Though
this algorithmwill sometimesdetectthese,if theunderlying
harmonicstructuredoesnot change,often the secondstage
of the detectionalgorithmwill discardthesepurely percus-
sive changes.This meansthat the algorithmis a true detec-
tor of harmonicchange. Furtherexamplescanbe found at
http://www- sigproc.eng.cam.ac.uk/˜sw h21 .

5 Conclusions

This paperpresentsa numberof methodsfor detecting
musicalchangepointswhich are mainly harmonicin nature
asopposedto power transients.Theproposedtechniqueper-
formsverywell with low computationalcostandalgorithmic
complexity. Theoutputof thisdetectoris intendedto beused
alongsidedatafrom a transientlocatorin a beatdetectional-
gorithmdetailedin (HainsworthandMacloed2003).
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