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Abstract

This paper presents work on changepoint detection in musi-
cal audio signals, focusing on the case where there are note
changes with low associated energy variation. Several meth-
ods are described and results of the best are presented.

1 Introduction

Theissueof onsetdetectionin soundsignalsis onewhich
hasapplicationsn speectprocessingaudiomanipulation(cod-
ing, for instance)as well asthe plethoraof applicationsin
music processing. Until recently only the issueof abrupt
changedn signal power, usually called transientdetection,
hasbeenconsideredThis detectsitherconsonant speech
or sharponsetssuchas percussiorsoundsin music. It does
not, however, addresghe changeof harmoniccontent,with-
outanassociatedtrongpower transientwhichis acommon
occurrencen somegenrege.g.choralmusic,stringquartets,
soloflute). We will addresshis problem.

Specifically the aim is to extractchangepointsin musi-
cal signalswhich are equivalentto the humanperceptionof
a new note(or notes)starting. This may be accompaniedby
a changein amplitudebut the currentpaperconcentratesn
the casein which thereis not an associategpower change.
The eventualapplicationin mind is beattrackingin musical
signalsandhenceimportancds assignedo minimisingfalse
detectionsathethanmaximisingtruedetectionslf onewere
consideringsignalmanipulation the reversewould probably
betrue.?!

Work to datein theareaof musicalchangeletectiormainly
centresaroundenegy change. The typical approach(e.g.
(Dixon 2001))is to take the soundsignal,createa power evo-
lution function, E,, (usuallyvia smoothing)andfind onsets
in this, often by searchingor peaksin the differencefunc-
tion, D,, = E, — E,_1. This methodwill obviously miss
changepointsvherethereis little enegy change. More re-
cently, severalapproachebave beenproposedvhichaddress
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this andlook for harmonicchange .Duxbury (Duxbury, San-
dler, andDavies2002)describeda systenwhich usedenegy
changedetectionin threebandsabove 1.1kHz but a method
which looked for spectralchangebelow this. His spectral
changemeasurevasa modified Euclideandistancemeasure
betweersuccessie STFTframesonabin by bin basiswhere
only positive powerchangewnasconsideredn orderto ignore
decreasem enepgy. Davy (Davy andGodsill2002)proposed
amethodbaseduponbilineartime-frequenyg representations
andsupportvectormachineclassificatiorof resultingspectra
to classifythe novelty of anew time slice. It is, however, un-
clearhow muchof the changedetectionis dueto harmonic
changeandhow muchis dueto amplitudevariation. Abdal-
lah (Abdallah and Plumbley 2003) hasalso recentlyinves-
tigatedthe problemand useda combinationof independent
componenganalysigICA) to evaluatethe“surprise”"measure
of anew framegiventherecentpastandHMMs to detectthe
onsetsrom this measureKlapuri (Klapuri 1998)alsoinves-
tigatednoteonsetdetectioranddevelopeda methodfor refin-
ing thelocationof anonsetby examiningthe relative enegy
differencefunctionin variousfrequeng bands.

2 Methods Using Harmonic M odels

In this section,severalmethodgor changedetectionwill
be discussedind reasongresentedvhy they have not been
pursuedn the currentstudy

2.1 Traditional Change Detection

Theareaof changedetectionis well researchedndthere
aremary booksonthesubject(e.g. (Gustafssor2000)). Se-
eralimportantassumptionarehowever madein thesemeth-
ods: firstly, it is assumedhatthe signalis generatedy one
of a small numberof modelsandthat thesemodelsarewell
defined.Secondlyit is generallyassumedhatthe procesds
thencorruptedby noisewhichis not correlatedwith the pro-
cess.Fromtheseassumptionsthe usualapproacthis to usea
likelihoodfunctionto evaluatethe probability of the databe-
ing generatedby eachof themodelsandto useBayesheorem
to incorporateary prior knowledge,suchasminimumlength



of time betweerchangepointsor the probability of changing
from onemodelto another

Thereasornwhy it is not practicalto usethesemethodss
becausén music,the assumptiongivenabove do not hold -
thereis aninfinity of modelsto considerbecausehereis an
infinite numberof combination®f notesthatcouldbe played
simultaneously To solve the problemwould requirean ex-
tra stageof modelselectionin orderto determinehow mary
sinusoidalcomponentsare presentat ary onetime and de-
fine hyperparameterf®r this. PunskaygPunskayaAndrieu,
Doucet,andFitzgerald2002)hasinvestigatedhis for speech
signals,usingMCMC estimationmethods)ut this provesto
be extremelycomputationallyexpensve.

2.2 Harmonic detection approaches

As we areinterestedn the changingof sinusoidalcom-
ponentsa sensibleapproachmight beto performsinusoidal
detectionand evaluatethe changein thesemeasures.Serra
(Serral997)givesasimplesinusoidabletectomvhile aslightly
morerigorousandaccuratéut morecomputationallydemand-
ing algorithmis usedhere(Macleod1998).

Oncethe parameter®f detectedsinusoidshave beenes-
timatedfor all frames,it remainsto find whetherthereis ary
changefrom oneframeto the next. A list of sinusoidalfre-
guenciesandtheir associatedmplitudeds not a helpful rep-
resentatiorhere. Two methodsfor further processingvere
investigatedthefirst involved producinga pseudaspectrum
for eachtime frame by corvolving the delta functionsrep-
resentingthe sinusoidalfrequencieswith a suitablewindow
function (e.g. a Gaussianandthenapplying distancemea-
suresto these,as describedbelon. The motivation for this
is the hopethatthesepseudospectrawill be cleaned-upgde-
noisedversionsof the original spectrogranframeswith only
theharmonicinformationpresent.

Thesecondmethodinvolvedtrackingthe sinusoidacom-
ponentsover time to form harmonictracks. A multiple hy-
pothesistracking algorithm was developedfrom the theory
presentedy Blackman(BlackmanandPopoli1999).Detec-
tion was performedby examining wheretracks startedand
clusteringtogethertrackswhich hadcloseonsets.

It turnedout that neithermethodwas very satistctory
Thisis becaus¢hesinusoidalletectiorfunctionbreaksdown
atthecrucialpointof interest thestartof notes.Here thepa-
rametersare often masled by transientnoiseandtake a few
tensof millisecondsto attain reasonablystablecharacteris-
tics. During this period,which is thetime we areattempting
to estimate the sinusoidaldetectorwill often not producea
detectiorandhencesubsequergrocessingvill befundamen-
tally flawed. This canbe seenin Fig. 1 at all changepoints
for a choralpiecewith very little transientpower; the effect
is even more pronouncedvhen there are significant power
transientsn thesignal.
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Figurel: Plot of the outputfrom the harmonicextractional-
gorithmwith handlabelledchangepointssuperimposedThe
exampleusedis shaovnin Fig 2a,asa spectrogram.

3 Fourier Transform approaches

Attentionis thusturnedto approachebasecdnmorecom-
plete signal representationsThe signal, when plotted as a
spectrogranteg Fig. 2a) producestime-frequeng represen-
tationin which the eye canpick out sinusoidalcomponents
and transients. It is thereforereasonabldo assumethat a
computercanalsobe programmedo detectthechangepoints
from this representation.

The first stepis to producea measureof novelty, or dif-
ferencefor the signal. Variousmeasuregxist to evaluatethe
“distance”betweentwo vectors,the simplestof thesebeing
the Euclideandistance

N
X

Druc(n) = Y (1Xa(B)| = | Xn-1(k)])?

k=0

1)

where X,, is the STFT of the n** frame of data,length N
bins. Otherssuchasthe Kullback-Liebler(K-L) distance

= X))

are more complex. Foote (Foote and Uchihashi2001) also

proposes measurespecificallyfor spectradifferencing

(IXal, [Xn-1])
Xl [[ X1l

-DFoote(n) =1- (3)
where(-, -} denotesthe inner or scalarproductand the de-
nominatorallows the measurego be normalisecto the range
[0,1].

Theaim is to detectincreasesn enegy for givenbins of
thespectrogranwhile ignoringdecreasesf enegy whichare



associateavith theendof noteg. TheK-L measures theone
which accentuatethe changeof amplitudemost,but weights
it with the bin amplitudeof the secondrame. Thefollowing
measuredenotedhe MKL or modifiedKullback-Lieblerdis-
tance,is thereforeproposedvhich simply reflectsthe rateof
positive amplitudeevolution betweenwo successie frames.

_ | X (R)]
= (hgy) @
N/2—1
Dukr(n)= Y d(k) (5)
k=0,d(k)>0

Resultsfor thesedistancemeasuresreshavn in Fig. 2h.
Fromthis, onecanseethatthe MKL measurés performing
significantlybetterthanthe othermeasureswyith clearpeaks
wheretherearespectralchangesThis exampleis anexcerpt
from Byrd’s 4 PartMassandhasalmostnoamplitudechange,
exceptwhenvoice partsadd or leave the texture. However,
the measuresn Fig. 2b aresstill not very clearandreliably
detectingonsetswould be fairly hard. This is dueto the fact
thaton a frameby framebasis,thereis a fair degreeof vari-
ation. To overcomethis, multiple frameswerehistogrammed
together A bilinearly decreasingveightingfunctionwasap-
pliedto give preferenceo dataimmediatelyaroundthe point
underconsiderationAlso, alow FFT hoprate(1/8 of aframe,
correspondingo an87.5%overlap)wasusedto decreas¢he
frameby framevariationandincreasehetime resolution.

The resulting spectraldistancemeasuresan be seenin
Fig. 2c. Onceagain,the MKL measuregivesthe clearest
resultsandnow, peaksareclearlydelineatedvith little noise.

3.1 Detection of changes

Producinga measuravhich reflectsthechangen thesig-
nal is only half the problem. Reliably detectingpeaksin the
measurds a tricky taskin itself. A simpletwo stagestrat-
egy was adoptedwhich seemedio work well. Firstly, the
measurevassmoothedvia convolution with a Hanningwin-
dow of a suitablelength. Then, betweeneachcrossingof
this smoothedunction and the meanvalue of the function,
the highestpeakin the unsmoothedunctionwaspickedasa
changepoint.This hasthe advantageof producinga number
of changepointsvhich is roughly proportionalto the com-
plexity of thedata.

However, this did tendto overfit so a secondstagewas
introducedvherethespectralifferencebetweertwo sequen-
tial inter-changepointegions was comparedusing Foote's
measurasin Eqn.3. Footes measuravaschoserbecausdt
is normalisedo therange[0,1] andhenceallows easythresh-
olding. If ary two sequentiategions produceda difference
measuref lessthan0.1,thechangepointvasdiscarded.

20nthewhole, theendof notesis not areliableindicationof beatdueto
sustainyeverbor effectssuchasstaccato.
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Figure2: Plotof thevariousmeasurefistedin section3 with
and without histogrammingfor the exampleshavn in a) .
TheMKL, K-L andFootemeasurearedescribedn thetext,
while the Duxbury measurés a Euclideandistancemeasure
whichignoresnegative enegy change.




4 Results

The eventualalgorithm also usedband-wiseprocessing
to extract harmoniconsetsfrom differentbands: 30-300Hz,
300Hz-1kHzand1-5kHzwerechoserto represenbass)ow-
mid and high-mid frequencies. Above 5kHz, someinstru-
mentsmaintainclearharmonicpower (e.g. trumpets)but in
mary examples,the harmonicinformationat thesefrequen-
ciesis unclearand henceignored. Details of the algorithm
areasfollows: an STFT frame length of 4096 sampleswvas
usedwith histogrammingoerformedover +/- 10 frames;the
smoothingkernelfor detectiorwasof length20 frames;and
processingof long sampleswas broken into individual 10s
samplegmainly for computationapurposes).

Figure 3 shaws the resultsof the completealgorithmfor
the choralexampleusedthroughouthe paper Only onetrue
change(at 3.9s)out of 20 is completelymissedin all bands,
while therearenofalsedetectionslt shouldbenotedthatthe
missedchangewas discardedby the 2nd detectionstagein
this example.

Thislevel of accurag is maintainecverexampledrom a
wide varietyof styleswith no extraadaptiorof thealgorithm.
Often,theseexamplescontainpercussie onsetsvhichwould
be adequatelydetectedusing existing techniques. Though
this algorithmwill sometimesletectthese,f the underlying
harmonicstructuredoesnot change,often the secondstage
of the detectionalgorithmwill discardthesepurely percus-
sive changes.This meansthatthe algorithmis a true detec-
tor of harmonicchange. Furtherexamplescan be found at
http://www-  sigproc.eng.cam.ac.uk/"sw h21.

5 Conclusions

This paperpresentsa numberof methodsfor detecting
musicalchangepointsvhich are mainly harmonicin nature
asopposedo power transients.The proposedechniqueper
formsverywell with low computationatostandalgorithmic
compleity. Theoutputof this detectoiis intendedo beused
alongsidedatafrom atransienfocatorin a beatdetectional-
gorithmdetailedin (Hainsworth andMacloed2003).
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