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Abstract

In this paper a general model is described which mea-
sures the goodness of equal-tempered scales. To in-
vestigate the nature of this ’goodness’, the consonance
measures developed by Euler and Helmholtz are dis-
cussed and applied to two different sets of intervals.
Based on our model, the familiar 12-tone equal temper-
ament does not have an extraordinary goodness. Oth-
ers, such as the 19-tone equal temperament look as
least as promising. A surprising outcome is that when
intervals from the just minor scale are chosen to be ap-
proximated by an � -tone equal temperament system,
good values for � are

�����������	�
and 
�� , rather than the

commonly used ���� � .

1 Introduction

Many different tuning systems have been developed
in the past. Nowadays, for western music, all keyboard
instruments are tuned in equal temperament where the
octave is divided into 12 equal parts.

Other musicians such as singers or string players,
strive to play in what is called ‘just intonation’. This
relies on the idea that two tones sound best for the ear
if they have a simple frequency ratio.

It is well known that for keyboard instruments, it
is not possible to tune to just intonation. For these in-
struments a tuning system has to be developed which
approaches just intonation as well as possible. In our
equal temperament system the octave is perfect and the
fifth is approximated very closely. Since these two
intervals are in general judged as the most important
ones, and the rest of the intervals can be matched to the
basic intervals from just intonation by an approxima-
tion acceptable for the ear, this temperament system is
considered to be a good tuning system.

However, several people have investigated whether
this temperament system could be improved such that
more ratios from just intonation can be approximated
more closely. One way to do this is to create an
equal temperament system with another division than
12 tones per octave. In the last decades several micro-
tonal systems have been constructed and explored (Hall
1988; Krantz and Douthett 1994; Krantz and Douthett

2000). To investigate what would be a suitable number
of parts to divide the octave into, one has to find out
which frequency ratios, in which order of importance,
should be approximated.

The rest of this paper is organized as follows: In
Section

�
, two different sets of intervals appearing in

music are discussed. To order these intervals, Euler’s
Gradus function and Helmholtz’ roughness function
are used. Section 
 describes a goodness-of-fit model
that we use to investigate which equal tempered system
best approximates a set of ratios from just intonation.
The input for this model is given by the four sets of
ordered intervals resulting from Section

�
. In Section�

we discuss the values of goodness according to our
model and describe a special case to show that 12-tone
equal temperament it is not always satisfying. We end
with some conclusions in Section � .

2 Measures of consonance

Just intonation is defined as any system of tuning
in which all intervals can be represented by ratios of
whole numbers, with a strongly implied preference for
the smallest numbers compatible with a given musical
purpose (Other Music, Inc.). In this paper, our choice
of preference will be based on notions of consonance.

Certain intervals are perceived as being more con-
sonant than others. In approximating just intonation by
an equal temperament, choices have to be made about
which intervals have priority to approximate. In order
to let resolution in music have the greatest effect, the
most consonant intervals appearing in music should be
approximated most closely.

Therefore, two questions are to be addressed: 1)
which intervals appear naturally in music, and 2) what
is the ’order of consonance’ of these intervals? In an-
swering the first question, we could e.g. take the in-
tervals occurring in the major scale in just intonation.
The just major scale is defined as the scale in which
each of the major triads � , �	� and � is taken to have
frequency ratios 4:5:6 (for example the frequencies of
do, mi, so, are rated as 4:5:6). Table 1 shows the ra-
tios of the notes in the just major scale compared to the
fundamental. Now all intervals coming from this scale
(with respect to every other note) can be seen as the



Note do re mi fa so la ti do
Ratio 1:1 9:8 5:4 4:3 3:2 5:3 15:8 2:1

Table 1: Frequency ratios between the different notes of the
major scale and the fundamental ’do’.

��� ���
octave (2/1) octave (2/1)
fifth(3/2) fifth (3/2)
fourth (4/3) fourth (4/3)
major third (5/4) major third (5/4)
minor third (6/5) minor third (6/5)
major sixth (5/3) major sixth (5/3)
minor sixth (8/5) minor sixth (8/5)
major whole tone (9/8) major whole tone (9/8)
minor whole tone (10/9) minor seventh (9/5)
major seventh (15/8) sub minor seventh (7/4)
minor seventh (9/5) sub minor third (7/6)
diatonic semitone (16/15) super second (8/7)
augmented fourth (45/32) sub minor fifth (7/5)
diminished fifth (64/45) super major third (9/7)
subdominant minor seventh (16/9)
Pythagorian minor third (32/27)
Pythagorian major sixth (27/16)
grave fifth (40/27)
acute fourth (27/20)

Table 2: Set � � : intervals coming from the just major scale,
and set � � : intervals appearing in the harmonic series up to
the ninth harmonic. The names of the intervals are taken from
Helmholtz (1954).

set of intervals most common in Western music. Let us
call this set ��� (see Table 2).

Another possibility is to take the intervals appear-
ing in the harmonic series within a certain number of
harmonics. Here we will consider the first nine har-
monics. A reason to choose this set is to also include
intervals involving

�
in their ratio1. Let us call this set

�
	 (see Table 2).
What is the order of consonance of a set of inter-

vals? As mentioned, there is a preference for lower
numbers. But how to compare ratios like ��� � and

� � � ?
For several ratios there is no consensus. Therefore, no
unique function to describe the order of consonance ex-
ists.

2.1 Euler’s Gradus function

Euler developed a Gradus function  which applies
to whole frequency ratios ����� from just intonation (Eu-
ler 1739). The function is defined as a measure of the
simplicity of a ratio. Applied to the problem of conso-
nance this means that the lower the value ����
����� the
simpler and the more consonant the interval.

Any positive integer � can be written as a unique
product � ���������� ���! 	#"$"%" � �!&' of positive integer powers(�) of primes � �+* � 	 * "%"$" * � ' . Euler’s formula is
now defined as:

,�-�.� � ��/
'0
132 �

( 1 � � 154 � � (1)

1This can be useful in tuning chords. For example, a dominant
seventh chord is sometimes to be tuned as 68739:73;:7%< .

and for the ratio ����� the value is ���� � ��� . According
to this formula, the order of consonance for set � � and
set � 	 is given in Table 3.

� � � �
2/1 2/1
3/2 3/2
4/3 4/3
5/4 , 5/3 5/4, 5/3
6/5, 9/8, 8/5 6/5, 9/8, 8/5
16/9 7/4
10/9, 9/5, 15/8 7/6, 8/7, 9/5
16/15, 27/16 7/5, 9/7
32/27
27/20
45/32, 40/27
64/45

Table 3: Order of consonance for ratios of set � � and � �
according to Euler’s Gradus function, from most to least con-
sonant.

Note that there is not a perfect match with musical
intuition. For example the major whole tone (in music
considered to be a dissonant tone) is placed on the same
level as the minor third.

2.2 Helmholtz’ roughness function

Helmholtz defined the roughness of an interval be-
tween tones � and = on the basis of the sum of beat in-
tensities � ' / �3> associated with the �
?-@ harmonic of� and the A ?-@ harmonic of = (Helmholtz 1954). This
roughness depends on the ratio � ��A , but also on the
intensity of the harmonics (and therefore on the type of
sound) and on the register of the tones (in lower posi-
tions, intervals tend to sound more rough). Helmholtz
calculated the roughness of intervals in the c’-c” oc-
tave, and based the intensity of the harmonics on violin
sound. For the formal definition we refer to Helmholtz
(1954). The order of consonance of set �B� and � 	 ac-
cording to this roughness function is given in Table 42.

Again, one would expect this ordering to coincide
with a musical intuition, but an interval known as dis-
sonant (augmented fourth

� ��� 
 � ) is placed on the same
level as two consonances. Note also that the fifth and
the octave are judged to be equally consonant. This
ordering according to Helmholtz differs from the or-
dering in Table 3. Remarkably, for both measures, the
preference for lowest numbers is not entirely followed.

3 Goodness-of-fit model

Several functions have been defined to measure the
goodness of a given � -tone equal-tempered scale (Hall
1988; Krantz and Douthett 1994). With our goodness-
of-fit model we want to measure which equal temper-
ament best approximates ratios from just intonation.

2Since Helmholtz (1954) did not consider the interval ratio C�;3DFE
it is not included in Table 4.



�.� ���
2/1, 3/2 2/1, 3/2
4/3 4/3
5/3 5/3
5/4 5/4
6/5, 8/5, 45/32 7/4
16/9 6/5, 8/5
27/16 9/5, 7/6, 7/5
9/5 8/7
32/27 9/8
27/20
64/45
9/8
10/9
15/8
40/27
16/15

Table 4: Order of consonance for ratios of set � � and � �
according to Helmholtz’s roughness function, from most to
least consonant.

Given an � -tone equal temperament (the octave divided
in � equal parts), the ratio � is best approximated when

������� 	 � 4 A � �
(2)

is as small as possible, where A is an integer. The
number of steps A in an � -tone scale that minimizes
(2) is

A � int � � ���	� 	 � /�
 " ��� � (3)

where int ����� is the integer part of � . With (3) substi-
tuted in (2), an error function � is now defined:

� �� � � � � �����	� 	 � 4 �
� � int � � ���	� 	 � /�
 " ����� � " (4)

This is already a measure of the goodness of an � -tone
scale for a ratio � . Since the function applies to equal
temperaments, it necessarily yields the same values for
an interval and its inverse (for example a fifth 3/2 and
a fourth 4/3). Note that there is always a better fit pos-
sible if a higher value for � is chosen. But, for reasons
of pitch discrimination, high values for � are usually
rejected. Since we rather want to obtain a high value
from our function when the fit is good and a low value
when the fit is bad, and since we want to make the dif-
ference between the fits more visible, we take the log-
arithm of � 4 ����� ��� � ��� � � � (5)

as final error function. Different ratios have to be fit
simultaneously and weighted according to consonance,
therefore we introduce a weight � ) for each ratio � ) ,
such that 0 � ) � � " (6)

The final expression of the goodness-of-fit function
used for the evaluation of � -tone temperaments is:

� � � � �
>0
) 2 �

� ) � 4 ����� ��� � �� ) � � � � " (7)

4 Results

We have calculated the values of
�

for the two sets
of intervals and Euler’s or Helmholtz’ order of conso-
nance, for ����� � � � ��� . We chose weights for the ratios
inversely proportional to the values of Euler’s Gradus
function or Helmholtz’ roughness function. The results
are shown in Figures � to 4.
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Figure 1: Values of � calculated from the set intervals of the
major scale combined with Euler’s measure of consonance.
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Figure 2: Same as Figure � but now with Helmholtz’ mea-
sure of consonance.

All figures show peaks for � � � � � � ��� � � � � 
 and
a couple of other peaks occur depending on the input.
We notice that � � � � , the familiar 12-tone tempera-
ment doesn’t look like a special case, �� � � is as least
as promising. Although Euler’s and Helmholtz’ func-
tions are quite different in judging the consonances, the
outcome of our goodness-of-fit model is rather similar.
This is mainly due to the model’s property that judges
inverse ratios in the same way. To further investigate
the consequence of different measures of consonances
a ’non-equal temperament system’ will be used in fu-
ture research.

4.1 Special case: minor mode

To test an � -tone equal-tempered system, we chose
the interval set coming from the just major scale and
the set appearing in the harmonic series up to the ninth
harmonic. Other choices are possible as well. For ex-
ample, which intervals should we choose for a minor
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Figure 3: Values of � calculated from the set intervals from
the harmonic series combined with Euler’s measure of con-
sonance.
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Figure 4: Same as Figure � but now with Helmholtz’ mea-
sure of consonance.

scale? As the just major scale is built from three ma-
jor triads with frequency ratios 4:5:6, a minor scale is
built from three minor triads. The lowest numbers pro-
ducing a minor triad in the harmonic series are 6:7:9 3

(McIntyre 2002). One could argue that these are the
most important ratios in the minor scale and should
therefore be weighted most. If we do this, Figure 5
is the result. Totally different peak values appear com-
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Figure 5: Values of � calculated from the set of intervals:�����
,
�����

and � � � , with equal weighting.

3However, most people choose the ratios C
	87�C
�:7�C�9 for a minor
triad, because in this way it is built from the same major and minor
third used in a major triad.

pared to previous figures. We notice high values for� � � � � � ������� 
�� while � � � � is not higher than av-
erage. According to these results a piece of music in
minor mode would not sound particularly good in 12-
tone equal-temperament. We suggest that this observa-
tion should be followed up by psychological research
to evaluate its cognitive reality.

5 Conclusion

In this paper we have checked how well several
equal temperament systems approximate the frequency
ratios from just intonation. As test sets, we chose in-
tervals from the just major scale and intervals from
the harmonic series. To weight the intervals, Euler’s
Gradus function and Helmholtz’ roughness function
have been used. It turns out that for these cases a divi-
sion of the octave in � ��� � � � � � or � 
 would be a good
choice. Although all relevant figures show peaks for
these values, these peaks are not the only ones. De-
pending on what set and measure of consonance used,
peaks for other divisions of the octave exist as well.
Taking intervals according to the minor mode confirms
that a good choice for a division of the octave depends
highly on the set of intervals used. However, major and
minor are just a selection from a variety of possibilities.

To conclude, we want to stress that testing an � -
tone equal-tempered system involves choosing a set of
intervals and a measure of consonance. These choices
can again depend on a type of music, a special pur-
pose or taste. These results will hopefully trigger new
psychological research for investigating the cognitive
reality of different tone scales especially with respect
to the minor mode.
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