
Some Box Design Issues in PWGL

Mikael Laurson1 and Mika Kuuskankare2

1Center for Music and Technology, 2Department of Doctoral Studies in Musical Performance

and Research, Sibelius Academy, P.O.Box 86, 00251 Helsinki, Finland

email: laurson@siba.fi, mkuuskan@siba.fi

Abstract
This paper gives an overview of how boxes are

created in PWGL. PWGL is a visual language based
on Common Lisp, CLOS and OpenGL. PWGL boxes

can be categorized as follows. Simple boxes define

the basic interface between PWGL and its base-
languages Common Lisp and CLOS. Visual editors

constitute another important subcategory of PWGL
boxes. Finally, more complex boxes can be used to

create PWGL applications ranging from simple ones
to complex embedded boxes that can contain several

editors and other types of input-boxes. We discuss the

components of a PWGL box, how boxes are
constructed and give some remarks on how to define

the layout of a PWGL box.

1 Introduction
PWGL (Laurson and Kuuskankare 2002) is a

novel visual language based on similar concepts than

PatchWork (PW, Laurson 1996). PWGL has been
designed from scratch and it contains several

improvements when compared with PW. The
graphics part of the system has been realized in

OpenGL (Woo et al. 1999). OpenGL offers several
advantages such as multi-platform support, hardware

acceleration, floating-point graphics and sophisticated

2D and 3D-graphics. Thus the PWGL system offers
new potential that can be used to design more refined

visual systems.
Like PW, PWGL is a multi-window system. A

PWGL window is called a patch. A patch, in turn,

contains boxes and connections. In the simplest case
a box is a visual equivalent to a Lisp function or

method. It has a number of input-boxes - containing
typically constants such as numbers or lists - and one

or several outputs. When evaluated a box reads its
inputs, calls a function or method associated to it and

finally returns a result. Connections are used to define
relations between boxes. An output of a box can be

connected to an input-box of another box. Thus the
system works in a similar fashion than Lisp where

function calls can have as arguments either constants

or functions calls.
PWGL has a library of predefined input-boxes

which typically handle numbers, lists and popup-
menus. PWGL has also an important subgroup of

input-boxes that are associated to editor-windows.
These editor-windows contain complex objects, such

as scores, chords, break-point functions, bezier

functions and sound samples. These input-boxes can
be opened and inspected or edited by the user.

PWGL offers several ways to construct boxes
ranging from completely automatic to methods that

allow to specify the exact type of input-boxes,
default-values and layout options. All PWGL boxes

can be resized both vertically and horizontally. This

option adds new requirements to our system. It has to
deal with boxes that are not just simple fixed-sized

rectangles. Instead, boxes have to behave in a
coherent manner after the size of the box has been

changed.

The paper is organized as follows. First, we
briefly give a general overview of a PWGL box and

enumerate the main features that are shared by all
PWGL boxes. The next section deals with the

creation of boxes. We start with simple Lisp
definitions and go over to more complex options that

allow to define a box in a more precise manner. Then

we discuss a method which allows the user to define
a box in great detail. The user can specify using

various layout options how the input-boxes will be
distributed within the box and how the input-boxes

will respond when the box is being resized. We end
with a complex embedded application box example.

2 PWGL Boxes

2.1 Box Components
This section discusses the main components of a

PWGL box (Figure 1). A box consists of a main-box
and a number of input-boxes. The function-name is

given above the top-left corner of the main-box. The

bottom-right corner contains a zoom area allowing
the user to modify the size and shape of the box. The

user can evaluate the selected box by typing the
character 'v'. If there are several outputs the user can

select the desired one directly by clicking the output
triangle. If no output is selected then the left-most

output is used.

Figure 1. PWGL box components.

When the user moves the mouse above a box the

cursor changes its shape depending on which part of

the box the mouse is currently located in (Figure 2).
Figure 2 shows also the actions that will occur if the

user clicks the mouse and starts to drag it.

Figure 2. Various cursor shapes and the associated

actions of a PWGL box.

2.2 Lambda-list Keyword Support

PWGL supports automatically the most
commonly used Common Lisp lambda-list keywords

(i.e., &optional, &rest and &key, Steele 1990). In the

simplest case where a Lisp lambda-list contains only
the required arguments - Figures 1 and 2 show an

example of such a box having 2 required inputs - the
system generates automatically one input-box for

each required argument. In the case of keyword

arguments the box is extendable and contains a
downward pointing arrow at the bottom-left corner of

the main-box. Figure 3 shows a box that represents
the Lisp function '+' that has in the argument list the

keyword &rest (i.e., the box can have an arbitrary
number of input-boxes). Figure 3 shows instances of

the '+' box having 1, 2 and 4 input-boxes:

Figure 3. Extendable boxes of type &rest.

Figure 4, in turn, gives a more complex example
using the Lisp function 'position' that has 2 required

arguments and 6 &key arguments. The left-most box
contains only the required arguments while the one to

the right has one & k e y argument. The &key

arguments always extend the box with 2 input-boxes
where the first one is a popup-menu indicating the

keyword (here :key) and the latter one giving the
value for this keyword (here first):

 Figure 4. Extendable boxes of type &key.

3 Box Creation
There are three different schemes that can be used

to generate PWGL boxes. In the first one the user

simply defines a Lisp function using the standard
macro defun. The system generates automatically the

corresponding PWGL box using the knowledge of the
underlying Lisp system. For instance, let us assume

the following Lisp function:

(defun add3 (a b c) "simple add" (+ a b c))

The function can be converted automatically to a

box by typing the name of the function in a dialog
box (see the resulting box to the left in Figure 5).

The second and somewhat similar approach to

create boxes consists of using a PWGL macro called
PWGLDef. The most important difference between

defun and PWGLDef is that in the latter case the user
can specify the input-box type and the default value

for each argument. Furthermore, PWGLDef accepts a
list of extra keyword/value pairs that allow to define

the outlook and behavior of a box in more detail. Let

us assume that we would like to change the previous
box definition in two ways. First, we give default

arguments for each input. Second, we change the
default grouping so that the box would consist of a

column of 3 input-boxes. These changes are achieved

by the following definition (the corresponding box
can be found to the right in Figure 5):

 (PWGLDef add3 ((a 0)(b 2)(c 4))
 "simple add"
 (:groupings '(1 1 1))
 (+ a b c))

Figure 5. Two boxes representing the function 'add3'.

The third method to create boxes consists of using
the mk-box-function method. Here the user can

specify the required input-box types, default values,
outputs and layout-options in the most detailed form.

We give next the code to create a complex box with
3 editor input-boxes each having a predefined initial

state, 1 horizontal slider and 3 outputs. The resulting

box can be found in Figure 6.

 (defgeneric test-box () (:documentation "this is a test-box"))
 (defmethod mk-box-function ((self (eql 'test-box)) x y)
 (mk-PWGL-box 'PWGL-box self "test-box" x y 1.0 0.9
 (list (mk-2D-subview :application-window
 (mk-2D-application-window
 :2D-subviews (list (mk-bpf '(0 2 3) '(0 1 0)))))
 (mk-chord-subview :application-window
 (mk-chord-editor-window '(60 64 67)))
 (mk-score-subview :application-window
 (make-enp-window
 '(((((1 (1 1 1 1))(1 (1 -1 1))(1 (1.0 3))))))))
 (mk-slider-subview :value 50
 :minval 0 :maxval 100 :grid t :horizontal t))
 :proportional-coordinates
 '((1/12 1/12 5/9 4/10) (8/12 1/12 2/9 4/10)
 (1/12 7/12 10/12 4/15) (1/12 11/12 10/12 1/20))

 :outputs (list "1" "2" "3")))

Figure 6. A box containing a 2D-editor, chord-editor,

score-editor, slider and 3 outputs.

4 Box Layout
As all PWGL boxes can be resized special

attention must be given to layout options as the input-

boxes of a box cannot be positioned simply by using

static x-y coordinates. The key point here is to use
proportional values instead of fixed coordinate

values. Similar kind of dynamically resizable objects
- typically dialog windows - can also be found for

instance in Mac OSX and in some programming
environments such as the CAPI system (LispWorks

CAPI User Guide).

When defining the layout of a box PWGL uses
two sets of keywords:

(1) :groupings, :x-proportions, :y-proportions

OR

(2) :proportional-coordinates

In (1) the data lists :y-proportions and :x-

proportions give proportional delta-values (the delta-

values are scaled so that their sum equals 1.0 in order
to guarantee that the subviews will always be inside

the main-box).
The :groupings keyword is a list of values where

each value gives the number of subviews for each

row (thus a list (3 3) groups 6 subviews into two
rows, where each row has 3 subviews). :y-

proportions is a list of proportional delta-values
defining the height of each row. If not given then all

rows have equal height. :x-proportions is a list of lists
of proportional delta-values. Each sublist defines the

internal x proportions of the respective row of boxes.

If not given then each subview within a row has equal
width.

Option (1) is often easier to use than option (2) as
it requires only a small amount of data to be

functional. For instance the second version of the
'add3' box example (see Figure 5) required only the

groupings list (1 1 1) to define the layout of a box

where the input-boxes form a column. There are,
however, some restrictions. There can be no overlaps,

no holes between input-boxes (holes can though be
simulated with special subviews) and subviews are

always aligned in horizontal direction.
In option (2) - using :proportional-coordinates -

the data lists give proportional coordinates for each

subview in the form: ((<x1> <y1> <w1> <h1>)) ...

(<xN> <yN> <wN> <hN>)) where each sublist

defines the proportional x- and y-position and
proportional width and height of the respective

subview (note: these values are not scaled). While the

:proportional-coordinates option requires often more
data than option (1), it has some advantages.

Subviews can be freely distributed, they can be
positioned outside the main-box and overlaps can

occur. Figure 6 shows an example how to use the

:proportional-coordinates option to define a box
layout.

Sometimes the use of pure proportional delta-
values or coordinates leads to undesired results. A

typical example is for instance a box containing
sliders that function as scroll-bars. In this case it is

probably more desirable if scroll-bars have fixed size

in one dimension while other subviews are resized
dynamically as before. This behavior can be achieved

by using a mixed form of delta-values or coordinates.
Whenever the system encounters a list consisting of

the keyword :fix and a value, then the value is
considered to be fixed and not proportional.

 Let us assume a box consisting of two rows of

subviews. The first row from the top contains a 2D-
editor and a vertical scroll-bar and the second row, in

turn, has a horizontal scroll-bar and a small button-
subview (see the box to the left in Figure 7). If we use

the following layout data:

 :groupings '(2 2)
 :x-proportions '((20 1) (20 1))
 :y-proportions '(20 1)

we get a box - after resizing it horizontally - where
the width of vertical scroll bar differs from the height

of the horizontal the scroll bar (Figure 7 to the right,
upper box). If, however we use the following mixed

form of layout data (note the expressions starting
with the keyword :fix):

 :groupings '(2 2)
 :x-proportions '((20 (:fix 0.03)) (20 (:fix 0.03)))
 :y-proportions '(20 (:fix 0.03))

the width of the vertical scroll-bar and the height of

the horizontal scroll-bar are always fixed to 0.03 units
(see the lower box to the right of Figure 7).

Figure 7. Two resized box versions with different

layout data: a) pure proportional delta-values, b)
mixed delta-values.

5 Recursive Boxes
Finally, a PWGL box can be recursive, i.e., it can

contain instances of itself. This property allows to
combine features described above into one complex

application box. Figure 8 shows a main box
containing 3 sub-boxes. Each sub-box can have its

own background color, subviews and layout. This
scheme is very useful as it permits to define a library

of box components (similar to the library of basic
input-boxes) that can be used as building blocks

when constructing even more complex boxes.

Figure 8. A complex recursive application box.

6 Conclusions
This paper gave a survey of visual PWGL boxes.

We first presented the main components of a box.
After this we discussed different options how to

construct boxes and gave some ideas of available

layout schemes. Although the system is already
functional it can be extended and improved in several

ways. One idea is to add more layout options that for
example would allow to control in more detail how

boxes respond to resize operations. The current

system could easily be extended to support other
types of mixed delta-values or proportional

coordinates.

References
Laurson M. and M. Kuuskankare. 2002. “PWGL: A Novel

Visual Language based on Common Lisp, CLOS and

OpenGL”. In Proc. of ICMC'02, Gothenburg, Sweden,

pp. 142-145.

Laurson, M. 1996. PATCHWORK: A Visual Programming

Language and Some Musical Applications. Doctoral

dissertation, Sibelius Academy, Helsinki, Finland.
LispWorks: CAPI User Guide, http://www.xanalys.com/.

Steele G. L. JR. 1990. COMMON LISP THE LANGUAGE.

Digital Press, 2nd edition, Massachusetts, USA.

Woo M., J. Neider, T. Davis, and D. Shreiner. 1999.

OpenGL Programming Guide. Addison Wesley, 3rd

edition, Massachusetts, USA.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mikael Laurson
	Mika Kuuskankare

