
ENP-Expressions, Score-BPF as a Case Study

Mika Kuuskankare1 and Mikael Laurson2

1Department of Doctoral Studies in Musical Performance and Research
2Center for Music and Technology

Sibelius Academy, P.O. Box 86, 00251 Helsinki, Finland

email: mkuuskan@siba.fi, laurson@siba.fi

Abstract
ENP2.0 is a music notation program written in
Common Lisp, CLOS, and OpenGL. ENP provides a
rich set of notational attributes called ENP-
expressions. In this paper, we give an overview of the
properties of ENP-Expressions. The underlying
system used to handle the graphical representation of
ENP-expressions is discussed in detail. A special
attention is given to an expression called Score-BPF.
The specific problems arising from the need to
visually synchronize the linearly spaced (Score-BPF)
and non-linearly spaced (music notation) objects is
also discussed. Finally, some examples are given on
how the properties of Score-BPF can be used to
implement various types of editors in ENP.

1 Background
There are some commercial programs, mainly

midi- and audio-sequencers, that allow to display
various types of data in the form of line graphs with a
series of editable breakpoints. For example, in Pro
Tools, 'volume', 'pan', or another automated
parameter, can be displayed against the waveform or
midi track. This is, however, quite straightforward
since all the aforementioned objects share the same
(linear) representation of time. There is also the
possibility in Finale to describe both tempo and
dynamic changes with the help of special graphical
objects. In this case, the problem lies in the poor
visual connection between music and the graph and
the lack of real precision of data.

In ENP it is also possible to display various types
of graphical information as a part of the musical
texture. This can be done using a specialized
expression called Score-BPF. ENP provides visual
synchronization between Score-BPF and music
notation. Furthermore, it is possible to edit this
information directly in the score without any external
editors.

The rest of the paper is structured as follows.
Section 2 introduces the basic concepts behind ENP-
Expressions. The overall design issues of ENP

expressions are discussed along with some musical
examples. Section 3 focuses on Score-BPF and gives
specific examples of the use of Score-BPF relating to
sound synthesis, timing and tempo modification. The
paper ends with some concluding remarks.

2 Expressions Overview
Expressions are divided into two main categories:

standard expressions (e.g., articulations, dynamics)
and non-standard expressions (e.g., groups, Score-
BPF's), (see Kuuskankare and Laurson 2002, for
further details).

Every expression is attached either to a single
notational object (single expression) or to a group of
notational objects (group expression). This provides
expressions for information about both timing and
positioning of the related notational objects. This is of
primary importance when time synchronization is
required.

In the following subsections we will briefly
examine how ENP handles expressions in general.

2.1 Single Expressions
When an expression is drawn in a score a number

of specialized methods are called. The handling and
dispatching of any subsequent methods, however, is
done by one primary method called draw-expression.
The draw-expression method first checks if the
expression is allowed to be drawn according to user
definable preferences or certain exceptions in
notation (for example, if the note associated to the
expression is hidden or if the expression itself is
hidden). When applicable, it handles the drawing of
the so-called print symbol (each expression contains
information about a character or a string that is used
when drawing it). For an accent expression the print
symbol is ">", for an ottava expression it is "8va",
and so on.

In the case of group expressions (see subsection
2.2), draw-expression method also identifies such
things as the beginning of a new line by inserting the
print symbol inside parenthesis, e.g., "(8va)".

The primary method also calls two additional
methods, which are (1) draw-auxiliary-symbols and
(2) draw-auxiliary-notation-objects. draw-auxiliary-
s ymbo l s is used to draw any supplementary
information required besides the print symbol. draw-
auxiliary-notation-objects method can be used to
draw any auxiliary notational objects (i.e. notes or
chords) that are related to the expression in question
(Figure 1). An example of such expression is a trill.
An auxiliary note can be drawn in the score (as
customary in modern notation) to indicate the width
of the trill. Furthermore, an invisible (or even visible)
note can be used in the case of a glissando to exactly
specify the end pitch.

Figure 1. A trill with an auxiliary note (a) and a

glissando with a visible end pitch (b).

2.2 Group Expressions
Group expressions inherit from single

expressions. Thus, the methods described above are
called by the system also in case of group
expressions. There are, however, four additional
methods that are defined particularly for group
expressions: (1) draw-group-extension, (2) draw-
g r o u p - e x t e n s i o n - b e g i n n i n g , (3) draw-group-
extension-continuation, and (4) draw-group-
extension-ending.

The primary method, draw-group-extension, is
called if there are not any specialized methods
defined. Group extension is a visual indication of the
extent of a group expression (see Figure 2, point a).
draw-group-extension-beginning method handles the
drawing of the beginning section of the expression. It
is also called in the beginning of a new line (Figure 2,
point b). draw-group-extension-continuation method
is primarily used in conjunction with some ENP
specific expressions such as groups (as can be seen in
Figure 2, point d). It is used to denote that the
expression continues to next measure that is either
invisible at the time (in another page) or continues in
another line. This method is not usually used in
standard musical notation. draw-group-extension-
ending method, in turn, takes care of drawing the
appropriate visual clues that indicate the end of the
extent of an expression (Figure 2, point c).

Figure 2. The effects of draw-group-extension (a),
draw-group-extension-beginning (b), draw-group-
extension-ending (c), and draw-group-extension-
continuation (d).

2.3 Auto-Cancelled Expressions
Auto-cancelled-expression inherits from group

expressions. Its primary function is to provide an
automatic mechanism to handle group expressions
that initiate a state that needs to be reset or cancelled
after the extent of the expression (Figure 3). These
kinds of expressions among others are expressions
that define playing style (pizz./arco), change in
timbre (con sord./senza sord.), and change in register
(8va/loco) or even change in tempo (rall./a tempo).

Figure 3. An example of the auto cancellation feature
of ENP. The user has inserted a pizzicato expression
covering the first five notes (from d2 through g2). The
word 'arco' is added automatically by ENP to denote
the end of the pizzicato style.

2.4 Time-Synchronized Expressions
There are some special expressions in ENP that

need to guarantee an exact visual synchronization
between linearly spaced objects and the non-linearly
spaced music notation. This allows a strong visual
feedback for the user since the positioning of all the
objects, relational to each other in time, is visually
correct.

The x coordinate of any linearly spaced object
against music notation can be calculated by
comparing the start time of a given object (e.g., point
in a break-point function) to the (non-linear) x
coordinates of two adjacent notational objects. The
equation is as follows,

where x1 is the x coordinate of the first notational
object, x2 is the x coordinate of the second notational
object, t1 is the start time of the first notational object,
t2 is the start time of the second notational object, and
t is the start time of the linearly spaced object.

In the following section we will examine in detail
a time synchronized expression called Score-BPF. A
few applications to Score-BPF are presented with the
help of some musical examples.

3 Score-BPF
Score-BPF is a specialized form of a group

expression. It is a multipurpose graphical object that
can represent breakpoint functions as a part of a
musical texture (breakpoint functions are piece-wise
linear functions). Score-BPF's can be edited directly
in the score (see Kuuskankare and Laurson 2002).

There are numerous applications to Score-BPF. It
can be used to describe pitch contours and other
musical data for constraint-based applications, or to

x x
t t

t t
x x

1

1

2 1
2 1= +

−
− × −(),

produce control information for model-based
instruments (see Laurson et al. 2001). Furthermore,
through multiple inheritance the properties and
behavior of the Score-BPF can be embedded into
other objects (in case of ENP, these kinds of objects
are, for example, crescendo and diminuendo and also
some special note property editors, see chapter 3.1).

The Figure 4 shows the components of a Score-
BPF expression. The expression in question is
attached in the first two quarter notes and it is opened
(i.e., drawn in an editable state) to reveal the internal
breakpoint function with some editable points. The
leftmost part of the Score-BPF is reserved for a range
display (a). It shows the minimum and maximum y-
values, and according to user settings, preferred
number of intermediate values. The top-left corner of
the Score-BPF (b) shows the number of the current
breakpoint function ("1") along with an optional
name ("param1"). There is also one selected point in
this example (c). Close to it, written inside brackets,
are the x-value (time) and the y-value of the point.
Furthermore, there is a point with an x-value (time)
that exactly matches the time of the note directly
below it (d). This synchronization is revealed by a
thin vertical line drawn through the point. Finally (e)
shows the name and type of the Score-BPF. In this
case the user definable name is "parameters" and the
type is "time". The characteristics of all the Score-
BPF objects of type time is that they are extended to
cover the duration of the last notational object (as can
be seen in Figure 4). The normal type is extended
only to the beginning of the last notational object (see
for example Figure 5).

Figure 4. Components of the Score-BPF: range
display (a), number and name of the current
breakpoint function (b), selected point with numeric
display (c), a point synchronizing with the notation
(d), and the name and type of the Score-BPF (e).

Next we give a simplified example of the time
synchronization feature of Score-BPF. In Figure 5
there are four quarter notes of equal duration, thus the
time between each of them is constant. The points (c
and d) are placed by the user exactly in between the
respective pairs of quarter notes (a and b).

In Figure 6 the last quarter note has been
manually moved to the right by the user (this affects
only to the spacing of the note, not the time). Now the
space between the first two quarter notes (a) is
smaller than the space between the last two (b).

Nevertheless, the second point (d) is still visually in
between the latter two quarter notes (b).

Should there be any further changes in positioning
of any of the notes or the overall spacing of the score,
the points in the Score-BPF would retain their visual
relation to the musical objects unchanged.

Figure 5. The points (c and d) placed exactly in
between the quarter notes (a and b) respectively.

Figure 6. After some editing (manually moving the
last quarter note to the right) both points (c and d) are
automatically placed in between the respective notes
(a and b).

Figure 7 shows some further applications to the
Score-BPF. In this example there are two normal
Score-BPF expressions (a and b) and an embedded
one (c). The first Score-BPF (a) represents an
imaginary amplitude envelope for some synthesis
engine (for example PWSynth, Laurson and
Kuuskankare 2002). The second one (b), in turn,
represents a tempo function. The third, the embedded
Score-BPF, can be revealed by double clicking the
diminuendo expression (c). The result can be seen in
Figure 8 (d). Here the user can edit the velocity
gesture of the diminuendo.

Figure 7. Two different Score-BPF expressions (a
and b) and an embedded one (c) (here shown as
diminuendo).

Figure 8. The diminuendo expression (d) is 'opened'
to reveal the embedded breakpoint function.

In the following subsections, we present some
applications and examples how to use Score-BPF as a
general purpose editor inside ENP.

3.1 Note Property Editor
It is sometimes necessary to adjust the data

contained by individual notes in the score. In ENP
this is accomplished by using a set of specialized note
property editors. The user can potentially apply
various kinds of editors to the score. At the moment
there are two editors of this kind in ENP, namely
velocity-editor and time-offset-editor.

The velocity editor can be used to set midi
velocity values. This can be done by either drawing
an arbitrary breakpoint function describing the
continuous variation of dynamics in time (Figure 9,
left), or alternatively the velocity values can be set
note by note (Figure 9, right).

Figure 9. The two edit modes of velocity-editor: the
'breakpoint'-mode (left) and the 'note-by-note'-mode
(right).

Time-offset-editor, on the other hand, can be used
for adjusting the start times of individual notes inside
a chord. This is useful, for example, in keyboard
music where it is often unnatural that all the notes of
a chord start at exactly the same time. In Figure 10
there are three four-note chords and an open time-
offset-editor above the notation. Vertically the points
are arranged according to the pitch of the note in
question. The horizontal positioning, on the other
hand, represents the offset of an individual note from
the start time of the chord. The start time of the chord
is visually indicated with both a numeric value above
the graph and a thin vertical line.

Figure 10. The time-offset-editor. Local adjustments
can be made to adjust the start times of individual
notes inside a chord.

3.2 Tempo Function Editor
In ENP the relation of performance time to

notated time, can be represented as a tempo function,
indicating the continuous variation of tempo (Laurson
and Kuuskankare 2002). Tempo functions can be
drawn in the notation by using a special Score-BPF
(Figure 11). The convention selected in our case is to
represent 'a tempo' as 100 (e.g., value 200 means
twice as fast and value 50 twice as slow).

Figure 11. Score-BPF used as a tempo function
editor. The example shows a ritardando towards the
end of the measure.

4 Discussion and Conclusions
An expression-managing scheme of ENP was

presented. Moreover, a special attention was given to
Score-BPF and the problems arising from the need to
synchronize it with music notation.

There are several advantages offered by the
approach presented in this paper. First, it is possible
to freely mix linearly and non-linearly spaced objects
in music notation and retain a visual time
synchronization. Second, the proposed system is
uniform and through inheritance can be adapted in
various different visualization problems. Third, we do
not need any external editors nor do we have to do
any kind of adjustments to musical notation (i.e.,
temporarily to draw it linearly) in order to be able to
edit the data.

References
Laurson M., C. Erkut, V. Välimäki, and M. Kuuskankare.

2001. "Methods for Modeling Realistic Playing in
Acoustic Guitar Synthesis." Computer Music Journal

25(3):38-49.

Kuuskankare M., and M. Laurson. 2002. "ENP2.0, A Music

Notation Program Implemented in Common Lisp and

OpenGL." Proceedings of the International Computer

Music Conference. International Computer Music

Association, pp. 463-466.

Laurson M., and M. Kuuskankare. 2002. "Instrument

Concept in ENP and Sound Synthesis Control."

Journées d'Informatique Musicale, Marseille.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mika Kuuskankare
	Mikael Laurson

