
The Learning Agent Based Interactive Performance System

Michael Spicer 1, B.T.G. Tan 2, Chew Lim Tan 1

1School of Computing, 2Department of Physics, National University of Singapore
email: mspicer@sp.edu.sg

Abstract
An interactive performance system is described that
utilizes the concept of intelligent agents to manage its
complexity. Real-Time programming techniques
adapted from computer games and audio DSP, as
well as a basic machine learning technique are
utilized to enable high-level user control.

1 Introduction
This paper describes an interactive performance

system designed to easily enable the application of
many musical formalisms to control various musical
attributes, as well as providing intuitive high-level
controls for the user/performer. The system uses an
"artificial performer" paradigm, and is designed
principally for controlling MIDI synthesizers.
Interactive performance systems are inherently real-
time, and techniques from other inherently real-time
application areas, specifically computer games, and
audio signal processing, are employed to achieve the
desired results. The "artificial performer" paradigm
lends itself to one of the current hot topics in
Artificial Intelligence, that of Autonomous Intelligent
Agents, and this concept is used to help manage the
complexity of the system. The detail of the music
produced is ultimately determined by the internal
representations in the individual performer agents.
The human performer achieves high-level control
over the music by specifying particular targets for
high-level musical behaviors, and the agents use a
simple machine learning technique to collectively
modify their internal representations to converge on
these target behaviors.

2 Overall program structure
The structure of the program mirrors the structure

of the music produced. It is assumed that the music
produced follows a section-based form. In this
system, a musical "piece" consists of a C++ container
object that stores a collection of other C++ objects
that represent each section of the piece. The base
class for this, called CSystem, contains a set of
default values and behaviours for the various
attributes. The logic of the sequential ordering of
each section is determined using a virtual function
that implements a finite state machine. The details of
this behaviour can be specified for each piece. This

high level object also contains the target values of the
musical attributes that can be controlled by the
performer in real-time. The current system allows the
user to specify:

• The textural density.
• The average pitch height.
• The average note duration.
• The degree of dissonance.
• The average dynamic level.

The CSystem object’s main task involves
controlling the high-level form of the piece, and
contains all of the pieces sections. Each of the
sections can contain as many agents (artificial
performers) as required, subject to the physical
limitations of the computer/synthesizer hardware.
Because each section is a different C++ object, it is
possible to use a completely different set of agents in
each section of the piece. Another way of saying this,
using the synthetic performer analogy, is that a
different “orchestra” could play each section.

2.1 The synthetic performer analogy
Each section contains a collection of intelligent

agents, which can be described as a group of
synthetic performers. Each performer plays a single
instrument. (There are exceptions to this, especially
with regard to percussion, in which case the
performer would play a sensibly selected small
collection of instruments, such as kick drum and
snare drum, a set of tom toms, a collection of
different cymbals etc.) For a given performance
piece, the human performer can control the number of
different synthetic performers he would like to have.
A band/orchestra analogy is used, with each
performer implementing an algorithm that would be
best suited to the function of part it is to play. The
most important thing is that the collection of
performers used can collectively operate fast enough
to keep the system playing in time with the expected
tempo of the music. Timing delays are not acceptable
at all!

3 Basic agent design
This system makes use of various real-time game

AI techniques to implement the virtual performers.
We have chosen to use an agent design that is very
open ended. In developing this agent, we considered

the available percepts and actions that the agent can
take, as well as any goals it may have, and the
environment in which it operates. This can be
summarized as:
• Percepts:

o high-level control data, other agents in
the environment, current time.

• Actions:
o Select and play a particular note at a

particular loudness on the synthesizer.
Control continuous intensity of the note,
add vibrato

• Goals:
o Coherent pitch and rhythmic contour,

appropriate consonance/dissonance
within current harmonic environment,
coherent form structure.

• Environment:
o State of other agents and human

performer(s), current time, synthesizer.
This environment is dynamic and non-
deterministic.

3.1 Agent Architecture
The basic agent design was conceived to allow a

wide variety of formal compositional procedures to
be utilized, as well as being conceptually simple for
the composer/user. The idea of music being made up
of distinct sections/patterns is inherent in the design.
The information needed for the agent to play a note
is: what note to play, how long to play it, and how
loud to play it. we have given each of these
parameters its own data representation. For pitch,
duration and loudness contour (which helps create a
sense of phrasing) we have used an approach derived
from a common analog synthesis technique,
commonly referred to as Sample & Hold, and the
notes key velocity, which is largely responsible for
creating the sense of meter, uses a simple condition
action rule (this could be further refined in the
future). The actual implementation of the agent is as
a finite state machine, currently the standard
technique used to create AI in computer games. In
this case, the states are represented by the values at
the current positions in the pitch lookup table, and
transitions are determined by the current value of the
duration array, as outlined below. This agent design
is a type of learning agent, as its behavior is
moderated by a ‘critic’, in the form of an error
calculation, which is used to modify the values in its
internal data representations. Russell and Norvig
(2003) provide a good overview of approaches to
agent design.

There are a number of distinct functional sections,
encapsulated in C++ objects that make up an agent in
this system. The agent has one object that
encapsulates a MIDI "note on" event. This is the part
of the agent that implements the actuators and
implements the agent’s actions, once it has decided

what note to play. It contains the MIDI Channel, the
current note number, and the current key velocity.
There is also information about the current patch
(timbre) that the agent plays. Other objects are
involved with the representation of pitch and duration
information, and are outlined below.

The main work of the agent during performance is
carried out in the udpate() method, which is a
polymorphic callback function. This is what would be
referred to in the computer science literature as the
"agent function" in this design. Specialized versions
of the agent override this method in order to
determine their specific behavior. The MIDI key
velocity is calculated using a deterministic algorithm,
which simply calculates the note on velocity, based
on whether a new note occurs on a strong, medium or
weak beat, as determined by traditional western
musical practices.

3.2 Pitch and Duration Representation
One of the appealing features of the design of this

system is that, although agents are essentially
constructed as a rather unusual type of finite state
machine, the human performer can easily understand
the how the internal data produces the resulting music
by thinking in the familiar terms of musical contours.
The pitch, duration and dynamic representations can
be thought of as implementing a "Sample and Hold"
approach to creating melodic material, a common
technique used with modular analog synthesizers
since the 1960's. In analog synthesis terms, the idea is
that a signal generator of some sort generates a
continuously varying voltage (it is traditionally an
oscillator or a noise generator), and this signal is fed
into the Sample and Hold module. The S&H module
has another input, a trigger input. When a trigger
signal is applied to the trigger input, the S&H outputs
the voltage that the continuous input signal was at
that time. This voltage is maintained at the S&H
output until it is triggered again.

We am using a digital implementation of this
approach. Three C++ digital oscillator objects, of
class we named COscil, are instantiated. These
objects contain an array (sometimes refered to as a
wavetable) consisting of a number (usually 96) of
floating-point numbers between 0 and 1, plus
associated manipulation methods. These wavetables
are used by the agent to represent the pitch, duration
and loudness contours. This one dimensional array
representation of distinct musical parameters has
several advantages. It is relatively small, intuitive,
simple to implement and fast, making it ideal for real-
time use. By representing contours in cyclically
accessed arrays, we automatically capture the idea of
sectional musical structures that can be repeated to
form patterns. Many intuitive transformations may be
directly applied to it, such as transposition,
retrograde, inversion. The whole repertoire of audio
signal processing can also be applied, such as
filtering, biasing, scaling, waveshaping, delay,

convolution with some other signal etc. As will be
explained later, some of these DSP techniques are
applied in the learning algorithm when the agents
respond to the high level controls of the user. In
addition, many of the game AI techniques, such as
tracking/evasion and patterns, can be employed.
Compositional formalisms, such as fractional noises,
probability distributions, chaotic generators, as well
as approaches coming from computer science, such as
genetic algorithms, and goal based searches can be
adapted to produce contours. Because the results of
these generative processes are stored in a lookup
table, the calculations themselves can take place
during initialization (or before hand) and are freed of
the real-time constraint. Loy (1989) provides a good
overview of formal compositional techniques.

3.3 Generating the Note Data
In performance, a master clock that is tied to the

tempo of the music drives all the oscillator objects
within each agent. The current position indexes in
the wavetable are updated every tick of this clock,
and a comparison is made with the current time and
the time the next note is scheduled to be produced. If
it is time for a new note, the value at the pitch
oscillator's current index position is used to generate
the MIDI note number to be played. The agent has
attributes that determine the lowest pitch allowed,
and the pitch range (the difference between the
highest and lowest notes the agent is allowed to play).
The MIDI note number is produced by scaling the
agents pitch range by the value in the wavetable at the
current index, then adding the value of the lowest
note allowed.
Note Number = bottomPitch + pitchRange *
pitchOscillator.waveArray[currentSample]

This is further processed to map it into the correct

musical scale. The more specialized agents may do
additional processing of the raw MIDI note number
value.

The representation of duration is very similar to
the representation of pitch, in that a COscil object
maintains the duration's for a particular time span,
and samples it when a new note is to be generated.
The duration of the new note is proportional to the
magnitude of the value stored in the oscillators
wavetable.

3.4 Chord Sequence Following
An extra input to the note number calculation

for many of the agents comes from an extra percept
from another agent whose task is to generate a
sequence of chords. This idea is encapsulated in an
agent class called CChordSequence. This specialized
class is derived from CAgent, and is optimized to
represent a series of chords over a particular time
interval. It contains a number of methods for
generating chord sequences, utilizing techniques such

as patterns and Markov chains. An agent can simply
add an offset derived from the current state of the
CChordSequence object to the final raw MIDI note
number calculation. An obvious extension to this is to
build an agent that utilizes an incoming MIDI note
data stream, from a live keyboard performance that
does real-time chord recognition. Rowe (2001)
contains such algorithms, and it is a simple matter to
integrate these into the system.

3.5 Musical Knowledge in the Agent.
There is a certain amount of musical knowledge

pre-programmed into the agent. A basic example of
this it the calculation of note velocities using
condition action rules. Quite a lot knowledge of
musical processes are embedded in the methods
implemented in the COscil object. For example, a
motivic process such transposition of pitch
corresponds to adding a bias to the values in the
oscillators wave array. In terms of duration, adding a
bias corresponds to uniformly increasing the note
durations. Similarly inversion and retrograde are
easily implemented on pitch and duration contours. It
is also possible utilize these three processes to
construct melodic forms, such as period and sentence
forms within the pitch and duration dimensions.

The COscil class methods enable a large variety
of pitch and duration contours to be generated,
utilizing deterministic, stochastic, fractal and path
finding techniques. Any computer graphics line
generation technique can be implemented. This
enables the possibility of generating interesting
musical material with a large degree of intuitive
control.

4 Response to user input
A delta-learning rule has been adopted in order to

allow agents to modify their internal representations,
so as to respond to the human performers wishes. At
first glance, gradient descent methods of learning,
which are normally associated with time-consuming
tasks such as training neural networks, don’t seem
suitable for real-time interactive performance
systems. It turns out that their long training time can
be exploited to produce smooth gradual transitions
from one state to another, that sound musically
coherent.

 In this system we use delta learning to allow the
user to specify the target average pitch and duration
values of all the agents pitch and duration contours.
This is how the user/human performer achieves high-
level control over the detail of the music produced.
The user can specify the desired target average pitch,
duration and loudness values, using a set of sliders on
the screen (external controllers could also easily be
used). At the end of each update, the current values of
the average pitch and duration are calculated for all
agents that are currently active. The current pitch and
duration errors are then calculated, by subtracting the

current calculated averages from the desired target
values as determined by the user controls. During the
next update these error values are used to modify the
pitch and duration data in the agent. If the error is
sufficiently large, an appropriate small change to the
values is calculated by multiplying the overall error
by a learning rate I.E. delta = error * learning rate.
This delta value is then used to either scale the values
or add a bias to the values, depending on which
learning mode is chosen.

The mechanisms for providing the high level
control of the textural density are far simpler. They
both essentially use a threshold approach. In the case
of textural density, each agent has a threshold value,
on a scale of 0 to 1.0, and if the global current
textural density value is above the threshold, then the
agent will play, otherwise it will be silent. The user
sets the target for the global threshold value. Each
clock cycle, the current actual textural density value
is calculated, by calculating the proportion of agents
active. This value is used to calculate a delta for the
current global textural density. The similar approach
is used to control the degree of dissonance.

5 Specialized Agents
A number of specialized agent performers have

been developed, each optimized to play a specific
musical role. Many of the specialized agents further
constrain the choice of notes played by the virtual
performers. An example of this would be an agent
that "listens" to the chord sequence agent, and only
plays notes that are contained with the current chord.

Another useful set of agents that place constraints
on the resulting MIDI note numbers produced have
been developed to play percussion parts. These limit
the notes numbers generated to as to only play the
appropriate percussion timbres continued in the
General MIDI drum key layout.

An interesting class of agents is those that utilize
some one of the classic game "AI" techniques,
Tracking, and its compliment Evasion. In this
situation the agent has a target agent, and it
essentially follows the targets pitch and/or duration
behavior or avoids it. There are various extra
attributes that control useful musical behavior.

6 A Musical Example
Several compositions have been produced using

this system for several different contexts. It is often
used in conjunction with live performance of acoustic
or electronic instruments. The configuration of the
system is usually carefully prepared in advance, so as
to provide the appropriate high-level control over the
musical detail (pitch, note rate etc.) as well as large
scale form. One piece that demonstrates some of the
capabilities of the system is "South West Monsoon".
This piece is designed as a stand-alone piece that can
be performed on any Microsoft Windows based
Multimedia PC. It utilizes the General MIDI sound

set and is distributed as a Win32 executable. The
agents in each section make up a collective ensemble
of 16 performers. These virtual performers are broken
into functional groups, similar to sections in an
orchestra. The breakdown of the performers includes
players creating melodic lines, a bass line, arpeggio
patterns, pads, and pitched and percussive rhythm
patterns.

The high-level form of the piece has four sections,
all of which are instances of the same C++ class.
Random choices are made during the initialization
phase, so each of the agents in the sections will have
different timbres and contours. The chord sequence
for each section is generated using a 1st order
Markov chain to create “strong” chord progressions,
adhering to the rules of tonal harmony. The overall
form is also generated using a 1st order Makov chain.
This determines the default order of playback of the
four sections. The high-level controls that set the
target values for the textural density, mean Pitch,
mean duration, mean intensity and degree of
dissonance are controlled by instances of the COscil
class that is used in the agents. The period of the
oscillators is set to be the total duration of the piece,
so the waveforms dictate the default evolution of the
piece, which has been preset by the "composer".

At any time the human performer can play the
system like an instrument, modifying the target
values, so that the program will be directed towards
creating the user’s desired musical effect. The user
can go into completely into manual control mode, and
can override the overall form, selecting which section
to play next, using the arrow keys on the keyboard.
At all times, the human performer can alter the
overall balance using a virtual mixer.

Conclusion
The concept of utilizing simple game AI

techniques, encapsulated in a learning agent design,
has been demonstrated to be a useful strategy for
build interactive performance systems. This, coupled
with the approach of using various contours for
representing musical data, enables very intuitive
control of the agent’s behavior by the human
performer.

References
Loy, G.. 1989. “Composing with Computers- a Survey of

Some Compositional Formalisms and Music
Programming Languages.” Current Directions in
Computer Music Research. Cambridge, Massachusetts:
MIT Press. Pp. 291-396. ed. Mathews, M. V., and
J.R.Pierce

Rowe, R. 2001. Machine Musicianship. Cambridge,
Massachusetts: MIT Press.

Russell, S. J.,and P. Norvig. 2003. Artificial Intelligence A
Modern Approach. Upper Saddle River, New Jersey:
Prentice Hall.

Spicer, M.J. 2003.An Interactive Performance System.
M.Sc. thesis. unpublished

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Michael Spicer
	B. T. G Tan
	Chew Lim Tan

