Orchestral Musical Accompaniment from Synthesized Audio

Christopher Raphael *
Department of Mathematics and Statistics,
University of Massachusetts at Amherst,
Ambherst, MA 01003-4515,

raphael@math.umass.edu

Abstract

We describe a computer system that synthe-
sizes a responsive and sensitive orchestral ac-
companiment to a live musician in a piece of
non-improvised music. The system of com-
posed of three components “Listen,” “Antici-
pate” and “Synthesize.” Listen analyzes the
soloist’s acoustic signal and estimates note on-
set times using a hidden Markov model. Syn-
thesize plays a prerecorded audio file back at
variable rate using a phase vocoder. Antici-
pate creates a Bayesian network that mediates
between Listen and Synthesize. The system
has a learning phase, analogous to a series of
rehearsals, in which model parameters for the
network are estimated from training data. In
performance, the system synthesizes the mu-
sical score, the training data, and the on-line
analysis of the soloist’s acoustic signal using
a principled decision-making engine, based on
the Bayesian network. A live demonstration
will be given using the aria Mi Chiamano Mimi
from Puccini’s opera La Bohéme, rendered with
a full orchestral accompaniment.

1 Introduction

Musical accompaniment systems emulate the task that a
human musical accompanist performs: supplying a miss-
ing musical part or parts, generated in real time, in re-
sponse to the sound input from a live musician. As with
the human musician, the accompaniment system should
be flexible, responsive, able to learn from examples, and
bring a sense of musicality to the task.

In 1984, Dannerberg’s pioneering work [4] built from
“whole cloth” an accompaniment system without the

This work supported by NSF grant I1IS-0113496.

benefit of real-time digital audio input or sophisticated
audio synthesis hardware. Significant improvements
were developed in [5], [8], [9]; in the latter two Grubb
and Dannenberg demonstrate an impressive system for
the the challenging task of vocal accompaniment. Other
notable efforts are Vercoe [18], Vercoe and Puckette, [19],
Baird [1]. Our own work, [15], [14], [16], furthers the
cause of accompaniment systems through its emphasis
on probabilistic modeling and machine learning. Per-
haps the most significant advantage of the machine learn-
ing approach is the ability to automatically “learn” from
data examples. In particular, the use of a hidden Markov
models allows an accompaniment system to learn to bet-
ter “hear” the soloist. In addition, probabilistic model-
ing of musical performance provides a generic framework
in which musical interpretation can be learned and in-
corporated.

Most accompaniment systems, and all cited above, cre-
ate the audio accompaniment through a sparse sequence
of “commands” that control a computer sound synthesis
engine or dedicated audio hardware. For instance, MIDI
is a natural, popular, and efficient protocol for represent-
ing and creating accompaniments. Some instruments,
such as plucked string instruments, the piano, and other
percussion instruments can be reasonably reproduced
through the cartoon-like performance descriptions af-
forded by MIDI. Many other instruments, however, such
as the woodwinds, brass, strings, and voice, continually
vary a large number of coupled attributes during the
evolution of each note or phrase. While the sparse rep-
resentation of MIDI is certainly appealing for accompa-
niment applications, the MIDI-controllable counterparts
of acoustic instruments generally sound somewhat ster-
ile, and unconvincing.

We describe here a new direction in our work on musical
accompaniment systems: we synthesize audio output by
playing back an audio recording at variable rate. In do-
ing so, the system captures a much broader range of tone
color and interpretive nuance while posing a significantly

more demanding computational challenge. Our current
effort intersects that of Cano, Loscos, Bonada, de Boer,
and Serra [3], [10], [2] and the references therein, which
builds a system for real-time morphing of vocal input
for a karaoke system. Both systems perform real-time
matching of audio input using HMMSs; both synthesize
real-time audio output that depends on the audio input;
and both share a virtual-reality-like model for improv-
ing a person’s musical experience. While sharing these
common traits, the approaches then diverge to serve the
dissimilar natures of the two applications.

Our system is composed of three components we call
“Listen,” “Anticipate,” and “Synthesize.” Listen tracks
the soloist’s progress through the musical score by ana-
lyzing the soloist’s digitized acoustic signal. Essentially,
Listen provides a running commentary on this signal,
identifying times at which solo note onsets occurs, and
delivering these times with variable latency. The combi-
nation of accuracy, computational efficiency, and auto-
matic trainability provided by the hidden Markov model
(HMM) framework makes HMMs well-suited to the de-
mands of Listen. A more detailed description of the
HMM approach to this problem is given in [13]. This
approach shares the common HMM framework with the
score-following work of Orio, Dechelle, Schwarz, [12],
[11].

The actual audio synthesis is accomplished by our Syn-
thesize module through the classic phase vocoding tech-
nique [7], [6]. For our purposes, the phase vocoder is
an algorithm enabling variable-rate playing of an audio
file without introducing pitch distortions. The Synthe-
size module is driven by a sequence of local synchroniza-
tion goals which guide the synthesis like a trail of bread
crumbs.

The sequence of local goals is the product of the Antic-
ipate module which mediates between Listen and Syn-
thesize. The heart of Anticipate is a Bayesian network
consisting of hundreds of Gaussian random variables in-
cluding both observable quantities, such as note onset
times, and unobservable quantities, such as local tempo.
The network can be trained during a rehearsal phase to
model both the soloist’s and accompanist’s interpreta-
tions of a specific piece of music. This model then con-
stitutes the backbone of a principled real-time decision-
making engine used in live performance for scheduling
musical events. A more detailed treatment of our ap-
proach to this problem is given in [15] and [16].

2 Listen

To follow a soloist, one must first hear the soloist; “Lis-
ten” is the component of our system that accomplishes

Figure 1: A Markov model for a note allowing an op-
tional silence at the end.

this task.

We begin by dividing our acoustic signal into a collection
of N “snapshots” or “frames.” In our current system the
acoustic signal is sampled at 8 KHz with a frame size of
256 samples leading to about 31 frames per second. In
analyzing the acoustic signal, we seek to label each data
frame with an appropriate score position. We begin by
describing the label process.

For each note in the solo part we build a small Markov
model with states associated with various portions of
the note such as “attack” and “sustain” as in Fig. 1.
We use various graph topologies for different kinds of
notes, such as short notes, long notes, rests, trills, and
rearticulations. However, all of our models have tun-
able parameters that control the length distribution (in
frames) of the note. Fig. 1 shows a model for a note that
is followed by an optional silence, as would be encoun-
tered if the note is played staccato or if the player takes
a breath or makes an expressive pause. The self-loops in
the graph allow us to model of a variety of note length
distributions using a small collection of states by choos-
ing appropriate transition probabilities. We chose prob-
abilities so that the idealized note length distributions of
the model match the empirical note length distributions
observed from past performances. We create a model
for each solo note in the score, such as the one of Fig. 1,
and chain them together in left-to-right fashion to pro-
duce the hidden label, or state, process for our HMM.
We write X1, Xs, ..., Xy for the state process where X,
is the state visited in the nth frame. X3, Xs,..., XN is
a Markov chain.

The state process, X1, Xs,..., Xy, is, of course, not ob-
servable. Rather, we observe the acoustic frame data.
For each frame, n = 1,2,..., we compute a feature vec-
tor describing the local content of the acoustic signal in
that frame, Y,,. Most of the components of the vectors
{Y,,} are measurements derived from the finite Fourier
transform of the frame data, useful for distinguishing
various pitch hypotheses. Other components measure
signal power, useful for distinguishing rests; and local ac-

tivity, useful for identifying rearticulations and attacks.
As is consistent with the HMM model, we assume that
the conditional distribution of each Y,,, given all other
variables in our model, depends only on X,.

One of the many virtues of the HMM approach is that
the class conditional distributions, p(y|z) = P(Y, =
y|X, = z) can be learned in an unsupervised manner
through the Baum-Welch, or Forward-Backward, algo-
rithm. This allows our system to adapt automatically
to changes in solo instrument, microphone placement,
room acoustics, ambient noise, and choice of the accom-
paniment instrument. In addition, this automatic train-
ability has proven indispensable to the process of fea-
ture selection. A pair of simplifying assumptions make
the learning process feasible. First, states are “tied”
so that p(y|z) depends only on several attributes of the
state x such as the associated pitch and “flavor” of state,
(attack, rearticulation, sustain, etc.). The tying of the
states is accomplished through the application of several
simple rules, rather than learned automatically. Sec-
ond, the feature vector is divided into several groups of
features, y = (y',...,y”), assumed to be conditionally

independent, given the state: p(y|z) = szl p(y?|z).

As important as the automatic trainability is the estima-
tion accuracy that our HMM approach yields. Musical
signals are often ambiguous locally in time but become
easier to parse with the benefit of longer term hindsight.
The HMM approach handles this local ambiguity nat-
urally through its probabilistic formulation, as follows.
While we are waiting to detect the mth solo note, we
collect data (increment n) until

P(X, > starty,)|Y1 =y1,..., Yy =yn) >«

for some threshold «, where start,, is the first state of
the mth solo note model, (e.g. the “attack” state of
Fig. 1). If this condition first occurs at frame n* then
we estimate the onset time of the mth solo note by

note,, = arg max P(X,, = start,,|[Y1 =y1,..., Yo =yp+)

nn*

This latter computation is accomplished with the
Forward-Backward algorithm. In this way we delay the
detection of the note onset until we are reasonably sure
that it is, in fact, past, greatly reducing the number of
misfirings of Listen.

Finally, the HMM approach brings fast computation to
our application. Dynamic programming algorithms pro-
vide the computational efficiency necessary to perform
the calculations we have outlined at a rate consistent
with the real-time demands of our application.

3 Indexing the Audio

The previous section dealt with the problem of deter-
mining note onsets for the input audio played by the live
player. Before one can hope to resynthesize the output
audio file to “follow” live input, one must first develop an
analogous parse of the output (accompaniment) audio.
We call this process indexing the audio. Our approach to
this problem is quite similar to the HMM strategy used
above. In fact, the two implementations share much of
the same code. The principal differences are that in-
dexing analysis is performed off-line and must deal with
polyphonic audio. Our approach shares the basic HMM
approach to score following of [12] and [11].

We begin with a score representation of the accompa-
niment giving the start and end times, in musical units,
for each note in the score. While the score is polyphonic,
we reduce the score to a one-dimensional representation
— a string of “chords” — as follows. At each point in
the musical score a number of possibly repeated pitches
collectively sounds in the ensemble. Whenever this col-
lection of pitches changes, we add a new chord to our
sequence. This sequence of chords is essentially a ho-
mophonic representation of polyphonic music that dis-
regards the partitioning of the notes into voices. Each
chord in the sequence has an associated musical dura-
tion, so our model understands the composite rhythm of
the score.

We build a Markov chain for the traversal of the score
in an identical manner to that of Section 2. This model
serves as the hidden process of our HMM. As in Section
2 the Markov model encodes our prior assessment of the
different chord length distributions, (without the benefit
of past performances).

The data model for our indexing problem describes the
probability of a single frame of data given a known chord
configuration. The modeling problem is complicated by
the polyphonic nature of our data. Due to the highly
variable nature of orchestral texture and timbre, we have
chosen to build a model by hand, rather than learning a
model from real data that is unlikely to generalize. This
approach is in contrast to the fully learned data model of
Section 2 that deals with monophonic known-instrument
data.

An example of a section of our data can be seen in Fig.
2, taken from the orchestra part of the aria Mi Chiamano
Mimi from Puccini’s opera La Bohéme. In this spectro-
gram representation we divide the 8KHz (down-sampled
from 48KHz) audio data into a sequence of overlapping
frames of 1024 samples each. Our goal is to find the start
time, in frames, of each chord.

Figure 2: A spectrogram of an excerpt from the orches-
tral accompaniment to Puccini’s Mi Chiamano Mimi.

First we suppose a single note is sounding at frequency
c. In this case we would expect to see spectral energy
distributed primarily at frequencies in the overtone series
of the note: ¢,2¢,3c¢,.... Thus we build a probability
density on frequency by

M
9(w;0) = 3 puN(wsme,0?)

m=1

where M_ p,, =1 and N(w; u,0?) is the normal den-
sity function. The number of harmonics considered, M,
and the way in which they decay p1,...,py are param-
eters of our model. Suppose we are given a spectrum
s = (s1,...,8F) where sy is the energy (squared mod-
ulus) of the fth frequency bin, and imagine that the
units are such that nothing significant is lost by treat-
ing the components of s as integers. Thus our spec-
trum has s; energy units at frequency bin 1, so energy
units at frequency bin 2, etc., We view these energy
units as independent samples from a discretized version
g = (91,-..,9r) of g(w;c). Thus the probability of the
spectrum would be

F
p(slo)t =[] o (1)
f=1

There is really no need to require that s is composed of
integral values or restrict our attention to single notes.
To this end let ¢ = (c1,-..,cH) be a collection of funda-
mental frequencies and define

H M
g(w;c) = Z Z pm N (w; mep, 0?)

h=1m=1
and let
F
p(sle) = I g7/
f=1
where (g1,...,9r) is again the discretized version of
g(w;c).

"More precisely, this is P(s|c,t) where t = >, 81 is the
total amount of energy in the spectrum. Since the HMM
depends only on that way p(s|c) varies as a function of ¢,
nothing is lost by ignoring this detail.

The parameters of our model, o, M, o, p1,...py should
ideally be learned from training data. In fact, we antic-
ipate addressing more complex models with many more
unknown parameters in the future, virtually necessitat-
ing automatic learning of parameters. For our example
here, however, the parameters were set by hand with
reasonable results.

We parsed the data by choosing the onset for the mth
chord as

onset,, = arg max P(X, = start,,|Y = y)

where X = (X1,...,Xn) is our hidden process, ¥ =
y is our spectrogram, and start,, is the first state
of the mth chord. This computation is performed
with the forward-backward algorithm. An example of
the parse obtained by this method can be heard at
http://fafner.math.umass.edu/icmc03. While this com-
putation saved considerable effort, we still edited the re-
sults by hand to ensure greater accuracy.

4 Synthesize

The Synthesize module takes as input both an audio
recording of the accompaniment and the index into the
recording. The role of Synthesize is to play this record-
ing back at variable rate (and without pitch change)
so that the accompaniment follows the soloist. The
variable playback rate is accomplished using a phase
vocoder [7], [6]. This technique begins by dividing
the signal into a sequence of overlapping windows in-
dexed by k and computing the short time Fourier trans-
form, Fy, for each window. Both the magnitude, |Fy|,
and the phase difference between consecutive windows,
Ay, = arg(Fy)—arg(F)_1) — both functions of frequency
— are saved. The nth frame of output is constructed us-
ing an accumulated phase function ¢,,. We initialize ¢q
arbitrarily and compute the nth output frame by choos-
ing a window, k(n) and computing the inverse Fourier
transform of the complex function with |Fj,)| as mag-
nitude and ¢,, as phase. The accumulated phase is then
incremented by ¢, 11 = ¢n + Ag(,). The phase vocoder
ensures that the phase changes in a smooth manner from
frame to frame.

As an example, the audio data could be played at double
the rate by letting k(n+1) = k(n)+2/Qforn =1,2,...
where (2 is the fraction of a window that does not overlap
with its successor. We refer to this rate of progress, 2 in
this example, as the “play rate.”

The literature on musical synthesis is rich; we regard the
phase vocoder as a “place-holder” in a larger effort, that
can be improved upon at a later time.

In our application the play rate varies with time and
must be chosen so that the solo and accompaniment syn-
chronize while maintaining a reasonably smooth play-
back of the audio data. Subsequent sections focus on
creating a sequence of short term “goals” for Synthe-
size — times at which the next unplayed accompaniment
note should sound. When a new goal is set, Synthesize
calculates the play rate necessary to achieve the goal and
follows the new play rate until the play rate is reset.

In our experiments we used an output sampling rate of
48 KHz with a frame size of 4096 samples and an overlap
rate of 2 = 1/4. Output frames are smoothed using an
“overlap-add” technique.

5 Anticipate

A musical accompaniment requires the synthesis of a
number of different knowledge sources. From a mod-
eling perspective, the fundamental challenge of musical
accompaniment is to express these disparate knowledge
sources in terms of a common denominator. We describe
here the three knowledge sources we use.

We work with non-improvisatory music so naturally the
musical score, which gives the pitches and relative dura-
tions of the various notes, as well as points of synchro-
nization between the soloist and accompaniment, must
figure prominently in our model. The score should not
be viewed as a rigid grid prescribing the precise times at
which musical events will occur; rather, the score gives
the basic elastic material which will be stretched in var-
ious ways to produce the actual performance. The score
simply does not address most interpretive aspects of per-
formance.

Since our accompanist must follow the soloist, the output
of the Listen component, which identifies note bound-
aries in the solo part, constitutes our second knowledge
source. Given the variable latency in the communication
of detections from Listen, we feel that any successful ac-
companiment system cannot synchronize in a purely re-
sponsive manner. Rather it must be able to predict the
future using the past and base its synchronization on
these predictions, as human musicians do.

While the same player’s performance of a particular piece
will vary from rendition to rendition, many aspects of
musical interpretation are clearly established with only
a few examples. These examples constitute the third
knowledge source for our system. The solo data, (solo
note onset times estimated from past rehearsals), are
used primarily to teach the system how to predict the
future evolution of the solo part. The accompaniment
data, (the accompaniment onset times estimated from
the accompaniment recording), are used to bias the sys-

tem toward the interpretation exhibited in the recording
as well as toward a uniform play rate.

We have developed a probabilistic model, a Bayesian
network, that represents all of these knowledge sources
through a jointly Gaussian distribution containing po-
tentially thousands of random variables. The observable
variables in this model are the estimated soloist note on-
set times produced by Listen and the onset times for
the accompaniment notes. Between these two layers of
observable variables lies a layer of hidden variables that
describe unobservable (and imaginary) quantities such
as local tempo, change in tempo, and rhythmic stress.

5.1 A Model for Rhythmic Interpretation

We begin by describing a model for the sequence of note
onset times generated by a monophonic (single voice)
musical instrument playing a known rhythm. For each
of the notes, indexed by n = 0,..., N, we define a ran-
dom vector representing the time, ¢,, (in seconds) at
which the note begins, and the local “tempo,” s,, (in
secs. per measure) for the note. We model this sequence
of random vectors through a random difference equation:

()= M) (2)+(2) o

n =0,...,N —1, where [,, is the musical length of the
n** note, in measures, and the {(7,,0,)'} and (to,s0)

are mutually independent Gaussian random vectors.

The distributions of the {o,} will tend concentrate
around 0 expressing the notion that tempo changes
are gradual. The means and variances of the {o,}
show where the soloist is speeding-up (negative mean),
slowing-down (positive mean), and tell us if these tempo
changes are nearly deterministic (low variance), or quite
variable (high variance). The {7, } variables also concen-
trate around 0 and describe stretches (positive mean) or
compressions (negative mean) in the music that occur
without any actual change in tempo, as in a tenuto or
agogic accent. The addition of the {7, } variables leads to
a more musically plausible model, since not all variation
in note lengths can be explained through tempo vari-
ation. Equally important, however, the {7,} variables
stabilize the model by not forcing the model to explain,
and hence respond to, all note length variation as tempo
variation.

Collectively, the distributions of the (7,,0,)! vectors
characterize the rhythmic interpretation. Both overall
tendencies (means) and the repeatability of these ten-
dencies (covariances) are captured by these distributions.

§§§Q<> ql a,

Figure 3: A graphical description of the dependency
structure of our model.

5.1.1 Joint Model of Solo and Accompaniment

In modeling the situation faced by our accompaniment
system, we begin with the basic rhythm model of Eqn. 2,
now applied to the composite rhythm. More precisely, let
mg,...,My. and mg,...,m%. denote the positions, in
measures, of the various solo note onsets and accompa-
niment events, where by the latter we mean an onset
or termination of an accompaniment note in any voice.
We then let myg,...,my be the sorted union of these
two sets of positions with duplicate times removed; thus
mg < my < ...<mpy. We then use the model of Eqn. 2
with I, = myu11 —myu, n =0,...,N — 1. A graphical
description of this model is given in the middle two lay-
ers of Figure 3. In this figure, the 3rd layer from the
top corresponds to the time-tempo variables, (t,,s,)?,
for the composite rhythm, while the 2nd layer from the
top corresponds to the interpretation variables (7, 0y)t
The directed arrows of this graph indicate the condi-
tional dependency structure of our model. Thus, given
all variables “upstream” of a variable in the graph, the
conditional distribution of that variable depends only on
its parent variables.

Recall that the Listen component estimates the times
at which solo notes begin. How do these estimates fig-
ure into our model? We model the note onset times
estimated by Listen as noisy observations of the true po-
sitions {t,}. Thus, if m,, is a measure position at which
a solo note occurs, then the corresponding estimate from
Listen is modeled as

an =ty +ap

where a,, ~ N(0,v2?). Similarly, if m, is the measure
position of an accompaniment event, then we model the
observed time at which the event occurs as

bn:tn+ﬂn

where 8, ~ N(0,7%). The note onsets estimated by
Listen constitute the top layer of our figure while the ac-
companiment event times constitute the bottom layer.
There are, of course, measure positions at which both
solo and accompaniment events should occur. If n in-

QO

E—

QO

Figure 4: Conditioning on the observed accompaniment
performance (darkened circles), we use the message pass-
ing algorithm to compute the conditional distributions
on the unobservable {7,,,0,} variables.

dexes such a time then a, and b, will both be noisy
observations of the true time ¢,,.

The vectors/variables (to, s0)! and {(7n, on)¢, @, Bn Yoy
are assumed to be mutually independent.

5.2 The Rehearsal Phase

Our system learns its rhythmic interpretation by esti-
mating the parameters of the trainable ((to,s0)? and
{(7p,0,)t}Y_,) variables through a procedure analogous
to a series of rehearsals. We initialize the model pa-
rameters — the means and covariances of the trainable
variables — to a “neutral” interpretation, and perform
with our system as described in Section 5.3. Each such
rehearsal results in an audio file which we parse in an
off-line fashion, as in Section 2 to produce a sequence
of times at which solo note onsets occurred. These se-
quences of observed times, along with the index into the
accompaniment, serve as our training data.

We treat each sequence of times as a collection of ob-
served variables in our belief network. For instance, the
accompaniment times are shown with darkened circles in
Figure 4. Given an initial assignment of means and co-
variances to the trainable variables, we use the “message
passing” algorithm of Bayesian networks [17], to com-
pute the conditional distributions (given the observed
performance) of the trainable variables. While we don’t
observe the trainable variable directly, we can think of
the means of these conditional distributions as observa-
tions of the variables. Several performances then lead to
several observations of each variable and natural estima-
tion algorithms follow. For instance, we could take the
empirical mean and covariance of the conditional means
as our parameter estimates. The details of the learning
algorithm are presented in [15].

5.3 Real Time Accompaniment

The methodological key to our real-time accompaniment,
algorithm is the computation of (conditional) marginal

§§§Q<> ql a,

Figure 5: At any given point in the performance we will
have observed a collection of solo note times estimated
estimated by Listen, and the accompaniment event times
(the darkened circles). We compute the conditional dis-
tribution on the next unplayed accompaniment event,
given these observations.

distributions facilitated by the message-passing machin-
ery of Bayesian networks. At any point during the per-
formance some collection of solo notes and accompani-
ment events will have been observed, as in Fig. 5. Con-
ditioned on this information we can compute the distri-
bution on the next unplayed accompaniment event. The
real-time computational requirement is limited by pass-
ing only the messages necessary to compute the marginal
distribution on the pending accompaniment event.

Once the conditional marginal distribution of the pend-
ing accompaniment event is calculated, we schedule the
event accordingly (reset the play rate). Currently we
schedule the event to be played at the conditional mean
time, given all observed information, however other rea-
sonable choices are possible. Note that this conditional
distribution depends on all of the sources of informa-
tion included in our model: The score information, all
currently observed solo and accompaniment event times,
and the rhythmic interpretations demonstrated by both
the soloist and accompanist, learned during the training
phase.

The initial scheduling of each accompaniment event
takes place immediately after the previous accompani-
ment event is played. It is possible that a solo note will
be detected before the pending accompaniment event is
played; in this case, the pending accompaniment event is
rescheduled by recomputing its conditional distribution
using the newly available information and resetting the
play rate. This happens every time a new solo note is
detected,until the event is finally played.

6 Computation

Our program must manage three types of computa-
tions and these are organized through two separate asyn-
chronous callback “loops.” First, the Listen module an-
alyzes our acoustic input at a rate of about 31 frames
per second. Thus the basic iteration of Listen processes

"~ Signal handler |, -

Process input frame Process output frame
(1 iter of forward algorithm) (1 iter of phase vocode algorithm
Schedule next input frame Schedule next output frame

]

If eocomp' note played
If solo note detected / \
reschedule next accomp note schedul_e_n@(t acco‘?‘p note
(Anticipate algorithm) (Anticipate algorithm)

Figure 6: The flow of execuation of the real-time part of
our program is completely driven by signals, as described
in the figure.

an input frame and sets a signal instructing the Lis-
ten module to “wake up” when the next input frame
is ready. The Synthesize module works analogously pro-
cessing output frames at a rate of about 47 frames per
second, also driven by signal callback. Due to the time-
critical nature of our Synthesize module, Synthesize call-
backs always take precedence over Listen callbacks.

When an input frame is processed, we read the next
frame of sound data from the audio device and perform
one iteration of the HMM analysis engine. If this iter-
ation results in the detection of a solo note, we fix the
appropriate variable of our belief network to the esti-
mated solo note onset time and recompute the time of
the pending accompaniment event. This results in a new
target time for the pending accompaniment event thus
changing the play rate for subsequent iterations of Syn-
thesize.

Each iteration of Synthesize computes and plays a new
frame of output data using our phase vocoder with the
current play rate. When the Synthesize module plays
a frame crossing an accompaniment event boundary (as
represented by the index), we consider that an accom-
paniment event has been played. We then fix the corre-
sponding variable of our belief network and perform our
initial scheduling of the next accompaniment event. We
choose the new play rate so that the next accompani-
ment event will be played at the time recommended by
this computation.

Once audio data is written we cannot easily revise these
audio samples. For this reason we wish to minimize the
time between each write command and that when the
corresponding samples “cross the speaker.” However,
when this time becomes too short, inaccuracy in the de-
livery of signal callbacks leads to audio underruns. Qur
current system writes samples .025 seconds before they
are actually played.

Our program is written in ¢ and runs on a 1.6 GHz Pen-
tium 4 Linux notebook using the ALSA audio driver.

7 Live Demonstration

Our conference presentation will feature a live demon-
stration of the system on the aria “Mi Chiamano Mimi”
from Puccini’s opera La Bohéme performed by the au-
thor. The accompaniment audio file for this aria was
taken from a MusicMinusOne™ recording. An au-
dio example of such a performance can be heard at
http://fafner.math.umass.edu/accompaniment/mimi.html
along with a number of other audio examples of related
accompaniment efforts.

References

[1] B. Baird, D. Blevins, and N. Zahler. Artificial
intelligence and music: Implementing an interac-
tive computer performer. Computer Music Journal,
17(2):73-79, 1993.

[2] Pedro Cano, Alex Loscos, Jordi Bonada, Marten
de Boer, and Xavier Serra. Singing voice imperson-
ator application for pc. In Proc. Int. Comp. Music
Conf. Int. Computer Music Assoc., 2000.

[3] Pedro Cano, Alex Loscos, Jordi Bonada, Marten
de Boer, and Xavier Serra. Voice morphing system
for impersonating in karaoke applications. In Proc.
Int. Comp. Music Conf. Int. Computer Music As-
soc., 2000.

[4] R. Dannenberg. An on-line algorithm for real-time
accompaniment. In Proceedings of the International
Computer Music Conference, 1984, pages 193-198.
Int. Computer Music Assoc., 1984.

[5] R. Dannenberg and H. Mukaino. New techniques
for enhanced quality of computer accompaniment.
In Proceedings of the International Computer Mu-
sic Conference, 1988, pages 243—249. Int. Computer
Music Assoc., 1988.

[6] M. Dolson. The phase vocoder: A tutorial. Com-
puter Music Journal, 10(4):14-27, 1986.

[7] J. L. Flanagan and R. M. Golden. Phase vocoder.
Bell System Technical Journal, pages 1493-1509,
Nov. 1966.

[8] Lorin Grubb and Roger Dannenberg. A stochastic
method of tracking a vocal performer. In Proc. Int.
Comp. Music Conf., pages 301-308. Int. Computer
Music Assoc., 1997.

[9] Lorin Grubb and Roger Dannenberg. Enhanced vo-
cal performance tracking using multiple information
sources. In Proc. Int. Comp. Music Conf., pages
37-44. Int. Computer Music Assoc., 1998.

[10] Alex Loscos, Pedro Cano, and Jordi Bonada. Low-
delay singing voice alignment to text. In Proc. Int.
Comp. Music Conf. Int. Computer Music Assoc.,
1999.

[11] N. Orio and Schwarz D. Alignment of monophonic
and polyphonic music to a score. In Proc. Int.
Comp. Music Conf., pages 155-158. Int. Computer
Music Assoc., 2001.

[12] N. Orio and F. Dechelle. Score following using spec-
tral analysis and hidden markov models. In Proc.
Int. Comp. Music Conf., pages 151-154. Int. Com-
puter Music Assoc., 2001.

[13] C. Raphael. Automatic segmentation of acoustic
musical signals using hidden markov models. IEEE
Trans. on PAMI, 21(4):360-370, 1999.

[14] C.Raphael. Music plus one: A system for expressive
and flexible musical accompaniment. In Proc. Int.
Comp. Music Conf. Int. Computer Music Assoc.,
2001.

[15] C. Raphael. A probabilistic expert system for auto-
matic musical accompaniment. Jour. of Comp. and
Graph. Stats., 10(3):487-512, 2001.

[16] C. Raphael. A bayesian network for real-time musi-
cal accompaniment. In T.G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural In-
formation Processing Systems, NIPS 14. MIT Press,
2002.

[17] D. Spiegelhalter, A. P. Dawid, S. Lauritzen, and
R. Cowell. Bayesian analysis in expert systems. Sta-
tistical Science, 8(3):219-283, 1993.

[18] B. Vercoe. The synthetic performer in the context
of live performance. In Proceedings of the Inter-
national Computer Music Conference, 1984, pages
199-200. Int. Computer Music Assoc., 1984.

[19] B. Vercoe and M. Puckette. Synthetic rehearsal:
Training the synthetic performer. In Proceedings
of the International Computer Music Conference,
1985, pages 275-278. Int. Computer Music Assoc.,
1985.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Christopher Raphael

