
Composition on Distributed RUBATO

by Affine Transformations and Deformations

of Musical Structures

Stefan G̈oller and Ǵerard Milmeister

MultiMedia Laboratory (MML)

Computer Science Department

University of Zürich

goeller@ifi.unizh.ch, milmei@ifi.unizh.ch

Abstract

A well-known modular software for analysis and per-
formance has been redesigned in Java for distributed
components and extended to musical composition. The
new compositional component allows for boolean op-
erations, arbitrary affine transformations and deforma-
tions on note assemblies, which instantiate a score
form representing macro events of arbitrary recursive
depth. The enabling framework is implemented on two
levels, the data structure level based on the denota-
tor concept with the corresponding operations, and the
user interface level, where operations are performed in
a 3D realm. These two components are discussed.

1 Introduction

Traditionally the toolbox of a composer contains intel-
lectual devices that allow him to manipulate his musi-
cal material and construct musical structures, leading,
hopefully, to works of art.

One such device that has been in steady use since
the great francoflamic masters from the Renaissance
up to the adherents of the Vienna School and contem-
porary composers is the collection of the various meth-
ods of counterpoint.

Even before the 19th century, but especially in the
second half of the 20th, stochastic methods have been
used to create scores, commonly known as aleatoric
music.

These devices can be subsumed under the collec-
tive term of musical transformations, in the mathe-
matical sense of a function mapping points from one
space to another (or the same) space. In the above-
mentioned case of counterpoint, a simple appropriate
space would span notes, characterized by their onset
and pitch. Such transformations include from transla-

tions, rotations, similarities and other symmetry oper-
ations.

A good example for “composition as computation”
is the first movement of Webern’s Symphony op.21.
Here every musical event can be traced to a position
in the original, retrograde, inversion and the retrograde
inversion of the fundamental series.

The performance of such transformations using
computers has long been an active topic in both re-
search in music informatics and commercial applica-
tions [Mazzola, 1990]. For the most part, however,
these efforts concentrated on specific kinds of trans-
formations, and the supporting data structures were
specially designed to support them. Thus the result-
ing utilities were far from attaining a powerful gen-
erality. This, among others, precluded the extension of
the products to tasks unforeseen at the time of design.

Often these systems were built adhoc without
much regard to future developments, and thus most of
them sooner or later have become obsolete and work
into them was left to software archeologists to salvage.

One composition tool ispresto R© [Mazzola, 1993]
developed on the Atari ST from 1988 to 1994. It pro-
vided quite a few useful transformations particularly
directed at composers. Unfortunately in this case the
efforts could not carry over by simple porting to mod-
ern platforms.

However the functionality provided bypresto is
too interesting to leave it rotting. Therefore our goal
was to implement its features in the setting of Dis-
tributed RUBATO R© [Göller and Milmeister, 2003],
the Java-based redseign of the RUBATO software for
NeXT and MacOS X [Garbers et al., 1996–2002]. This
allows for a new sophisticated 3D user interface and
the reimplementation of the transformations in a much
more general way. The key to the achievement of both
objectives lies in the use of denotators and forms [Maz-
zola] for all high-level processing.

1

2 Denotators and RUBATO

In order to reduce the risk of our project becoming
rapidly obsolete, we decided to implement Distributed
RUBATO in the Java programming language.

Apart from assuring a high degree of platform in-
dependence (development takes place on Linux and
Windows), the Java development environment pro-
vides a comprehensive set of libraries and functionality
required by a project of this extent, for instance Java
3D, network programming, sound and MIDI process-
ing.

The fundamental and pervasive data structure is the
denotator, suitable for modelling high-dimensional and
nested concept spaces and building on a wide range
of mathematical modules such as integers, reals and
string-monoid algebras.

These spaces are described by forms, which act as
blueprints for the concept spaces in question. The de-
notators are the substance that is filled into this forms
— similar to classes and instances in object-oriented
programming, or to XML documents reifying XML
schemas.

The notion of denotators is a spin-off from cate-
gory theory, the language of modern mathematics, and
a form is nothing but a directed graph with nodes be-
ing either branch nodes (limit, colimit, powerset) or
leaf nodes which contain the underlying modules. For
a profound introduction see Mazzola.

One such form is of particular importance for the
domain we are presently interested in. ThisScoreform
is a variant of the one defined in Montiel-Hernandez
[1999]. In the current shape it is designed to be es-
pecially suitable for representing common European
scores without limitations to a particular style. The
Score form provides for data from bibliographical
notes, through dynamics to key signatures. Figure 1
has an excerpt of theScoreform that emphasizes the
part relating to notes.1 It can be seen that aGeneral-
Noteencompasses ordinary notes as well as rests; refer
to Mazzola et al. [2002] for a complete reference. The
circular appearance of theGeneralNoteform allows
for arbitrary complex grouping of note assemblies.

In order to keep the description short, we concen-
trate on the part pertaining to actual notes which have
the formSimpleNote: 2

SimpleNote:.limit[Voice, Onset, Pitch,

Loudness, Duration,

Accidential,

Articulation,

1In this diagram hexagonal shapes picture product types, oval
shapes power set types and diamond shapes coproduct types.

2For those people not familiar with the DenoteX notation:
F:.limit[F1, . . . ,Fn] defines a form with nameF that is alimit,
or productof then forms with namesF1 to Fn. F:.simple(M) de-
fines asimpleform, i.e. a form that is backed with a mathematical
moduleM; see M̈uller [2002] for the EBNF specification.

Score

GeneralNotes

GeneralNote

SimpleNote Note SimpleRest

Figure 1: Excerpt from theScoreform.

Fingering];

Voice:.simple(ZString);

Onset:.simple(R);

Pitch:.simple(Q);

Loudness:.simple(RString);

Duration:.simple(R);

Essentially, a note is represented as having a voice,
an onset (a real number denoting quarter notes), pitch
(a rational number normalized to MIDI key numbers),
loudness (a string with a real factor, e.g. “60.0*Midi”)
and duration (analogous to onset).

3 Operations on Denotators

We thus presented the structural aspect of denotators.
The other aspect deals with operations that can be used
to manipulate denotators. The design of these opera-
tions is oriented on functional programming methods.
In what follows we show a few such useful tools.

On first needs a mechanism that wades through de-
notators and collects those parts that satisfy a particular
condition. This task is assumed by theSelect class,
that does just that: it takes a denotatord and predicatep
and returns a list of denotators of denotatorsg dwelling
in d with p(g) = true:

List select(Predicate p, Denotator d);

A second important operator isMap which applies
a function to all denotators that satisfy a predicate:

Denotator map(Denotator d,

Predicate p,

Function f);

These examples hardly scratch the surface of the
functionality provided by these and the other available
operation classes, including a wide ranging choice of
parameters to influence their behaviour.

2

3.1 An Example: Topological Deforma-
tion

presto incorporates a little tool, calledOrnamagic, that
can be likened to a deformation of musical structures.

A

B

CPitch

Onset

Figure 2: Deformation of a note bypresto ’s Ornamagic

In figure 2 the notes to be deformed are shown as
filled circles, the structure that serves as the force field
as open diamonds. For each pointA in the space (in this
case the two-dimensional space of onset and pitch), the
nearest neighbourB in the force field is found. Then a
similarity transformation with centerB is applied, re-
sulting in a new pointC.

In RUBATO we implemented more general defor-
mations, where Ornamagic emerges immediately as a
special case. First we define the force field as aneigh-
bour function that returns for each point in the space
the nearest neighbour. Second we provide adeformer
function: Given a point and its neighbour it returns
a new point based on an arbitrary transformation on
these two points.

The general form of the deformation function looks
like this:

List deform(Function neighbour,

List points,

Function deformer);

Ornamagic is implemented as a new function, us-
ing thedeformfunction:

List ornamagic(List neighbours,

List points,

Function distance,

Function deformer);

In this casedistancecomputes the common Eu-
clidean distance between two points. The one with the
smallest distance is taken as a second argument tode-
former.

The reason we choose a function for modelling the
force field instead of, say, a matrix, is that in general
a space is not two-dimensional and discrete, as in the

example, but may be a module of any dimension over a
ring supported by RUBATO. In this case, however, find-
ing the nearest neighbour using exhaustive search may
not be feasible. On the other hand, a function returning
the nearest neighbour for a point may encapsulate a
search algorithm hand-tailored to the domain in ques-
tion.

4 The 3D Graphical User Inter-
face

While thepresto software as well as the first version of
RUBATO had conventional 2D GUIs, the present Dis-
tributed RUBATO has an immersive 3D GUI steered by
a 6-degree-of-freedom input device (SpaceMouseTM).
The GUI is used to

• visualize all denotators

• manipulate them and

• control all parts and components (Rubettes) of
RUBATO.

The most common set-theoretic operations, those
already driving much of the power ofpresto, selection,
union, intersection and difference, have also a central
place in RUBATO and are implemented as interactive
operations in the graphical interface, which is shown
in the following.

4.1 Selection

Besides theSelect class described in section 3 there
is also a need for selecting parts of a denotator graphi-
cally.

Figure 3: Selection using a plane.

In figure 3 a set of complex notes is visualized by
a field of arrows. The user selects a subset of the set in

3

question by moving a fan plane through the space. The
intersected arrows are selected.

4.2 Intersection

A basic operation on sets is intersection.

Figure 4: Intersection of two sets.

In figure 4 two sets of data are visualized by Pinoc-
chio puppets. The highlighted Pinocchios represent the
intersection of two sets selected by the above proce-
dure. This Boolean operation is chosen from the panel
shown on the left side.

4.3 Affine Transformation

Most of the operations used by composers are special
affine transformations.

Figure 5: Affine Transformation of a subset.

In figure 5 a short piano piece from Czerny is visu-
alized by arrows in the space oflimit[Onset, Pitch,

Duration]. The user selects a small part and trans-
forms it by rotation.

5 Composition

Using the described interactions, the composer can
create musical scores in many ways. He starts either

• by generating denotators from scratch along the
Scoreform

• or by loading MIDI or DenoteX files which are
automatically cast to denotators of theScore
form.

Then the composer proceeds by applying the op-
erations from the last section. The visualized musi-
cal material can always be played directly either using
MIDI output our by remotely steering corresponding
output modules like the one described in Mazzola and
Müller [2003].

References

Jörg Garbers, Guerino Mazzola, and Oliver Zahorka.
RUBATO, 1996–2002. http://www.rubato.org.

Stefan G̈oller and Ǵerard Milmeister. Distributed
RUBATO: Foundation and multimedialization. In
G. Mazzola, T. Noll, and T. Weyde, editors,
Proceedings of the 3rd International Seminar on
Mathematical Music Theory, Osnabr̈uck, 2003.
EPOS. To be published.

Guerino Mazzola.Topos of Music. Birkhäuser, Basel.

Guerino Mazzola.Geometrie der T̈one. Birkhäuser,
Basel, 1990.

Guerino Mazzola.presto — Kompositions-Software
für den Atari. Dübendorf, 2nd edition, 1993.

Guerino Mazzola, Ǵerard Milmeister, and Stefan
Müller. Score Form, 2002.
http://www.ifi.unizh.ch/mml/musicmedia/
downloads.php4.

Guerino Mazzola and Stefan M̈uller. Constraint-based
Shaping of Gestural Performance.ICMC, 2003.

Mariana Montiel-Hernandez. El Denotador: Su
Estructura, construcción y Papel en la Teorı́a
Mateḿatica de la Musica. Master’s thesis, UNAM,
Mexico City, 1999.

Stefan M̈uller. DenoteX EBNF specification, 2002.
http://www.ifi.unizh.ch/mml/musicmedia/
downloads.php4.

4

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Stefan Göller
	Gérard Milmeister

