
A General Filter Design Language with Real-time
Parameter Control in Pd, Max/MSP, and jMax

Shahrokh Yadegari
sdy@ucsd.edu

Center for Research in Computing and the Arts
University of California, San Diego

Abstract
Most signal processing environments for computer music, such as Pd, Max/MSP, and jMax, trans-
fer audio data among their objects by vectors (blocks). In such environments, to implement Infinite
Impulse Response (IIR) filters one either has to set the block-size to 1 or to write an external object
which embeds the filter operations. Neither of these solutions are simple or trivial. In this paper
we present the fexpr∼ object which provides a general and flexible language for designing filters
by simply entering the filter expressions at object creation time and controlling their parameters
in real-time within the host environment. Fexpr∼ also allows for multiple interdependent filters to
be defined in a single object, and thus, it can be used for finding numerical solutions to differential
equations (difference equations). The implementation and the filter definition syntax of the object
are discussed along with a number of examples.

1 Introduction

This paper describes an external object, called
fexpr∼, implemented for Pd[5], Max/MSP[6], and
jMax[1] environments, providing a general and flex-
ible filter design mechanism with real-time param-
eter control. These signal processing environments
transfer audio among their objects in blocks. Im-
plementing IIR filters or generating numerical solu-
tions for differential equations require specific calcu-
lations for every sample in which the result of previ-
ous calculations may be used. In an environment
where data is transfered among objects by blocks,
to implement such algorithms one is forced to write
an external object or set the operating block-size
to 1. Both of these solutions have serious draw-
backs. Writing external objects requires knowledge
of a programming language, such as C, and often in-
volves a learning curve for the uninitiated to the in-
ternal workings of the environment. Providing real-
time control of the filter parameters in an external
object can prove to be time consuming, and recom-
pilation of the object is required for every change to
the filter definition or control mechanism of its pa-
rameters. Setting the environment block-size to 1
will make the patch creation difficult and inefficient.
The fexpr∼ object, presented in this paper, provides a

flexible mechanism for defining filters as simple ex-
pressions whose parameters are regular control or
audio streams of the environment. Thus, one is able
to control the parameters of the filters in real-time
within the processing environment.

2 Expr Family Objects

The author implemented the expr object in the origi-
nal Macintosh version of MAX (”The Patcher”) for
expression evaluation of control streams. The ex-
pression syntax for expr is very similar to expres-
sion syntax of the C programming language.[3, p53]
(None of the store, typecasting, nor any of the
following operators “-> . -- ++ ?: ” are sup-
ported at this time.) The rules for precedence of op-
erators are also the same as those defined in the C
language. In addition to arithmetic operations, expr
supports access to variables (defined in the host en-
vironment by the value object) and tables (similar to
arrays in C). It also provides a number of functions
which include all the functions of C language’s math
library and a conditional (if()) function.

Expr∼ is an extension of expr which efficiently
combines signal and control stream processing by
vector operations on the basis of the audio block-
size of the environment. The outputs of expr∼ are of

http://www.crca.ucsd.edu/~yadegari
mailto:sdy@ucsd.edu
http://www.crca.ucsd.edu
http://www.ucsd.edu

type signal. Typecasting is done by every operation
where any data is turned into a buffer where neces-
sary. Buffers are allocated at the time of expression
evaluation and freed after processing of each block.

Fexpr∼ is also an extension of expr. It is best
to think of fexpr∼ as an expr which is evaluated for
every sample. Fexpr∼ provides a syntax for access-
ing previous samples of the input streams as well as
previous samples of the output streams in the filter
expressions. One block of every input and output
streams are buffered. All the expr family objects al-
low for definition of multiple expressions, separated
by semicolon, which results in multiple outputs of
the same type. This is specially needed when using
fexpr∼ for finding numerical solutions to differential
equations representing second (or higher) order dy-
namical systems with 2 (or more) variables.

3 Implementation

All Expr family objects parse and translate the given
expressions into reverse polish notation at object cre-
ation time. The expr object evaluates its expressions
any time a new value or a ’bang’ is received in the
first inlet. Expr∼ evaluates the expression(s) ev-
ery time its service routine is called by the environ-
ment (normally at every block processing). Arith-
metic operations and functions are efficiently per-
formed on blocks where appropriate; therefore, in
expr∼ every supplied expression is evaluated once
every time the service routine is called. By contrast,
fexpr∼ evaluates the expression(s) for every sample
of every block, passing a current index number to all
the functions which implement either the arithmetic
operations or the supplied functions . The current
index value is then used for determining the value
of any indexed signal. A 4 point interpolation table
lookup algorithm is used when a signal is indexed
with a fractional value. Fexpr∼ supports a number
of methods for starting or stopping the precessing,
or for setting and clearing the previous values of the
input or output signals.

4 Filter definition Syntax

In addition to access to global variables in the host
environment, special variables are used for access-
ing input and output streams. Inlet values are de-
noted by the following syntax: $T# where, T speci-
fies the type of inlet and #, the inlet number. Integer,
float, and symbol inlets are available to all expr ob-
jects. For example, $i1 , specifies the value of the

first inlet as integer, $f3 , the value of the third inlet
as float, and $s2[5] , the value of the fifth element
of an array specified by the value of the second inlet.

Signal inputs in expr∼ are specified by the $v#
syntax where # specifies the inlet number. For exam-
ple, the output signal of “expr˜ $v1*$f2 ” is equal
to the signal received in the first inlet attenuated by
the floating point value received in the second inlet.

Signal inputs and outputs in fexpr∼ are speci-
fied by the $x#[n] and $y#[m] syntax respectively,
where # specifies the signal inlet or outlet number,
and n and mare the indexes for accessing the previ-
ous values of the signals. Fexpr∼ buffers one block
of each of its inputs and outputs; therefore:

for $x#[n], 0 <= n <= −blocksize

for $y#[m], 0 < m <= −blocksize

A number of shorthand notations are available to
make the filter definitions easier to code and read.
The shorthand notation specified by (1) implies that
when the inlet or outlet number is dropped the first
inlet or the first outlet will be used. The shorthand
notation specified by (2) implies that when an input
signal is not indexed, the current sample is assumed,
and when the output signal is not indexed the pre-
vious result (index of -1) is assumed. Applying both
shorthands will result in the last shorthand (3).

$x[n] → $x1[n] $y[n] → $y1[n] (1)
$x# → $x#[0] $y# → $y#[-1] (2)

$x → $x1[0] $y → $y1[-1] (3)

5 Examples

In this section we present a number of examples
which show various applications of the fexpr∼ ob-
ject. The examples presented in this paper have been
implemented in the Pd environment.

5.1 Linear Filters

If a linear, causal, and time-invariant IIR filter is
mathematically described by the following equa-
tion:

y(n) =
M∑
i=0

aix(n− i) +
N∑

i=1

biy(n− i) (4)

the expression supplied to fexpr∼ for this filter
would take the following form:

B∑
i=0

ai * $x1[-i] +
B∑

i=1

bi * $y1[-i] (5)

where B is the block-size of the environment.
A simple FIR filter with a zero at π can be

implemented by the following expression:

By applying the shorthands we can simplify
the expression to the following:

The following patch is an implementation of a
Karplus-Strong string synthesis algorithm with
simple parameters which can be controlled in
real-time.[2]

The two ’set’ methods set the previous values
of the output for the current block and act as excita-
tion methods. The first ’set’ method sets y1[-18]
to 1, which generates a string sound with a longer
decay than the sound generated by the second ’set’
method which sets y1[-5] to 1. The pitch of the
generated sound is controlled by the second inlet
which sets the delay value used in the two terms of
this filter.

5.2 Numerical Solutions to Differential
Equations

In this section we present an example of using the
fexpr∼ object for finding numerical solutions to dif-
ferential equations. Such numerical solutions are
found by defining difference equations which often
take the form of a set of interrelated IIR filters.

The Lorenz equation set is one of the most fa-
mous tools for studying chaotic behaviors. Lorenz
defined the following third order differential equa-
tion set as a model for convective flow in the
atmosphere.[4]

Ẋ = Pr(Y −X) (6)
Ẏ = −XZ + rX − Y

Ż = XY − bZ

The variables Pr, r, and b are control parameters
of the system, and X , Y , and Z are the unknowns
for which we find signals as solutions. While there

is no random element in the equations, numerical
solutions to Lorenz equations can exhibit complex
and seemingly random, or in other words chaotic,
results. One can generate numerical solutions for the
Lorenz equations by the following difference equa-
tions:

Xn+1 = Xn + (Pr(Yn −Xn))∆t (7)
Yn+1 = Yn + (−XnZn + rXn − Yn)∆t

Zn+1 = Zn + (XnYn − bZn)∆t

The following patch implements difference equa-
tions (7). The constant parameters pr, r, b, and dt
are defined as variables in the environment with the
value object.

The ’set’ method sets the previous values of the
3 output streams and figure (1) is a graph of the
proceeding 2048 output values generated by above
patch in Pd.

Figure 1: The first 2048 output values of the X signal
for Lorenz equations (6) generated with fexpr∼ ob-
ject in Pd with pr = 10, b = 2.66667, r = 18, dt =
0.01, and initial values for X[−1] = 0, Y [−1] = 2.3,
and Z[−1] = −4.4.

5.3 First Return Maps

Another way of generating chaotic signals is to use
one-dimensional nonlinear maps of the form:

yn+1 = f(yn) (8)

where f(x) is defined by the values of a one-
dimensional table. This form of signal generation is

computationally very efficient as there are very little
calculations involved for every sample. In fexpr∼
first return map operations can be coded as table
lookups. However, we need to note that often such
maps are defined between the values of 0 and 1 and
since arrays in signal processing environments are
kept with integer indexes, we have to scale the yn

value for indexing. If the values of our nonlinear
function between the values of 0 and 1 are stored in
a float array named “retmap ” with a size of 2048,
the following fexpr∼ expression would account for
the scaling of the values:

5.4 Real-time Control at Audio Rate

To keep the filter linear, causal, and time invariant
in equation (5), ai and bi were defined as constant
coefficients; however, with fexpr∼ one is allowed
to define the expression as complex as one wishes,
assigning various control and signal inputs as
coefficients or signal index values. As mentioned
before, fexpr∼ performs a 4 point interpolation
table lookup anytime a signal is indexed with a
fractional value; thus, the following patch defines a
filter whose response oscillates smoothly between
a flat response and a comb filter with its first zero
point at π/64. The response will be oscillating at the
frequency of the osc∼ object connected to the second
inlet of the filter.

In other words, the frequency value of the os-
cillator is controlling the shape and rate of change
of the impulse response of the filter in real-time
by changing the coefficient and delay value of the
second term of the filter at audio rate. The above
filter running within Pd under RedHat Linux 8.0 on
a 2.2 GHz Pentium 4 utilizes 3.1% of the CPU (not
including the overhead of Pd).

6 Summary

Finding numerical solutions to difference equations,
IIR filter implementation, and experimentation with
their design and control mechanism are often diffi-
cult tasks within the language of most computer mu-
sic signal processing environments. In this paper we
have introduced a new object called fexpr∼which al-

lows one to define multiple interdependent IIR fil-
ters by providing the filter expressions. Of course,
such implementation of a filter will not run as ef-
ficiently as it would run as an external; however,
fexpr∼ can often be safely used if processing power
is not a highly urgent issue. It is also a suitable teach-
ing and prototyping tool for experimenting with fil-
ter design.

7 Acknowledgment

It is a pleasure to acknowledge the ongoing input
and helpful suggestions of Miller Puckette through-
out the various design and development stages of
the expr objects.

References

[1] F. Dechelle, R. Borghesi, E. De Cecco, M. Maggi,
B. Rovan, and N. Schnell. jmax: a new java-
based editing and control system for real-time
musical applications. In Proceedings, Interna-
tional Computer Music Conference. San Francisco:
ICMA, 1998.

[2] K. Karplus and A. Strong. Digital synthesis of
plucked-string and drum timbres. Computer Mu-
sic Journal, 7(2):43–55, 1983.

[3] Brian W. Kerninghan and Dennis M. Ritchie. The
C programming language. Prentice Hall Press,
1988.

[4] Edward N. Lorenz. Deterministic nonperiodic
flow. Journal of the Atmospheric Sciences, 20,
March 1963.

[5] M. Puckette. Pure data: another integrated com-
puter music environment. In Proceedings, Inter-
national Computer Music Conference, pages 269–
272. San Francisco: ICMA, 1996.

[6] D. Zicarelli. An extensible real-time signal pro-
cessing environment for max. In Proceedings, In-
ternational Computer Music Conference. San Fran-
cisco: ICMA, 1998.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Shahrokh Yadegari

