
A Protocol for Audiovisual Cutting

Nick Collins, Fredrik Olofsson
sicklincoln.org, fredrikolofsson.com

e-mail: nick@sicklincoln.org, f@fredrikolofsson.com

Abstract

We explore the extension of an algorithmic
composition system for live audio cutting to the realm
of video, through a protocol for message passing
between separate audio and video applications. The
protocol enables fruitful musician to video artist
collaboration with multiple new applications in live
performance: The crowd at a gig can be cutup as
video in synchrony with audio cutting, a musician can
be filmed live and both the footage and output audio
stream segmented locked together. More abstract
mappings are perfectly possible, but we emphasise
the ability to reveal the nature of underlying audio
cutting algorithms that would otherwise remain
concealed from an audience.
 There are parallel MIDI and OSC realtime
implementations and text file generation for non-
realtime rendering. A propitious side effect of the
protocol is that capabilities in audio cutting can be
cheaply brought to bear for video processing.

Keywords: Realtime audio cutting, video processing,
VJ techniques

1 An Introduction to VJing

A laptop musician at a contemporary club gig is most
likely accompanied by a VJ, whose video
manipulations underscore or contrast the aural
interest. It’s recent fashion and accessibility is shown
by dedicated software like VJamm, Isadora, Aestesis
and Arkaos VJ. Flexible coding environments are
also available, the GEM extensions for PD, the Jitter
and nato.0+55 extensions for MAX/MSP, CsoundAV
and the DIPS library. There is an online community,
evidenced by audiovisualizers.com, or the lev (live
experimental video) mailing list to name but two.
 The past decades have seen the rise of scratch video
as an artform (Snider 2000), with visual artists
emulating the liberating cut and dice games of hip
hop producers. Witness Max Headroom’s stuttering,
Coldcut’s 1997 Let Us Play album, Qbert’s Wave
Twisters (2000), and Addictive TV. A new product
(www.cycling74.com/products/mspinky.html) makes
commercially available a sync scratching tool. To
quote Hart Snider (Snider 2000) ‘people appear to
dance to the beat of the music when a VJ is
scratching the motion of samples’. It is this capability
that intrigues us for automated breakbeat cutting.
 Though VJs can be found working all evening in
the background over many musician’s sets, new acts

are forming as audiovisual collectives from the
outset. Naturally, one of the prime media for
audiovisual experimentation and interaction is
computer games. The first author recently witnessed a
wonderful presentation by Frankie the Robot DJ
(frankietherobot.com), an animated DJ character built
using a 3D games engine. The team behind Frankie is
committed to accessible work for a club audience,
dancing with PlayStation controllers in hand rather
than bending over laptop screens.
 Film music is the dominant critical language, but an
interesting alternative is given by Nicholas Cook’s
model of multimedia (Cook 1998). Indeed, for VJing
we might consider Cook’s music film rather than film
music as an appropriate model. Snider notes ‘the
music always takes the lead in the relationship
between visuals and music at a show’. Cook
categorises three basic interactions, termed
conformance, complementation and contest. He takes
the view that 1-1 mappings (conformance) are not
true multimedia, but other authors and many
contemporary music videos highlight the potency of
mickey mousing (Birtwistle 2002: particularly p25,
Mick Grierson’s audiovisual cutup machine Ariel).
 A word of caution: VJing for electronica might be
taken as an admission that the visual side of laptop
musical performance is woefully boring. Yet the
distraction of the audience by the strong visual
medium is evident at some gigs. The VJ can find
themselves in the reverse situation to the film music
composer, trying not to overpower the audio.

2 Linking Audio and Video

In standard VJ practise, tempo tracking and spectral
band energy following of the output audio allows the
video artist to utilise gestures synchronised to the
music. Visualisers like Gforce, Whitecap or even
iTunes tend to work as fancy three dimensional
graphic equaliser displays. Inner compositional
details of the music are not accessible, since the
tracking acts upon the finished product. Further detail
must be explicitly passed to the video renderer. Since
visual material provides a useful accompaniment to
complex compositional systems in terms of marking
the algorithmic composition routines underlying
them, we wanted to explore the possibility for live
revelation of automatic audio cutting routines
possible through visual stimuli and correspondence.
Further, the techniques of audio cutting can be
cheaply implemented in parallel for the video
processing domain through an appropriate map.

 This paper primarily considers the club situation
where the feed of information is from audio artist to
visual artist, but the message passing could of course
be two way, with auditory algorithms utilising
information about the video processing. We focus on
the live performance situation.
 SuperCollider 2 (McCartney 1998) is a
programming language for real-time audio, perfect
for live audio synthesis and algorithmic composition.
An extension set called the BBCut Library (Collins
2002) is dedicated to real-time rhythmic audio
splicing and the investigation of cutting algorithms. It
contains many procedures emulating styles of drum
and bass and jungle, Aphex Twin style fast cut
repetitions and stranger routines. In a new project, in
collaboration with Fredrik Olofsson, the potential of
this library for both visual and combined audiovisual
cutting is being explored. This paper describes the
messaging protocol from SuperCollider to external
video applications developed for that task, and the
creative possibilities that result. Since BBCut
supports research into audio cutting, and the aim of
scratch video is to pass on audio cutting tricks into
the visual domain, this project is within the remit of
scratch video art.
 BBCut sends messages following a defined
protocol via MIDI or OSC (Open Sound Control,
Wright and Freed 1997) to a video application in the
background on the same computer or on a dedicated
machine. The authors have investigated the use of
MAX/MSP with jitter and nato on the Mac, as well as
custom C++ OpenGL software on a PC, but the
receiver could be implemented in many other
applications like director, flash or custom video
software.
 In the remaining sections we look at the protocol’s
technical specification and the sender realisation
within SuperCollider and BBCut, the various receiver
implementations across a variety of realtime video
processing software, before going on to discuss some
of the creative possibilities of audiovisual cutting and
the results of live experiments with the system.

3 The Protocol

We are not aiming to cover general information
passing between any SuperCollider patch and a video
application, believing this to be too general a task and
that further context is important in refining designs.
Instead the protocol is set up with the restricted goal
of communicating the internal states of BBCut
objects to promote their use in video manipulation.
We do not attempt to pass the hidden variables of
individual cutting routines, but the rendering state of
the BBCut hierarchy during performance. This is
sufficient however to support a number of interesting
compositional applications, detailed in a later section.
 The protocol is illustrated here with a bias to the
MIDI output version. The messages match BBCut
rendering states, as explained in the next section.

Message Values MIDI cc
numbers

Description

tempo float,
0.25-10

2/34 beats per second

phrase length float,
0.0–60.0

4/36 in seconds

source length float,
0.0-60.0

6/38 in seconds

block length float,
0.0-16.0

8/40 in seconds

phraseprop float,
0.0-1.0

9/41 proportion of phrase
completed at this time

offset float,
0.0-1.0

10/42 offset (read) position
into source. Vital for
media correspondence
in live cutting

isroll boolean,
0/1

11 a flag set by some cut
procedures

repeat length float,
0.0-16.0

12/44 current atomic cut
length in seconds

repeat
number

integer 13 up to 128 repeats per
block

block prop float,
0.0-1.0

14 rough measure of
position

amplitude float,
0.0-1.0

16 amplitude of current
repeat

synthparam float,
0.0-1.0

any spare arbitrary messages with
values already mapped
to 0.0 to 1.0

A number of wasteful, redundant or aesthetically
unnecessary messages like phrase number, block
number, source index and an on/off flag were
removed from a first draft. The receiver can infer
some parameters from others, keep it’s own counters,
and a cutter being on or off is indicated pragmatically
by whether it sends messages or not!
 Decisions were made about using only a single 7 bit
controller message where practical in order to cut the
transmission bandwidth. It was found useful to
concentrate on the core messages above, rather than
push too hard to pass many messages that would
inevitably be ignored in favour of manageable
mappings.
 Different implementations can pass the information
in different ways. The table here reflects the choices
of the MIDI implementation, which is the most
practical one for live work, since OSC in SC2
exhibits too much network jitter and delay under Mac
OS 9. File writing and OSC can cope with writing
any parameter value within the type specification. It
was felt that at least a draft of the OSC version should
be made since this will prove critical for porting to
OS X and SC Server, and allow one to escape from
the vagaries of MIDI.
 All the MIDI messages are control change, being
easy to implement and cheap to send. The protocol
has been revised after testing in live performances,
and to avoid MIDI overloads and demands on the
receiver, kept to a relatively restricted form sufficient
for the artistic ends discussed below. The volume of
MIDI messages sent is around half the maximum
MIDI bandwidth, for three simultaneous cutters
running at 180 bpm with virtuosic rolls and stutters.

4 Passing the Rendering State
of the BBCut Library

 The current performance implementation takes
advantage of the internal structure of the BBCut
Library (Collins 2002); indeed, piggy-backing the
internal message passing allowed us to set up an
effective protocol remarkably cheaply. Further
revelation rests on an understanding of the
phrase/blocks/repeats paradigm of the BBCut
Library. This is a simple hierarchy of cutting, with
the phrase at the top level, subdivided into blocks that
utilise a particular offset into the source. The blocks
are in turn subdivided into atomic repeats (stutters,
cuts) at that common offset. BBCut messaging for
rendering follows this breakdown closely,
synthesising by the repeat, and updating with each
new block or phrase. This is a live protocol, so the
pertinent message is sent at the point the information
is available, that is, it depends on the time decision
making is communicating internally in BBCut, at the
onset of new phrases, blocks or repeats, plus an
external transmission time.
 It is not practical to go into full details of the
structure of BBCut here but a portion of the class tree
will be helpful to see how the existing rendering
engine of BBCut, as represented below by the
BBCutSynthInternal class, is adapted:

 BBCutSynthInternal
 |
 BBCSMessenger
 / | \
BBCSFileOutLL BBCSMIDIOut BBCSOSCOut
 |
BBCSPoster

These BBCutSynth classes allow one to build in the
external message passing of the protocol into any
existing BBCut code, with simultaneous use of
posting, file out, MIDI and OSC as desired. Each
independent cutter can be tagged with an instance
number so that independent streams of cutting
information are passed to the external application.
The instance 0 is reserved for global messaging, like
global tempo and sectional markers.
 As a brief sideline, the file out class stores data into
a linked list while the Synth is running, so as to avoid
file writing conflicts when recording the Synth
output. The data file is written once synthesis stops.
 The following SuperCollider client code should
give an idea of how the protocol works in practise.
Adapting existing BBCut code is just a question of
nesting a BBCSMessenger derived object into the
cutsynth chain.

//demonstration of client code for a single cutter that
//transmits protocol messages via MIDI and to a file

Synth.record({
var cutsynth, midiout,ll;
midiout= MIDIOut(7); ll= LinkedList.new;

cutsynth= BBCutSynthParam.easyain(AudioIn.ar(1));
cutsynth=BBCSMIDIOut(cutsynth, 1, midiout);
cutsynth= BBCSFileOutLL(cutsynth, 1, ll);

BBCut.ar(cutsynth)
})

Simultaneous cutters share a midi out, linked list or
OSCPort object rather than wastefully create their
own instances, hence a MIDIOut, LinkedList or
OSCPort object has to be passed into an argument of
the *new class method.
 Since the protocol was developed, it has also been
used to pass messages from non BBCut
SuperCollider code. This is easy to do simply by
creating a dummy BBCSMIDIOut object or similar,
and explicitly calling the instance methods of the
class, rather than letting the BBCut structural code
call it for you.

5 Video Implementations

Prototype systems for audiovisual cutting were
developed independently by the two authors. Collins
used MIDI messaging from a Mac to a PC running
custom OpenGL + AVI video code. Olofsson
implemented on a single Mac an internal MIDI
stream from an early breakbeat cutting algorithm by
the first author to MAX/MSP plus nato.
 The current live implementation uses SuperCollider
2 sending MIDI to a MAX/MSP engine with both
nato and jitter video processing. Receiving data in
the video program is a decoder subpatch that converts
back 14 bit midi into the 0.0-1.0 floating point range.
The data is then outputted both via standard Max
subpatch outlets and as send/receive pair variables for
use in remote parts of the main video program. For
controlling OpenGL objects parameters are usually
scaled to 0-360 degrees and for other purposes, like
the offset parameter mapped to number of frames in a
captured video buffer, individual scaling is easily
accomplished. With a special patch, text file output
from SuperCollider can be imported and decoded in
non-realtime. This allows for high rendering quality
writing of movies to disk.

Figure 1 The main video processing patch

 The main control page of the live video program is
shown in Figure 1. Alongside other controllers like
LFOs, audio analysers and a step sequencer, it allows
for very interesting ways of syncing control of video
source and effect parameters to music. The syncing
features can be muted to avoid overuse tiring the eye.
 The first author has demonstrated the control of very
large flocks of OpenGL objects by writing C++
OpenGL applications as receivers on a home desktop
PC, but has yet to take this live.

6 Live Rendering Possibilities

The motivations for a mapping supporting
synchronised audio and visual cutting primarily
included the cutting of live video streams in
synchrony with audio stream cutting. A dancing
audience on a live video feed can be cut and projected
synced to the rhythmic events they hear (see Figure 2
for an example). A live drummer or other musician
playing to a click track can have their music
automatically cut whilst video of their performance is
similarly split. Since BBCut supports multiple
simultaneous tempi, this extends to acting upon an
instrumental ensemble even in the case of complex
independent parts.
 Rather than cutting live streams, where one only
has access to events which have already occurred, it
is possible to use random access in the synchronised
cutting of any prepared audiovisual material. The
BBCut Library is already set up to deal with both the
situation of live streams and finite buffers in memory.
 We are not restricted to video processing but may
utilise the protocol as a guide to any live image
rendering. For instance, OpenGL 3D graphics can be
triggered from the cutting protocol. Any visual
display can react to timing and other rendering
information reflecting audio cutting algorithms. In
practise, more than three independent objects tracking
cutters was found visually confusing, so most
demonstrations tended to use a limited number of
message passing instances.
 In live tests, the most effective displays of
synchronisation were found to be for slower paced
cut sequences. The frame rate had to be sufficiently
high to track fast audio rhythms without aliasing. For
a typical 30fps rate, only rhythmic events up to 15Hz,
corresponding to cut sizes of just larger than
demisemiquavers (32nd notes) at 120bpm, were
useful. In practical terms then, the VJ may be
required to filter some of the faster rhythmic events
into sensible video rate triggers.
 In control of OpenGL objects, useful settings were
found by equating brightness and object size to the
repeat number parameter, so that swarms of objects
exploded alongside the aurally exciting fast rolls.

7 Conclusions

Music software locked laptop performance is rife
with the difficulties of conveying interaction and
generative composition, though sometimes a laptop
performer might project their screen display to give
some clues to the audience of the profundity of their
actions. We believe though the potential for
demonstrating tangible realtime linkage between
simultaneous audio and video allows far more
audience comprehension of the new automatic cutting
technology.
 The authors have undertaken live performances
using this technology with an inevitable learning
curve but some encouraging success. A live
performance sees laptop performers Sick Lincoln and
f0 collaborate in a fusion of algorithmic breakbeat
cutting, SuperColliding electronica and complex
synced visuals. All of the situations under the live
rendering possibilities section above have been
demonstrated and are being further explored in
practical contexts. Rather than refining the technical
side, the authors now believe themselves to be in the
position of refining their mappings aesthetically.
 There is a selection of quicktime movie demos at
http://www.fredrikolofsson.com/video.

References

Birtwistle, A. 2002. “Insects, Urine and Flatulence: the
radical potential of mickey mousing.” Proceedings of
Cybersonica, Institute of Contemporary Arts, London, June
5-7, 2002. pp 23-35.

Collins, N. 2002. “The BBCut Library.” Proceedings of the
International Computer Music Conference, Goteborg,
Sweden, September 2002. pp 313-316.

Cook, Nicholas. 1998. Analysing Musical Multimedia.
Oxford University Press, New York.

McCartney, J. 1998. “Continued Evolution of the
SuperCollider Real Time Synthesis Environment.”
Proceedings of the International Computer Music
Conference, Ann Arbor, Michigan, 1998.

Snider, H. www.artengine.ca/scratchvideo/indextoc.html.
Online master’s thesis. Checked 28/2/03.

Wright,M. and Freed,A.1997. “Open Sound Control: A new
Protocol for Communicating with Sound Synthesiers.”
Proceedings of the International Computer Music
Conference, Thessaloniki, Hellas, pp 101-104.

Figure 2 A sequence of 30 frames showing breakbeat
style offsetting within a captured video sequence

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Nick Collins
	Fredrik Olofsson

