
GrIPD: A Graphical Interface Editing Tool and Run-time
Environment for Pure Data

Joseph A. Sarlo

Department of Music, University of California, San Diego
email: jsarlo@ucsd.edu

Abstract
We describe here a new interface tool for Pure Data

(Pd). GrIPD (Graphical Interface for Pure Data) is a
cross-platform software package that allows one to
design custom graphical user interfaces for Pd patches.
GrIPD is not a replacement for the native Pd interface,
but rather, is intended to allow one to create a
“performance-time” front end for a Pd patch. GrIPD
extends the usability of Pd through various features
including a multi-process design structure and TCP/IP
network communication system that natively allow for
various multiple-computer implementations.

1 Introduction
In the realm of real-time computer interaction,

knowledge of the current state of the system is crucial.
This is especially the case for real-time interactive
computer music performances, in which the cost of
system interpretation error is high. Indeed, the very
concept of interactivity necessitates some degree of
system awareness. Frequently in computer music
performances, this awareness is derived from auditory
cues, as the performer responds to the sound generated
by the system. However, visual information is often
equally important. The user must also be able to alter
the state of the system. As Norman defines (1986), there
is a Gulf of Evaluation and a Gulf of Execution between
the user and the system that must be bridged. It is the
role of the user interface to bridge these gaps.

 Many real-time computer music systems exist.
One such system is Pure Data (Pd) (Puckette 1996).
Essentially, a real-time system is implemented in Pd by
defining a set of interconnected objects, the graph of
which is referred to as a patch. The same interface is
used for both designing the system and interacting with
it.

 GrIPD (Graphical Interface for Pure Data) has
been developed as a “performance-time” user interface
system for Pd. GrIPD is not intended as a replacement
for the native Pd interface, which is used at “design-
time” for constructing Pd patches. Instead, the purpose
of GrIPD is to allow for the creation and usage of

custom “performance-time” graphical user interfaces
(GUIs) for individual Pd patches. Like Pd itself, GrIPD
is both cross-platform and open-source. GrIPD is
currently known to run on x86 Linux/GTK+ systems
and all Microsoft Windows operating systems from
Windows 95 to Windows XP.

 In this paper we will discuss the architecture and
design of GrIPD, its usage and noteworthy features, and
plans for future improvements.

2 Architecture and Design
The GrIPD software package consists of two main

components: the GrIPD Pd object and the GUI editor
and run-time environment application. These two
components operate as completely separate processes
and communicate via TCP/IP. Messages are passed
between the Pd object and the GUI application using a
simple ASCII protocol.

2.1 The GrIPD Pd Object
The GrIPD Pd object is essentially an external

library that is instantiated inside a Pd patch. The object
itself is written in the C programming language. It has
three main functions. Firstly, it acts as the TCP/IP server
for the GrIPD communication system, for which the
GUI editor and run-time environment application is the
client. Also, it includes the internal messaging system
that allows a patch to seamlessly communicate with the
GrIPD system without having to explicitly patch to the
GrIPD Pd object. Lastly, the Pd object has functions to
control aspects of the GUI application such as opening,
closing, and locking.

 The TCP/IP server aspect of the GrIPD Pd object
functions in much the same way that most servers do. It
opens a socket using an available port number or a port
number specified explicitly as an argument to the object
at instantiation time. The port is polled until a
connection is accepted from the client GUI application.
The GrIPD Pd object has an outlet to report the current
connection status. After the connection is established,
the socket is continually polled for incoming messages
from the client. Similarly, messages that are to be sent
from the server to the client are queued into a buffer that

is periodically sent and flushed. The polling interval for
both sending and receiving are user adjustable.

 A Pd patch communicates with the GrIPD system
through the Pd messaging system of “send” and
“ receive” objects. This is similar to the way the native
Pd GUI objects function, and thus, the GrIPD system
can easily be incorporated into existing Pd patches.
When the GrIPD Pd object receives a message reporting
the value of a control (e.g. slider, button, etc.) from the
GUI client application, the GrIPD Pd object sends that
value to the appropriate “ receive” objects of the Pd
patch. Similarly, the GrIPD Pd object contains multiple
“ receive” objects corresponding to the GUI controls of
the client GUI application. The GrIPD Pd object can
thus listen for appropriate messages from the “send”
objects of the Pd patch and relay them to the GUI client
application controls.

 The GrIPD Pd object also has functions to control
various aspects of the GUI application itself. For this,
the GrIPD Pd object has one inlet that accepts the
following messages:

• connect: begin polling the socket for an
incoming TCP/IP connection

• disconnect: close the TCP/IP connection
• open <optional filename>: launch the GrIPD

GUI client and optionally open a GrIPD GUI
definition file

• open_locked <optional filename>: launch
the GrIPD GUI client in locked mode,
disallowing any editing of the GUI, and
optionally open a GrIPD GUI definition file

• lock: place the GrIPD GUI application in
locked mode, disallowing any editing of the
GUI

• unlock: place the GrIPD GUI application in
unlocked (default) mode, allowing editing of
the GUI

• hide: hide the window of the GrIPD GUI
application, but do not close or disconnect from
the TCP/IP connection

• show: show the window of the GrIPD GUI
application that has been hidden, either by the
GrIPD Pd object or the GrIPD GUI application
itself

• poll_send <integer polling interval>: set
the polling interval for sending and flushing the
outgoing message queue

• poll_receive <integer polling interval>:
set the polling interval for receiving messages

• set_path <filepath>: set the path to the
location of the GrIPD GUI application (for use
with open)

2.2 The GrIPD Editor and Run-time
Environment

The GrIPD editor and run-time environment is a
stand-alone application. It is in this application that the
GUI for a Pd patch using the GrIPD system is both
edited and used. It communicates with Pd through the
GrIPD Pd object by acting as the TCP/IP client of the
GrIPD communication system. Like Pd itself, it has two
main modes of operation: edit mode and performance
mode.

 In edit mode, a GUI for a Pd patch can designed
and edited. This is done by creating GUI controls (e.g.
sliders, buttons, etc.) and editing there properties as
desired. The GrIPD GUI application implements a
WYSIWYG (what-you-see-is-what-you-get) style of
editing. When a control is created, it appears on the GUI
application window and can be moved and resized by
the usual WYSIWYG means of mouse dragging. Other
properties, such as color and font, can be edited through
a properties sub-window. Several global properties can
also be set, including window title, background color,
and polling intervals.

 While in performance mode, the GUI controls
provide their normal control functions. When acted
upon, they report their status to the GrIPD Pd object via
the TCP/IP communication system. For example, when
a button is pressed, it reports both a “bang” message and
its send symbol name to the GrIPD Pd object, which
then sends a ”bang” to all “ receive” objects in the Pd
patch sharing that symbol name. Controls can also
receive messages from the GrIPD Pd object to change
their status by the reverse process. In addition to the
status of the GUI controls, the GrIPD GUI application
can also send keyboard, mouse, and joystick events to
the GrIPD Pd object.

 The GUI application itself was written using the
Python programming language (Van Rossum and Drake
2002) and the wxWindows GUI library (Smart, et al.
2003) via the wxPython binding library. These tools
offer several advantages. Firstly, both the Python
language itself and the wxWindows library are cross
platform. This allows the GUI application to be
supported by multiple platforms without the need for
multiple versions of source code. Secondly, the
wxWindows GUI library takes advantage of native GUI
controls of the various platforms it runs under. It
accomplishes this by simply implementing its GUI
components as wrappers around the system’s native
GUI components. This has several advantages discussed
below.

3 Features and Usage
The GrIPD system has several features that provide

extended function and configuration to Pd. The most
noteworthy of these are due to two main aspects of the
GrIPD system: the graphical and control functions of the

GUI application and the multi-process design
architecture.

 GrIPD extends the interface possibilities of Pd by
offering GUI controls not available in Pd itself. These
include multi-size, color, and font dynamic-text, textbox
style data entry, and dynamic “clickable” images. In
addition, GrIPD can also capture input data from a
joystick for use in controlling parameters of a Pd patch.
Currently GrIPD offers the following types of GUI
controls: push button, toggle button, spin button, radio
button, vertical and horizontal slider, vertical and
horizontal gauge, checkbox, textbox, mouse capture
area, dynamic text rectangle frame, dynamic display
text, and dynamic clickable image.

 Since many of the wxWindows GUI components
are simply wrappers around the native system GUI
components, GrIPD controls automatically take on the
“standard” look and feel of the user’ s system. This can
greatly improve usability and provides a familiar and
comfortable environment for the user. It also grants
inherent theme ability to the GrIPD GUI application on
those systems that natively support GUI themes, such as
Microsoft Windows XP and Linux/GTK+. In this way,
the user can customize the look and feel of the GUI by
using means already provided by the system.

 The multi-process architecture of GrIPD also
offers several advantages. Firstly, it grants the ability for
prioritizing the audio processing above GUI updating
for operating systems that support process scheduling
priority. For these systems we can set the scheduling
priority of the Pd process higher than that of the GrIPD
process. Thus, we needn’ t worry about issues, such as
garbage collection, that usually disallow interpreted
languages, like Python, from being used with real-time
audio processing. We should note that the Pd native
interface takes advantage of this as well.

 Also, since the Pd and GrIPD processes are
separate and communicate via TCP/IP, we can run them
on separate computers. Specifically, GrIPD allows this
to be done easily and nearly transparently. The user
simply sets the port for both the GrIPD GUI application
and the GrIPD Pd object to be equal. This is done via a
creation argument for the Pd object and the options
menu for the GUI application. The user then sets the
connection address for the GUI application to the IP or
DNS address of the server running Pd via the options
menu. Both components can then dynamically connect
and disconnect.

 Using this multiple computer feature, GrIPD
offers several performance possibilities that can be
easily implemented. For example, a large and powerful
computer can run Pd and be used for audio processing
while a smaller and more portable computer can run the
GrIPD GUI application and be used as its controller.

 The multi-computer feature is not limited to a
single-client and single-server implementation. Multiple
GrIPD GUI clients can connect to a single Pd patch by

simply instantiating multiple GrIPD Pd objects.
Therefore, one could easily display information from
one Pd patch to multiple performers using multiple
computers. Also, multiple computers could be used to
control a single Pd patch. This opens up a multitude of
real-time performance collaboration possibilities.

 Since GrIPD uses TCP/IP as its communication
protocol, GrIPD users can take immediate advantage of
such technologies as IEEE 802.11 wireless networking
and the Internet itself. Thus, client and server computers
can be linked wirelessly using commonly available and
cost-effective standard consumer wireless networking
equipment. They can also be seamlessly linked across
great distances via the Internet. Also, since GrIPD is
cross-platform, these two computers do not need to use
the same operating system, which can be preferable
since different operating systems offer different
advantages.

4 Future Improvements
While the GrIPD system currently offers many

advanced features, it is still in its early phase of
development. Many improvements and features are
planned for the future. In addition to the usual code
improvements, GUI enhancements, and usability
extensions, GrIPD is planned to be ported to all
operating systems that Pd supports, primarily Mac OS
X. It is hoped that this will further enhance multiple
computer possibilities and extend the user base. Also,
further control possibilities such as MIDI input from the
GrIPD GUI application are planned. In a multiple
computer implementation, this would allow a client
computer running the GrIPD GUI application to accept
MIDI input and transmit the MIDI data to the server
computer running Pd. In conjunction with the previously
mentioned multiple computer feature, this could greatly
expand performance possibilities.

References
Norman, D. A., and S. W. Draper, (eds). 1986. User Centered

System Design: New Perspectives on Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Puckette, M. 1996. “Pure Data.” Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 269-272.

Smart, J., R. Roebling, V. Zeitlin and R. Dunn. 2003.
wxWindows 2.4.0: A portable C++ and Python GUI
toolkit. Artificial Intelligence Applications Institute,
University of Edinburgh. Available at
http://www.wxwindows.org.

Van Rossum, G., and F.L. Drake (eds). 2002. Python
Reference Manual. Fredericksberg, Virginia: PythonLabs.
Available at http://www.python.org.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Joseph Sarlo

