
Soundium2: An Interactive Multimedia Playground

Simon Schubiger-Banz, Stefan Müller

DIUF, Université de Fribourg, CH-1700 Friburg
MultiMedia Lab, University of Zurich, CH-8057 Zürich

email: shoobee@corebounce.org

Abstract
This paper gives an overview of Soundium2.
Soundium2 is a unique combination of different areas
of computer science ranging from real-time signal
processing over programming languages to automatic
software configuration. It not only serves as an
experimental tool for exploring new ideas in
computer science but also is frequently used in live
multimedia performances in order to expose it to real-
world conditions. Although similar systems exist, few
were designed explicitly for live multimedia-
performances. In this sense, Soundium2 is more like
a multi-user, audio-visual instrument than a software
system. Soundium2 is introduced and an overview of
its architecture is given. The features of Soundium2
are outlined and compared with related work.

1 Introduction
This paper gives an overview of Soundium2,

supported by the MultiMedia Lab of the University of
Zurich, the Parallelism and Artificial Intelligence
group of the University of Fribourg and the
Corebounce Association.

Soundium2 brings together different areas of
computer science in a unique multimedia system. The
main motivation behind Soundium2 is the quest for a
framework, which allows us to test new ideas in
audio processing and visualization with minimal
overhead. Nevertheless, the system should be rock
solid and user friendly since we use it frequently
during live performances. The current client server
architecture in combination with data flow networks,
signal processing, 3D graphics, versioned global
state, and an advanced GUI manages to match these
contradicting goals. The rest of this paper starts with
background information on related work as well as
the origins of Soundium2, then continues with an
overview of the system and finally concludes with an
outlook.

2 Background
Although several excellent multimedia systems

exist today, none of them implement all features we
consider as crucial for successful rapid development
and live performances. This section lists a small
selection of systems that perform well for certain

aspects and are in turn very inspiring for our own
work.

2.1 The Interactive Dance Club
The Interactive Dance Club (Ulyate and

Bianciardi 2002) was an installation built for the 25th
annual ACM SIGGRAPH Conference and includes
many elements also found in Soundium2 (such as
interactive, music synchronized live-visuals). On the
one hand the interactive dance club is a mix of
heterogeneous components, and thus lacks the
homogeneity and consistency of Soundium2. On the
other hand, it goes further than Soundium2 by
strongly integrating the participants of an event
through interactive zones. Although possible with
Soundium2, we consider an integration of the
audience more as an artist’ s choice than an integral
part of a performance.

2.2 The Max Family and SuperCollider
The Max environment (Pukette 2002) has its

origins in audio processing. Different extensions such
as DIPS (Matsuda and Rai 2000) add multimedia
capabilities. It shares with Soundium2 the split
between a small, optimized processing core and a
modular GUI. The main difference is that Max is a
visual programming environment. Soundium2 has an
integrated programming language too but it is mainly
used for system manipulation (e.g. system state, or
GUI) and it is completely independent of the engines,
which implement the processing core. Max allows
very fine-grained composition and control, resulting
in a highly flexible system. Despite that, typically
Max developers tend to include larger building blocks
as “externs” instead of constructing them from basic
operators. This is exactly the approach of Soundium2.
Engines export only a set of “externs” that can be
interconnected. Simple operators such as arithmetic
are excluded.

Another example is SuperCollider (McCartney
2002) which is a highly evolved computer music
language closely integrating processing and process
description. The question of granularity, placement of
processing objects, and process description is not
easily answered; the deciding argument for
Soundium2 is its main purpose: a live-performance
system where complexity (at least for the user) has to
be kept at a minimum

2.3 Parallel, Bomb, WinAmp plugins
All these tools have in common that they

visualize aspects of an audio signal such as spectrum
or level and process the audio signal with DSP
(Digital Signal Processing) algorithms. User
interaction is also possible to some degree but for
both aspects they never go as far as Soundium2.
Despite their rudimentary functionality compared to
Soundium2 or Max, some of these tools produce very
appealing output and are thus very inspiring from an
artistic perspective. Especially the success of
WinAmp plugins show that a large community is
willing to develop visualization and audio processing
tools and an even larger group is consuming their
output.

2.4 Soundium2
In addition to the inspiring work in multimedia

research in general, each of the project team members
contributes its own expertise in a specific field.
Several predecessors focusing on various aspects of
sound processing and visualization were developed
by individual members of the project. The experience
gained from its ancestors laid the foundations for the
project. Soundium2 was written entirely from scratch
as an integrated multimedia framework. It retains the
features of its predecessors considered crucial for an
interactive multimedia tool (Juillerat 2001; Specht
2000; Parish and Müller 2001; Schubiger and
Hirsbrunner 2003; Schubiger 2002):
– State of the art signal processing
– High-level information extraction e.g. beat-

detection
– State of the art 2D and 3D visualization
– Strongly typed dataflow network
– RPC client/server architecture with clustering
– Automatic software configuration for network

construction and media-format handling
– Graphical user interface optimized for interactive

live-performances

3 A closer look at Soundium2
Figure 1 depicts the overall architecture of

Soundium2. Basically, Soundium2 is based on a
multi-tier client/server architecture with one client
controlling a cluster of servers called “engines” . The
motivation for this separation is twofold: the first
motivation is code complexity and code maintenance
and the second is timing. The engines should handle
all timing sensitive operations while keeping their
code complexity small. All complex operations
should run on the client, who may or may not control
the engines in real-time. This allows us to rapidly
develop and fine-tune individual engines for specific
tasks such as 3D rendering or audio processing while
performing more complex tasks like global-state and
GUI management in the client.

CUMULUS SOUND
SERVER DECK
LIGHT

MIDI

AUDIO

VGA

CLIENT

EMP/RPC

VNC/TCP

GUI LEVEL

SOUNDIUM

LEVEL

ENGINE

LEVEL

HARDWARE

LEVEL

Figure 1 - Overview of the Soundium2 architecture

The lowest architectural level is represented by
specialized hardware (hardware level) such as video
projectors, DMX and MIDI equipment etc. All these
devices are controlled by individual engines (engine
level) which are optimized for a specific task. Each
engine holds a part of the global dataflow network
state which is manipulated through an RPC interface.
This RPC interface is mainly used by the client
(soundium level) to configure and parameterize the
engines. Only the client holds the entire global
system state composed of the per engine dataflow
networks as well as the system wide state
modification history. The client also renders a multi-
user graphical user interface (GUI level) that can be
accessed via the remote frame buffer (RFB)
(Richardson and Wood 1998) protocol over the
network for collaborative performances.

Features

Engine
The Soundium2 engine is a C++ framework based on
a processing graph of building blocks (the nodes) that
communicate which each other (along the graph
edges). It has been designed with two main goals in
mind: First, provide efficient real-time processing
facilities to different media types. Second, provide a
highly abstracted SPI (System Programming
Interface) for the building blocks that allows non-
experts to write signal and media processing code.

The first goal has been achieved by implementing
a system that makes use of extensive multithreading.
The building blocks are automatically assigned to
schedulers, which handle processing characteristics
of a specific media type. Dataflow analysis
determines the execution order inside the different
scheduling groups. The building blocks communicate
trough connected ports allowing arbitrary data types.
Inter-scheduler communication is automatically
synchronized.

The application of rigorous OO methods in C++
almost completely hides scheduling and
synchronization issues from programmers of building
blocks. For instance, ports can be accessed like
normal variables. To date, building blocks for
sequencing, audio signal processing, MIDI I/O,
parameterized OpenGL rendering graphs, and
OpenGL Performer has been implemented.

RPC interface
The RPC interface is extremely simple, basically
allowing the manipulation of the engine’s dataflow
network. The calls comprise creation and removal of
nodes as well as edges and reading and writing of
parameters. Every call takes a timestamp argument
occurring in the future, which is used by the engine to
properly schedule the execution of the call. Two
auxiliary calls allow obtaining static engine
information (supported node types and data formats)
and querying the current engine time.

SL1
The global system state (the union of the per-engine
dataflow networks) is versioned and stored as a
revision tree. Every state manipulation is saved in the
revision tree and it is thus possible to rollback to any
previous state and starting a new branch from there.
Even forward propagation of state changes is
supported if the changes are non-conflicting with
later revisions of that state. The integration of
versioning in a multimedia system ensures that no
artwork is lost and that new artwork can be easily
evolved from existing work. The storage format is
called Soundium Language 1 (SL1), a full-fledged
imperative programming language. Besides encoding
the system state, SL1 is also used for client side
scripting, GUI customization, and performance
preparation.

Resources
The management of resources such as 3D models,
textures, and audio clips is entirely HTTP (Hyper
Text Transfer Protocol) based. In addition to flat file
resources, a proprietary extended resource format
(XRS) allows association of SL1 code with media
files, thereby transforming passive resources into
active objects that can react to events like resource
loading.

Software Configuration
Resource classification1 is the foundation for the
automatic software configuration capability used in
Soundium2. A modular scheme allows the addition of
resource transformations (such as format conversion),
which are automatically aggregated based on their
semantics in order to construct high-level
transformations. Software configuration relies on an
ontology, which is planned to include meta
information beside the current media related
information such as music style, mood, etc.

1 By classification we understand the process of
determining resource properties such as content type as
well as extracting features like beat positions.

Figure 2 - The Soundium2 graphical user interface

Graphical User Interface
The graphical user interface (GUI) allows interactive
inspection and manipulation of the system state as
well as editing SL1 code. Figure 2 shows a
screenshot of the Soundium2 GUI with a selection of
user interface elements. The system state represents
the union of all dataflow networks on each engine as
a graph. SL1 scripting is used for modifications of
SL1 code. The revision tree holds the trace of all state
changes in the system and allows arbitrary jumps
between system states2. Node parameters can either
be modified through dedicated GUI elements or
associated with hardware devices such as MIDI
controllers.

Live Performance with Soundium2
Using Soundium2 for live performances mainly

consists of preparing a set of global states for the
event in question. The preparation takes into account
information such as expected music-style, social and
cultural aspect of the audience, spatial and technical
constraints of the location (projection surfaces and
on-site equipment). Hours before the event, the
engines are hooked up to the input3 and output
equipment4 and clustered with the client in an IP
network. During the event, the artists use the
graphical user interface to change parameters,
reconnect inputs, or add new nodes in order to adapt
the multimedia experience. The modifications are the
result of the artist’ s perception of the event and
constitute his live contribution to the performance.
Usually each artist focuses on an aspect like

2 The revision tree can also be seen as a multi-level
redo/undo tree.

3 Commonly used input equipment includes audio, video,
MIDI, EEG (Electro-Encephalogram), environmental
sensors, etc.

4 Output equipment are e.g. video projectors, audio-system,
laser projectors.

visualization or sound5 and the final multimedia
experience is the result of a strong interaction
between the artists as well as the audience.

4 Conclusion and Outlook
Soundium2 combines input from various domains

such as signal processing, client/server architecture,
software configuration, programming languages and
user interface design. Besides being used for live
performances (see figure 3) which is a very
satisfactory part of the work, it also serves as an
excellent playground for exploring new ideas. This is
mainly thanks to its modular design and its strong
visualization and interactive manipulation
capabilities. For example, Soundium2 is also often
used just as a framework for rapid prototyping like
the phoneme-recognition / facial-animation
demonstration given at Imagina’03 (Kalberer, Müller
and van Gool 2002). It is also used as a MMS (Multi
Media Messaging) demonstration system at
Swisscom.

Currently the system is expanding in many
directions but the basic architecture proved to be
stable for a long time. On the graphics processing
part, extensions are under the way to take into
account recent enhancements of OpenGL. To fully
immerse into the on-site equipment, DMX 512
support is currently being implemented. On the audio
part, we work on higher-level music analysis as well
as improving the interactive mixing and virtual DJ
(Disk Jockey) capabilities. A long-term endeavor is
certainly the addition of media meta information such
as style, audience perception, cultural aspects, or
mood to the ontology.

Figure 3 -Live visuals produces by Soundium2

5 Not all artists have to use Soundium2 to participate –
thanks to the wide range of supported input equipment and
signal processing inside Soundium2, Soundium2 can be
linked to almost any data source.

References
N. Juillerat. 2001. SoundEngine “Un serveur d’effets

sonores en temps réel.” Master’s thesis, Université de
Fribourg, 1700 Fribourg, Switzerland

G. A. Kalberer, P. Müller, and L. van Gool. 2002. “Speech
Animation Using Viseme Space.” Vision Modeling and
Visualization 2002, pp 463–470, Erlange, Germany

S. Matsuda and T. Rai. 2000. “DIPS: the real-time digital
image processing objects for Max environment.”
Proceedings of the International Computer Music
Conference 2000. International Computer Music
Confernece

J. McCartney. 2002. “Rethinking the Computer Language:
SuperCollider.” Computer Music Journal, 26(4):61–68

Y. I. H. Parish and P. Müller. 2001. “Procedural Modeling
of Cities” . Proceedings of SIGGRAPH’01, pp 301–308,
Los Angeles, CA, USA

M. Pukette. 2002. “MAX at Seventeen” . Computer Music
Journal, 26(4):31–43

T. Richardson and K. R. Wood. 1998. “The RFB Protocol.”
ORL, Cambridge, UK

S. Schubiger. 2002. “Automatic Software Configuration –
A Model for Service Provisioning in a Dynamic and
Heterogenous Environment.” PhD thesis, University of
Fribourg, No. 1393

S. Schubiger and B. Hirsbrunner. 2003. “JRPC - An
Efficient RPC Implementation for Java.” Java
Developer’s Journal, submitted

M. Specht. 2000. “Paralleler Software-Synthesizer –
Cumulus.” Master’s thesis, ETHZ, Eidgenössische
Technische Hochschule, 8092 Zürich, Switzerland

R. Ulyate and D. Bianciardi. 2002. “The Interactive Dance
Club: Avoiding Chaos in a Multi-Participant
Environment.” Computer Music Journal, 26:3:40–49

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Simon Schubiger-Banz
	Stefan Müller

