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Abstract

This paper addresses the problem of determining the optimum shape for a beer
glass that minimizes the heat transfer while the liquid is consumed, thereby keep-
ing it cold for as long as possible. The proposed solution avoids the use of in-
sulating materials. The glass is modeled as a body of revolution generated by a
smooth curve, constructed from a material with negligible thermal resistance, but
insulated at the base. The ordinary differential equation describing the problem
is derived from the first law of Thermodynamics applied to a control volume en-
compassing the liquid. This is an inverse optimization problem, aiming to find
the shape of the glass (represented by curve S) that minimizes the heat transfer
rate. In contrast, the direct problem aims to determine the heat transfer rate for a
given geometry. The solution obtained here is analytic, and the resulting function
describing the relation between height ans radius of the glass, is in closed form,
providing a family of optimal glass shapes that can be manufactured by conven-
tional methods. Special attention is payed to the dimensions and the capacity of
the resulting shapes.
Key-words: shape optimization; beer glass, inverse optimization problem; con-
vection heat transfer.

1 Introduction

An effective pedagogical strategy in mathematical and physics education involves
demonstrating to students how the theories taught in the classroom can be used to
address everyday problems. Nevertheless, this proves to be a difficult task more often
than not.

Few everyday problems in physics possess a level of simplicity that allows for
analytical treatment, while still capturing all phenomena involved. Introducing too
many simplifications may render the problem unrealistic1. If too few simplifications
are emploied, the problem may become unsuitable for analytical treatment2.

In the field of mathematics, finding practical problems that are easy to understand
but can be solved by straightforward techniques, is an even more challenging task. The
four-color theorem3 [Appel and Haken 1977 and Appel et al. 1977] and the hairy ball

1For example, consider an airplane wing represented by a perfectly smooth, infinitely thin flat plate
inclined by an angle θ in relation to a frictionsless airflow.

2The same airplane wing now is subjected to turbulent airflow and presents a rough surface defined
by given functions yup(x) and ylow(x), where x is the position along the chord and yup and ylow are
respectively the upper and lower half thickness at a given value of the position x

3Given any separation of a plane into contiguous regions, producing a figure called a map, no more
than four colors are needed to color the regions of the map, so that no two adjacent regions have the
same color.
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theorem4 [Eisenberg et al., 1979] are traditional examples. Both require considerable
expertise to understand the solution. More recently, ideas about how to divide a pizza
into an arbitrary number of unconventionally divided parts Humenberger 2015 have
also gained interest, but is equally challenging to understand.

Motivated by the last problem, [Pellegrini 20195 and Pellegrini 2024] envisioned an
analysis related to the beverage that arguably – or not – pairs best with pizza: beer.
Using the simplest of the mathematical optimization tools, the first derivative test,
the author obtained a function describing the shape of a family of optimized glasses.
Nevertheless, most glasses were quite large, with volumes ranging from an impractical
two liters to an outrageous 103 liters.

Building on the results of [Pellegrini 2024], this paper revisits the problem of find-
ing the optimum shape for a beer glass, such that the heat transfer rate is minimized,
to keep the beverage cold for as long as possible, while it is consumed with focus on
obtaining glasses of practical proportions and capacity.

This is an inverse optimization problem, in the sense that the objective is to find
the geometry that minimizes the heat transfer rate as opposed to the direct problem,
where the objective would be to find the heat transfer rate associated with a given
geometry. The intention is to encourage physics, mathematics and engineering stu-
dents to develop a rational approach to real problems, abandoning the fairly common
concept that ”theory in practice is different”. As a final contribution, nevertheless, the
study also aspires to help improve the drinkability of our beers.

A brief search on the literature shows literally hundreds of articles focused on
analyzing practical problems across diverse areas of physics, but nothing was found
on heat transfer, except for [Planinsic and Wolmer 2008], which addresses the heating
of cheese.

The problem of keeping a liquid contained in a reservoir at the lowest possible
temperature may be solved, as will be shown later, by finding a surface that minimizes
the area-to-volume ratio of the reservoir. The Greeks knew that the answer to the two-
dimensional version of this problem was the circle, even though they could not prove
this rigorously. Later findings showed that the solid possessing the lowest surface-
to-volume ratio was the sphere. However, formal proofs for both cases had to wait
until the 19th century. In contemporary times, this problem is addressed through the
application of the isoperimetric inequality6 in three dimensions (for which there is a
variety of proofs) or through variational calculus concepts.

Applications of surface-to-volume ratio optimization are numerous and extend to
practically all areas. In chemistry, there are studies involving reactions of all types,
such as combustion (in engines or fires), drying and humidification of particles. In
biology, there are studies involving exchanges through the skin of living beings and
the membrane of cells, microorganisms or organelles. In engineering, there are studies
of heat transfer in reservoirs and heat and mass transfer in systems subject to phase
change. In atmospheric sciences, there are studies involving the formation of rain-
drops, hail and snowflakes, as well as evaporation in vegetables and bodies of water.
In pharmacology, there are studies on the absorption of medications. It is unnecessary

4You can’t comb a hairy ball without creating a whirlpool.
5In Portuguese
6Let γ be a closed, piecewise differentiable plane curve of class C1. Let L and A be its perimeter and

surface, respectively. The isoperimetric inequality establishes that 4πA ≤ L2, with the equality valid if γ
is a circle.
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to point out the existence of a series of multidisciplinary studies, with an interface
between different areas of study.

A common factor in all the above mentioned studies, is the fact that the heat ex-
change surface does not change its shape during the process. This, however, is not the
case when considering the heat exchanged by a glass of liquid with the surroundings
during consumption. Even in a cylindrical glass, the total exchange surface under-
goes changes in shape during consumption. As the liquid level lowers, the side area
reduces while the upper area remains preserved.

Therefore, the question we answer here is: what is the optimal shape that mini-
mizes the heat transfer on a glass of liquid being consumed and with feasible propor-
tions? In other words, what is the ideal beer glass in a (as much as possible7) realistic
scenario?

2 Mathematical model

The process is quite straightforward here: a request is made for a beer, the waiter
delivers it, it is served, it is consumed. Repeat.

Once poured in the glass, the beer begins to exchange heat with its surroundings, a
process that lasts until it attains thermal equilibrium with of the environment (includ-
ing the glass), or is finished, both result that essentially nobody wants. Depending
on the initial temperature difference between the beer and the surroundings, within a
short period of time the drink may become unsuitable for consumption. In the most
favorable case, the environment at 10 °C and the beer8 at 4 °C, personal experience
shows that as long as 30 minutes may pass before the beer gets warm. In the most
critical scenario, such as at the beach on a 38 °C windy day, as few as 3 minutes may
be sufficient (again based on personal experience, exhaustively repeated) to render the
beer undrinkable.

There are several established practical methods to decrease the beer’s heat transfer
with the environment. The use of insulation tubes made of expanded polystyrene (EPS
or Styrofoam®) is probably the most common and it is also used for beer bottles in
Brazil. The use of handles on mugs is also a common method to isolate the consumer’s
hand heat from the drink inside the container. The habit of maintaining a layer of
foam on the top of the beer acts as a thermal insulator due to its low conductivity. In
addition, it also prevents excessive loss of CO2. All those methods have in common
the fact that they are passive, i.e., they do not depend on any heat transfer device or
substance. That is exactly the approach we shall use here.

To state the most general version of the problem, consider a container holding a
liquid initially not in thermal equilibrium with its surroundings, as shown in Fig 1.
Assume that the vessel is a body of revolution, generated by the rotation of a curve
S, differentiable of class C1, around the vertical axis, y. Such a geometry describes all
commercially available containers, except for some non-axisymmetric non-returnable
beer bottles. However, S is not entirely unrestricted: it must contain exactly one open-
ing and one impermeable bottom.

7What exactly does the author mean by “as much as possible”? Well, the intention here is to find an
analytical solution to the problem, for reasons that will be detailed in the Conclusion section. Therefore,
“as much as possible” really means “as far as I am able to find an analytical solution to the mathematical
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Figure 1: Typical portable liquid container device.

Therefore, let r = r(h) be a continuous function, differentiable of class C1, describ-
ing the shape of the glass, where h = h(t) is the time dependent height of liquid inside
the glass. By the inverse function theorem, r = r(h) can also be written as h = h(r).
Both forms are used here according to convenience. Thus, the domain of the prob-
lem is 0 ≤ h(r) ≤ H in the second notation or Rb ≤ r(h) ≤ Rop in the first, where
r(0) = Rb is the radius of the base and r(H) = Rop is the radius of the opening. For
obvious reasons, r = 0 may only occur at h = 0.

At this point, some knowledge about Heat Transfer ir advisable. In [Pellegrini
2019] a thorough review of the concepts needed is presented. As the text is written in
Portuguese and may, thus, present difficulties for non native speakers, the textbooks
by [Incropera and DeWitt 2006], [Çenjel and Ghajar 2014] and [Kreith and Bohn 2011]
are also highly recommended.

That said, let CV be a variable shape control volume9, encompassing the container
and the free surface of the liquid, as depicted in Fig. 1. Let’s assume the body of
the vessel has negligible thermal resistance, whereas its bottom is thermally insulated.
This is a reasonable approximation for beer glasses, where the body is made of thin
glass, for comfort, and the bottom is made of thick glass, for mechanical resistance.
Furthermore, letting the beer glass resting over an insulating surface, such as tables,
counters and cardboard disks (the famous ”wafer”), also contributes for making the
bottom insulation a reasonable hypothesis

Consider that the temperature of the beer is uniform in the whole domain while it
is being consumed. This holds true when the rate of temperature change over time is

model proposed.”
8Who drinks beer below 10 °C anyway?
9A CV is a region of the R3 space chosen to study phenomena that includes mass and/or heat transfer
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small, allowing the liquid to be in thermal equilibrium. This is generally not the case
if the initial temperature difference between the liquid and the environment is very
large.

Finally, assume the liquid to be homogeneous. This characteristic holds true for
most filtered beers, that do not form accumulations at the bottom, including the
Weizenbiers. The few craft beers that present small amounts of yeast sediment are
not considered here.

The law of conservation of energy ([8] for example) for the CV chosen is

qac = qin − qout + qgen (1)

where q = dQ/dt is the heat transfer rate and Q is the heat.
In Eqn. (1), qac represents the accumulated heat within the CV, qgen is the heat

generated inside the CV, and qin and qout denote the heat entering and leaving the CV,
respectively.

In general, while drinking beer and most beverages, there is no internal heat gen-
eration. Possible exceptions would be liquids undergoing fermentation. Thus, in our
case, qgen = 0. Assuming that the environment is the only external source of heat, Eqn.
(1) yields

qac = qin (2)

where qin enters through the body of the glass and the foam at the opening. Physically,
Eqn. 2 states the obvious: the heat entering the system is accumulated and makes the
liquid increase its temperature.

A very useful analogy between heat transfer and electricity transfer is the concept
of thermal resistance. In Ohms’ law, V = Ri, V is the electric potential difference
which moves electricity through the system at a flow rate i against an resistance R. It
can be shown that for simple geometries, the thermal potential difference ∆T, moves
heat against a thermal resistance RH, created by all material media at a flow rate
q. Thermal resistances can be of three types: conductive, convective and radiative,
each corresponding to the heat transfer mode associated. The analogy goes as far as
allowing resistances to be associated in series and in parallel.

With this concept in mind, Eqn. (2) can be rewritten as

qac =
T − T∞

Rside
+

T − T∞

RFS
(3)

where T = T(t) is the spatially uniform temperature of the beer, T∞ is the ambient
temperature, Rside and RFS are the thermal resistances of the glass and of the free
surface of the liquid, respectively.

Both resistances are composed by two other resistances associated in series: a con-
ductive resistance through the material and a convective resistance on the external
surfaces. However, to simplify the problem, the thermal conductivity of the side glass
and the foam are neglected10. Regarding the glass conductivity, our assumption may
not be completely realistic but nevertheless represents the most critical situation, i.e., a
very thin glass wall. In respect to the foam, according to [Headlee, on the internet], it

10Both depend on the shape of the surface, which has not yet been determined, rendering the solution
iterative.
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decays exponentially with time, with a half time of 57 seconds. This justifies, at least
in part, the second assumption11.

Equation (3) may then be rewritten as

qac =
T − T∞

Rcv
side

+
T − T∞

Rcv
FS

(4)

In words, the preceding equations tels that the accumulated heat enters via convection
heat transfer through the side of the container and the free surface of the liquid.

From the definitions of specific heat, cp, and density, ρ, for a volume V of an
homogeneous liquid it follows that qac = ρVcp(dT/dt). Thence,

ρVcp
dT
dt

=
T − T∞

Rcv
side

+
T − T∞

Rcv
FS

(5)

According to [Incropera, 2006]

Rcv = 1/(hcv A) (6)

where hcv is the convective heat transfer coefficient in Newton’s law of cooling,

q = hcvA∆T (7)

and A is the heat transfer area. Equation (5) then finally yields

ρVcp
dT
dt

= hcv Atot(T − T∞) (8)

where Atot is the total heat transfer area, i.e., the side plus the free surface area of the
glass.

Under the hypothesis used, Eqn. (8) shows that the temperature variation of the
liquid depends only on the heat transfer through the exposed area of the glass and the
foam and, thence that the shape of the glass is the only element responsible for the
temperature variation.

Before solving Eqn. (8), it is interesting to mention that it shows12 a number of
strategies for minimizing the rate of temperature change, dT/dt:

1. Reduce (T − T∞) by keeping the glass in a cool environment and avoiding radi-
ant heat from the sun13;

2. Increase the sum of resistances in the denominator of Eqn. (8) by keeping a tick,
generous foam over the beer;

3. Increase the conductivity resistance of the sides of the the vessel, by substituting
the glass (the material) by a more insulating material, such as thick ceramic14;

11The absence of foam is considered by experts a tasting heresy
12I always tell my students that “equations talk” to those who can listen. You may quote me.
13Which was not considered in the present mathematical modelling and would represent an extra term

in Eqn. (3).
14This strategy is often used on large mugs, alongside with a handle to keep the consumer’s hand out

of contact with the side of the glass, guaranteeing no other external heat source than the environment.
Unfortunately, it makes lip contact uncomfortable, some say.
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4. Keep the glass away from drafts, avoiding the onset of forced convection, which
is far more efficient than natural convection in transferring heat.

The considerations above show why the beach is the most challenging environment
for beer drinking: the air temperature is high, the wind is persistent, the sun shines,
and ceramic mugs are rather ridiculous.

Rearranging Eqn. (8) then yields

dT
dt

=
hcv

ρcp

(
Atot

V

)
(T − T∞) (9)

Equation (9) is the ODE that governs the problem. It can be solved for a known
geometry, because it is of the separable type. Of course, the integral involved may
not have an analytical solution, but in principle it is not a challenging mathematical
model. However, this would be the direct problem which is not the goal here.

For any fixed instant of time t and any given value of hcv/(ρcp), Eqn. (9) shows
that dT/dt gets smaller as Atot/V is reduced. Therefore, the problem of minimizing
the heat transfer reduces to

minimize
(

Atot

V

)
, t ∈ R+ (10)

This is the subject of the next section.

3 Solution

Consider Fig. 2, where the glass and its generating curve, here identified as r = r(h),
are depicted

Figure 2: Glasses’ generating curve

The minimum for the surface-to-volume ratio follows from

d
dh

(
Atot

V

)
= 0 (11)
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Here, the height of the liquid, h, is used as the independent variable as the beer is
consumed. Differentiation of Eqn. (11) yields

VdAtot/dh − AtotdV/dh
V2 = 0 (12)

Simplifying and integrating results in∫ dAtot

Atot
=
∫ dV

V
(13)

for V ̸= 0 and Atot ̸= 0. The result is ln(Atot) = ln(V) + C and, thus,

Atot = C1V (14)

where C1 does not depend on h and have dimension L−1.
From Calculus, bodies of revolution have side areas and the volumes given by

Alat = 2π
∫ h

0
r
√

1 + r′2 dh (15)

and

V = π
∫ h

0
r2 dh (16)

where the total area of heat transfer is Atot = Alat + πr2. Equation (14) then becomes

πr2 + 2π
∫ h

0
r
√

1 + r′2 dh = C1π
∫ h

0
r2 dh (17)

Differentiating in relation to h results in15

2πrr′ + 2πr
√

1 + r′2 = C1πr2 (18)

Simplifying and rearranging,√
1 + r′2 = C1r/2 − r′ (19)

for r ̸= 0, except possibly at h = 0. Squaring both sides and simplifying,

1 = (C1/2)2r2 − C1rr′ (20)

This is a separable ODE. Therefore,∫ h

0
dh =

∫ r

Rb

C1r
(C1/2)2r2 − 1

dr (21)

which can be integrated by substitution of η = (C1/2)2r2 − 1. The result is

h =
2

C1
ln
[
(C1/2)2r2 − 1

]
− 2

C1
ln
[
(C1/2)2R2

b − 1
]

(22)

15Note that the derivative of an integral is the integrand itself as long as the upper integration limit
coincides with the differentiated variable, as is the case here.
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Rearranging to make r explicit gives

r = ± 1
C1

√
4 + (C2

1 R2
b − 4)eC1h/2 (23)

which solves the problem.
To obtain a equation for the volume of the glass, Eqn. (23) is substituted into Eqn.

(16) yielding, upon integration,

V =
π

C3
1

[
4C1h + 2(C2

1 R2
b − 4)

(
eC1h/2 − 1

)]
(24)

This equation may now substituted into Eq. (14) giving

Atot =
π

C2
1

(
4C1h + (C2

1 R2
b − 4)

(
eC1h/2 − 1

))
(25)

and
Alat =

π

C2
1

(
4C1h + (C2

1 R2
b − 4)

(
eC1h/2 − 1

))
− πr2 (26)

The preceding equations express the dependence of the volume and the wet surface
of the glass with the height of the liquid as it is consumed. The total volume is obtained
simply by putting h = H into Eq. (24). To obtain the total surface of the glass, r must
be substituted by Rop in Eq. (26) and the term 2πRophf must be added, with hf being
the vertical distance from the surface of the liquid to the edge of the glass, a space
reserved to the necessary foam. The approximate result is then

Alat ≈
π

C2
1

(
4C1h + (C2

1 R2
b − 4)

(
eC1h/2 − 1

))
− πR2

b + 2πRophf (27)

This result is not exact, because it assumes that the upper part of the glass is
cylindrical, which is seldom the case.

4 Discussion

It is easy to see that the function r(h), that minimizes the heat transfer, increases from
r = Rb to r = Rop for C1 > 0. In other words, that the glass have a small base
and a large opening as expected, provided that C1 > 0. To show that r(h) grows
monotonically, first, Eq. (23) is rewritten as

h =
2

C1
ln

(
C2

1r2 − 4
C2

1 R2
b − 4

)
(28)

which implies that C1r ̸= 2. But if the condition for the existence of a maximum,
r′ = 0, is substituted into Eqn. (20) it follows that C1r = 2. Thence, by contradiction,
r(h) must grow monotonically.

Such behavior excludes many glass types, as illustrated by Fig. 3. It will soon be
demonstrated that this restriction generates a family of glasses. But if the negative
sign before the square root on Eqn. (23) is considered, a family of glasses described by
a monotonically decreasing function is generated. This possibility is currently under
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investigation, and will not be pursued any further here. For the moment, C1 > 0 will
be treated as a working hypothesis and its implication in Eqn. (28) is

C2
1r2 − 4

C2
1 R2

b − 4
> 0 (29)

Figure 3: Some types of glasses commercially available. Each is considered appropriate
to a particular kind of beer. Only the second and the fourth from the left vary (approxi-
mately) monotonically. Source: https://www.crateandbarrel.com/ideas-and-advice/types-of-
beer-glasses.

This inequality also has more than one implication, but just simplest one will be
discussed here, i.e.,

C1r ̸= 2 (30)

which is a negative relation that will soon prove to be very important. Indeed, before
Eqn. (23) is sent to the factory, and the optimized glasses start to be mass produced, it
is necessary to establish adequate values for C1, limited by Eqn. 30.

In Eqn. (28), as C1Rb → 2 from the right for fixed values of r, then h → ∞ for
any finite C1. In words, as C1Rb → 2, the optimal solution is only achievable for very
tall glasses. This should not be an issue, as one can simply chose a large value of
C1Rb. However, as C1R multiplies exp(C1h/2), large values of C1Rb results in very
large values of r. Thus as C1Rb ≫ 2 the optimal solution can only be obtained for very
large openings. Both situations suggest that there exists a suitable range of values for
C1Rb that results in practically viable glass shapes.

To obtain plausible values of C1, Eqn. (28) is initially rewritten as

e(C1h/2) =
C2

1r2 − 4
C2

1 R2
b − 4

(31)

Then, based on practical considerations, values of Rop and λ = Rop/Rb are chosen.
Substituting r = Rop = λRb and h = H into Eqn. (31) then yields

e(C1 H/2) =
(λC1Rb)

2 − 4
(C1Rb)2 − 4

(32)

Supposing that C1Rb ≈ 2 (to avoid tall glasses) and substituting into Eqn. (32) gives

e(C1 H/2) =
4(λ2 − 1)

ε
(33)
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where ε = C2
1 R2

b − 4 ≈ 0 is a small number. Equation (32) then becomes

ε ≈ 4(λ2 − 1)e−C1 H/2 (34)

Finally, the definition off ε can be inverted to yield

C1Rb =
√

ε + 4 (35)

Therefore, Eqs. (34) and (35) can be used to estimate C1 in the following way:

1. Chose adequate values for Rop and Rb;

2. Obtain a first approximation for C1 considering ε = 0 in Eq. (35). This value is
not final because it results in division by zero in Eqn. 31, once C1Rb = 2;

3. Substitute the value of ε into Eqn. (34) and recalculate ε;

4. Substitute this value of ε into Eqn. (35).

As C1 is only as a shape parameter in the solution, there is no need for further
iterations or for establishing a convergence criterion. The shape of the glass can be
obtained from Eqn. (23).

For some obscure reason, in [Pellegrini, 2019] the author let C1 vary around the
value obtained in step (2) instead of following steps (3) and (4). The procedure yielded
a few feasible solutions, but most calculations returned ridiculously large glasses, with
volumes of the order of 100 liters.

Indeed, proposing and following the above steps is one of the contributions of the
present work.

Therefore, a few typical categories of commercial glasses were chosen to test the
methodology. According to the step (1), a value for λ was chosen and lower limit to
the value for Rb was imposed. The value of C1 was then calculated according to steps
(2)–(4) yielding an optimized glass. If the volume of this glass differed from the real
glass’ volume by more than a small prescribed value (1 ml), Rb was then incremented
by a small quantity (0.1 mm) and the calculation was repeated. Therefore, the process
used as inputs the height of the glass and its relation between the base and the opening
diameter and returned the base radius of the optimized glass with almost the same
volume of the real one. The procedure was implemented in an extremely simple
computational code written in MatLaB® student version. The results are presented
and discussed in the next section.s.

5 Results

Figure 4 shows a typical result of a run of the code H and λ keep constant and Rb
increasing from . It i easy to see that large glasses are not simply a magnified version
of the small. Compare, for example, glasses with Rb = 10 mm and Rb = 50 mm – the
outermost and innermost lines respectively. Whereas the former is curved all the way
from base to opening, the later is almost cylindrical up to 1500 mm of height.

The proposed methodology was applied to five traditional categories of glasses: the
Brazilian tulip, the Imperial pint, the American pint, the Weizen glass, and the Beer
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Mug16. Their dimesions are shown in Table 1. Two non-standard categories were also
introduced: the Super mug and the My favorite, reflecting the author’s preferences.
The code was then run for each category and the results are depicted in Figs. 5 – 7.
Numerical results appear in Table 2.

Figure 4: Optimized shapes for H = 190 mm and λ = 3 for varying values of Rb.

Table 1: Typical dimensions of the glasses’ categories considered.

Category H (mm) Dop (mm) V (ml)

Brazilian tulip 190 105 300
Imperial Pint 143 120 568
American pint 149 100 473
Weizen glass 213 79 591
Beer mug 156 89 473
Super mug 200 120 1000
My favorite 210 100 600

Some details are worth emphasizing at this point. First, all solutions are very
similar, despite the glass category being considered. This is a direct consequence of
the fact that the solution is unique, i.e., that Eq. (23) has one single root in the positive
real numbers for C1 > 0. Therefore, the lateral curves are qualitatively similar, being
only quantitatively modified by H, Rb and λ.

Other important aspect is that each optimized glass represents the ideal solution
for a specific configuration, i.e., its chosen values of H, Rb and λ. There is no way to
verify if, for example, the best Weizen glass with Rb = 25 mm is better than the best
Weizen glass with Rb = 30 mm. So far, our methodology only guarantees that each
one is the best in its own category, for a given configuration. The same is valid when
comparing glasses of different categories, as for example, the best Brazilian tulip and

16Their values of height, volume and opening radius are available on the internet:
https://www.dimensions.com/collection/beer-glasses.
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Table 2: Dimensions of the optimized glasses.

Category H (mm) λ Db (mm) V (ml) ∆V (ml) C1 (1/m)

Brazilian tulip 190 3.0 34 300 0.2 117.0
Imperial Pint 143 2.0 57 567 0.8 71.5
American pint 149 3.0 43 474 0.7 93.0
Weizen glass 213 2.0 51 591 0.3 78.5
Beer mug 156 2.5 47 473 0.2 86.3
Super mug 200 2.0 66 1000 0.3 61.4
My favorite 210 2.5 48 599 0.8 83.9

Figure 5: Optimum glass of the categories Brazilian tulip (left) Imperial pint (center) and
American pint (right).

the best Imperial pint. This shortcoming is being addressed at the moment and will,
with some luck, be published briefly.

Finally, taken as a group, the seven configurations proposed cover a wide interval
of volumetric capacities, ranging from the relatively small Brazilian tulip (300 ml),
conceived to drink the mass-produced Brazilian Pilsens in hot weather, to the super
mug, a configuration proposed by the author to meet the expectations of the bold,
with one liter capacity.

As a side note for those unfamiliar with Brazilian’s drinking habits, beer is sold in
a multitude of glass bottles and cans. The most common bottle has a volume of 600 ml
(thus the volume of the My Favorite category), but bottles bearing 355, 330, 550 and

Figure 6: Optimum glasses of the categories Weinzen glass (left), and Beer mug (right).
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Figure 7: Optimum glasses of the categories Super mug (left) and My favorite (right).

1000 ml are also common. Beer cans are available in even more capacity values, with
typical examples being 269, 300, 330, 355, 473, 500 ml. I am sure that as soon as this
research is publish, another capacity will have already been invented.

Regarding the types of glass used here, the Brazilian tulip is a shape widely used
in bars, restaurants and, quite inappropriately, on our beaches. It is a rather small
glass, bearing only 300 ml capacity. Many believe it to be the natural, fancy substitute
of the most widely used of all glasses in Brazil, the “American” glass.

The American glass, also known as the “Nadir Figueiredo® glass”, due to the
family name of the first industry to manufacture it, contains a rather low volume (190
ml) and is exceptionally ugly (Fig. 8). Still, it is the most widely used beer glass in
Brazil, counting more than 6 billion units manufactured since its introduction in the
40’s. It is considered an icon in beer drinking and costs less than a quarter dollar17.
It maintains the beer cold through the most primitive of the processes: due to its low
capacity, the beer is consumed so quickly it has no time to get warm18.

Figure 8: The infamous Brazilian’s Nadir Figueiredo glass.

6 Conclusions

In this work, a method was proposed to optimize the shape of beer glasses, with the
goal of minimizing heat transfer and maintaining a low liquid temperature for an
extended period during consumption. The analysis resulted in a family of shapes that

17Yes, the low price is also important when when choosing the glass to a particular event. Depending
upon the moods of the gathering, people break as many as 20% of all glasses used.

18And no, you don´t know somebody that drinks that slow.
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can be easily manufactured using traditional methods and are suitable for everyday
use.

Throughout the analysis several hypothesis were made. The glass was modeled
as a body of revolution generated by the rotation of a continuous, class C1, mono-
tonically increasing curve around the vertical axis. Additionally, thermal resistance in
the glass body was neglected, and the bottom was assumed to be insulated. The liq-
uid’s temperature was considered spatially uniform, and the liquid itself was treated
as homogeneous, with the thermal resistance of the foam disregarded. Finally, nei-
ther radiative heat transfer nor conduction due to hand contact with the glass was
considered.

While these hypotheses may seem restrictive, the analytical results obtained remain
of both didactic and practical interest. A more complete formulation, incorporating
the effects previously disregarded, can be effectively addressed through numerical
methods. However, since the primary focus of this investigation is didactic, analytical
solutions are preferable. Closed-form analytical solutions are often favored in physics,
even when based on simplified analyses, as they offer a clear and explicit representa-
tion of the influence of all parameters involved

Moreover, an analytical solution typically provides a general conclusion about the
problem rather than focusing on a specific case study. It also clarifies the conditions
under which the results are valid. While these points may seem obvious, they are
particularly relevant in an era marked by the widespread and sometimes careless use
of computer simulations and artificial intelligence.

The problem addressed here is far from fully solved, and further studies are
needed. Future investigations should consider heat transfer through the base of the
glass, account for radiative heat transfer, and include the presence of foam. Addition-
ally, developing a criterion to obtain the global optimum for glasses across various
categories is an ongoing line of research.

In conclusion, this paper demonstrated how basic concepts of heat transfer and
extreme values of functions can be applied to a relevant everyday topic – best practices
in beer drinking. Despite the light tone, the analysis was presented with appropriate
mathematical rigor.

The primary goal of this paper is to enhance the interest of students in exact sci-
ences, particularly in Physics and Mathematics. Additionally, a secondary yet crucial
application of these findings is to educate future generations of beer enthusiasts and
to safeguard the quality of our beers
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