Propeller Manual

Version 1.01

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of product.
If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase price. Before
returning the product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the RMA number on the
outside of the box used to return the merchandise to Parallax. Please enclose the following along with the returned merchandise:
your name, telephone number, shipping address, and a description of the problem. Parallax will return your product or its
replacement using the same shipping method used to ship the product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund.
Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is void if the
product has been altered or damaged. See the Warranty section above for instructions on returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright © 2006 by Parallax Inc. By downloading or obtaining a printed copy of this documentation or
software you agree that it is to be used exclusively with Parallax products. Any other uses are not permitted and may represent a
violation of Parallax copyrights, legally punishable according to Federal copyright or intellectual property laws. Any duplication
of this documentation for commercial uses is expressly prohibited by Parallax Inc. Duplication for educational use is permitted,
subject to the following Conditions of Duplication: Parallax Inc. grants the user a conditional right to download, duplicate, and
distribute this text without Parallax's permission. This right is based on the following conditions: the text, or any portion thereof,
may not be duplicated for commercial use; it may be duplicated only for educational purposes when used solely in conjunction
with Parallax products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is often less
than typical retail duplication charges.

Parallax, Propeller Spin, and the Parallax and Propeller Hat logos are trademarks of Parallax Inc. BASIC Stamp, Stamps in
Class, Boe-Bot, SumoBot, Toddler, and SX-Key are registered trademarks of Parallax, Inc. If you decide to use any trademarks
of Parallax Inc. on your web page or in printed material, you must state that (trademark) is a (registered) trademark of Parallax
Inc.” upon the first appearance of the trademark name in each printed document or web page. Other brand and product names
herein are trademarks or registered trademarks of their respective holders.

ISBN 1-928982-38-7

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under
any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or any costs of
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is also not
responsible for any personal damage, including that to life and health, resulting from use of any of our products. You take full
responsibility for your Propeller microcontroller application, no matter how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible from
www.parallax.com via the Support — Discussion Forums menu. These are the forums that we operate from our web site:

e Propeller chip — This list is specifically for our customers using Propeller chips and products.

. BASIC Stamp — This list is widely utilized by engineers, hobbyists and students who share their BASIC Stamp
projects and ask questions.

. Stamps in Class® — Created for educators and students, subscribers discuss the use of the Stamps in Class
curriculum in their courses. The list provides an opportunity for both students and educators to ask questions
and get answers.

e Parallax Educators — A private forum exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a place for
educators to develop and obtain Teacher’s Guides.

. Robotics — Designed for Parallax robots, this forum is intended to be an open dialogue for robotics enthusiasts.
Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®, Toddler®, SumoBot®,
HexCrawler and QuadCrawler robots are discussed here.

. SX Microcontrollers and SX-Key — Discussion of programming the SX microcontroller with Parallax assembly
language SX — Key® tools and 3rd party BASIC and C compilers.

. Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know by
sending an email to editor@parallax.com. We continually strive to improve all of our educational materials and documentation,
and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and corrections for a given text will be
posted to our web site, www.parallax.com. Please check the individual product page’s free downloads for an errata file.

SUPPORTED HARDWARE, FIRMWARE AND SOFTWARE

This manual is valid with the following hardware, software, and firmware versions:

Hardware Software Firmware
P8X32A-D40
P8X32A-Q44 Propeller Tool v1.0 P8X32A v1.0
P8X32A-M44

CREDITS

Authorship: Jeff Martin. Format & Editing, Stephanie Lindsay.
Cover Art: Jen Jacobs; Technical Graphics: Rich Allred; with many thanks to everyone at Parallax Inc.

Table of Contents

[AN 0 12
CHAPTER 1 : INTRODUCING THE PROPELLER CHIPvvveiiieeeeieeeeeeeeeeeeeteeee e 13
(7o) N (o1 =1 = 13
P ACKAGE TYPES .. uuutuuuturutiretsunsasesesessnasasesesaseneennen e annan e aaseaeaesesesesesesesesess 14
PIN DESCRIPTIONS .. .uuututututetetesasesesesssesesssssseeseenses e aeaeaesesesesesesesess 15
Y=ol [0y [0 N 16
HARDWARE CONNECTIONSuvuvuvuturusesesesssssssssssnsssssssssnsssnsnsnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnaeaeseaesesns 17
BOOT UP PROCEDUREuuvuvuruturirnsesnrnsesssesnsesesnssssssssnnsnsnnnsnnnnnnnnnnnnnnnnnnn s asaesesesssesesssesns 18
RUN-TIME PROCEDUREtuttiiieieeeieeeteeeeee e e e e e e et eeeeaeeesesaataeeeeseessesssateeeseeaeesaasnsreneeeaeeas 18
SHUTDOWN PROCEDUREcciiiiiiieie e eeee e 19
BLOCK DIAGRAMutetiieie ettt ettt e e e e e e e et e e e e e e e s e et e e e e e e e e s e e saaateeeeeaeesseannreneneeeens 20
SHARED RESOURCEScciiiiiiieie ettt ettt e e 22
SYSTEM CLOCK .t eeee ettt 22
COGS (PROCESSORS) ..eeeiuttteeeitieeeeiatteeeesetteeaeaasseeaesastsseesateseessasseeasaasseeasaasseeeesassaeaesassenaenins 22
[6] = TR 24
1@ I = NPTt 26
R =LY 0 10 1= = S 27
CLKREGISTERot 28
[0 T0% 2T 30
Y =1 L] 32 30
L R Y2 31
Y LN (@ 1 32
CHARACTER DEFINITIONSeieieieie ettt ettt 32
LOG AND ANTISLOG TABLES......uuututututitititatetasatetnsnsnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnaaeaaaaseaesesns 34
] Y =] SR 34
BOOT LOADER AND SPIN INTERPRETERuututuuuuurerstsresnsnsssesssnsssnsnsssnsnnnsnssnsnnnnnsnnnnnnnnnnnnnnnnnnnns 34
CHAPTER 2 : USING THE PROPELLER TOOL....ccoiiiiiiiiiieee 35
(7o) N7 =1 = H 35
SCREEN ORGANIZATION ...ttt e et et e et e e e 37
V1= U =S 45
LRI LAY, =T 1O TP 45
Lo [0 1Y = 1 46
LU T 1Y 1Y o LU TR 47

[(o TN 1Y/ 1=Y o 1 PRSP 48
FIND/REPLACE DIALOG.....0uuuuuiururutiiatitasntnsesesatesnsnsennnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnaaeaaaeseseaesesesesesns 49
OBUECT VIEW ettt 52
OBUECT INFO .o 55
CHARACTER CHART <ottt 58
VIEW MODES, BOOKMARKS AND LINE NUMBERS.........ciitiiiiiieieieiieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 61
AV AT YA 1Y, o Yo [T 61

2T 0T0) (g 1 1= 1 T TR 63

Propeller Manual v1.0 - Page 5

Table of Contents

LiINE NUMDEISo 64
EDITIMIODEScoiieiiiieee ettt ae e s asesesesssesasssssassbssersbererernrnrnnes 65
Insert and OVEIWIItE MOAES..........ouvueeeeee et e e e e e e 65
ALIGN MOE ...ttt et e st e e s e e e e e e e e annes 66
BLOCK SELECTION AND SELECTION MOVING.......cociiiiiiiiiiiiiiieieees 68
INDENTING AND QUTDENTINGciiieieieieeeeee ettt e e e e e 69
SINGIE LINES...ceiiieiie et 70
MUIIDIE LINES .ottt ettt e e e e e ettt e e e e e e e e st e e e e e e e e eannnneeeaaaeeaanns 71
BLOCK-GROUP INDICATORS ...ceeeitiietteteeiieeeeeseeieteeeteeeeeseessaaaeeeseaeessassseseeeseseeesesasseeseeeeeessaaises 74
SHORTCUT KEYS ..ettitiviietiieretetetereteesssseserererernaesaeeera—.——————————————————nannnanannnannnaeaeaesesesesesesns 75
107 1 (=T o] g Tor= | I I 1Y i3 T 1< TSRSt 75
LISHING DY KBY oottt e aaeeeans 80
CHAPTER 3 : PROPELLER PROGRAMMING TUTORIAL........coe it 85
[O70] N o3 =1 = S 85
PROPELLER LANGUAGES (SPIN AND PROPELLER ASSEMBLY) ...eoiiiiiiiieiiiieeeeeieeeeeeieeeeesnneeaean 86
PROPELLER OBUECTS ...cciiieiiieieieieieieeeeee et et et et eeee ettt ee et eeeeeeeeeeeeeeeeeeeeeeeeeseeseessssssssssssssseresnsnsnrnres 86
QUICK REBVIBW: INTIO ...ttt eeeeeeeennnenes 91
EXERCISE 1: OUTPUT.SPIN — OUR FIRST OBUECT ...ceeteiiieieieieees 92
Downloading to RAM vs. EEPROM ... 93
QUICK REBVIBW: EX ... ettt e e e e et e e e e e e e e e enaaaeeeaeeeeaan 96
COGS (PROCESSORS) ...uttiiieiiititesititteessiteeeessttteaesneaeaesansteeesansteeesansteeeeaanseeaeaansaeaeeansseeesannees 97
EXERCISE 2: OUTPUT.SPIN = CONSTANTSooiiiiiiiiiiiieee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesesssssesnnnees 98
BLOCK DESIGNATORScieteieieieieeeeeee ettt ettt et ee et eeeeeeeeeeteeeeeeeeeesesssssesssssasssssssssssssssssssnrnrnrnres 99
EXERCISE 3: OUTPUT.SPIN = COMMENTSoeiiiiiiiieiieeesssesssssesnsnnes 100
QUICK RBVIEW: EX 2 & 3 ..ottt e e e e e e e e e e e e e e e baaee e 103
EXERCISE 4: OUTPUT.SPIN — PARAMETERS, CALLS, AND FINITE LOOPScovvvveeeiieeeeeeeeeeees 104
EXERCISE 5: OUTPUT.SPIN — PARALLEL PROCESSINGcoeveiiieiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 106
QUICK REVIBW: EX 4 & 5 ..o et 109
EXERCISE 6: OUTPUT.SPIN & BLINKER1.SPIN — USING OUR OBJECTcoeveveeeeeeeeeeeeeeeeeeeeeeees 110
THE OBUECT VIEW ..ttt e e e e e e e e e e e e e e e anaeanseaeanaeaas 112
TOP OBUECT FILE ..ttt eeseseaeaeaas 113
WHICH OBJECTS WERE COMPILED?uuuuuuuruunsnnnsnsnsnsnnnsnnennsnssnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 115
QUICK REVIBW: EX B ...ttt ettt e e e e e e e e et ae e e e e e e e e ennreeeees 116
(@SN =Tox FS RV T 0701 I 117
EXERCISE 7: OUTPUT.SPIN — MORE ENHANCEMENTScooiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaees 117
QUICK REVIBW: EX 7 ...ttt e e e e e e e e e e e e e e e enaeeeees 123
EXERCISE 8: BLINKER2.SPIN — MANY OBJECTS, MANY COGScoeviiiieiiieeeieeeeeeeeeeeeeeeeeeeeeeaes 124
OBUECT INFO WINDOWeviieieiiieiereieieteieteseseresesesesssssessssssssssssssnsssssnnnsnnnnnnnnnnsnnnnnnnnnssesesesns 128
(@ 1SN (ol I = 1] =S 129
QUICK REBVIBW: EX ...ttt eeeaeaeseesssssssesesnsesssnnernrnrnnes 130
EXERCISE 9: CLOCK SETTINGS.....ciiiiiiiiieieieiee et eeeeee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessssssssssssssnsnsnnes 131
EXERCISE 10: CLOCK-RELATED TIMINGcociiiiiiiiiiieeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseenenennes 133

Page 6 - Propeller Manual v1.0

Table of Contents

QUICK REVIEW: EX D & 10 ittt et e e eee e snte e e snaeesnneeen 137
EXERCISE 11: LIBRARY OBUECTS ... uttiieiitiieeeitieeeestteeeesatteeeesanteeeessnteeeessnsseeessseeeessnnseeeesnns 138
Work and Library FOIAErsuiiiiiiie e 141
EXERCISE 12: WHOLE AND REAL NUMBERScooiiiiiiieeeiitiieeeeetteeeeeetteeeesenteeeessbeeeessrseeaeanes 143
Pseudo-Real NUMDETSooiiiiiiiee e e 143
Floating-Point NUMDETrS..........ooiii e 144
Context-Sensitive Compile Information ... 147
QUICK REVIEW: EX 11 & 12 .o 148
CHAPTER 4 : SPIN LANGUAGE REFERENCEcoooiii it 149
STRUCTURE OF PROPELLER OBUECTS ...eeeittiiteitiiieesstteeeesanseeessssseessssseeessnnseeeesnnsseessansseeens 150
CATEGORICAL LISTING OF PROPELLER SPIN LANGUAGEcotviiiiiiieeiiiiieeesieeeeeseieeeesnneeeeens 152
= ToTod [l BT o g =1 (o] =T PSPPSR 152
L070] 01iTe [0 1= 1] o ISP PPRPRPO 152
1070 o [@701 o] LU PSPPI 153
o Tt YT 07 o] o1 (o) SRS 153
FIOW CONIIOL ..ottt a e e anans 153
1110 o] Y2 PP PP PPPP 154
DIMECHVES ...ttt et e e et et e ba b et e bebabebababsbasnsssssssssasssssnsnnsnnnnnnnnnnnnnnnns 155
(=0] (= = PP PPUTPPP 155
CONSTANES ..ot e e e e e e e e a e e e e aaaaes 156
Variable ... 156
(0T A O o T=T = (o =SSP 156
BiNary OPEratOrSooiii it e e e e e e e e e e s r e e e e e e aenaraeees 157
SYNEAX SYMDOIS e e e e e e aaa e e e 158
SPIN LANGUAGE ELEMENTS ...cciiutttiieitieitesiteeeeeeiteeee s sttt e e steeeeesaneeaesneseeesanseeeessnnseeeeannsneens 159
SYMDOI RUIES ..o e 159
Value Representationsooiiiii i 159
Syntax DefiNitioNS.......oooiiiiii e 160

1= 0 161
I 165
I 169
S I 1O 170
08] TPt 171
00 PRSPPI 174
01 I] 0 PSP 175
O G PP 177
O 0]S 179
68 0 L 180
O S 183
00 PRSP 184
0 186
0 L 187

Propeller Manual v1.0 - Page 7

Table of Contents

COGNE N ettt e e et et e e e et ee b e e e et eeatan e e aaeeaenns 189
0O I PPN 193
01 S URRPPRPPN 194
010 R 1 200
CONSTANTS (PRE-DEFINED)cueuvveueeeeeseesesesessasesesesssesesessesesesessassseseasesasesssesesessessseseasannn 202
O 1 R O > 204
3] S PRPSPPP 208
3 R 1 S 212
PP 215
0 PP 216
1 P 218
0 IR 0] PP UPUPPPP 219
B ettt ettt e e eeee et e e e e a—————eeaeeeaaa—————eeeeeeeaaa—a———eeeaeeeaaahatereeaaeeeaaararaeaaaaeearnranes 220
I 225
I I 226
05 0 228
0 P 230
05 P 233
5 P 234
0 PP 236
LONGE T tttttiee e e e ettt e e ettt e e e e e e ettt s e e e e e e ee et e e e e e e e eeetaa e e e e e e eetnnn e e e et eeetnn i aeeeeeeeennannn 240
LONGMOVE ettt e e e ettt e e e e e e ettt s e e e e e e ee et e e e e e e e eeaa e e e e e e e eetnn e e e et eeeenn e e e e eeeennannn 241
LOOKDOWN, LOOKDOWNZ.....ieeiteeeietee e e e ettt e e e e et e e e e e e et et s e e e e e e e eas e e e e e e e eeaaneeeeeeeennnnnn 242
LOOKUP, LOOKUPZ ...ttt ettt e ettt e e e e ettt e s e e e e e e et e e e e e e e e aetaaeeeaeeeennnnns 244
PSRRI 246
0] 247
OPERATORSveveeeeeteeeasetesesseseteseseseseses et et es s et esesess et et esess et esessasasesessasesesessesesesessesesesennanane 249
0L R O I 280
e I PSPPP 283
g 5] 5 R 1] > 285
e O PPSPPP 286
e PP 287
L PP 291
2] 21> U URUPPPPPRN 292
2] o P URUPPPPPRN 293
2] 2] SRR 299
] L 301
ROUN D ..ttt ettt e et e e et e e et e e e et e e et ea e e e ea e e e et e e eean et et e aeet e aeena e rar e eeenn s 303
R3] o 305
31 o0 OO 307
RSO 0] P 308
RS2 310
R 2 T 4 PSP 31

Page 8 - Propeller Manual v1.0

Table of Contents

SYMBOLS. ..ttt ettt et ettt ettt e bt at e ettt ea et e bt ekt e e Rt et e b et eR b e e e b et e eer e e s b e e nnre e 312
TRUNC <ttt ettt b et a e ettt e h et e bt e e et e et et e R bt e e bt e e et e e e b e e e na e e e b e e nnreen 314
L PP UPPPPPRPTURP 315
L PP UPPPPPPPPT 317
L O PP UPPPPPRPPR 320
O PSR PPPPP 322
2 o O PSP PP PR 326
S o PP PP PPPPPRR 328
2 I PP PP PTPPP T 329
L0 PP PP UPPPPPPPT 331
WORDE T L ettt e e et e e e e et e e e e r e e e s 335
WORDMOVE ...ttt ettt ettt b e e bt sab e et et e e s bt e e ebn e e sab e e e b et e nabe e e neneenne e 336
CXINFREQ . ¢ e 337
CHAPTER 5 : ASSEMBLY LANGUAGE REFERENCEcccooiiiiiiee e 339
THE STRUCTURE OF PROPELLER ASSEMBLY ...uutiiiiireaueeeateeeateeaeeeesneeeesseeesnseeanseessnseeenseens 339
CATEGORICAL LISTING OF PROPELLER ASSEMBLY LANGUAGEcceiiuieeriiieiieeeiieeseeeenieeenns 341
1= Tox 1)Y= SO 341
CONFIGUIALION ..o e 341
COG CONIOL ... e s e e e 341

[feTe T3 0'0] o] 11 o] SRR 341
L©70) o o 11 [0 3 0 RPN 341
FIOW CONIIOL ...ttt e e e e ettt e e e et e e e e nnee e e e ennreeeeenees 343

B O S . ee e nnreeres 343
MaiN MEMIOIY ACCESS ...t et e et e e e e e e s e e e e e e se b b aereaaaeeeennnreees 343
ComMMON OPEIALIONSoeeeeeiiiiieiie e e e e e e e e e e e e e e e e s e stnbeeeeeaaeeeennnes 343
REGISTEIS ... e 345

L7 0] 0153 =T o £ R 346
(6= A O] o T=T = (o] £ PSP PPR 346
BiNary OPEratorscoouiiiiiiiiiie i 347
ASSEMBLY LANGUAGE ELEMENTSceiutitiititeatieeaieeeeteeesteeeaaeeeesseeeaateeeameeeanaseesnseeanneeesnneeannes 348
Syntax DefiNitiONS.......ooo i 348
Propeller Assembly Instruction Master Table..........coooo e 349
= T OSSO 353
ABSNEG ..ttt ettt t et h e bt bt e e bt e na et eae e e nan e e e b e e e s e e e naneena 354
LT T T PP RPSPPPPPN 354
ADDABS .tttk etttk b e h e bt n et e R et e na et ehe e e e n e e e b et e s r e e e nnre e 355
] 8 P UPPPPPPPT 356
218 PP UPPPPPRPPRN 356
1 PP UPPPPPRTT 357
N D ettt ettt ettt e eaee e e aeeeen et e e EeeeeaeeeeaeeeaReeeateeeenteeeaneeeaneeeaaneeeaneeeeneenee 358
ANDIN < ettt e e et e e e e e e et eeta e e e et e et Enn et e et e een b e e e eeeeeennnannan 359
O PP PPPPRPPR 360

Propeller Manual v1.0 - Page9

Table of Contents

01 USRS UP R 361
0 OSSPSR 362
01 o PSP URPPPPPPTIN 362
01y e PP UPPPPPPPRN 363
01 PO URPPPPPPTIN 364
01 o G PSP UPPPPPPPPIN 364
OO PP UPPPPPPPTIN 365
OO O PP UPPTPPTPPNN 366
O 0 3 10 PSP 367
701N [T N 0] NI (G I SRS 368
DUNZ ettt ettt h et e te e Rt e eR et et e e be e Rt e eR et eR et e Rt e te e beeeReeeneeenteenteenneennes 370
=0 5 SRR 371
RSP P 372
HUB O P ettt e et e et et ee b e e e e e et ee b e e e et et etnn e e e aeeeeaees 373
N PP UPPPPRPPTIN 374
N o PO UPPPPPPPRN 374
O O PP PUPPPPPPPPN 375
LOCKNEI < ettt ettt ettt e e e et ettt e e e e e ettt ea b e e e e e e e e en b e e e e e e e eee b e e e eeeenennan 376
IO PP UPPPPPPPPN 376
0 TSP 377
L USSR 378
L PP 378
TN ettt h ke h e R et E e bt R e Rt e eR e ARt E e e bt e b et ene e bt e be e e nans 379
IS ettt ettt bbb b h e et bR Rt R et oAbt b e e b e e eb et e he e enbe e b nreennes 380
OSSPSR 380
L PRSPPI 381
L USROS URPPPPPPTIN 382
L PO SRPPPPPPTIN 382
1 O PP PPPPPPPPPIN 383
MUK C ettt ettt oo e e ettt e e e e e ettt et e e e e et et ee b e e e e e et ee b e e e e et eeeban e e eeeenenee 384
MUK Z ettt e e ettt e e oo et ettt e e oo e et et ee b e e e e et e ee b et e eeteeernnaeeeeerenee 384
1P 385
] OSSPSR 386
X o OO SPSRR 386
O SUPRR 387
R USUSRR 388
] PP URPPPPPPPIN 389
PR UPSRR 389
L@] T SR 390
] USRS 392
0] U 392
O PP 393
0 USSR 394

Page 10 - Propeller Manual v1.0

Table of Contents

0] L PO PPRRPPOPPRR 394
BDLONG ...ttt ettt ettt ettt ettt e e e bt e e ettt e e e st e e e ea s et e e e ear et e e e e r e e e e e e ra e e e e araeeeennneeeeaan 395
RDIWORD ...ttt ettt et e et e e e n e e e e r e e e e e e e nne e e sn e e s ne e e nre e e nanee e 396
REGISTERS ..ttt ettt et e e e e ettt e e e e e e ettt et e e e e e e sa s eeteeeeaeeeeaannssseneeaaeeeeaannsseneeaaeeaeannseneenaanns 397
RE S ettt e e e e e e e e R e e R e e e r e e e e e sne e e re e e nre e e neneesre e 398
R T e e e e e e e e e e s ne e e e e e e ne e e enee e eneenes 399
RV e e e e e e s ee e e e e e e snee e e e s 399
RO e e e e e e e e e e r e e e ene e e e ne e e r e e e ane e e eneeeeneenes 400
O] O PO PPP PRSP 400
R 3 O P OO PP PP PPN 401
S o O PO PP P PP PP PPON 402
R PO TP EPPPPPPN 402
Sl B ettt eeennres 403
SUBRBS .ttt e et e e et e e e ane e e s n e e e re e e sre e e nneeas 404
SUB S e e e e et e e e e e e s n e e e r e e e nre e e nareesneennes 404
SUB S X ettt e e e e et e e e e e aa e e e n e e e re e e s r e e e nareesne e 405
R U O OO PR P 406
SUM e e e e e e ene e s ne e e e e e e enee e s enes 406
SUMN C e e e eme e s ne e e e e e e ne e ene e enn e 407
SUMN Z ettt e et e e e e e e e e e e e e 408
SUMZ e et e e e e e e e e e e e enres 408
L0 P PO PO PP PPPPPPPPRRP 409
TN ettt et e et e e e e e e e e e e e e e e e e e e s a e e e e e s rae e e e nrneeeaa 410
LI PO R R PUPPRRPPRR 410
A N PO PP PPUPRPOPRR 411
WATTPEQ <ottt et e st st e st e e s e e e e ae e e s an e e et e e e sar e e e sne e e s aneeene e e nre e e nanee e 412
WATTPNE .ottt ettt e st st e st e e s s e e e eme e e s e e e et e e e sare e e sne e e sareeene e e sreeennneeas 413
WATTVID <.ttt ettt ettt e s st e st e e s s e e s eme e e s e e e e se e e smre e e smeeessneesneeesareeennneeas 414
A3 O PP UPPUOPPRRN 414
WRLONG ... e e e e e s ae e e s e e e e m e e e e e e s eme e e s e e e e ne e e sneeeenneeas 415
WRIWORD ..o e e e e e e e e s e e e e e e e e s eme e e s e e e s ne e e snneeenneeas 416
DO O P OO PP PP PPPPN 417
APPENDIX A: RESERVED WORD LISTcoiiiiiiiiiiieee e 419
APPENDIX B: ACCESSING MATH FUNCTION TABLESccoiiieeeeeeeee e 420
INDEX ..o s 425

Propeller Manual v1.0 - Page 11

Preface

Preface

Thank you for purchasing a Propeller chip. You will be spinning your own programs in no
time!

Propeller chips are incredibly capable multiprocessor microcontrollers; the much-anticipated
result of over eight years of the intense efforts of Chip Gracey and the entire Parallax
Engineering Team.

This book is intended to be a complete reference guide to Propeller chips and their
programming languages, Spin and Propeller Assembly. Have fun!

Despite our best efforts, there are bound to be questions unanswered by this manual alone.
Check out our Propeller chip discussion forum — (accessible from www.parallax.com via the
Support — Discussion Forums menu) — this is a group especially for Propeller users where
you can post your questions or review discussions that may have already answered yours.

Page 12 - Propeller Manual v1.0

1: Introducing the Propeller Chip

Chapter 1: Introducing the Propeller Chip

This chapter describes the Propeller chip hardware. To fully understand and use the Propeller
effectively, it’s important to first understand its hardware architecture. This chapter presents
the details of the hardware such as package types, package sizes, pin descriptions, and
functions.

Concept

The Propeller chip is designed to provide high-speed processing for embedded systems while
maintaining low current consumption and a small physical footprint. In addition to being
fast, the Propeller provides flexibility and power through its eight processors, called cogs,
that can perform simultaneous independent or cooperative tasks, all while maintaining a
relatively simple architecture that is easy to learn and utilize.

The resulting design of the Propeller frees application developers from common complexities
of embedded systems programming. For example:

e The memory map is flat. There is no need for paging schemes with blocks of code,
data or variables. This is a big time-saver during application development.

e Asynchronous events are easier to handle than they are with devices that use
interrupts. The Propeller has no need for interrupts; just assign some cogs to
individual, high-bandwidth tasks and keep other cogs free and unencumbered. The
result is a more responsive application that is easier to maintain.

e The Propeller Assembly language features conditional execution and optional result
writing for each individual instruction. This makes critical, multi-decision blocks of
code more consistently timed; event handlers are less prone to jitter and developers
spend less time padding, or squeezing, cycles here and there.

Propeller Manual v1.0 - Page 13

Introducing the Propeller Chip

Package Types

The Propeller chip is available in the package types shown here.

| 51mm

w W
@ ©
vﬁﬁ
N[w
o||o|[—=

w

N
ﬁﬁ
N[N
~|| 0o

PABALLAX 7
P8X32A-D40
AYWWXZZ

NG WN -
w W
(S]
0
N
o

w
=
ﬁ‘
INIIIN)
ENI 3

™ wwezy ™1

©
w
N
<
=)
O

Pin 1

w
=
x
%‘

P8X32A-D40 40-pin DIP

A
8E
<
7]

?_l
N
©
0|| -
ag

N
o o

o

Z
N N
oo
iﬁ-ﬂ
=N [N
|[o][—

[N
oo
N
w
o
=
o]

[oe)
o||o||o o <|i&I3ls][o o||o||o||o
gggaaaaaaggﬂ PPY
Y
=)

0
==
(9,1
N
o
N
=
o||T
=[[=
|~

CP3D
CP2D)
P
CPoD
(¥DD)
QvssH)
(P33
(P30
(P29)
(P28)
(P27

O
44
43
42
#1
40
39
38
37
36
35
34

wwoy

)
5
X
INI

P8X32A-Q44 P8X32A-M44

44-pin LQFP 44-pin QFN
P8X32A
0 AYWWXZZ

Fe
Sllmliolis|el|ell o
= © 0N O OB WN =

g
o

N M F L O N0 O
- - -~

w
w
0|
N
(=]

w
N

Hﬂ
NN
K[|

«

w
=]
<
o
o

N
©

x
gg

N
©

N
I
<
(9}
»

N
o

N
o
|| T
NN
N |

i
0
N
=

N
w
0
N
o

]
- - - - - N«

=[] 88 ~
—||<||= -

oflo]fo|o =|> o

Page 14 - Propeller Manual v1.0

1: Introducing the Propeller Chip

Pin Descriptions

Table 1-1: Pin Descriptions

Pin Name

Direction

Description

PO - P31

110

General purpose I/0 Port A. Can source/sink 30 mA each at 3.3 VDC. Do
not exceed 100 mA source/sink total across any group of I/O pins at once.
Logic threshold is = %2 VDD; 1.65 VDC @ 3.3 VDC.

The pins shown below have a special purpose upon power-up/reset but are
general purpose |/O afterwards.

P28 -12C SCL connection to optional, external EEPROM.

P29 -12C SDA connection to optional, external EEPROM.

P30 - Serial Tx to host.

P31 - Serial Rx from host.

VDD

3.3 volt power (2.7 — 3.3 VDC).

VSS

Ground.

BOEnN

Brown Out Enable (active low). Must be connected to either VDD or VSS.
If low, RESn becomes a weak output (delivering VDD through 5 KQ) for
monitoring purposes but can still be driven low to cause reset. If high,
RESnh is CMOS input with Schmitt Trigger.

RESN

110

Reset (active low). When low, resets the Propeller chip: all cogs disabled
and /O pins floating. Propeller restarts 50 ms after RESn transitions from
low to high.

Xl

Crystal Input. Can be connected to output of crystal/oscillator pack (with
XO left disconnected), or to one leg of crystal (with XO connected to other
leg of crystal or resonator) depending on CLK Register settings. No
external resistors or capacitors are required.

X0

Crystal Output. Provides feedback for an external crystal, or may be left
disconnected depending on CLK Register settings. No external resistors
or capacitors are required.

The Propeller (P8X32A) has 32 1I/O pins (Port A, pins PO through P31). Four of these 1/O
pins, P28-P31 have a special purpose upon power-up/reset. At power-up/reset, pins P30 and
P31 communicate with a host for programming and P28 and P29 interface to an external 32
KB EEPROM (24L.C256).

Propeller Manual v1.0 - Page 15

Introducing the Propeller Chip

Specifications

Table 1-2: Specifications

Model

P8X32A

Power Requirements

3.3 volts DC

External Clock Speed

DC to 80 MHz (4 MHz to 8 MHz with Clock PLL running)

System Clock Speed

DC to 80 MHz

Internal RC Oscillator

12 MHz or 20 kHz (approximate; may range from 8 MHz — 20 MHz,
or 13 kHz — 33 kHz, respectively)

Main RAM/ROM

64 K bytes; 32 KB RAM + 32 KB ROM

Cog RAM

512 x 32 bits each

RAM/ROM Organization

Long (32-bit), Word (16-bit), or Byte (8-bit) addressable

I/O pins 32 CMOS signals with VDD/2 input threshold.
Current Source/Sink per /O 30 mA
Current Source/Sink per 8 pins | 100 mA

Current Draw @ 3.3 vdc, 70 °F

500 pA per MIPS (MIPS = Freq in MHz / 4 * Number of Active Cogs)

Page 16

Propeller Manual v1.0

1: Introducing the Propeller Chip

Hardware Connections

Figure 1-1 shows an example wiring diagram that provides host and EEPROM access to the
Propeller chip. In this example the host access is achieved through the Propeller Clip device
(a USB to TTL serial converter).

Propeller Plug

i

00| 6D ¥
RST 0T 3| RsT % (E-‘ -
! o58/ix & “)g| <> ToPC
—Rx 0§ &rrx X
A\ Rx ¢
Po 1 40 0 P31 ——— 3.3V
Pid2 30 fpgo—X> | 10 kQ
P2 3 38) pog—SDA W—
P3[] 4 37 pg—SCL
pafls 36 [J P27 241.C256
P5[] 6 35 [P26 o vec—-
Pe[]7 34 1 P25 M WPJ—_L
P78 33 [J P24 Crystal A2 seLff—— ==
vss [9 32 [0 vDD m vss sDA| V-SS
3.3V BOEn[10 =@ JJ 31 QX0 - — DIP
: =® 9. =
—RESNQ 1 X 30 [Xi Vss
vop [12 N8 29:|vss|—_|
Pg [13 ?H:‘: 28 [1 P23
P9 [14 oS/ 27[Q0pP22
2 A
—_— P10 [15 © N 26 [1 P21
- P11 16 25 [1 P20
Vss P12 17 24 [1 P19
P13] 18 23 1 P18
P14 [] 19 22 [P17
P15 [20 21 1 P16
DIP-40

Figure 1-1: Example wiring diagram that allows for programming the Propeller chip and
an external 32 Kbyte EEPROM, and running the Propeller with an external crystal.

Propeller Manual v1.0 - Page 17

Introducing the Propeller Chip

Boot Up Procedure
Upon power-up (+ 100 ms), RESn low-to-high, or software reset:

1. The Propeller chip starts its internal clock in slow mode (= 20 KHz), delays for 50 ms
(reset delay), switches the internal clock to fast mode (= 12 MHz), and then loads and
runs the built-in Boot Loader program in the first processor (Cog 0).

2. The Boot Loader performs one or more of the following tasks, in order:

a. Detects communication from a host, such as a PC, on pins P30 and P31. If
communication from a host is detected, the Boot Loader converses with the
host to identify the Propeller chip and possibly download a program into
Main RAM and optionally into an external 32 KB EEPROM.

b. If no host communication was detected, the Boot Loader looks for an
external 32 KB EEPROM (24LC256) on pins P28 and P29. If an EEPROM
is detected, the entire 32 KB data image is loaded into the Propeller chip’s
Main RAM.

c. Ifno EEPROM was detected, the boot loader stops, Cog 0 is terminated, the
Propeller chip goes into shutdown mode, and all I/O pins set to inputs.

3. If either step 2a or 2b was successful in loading a program into the Main RAM, and a
suspend command was not given by the host, then Cog 0 is reloaded with the built-in
Spin Interpreter and the user code is run from Main RAM.

Run-Time Procedure

A Propeller Application is a user program compiled into its binary form and downloaded to
the Propeller chip’s RAM and, possibly, external EEPROM. The application consists of code
written in the Propeller chip’s Spin language (high-level code) with optional Propeller
Assembly language components (low-level code). Code written in the Spin language is
interpreted during run time by a cog running the Spin Interpreter while code written in
Propeller Assembly is run in its pure form directly by a cog. Every Propeller Application
consists of at least a little Spin code and may actually be written entirely in Spin or with
various amounts of Spin and assembly. The Propeller chip’s Spin Interpreter is started in
Step 3 of the Boot Up Procedure, above, to get the application running.

Once the boot-up procedure is complete and an application is running in Cog 0, all further
activity is defined by the application itself. The application has complete control over things
like the internal clock speed, I/O pin usage, configuration registers, and when, what and how
many cogs are running at any given time. All of this is variable at run time, as controlled by

Page 18 - Propeller Manual v1.0

1: Introducing the Propeller Chip

the application, including the internal clock speed. See Chapter 3: Propeller Programming
Tutorial.

Shutdown Procedure

When the Propeller goes into shutdown mode, the internal clock is stopped causing all cogs
to halt and all I/O pins are set to input direction (high impedance). Shutdown mode is
triggered by one of the three following events:

1) VDD falling below the brown-out threshold (=2.7 vdc), when the brown-out circuit is
enabled,

2) the RESn pin going low, or
3) the application requesting a reboot (see the REBOOT command, page 292).

Shutdown mode is discontinued when the voltage level rises above the brown-out threshold
and the RESn pin is high.

Propeller Manual v1.0 - Page 19

Introducing the Propeller Chip

Block Diagram

Figure 1-2: Propeller Chip Block Diagram

Cog 1

Counter A+ PLL
Counter B + PLL
Video Generator
1/0 Output Reg.

g_-D

1/0 Direction Reg.

Counter A+ PLL
Counter B + PLL
Video Generator
1/0 Output Reg.
1/0 Direction Reg.

Counter A+ PLL
Counter B + PLL

Video Generator
1/0 Output Reg.

1/0 Direction Reg.
Counter A+ PLL
Counter B + PLL

Video Generator
1/0 Output Reg.

1/0 Direction Reg.

1/0 Direction Reg.

Counter A+ PLL
Counter B + PLL

Video Generator
1/0 Output Reg.

512 X 32 512 X 32 512 X 32 512 X 32 512 X 32
RAM RAM RAM RAM RAM
Processor Processor Processor Processor Processor
'y /Ty 7y 'y 'y
32
32
\ 4 32 A\ 4 \ 4 \ 4 \ 4
4 A
y 16 \ 4 \ 4 y A 4
VDD Power Up
Detector > vV Hub v
VSS (~10 ms) Reset Delay RESET
I > (50ms)
BOE| Detector CLKSEL 8192 X 32 RAM
.3 8192 X 32 ROM
<
SOFTRES RC Oscillator 3 __Bus Clock (+2) |
12 MHz / 20 KHz A 4 -
» crock Cog Clocks (=1
5 Selector CLOCK Cog Enables
(MUX)
PLLENA — Cl;)ck PLL
X, 2X,
4x, 8x, 16x SOFTRES «
(16x must be PLLENA <« Configurati
Crystal 64-128 MHz) OSCENA <« onfiguration
Oscillator OSCMODE < g Register
DC - 80 MHz- <
OSCENA —; (4 - 8 MHz CLKSEL «

OSCMODE —24p)

with Clock PLL)

Page 20 -

Propeller Manual v1.0

1: Introducing the Propeller Chip

Cog and Hub interaction is critical to the Propeller chip. The Hub controls which cog can
access mutually-exclusive resources, such as Main RAM/ROM, configuration registers, etc.
The Hub gives exclusive access to every cog one at a time in a “round robin” fashion,
regardless of how many cogs are running, in order to keep timing deterministic.

Cog 5 Cog 6 Cog7

|ﬂ> |ﬂ> |ﬂ> Pin Directions
Pin Outputs
32432
\A 4
(R3D+> (P15
B3+ >(P1d)
r - L - _ (P29)e», &> P13)
=28l s 3 =28l sl 3 =2 sl sl 2 @0 4.»(32)
= o) = ol| & =l e D
allz||®||]|z allz||®[|]|z allz ol
+||+]| 2| |Z]| < +|[+[2||Z]| e ++gi‘f: P2+ >(P1D
<[=(|&|3l|2 <l=(|&||3|2 <l=(| 5|32 (P26)«»] >(P10)
sl s||o]|S =l s ol sl s|oll=
(= =
3113|[2ells 3|(3l12ll2]ls 3|1 3l|2llello P2+ 110 |e(P8D)
ClOlIEEl= had 0) | = | o e | = (P23« Pins [P
51511\/132 51§1M32 51I§AXM32 (P22)+» > P6)
P21 «»(_P5)
Processor Processor Processor % {@
=T =T T o [
P18+ «>(P2)
G+ (P
(P16)> <> P0)
32
- Pin Inputs \ 4
System Counter
\ 4 A 4 A 4 Data Bus
A\ 4 \ 4 V¥ Address Bus

System
Counter

Hub and Cog Interaction

Propeller Manual v1.0 - Page 21

Introducing the Propeller Chip

Shared Resources

There are two types of shared resources in the Propeller: 1) common, and 2) mutually-
exclusive. Common resources can be accessed at any time by any number of cogs.
Mutually-exclusive resources can also be accessed by any number of cogs, but only by one
cog at a time. The common resources are the I/O pins and the System Counter. All other
shared resources are mutually-exclusive by nature and access to them is controlled by the
Hub. See the Hub section on page 24.

System Clock

The System Clock (shown as “CLOCK” in Figure 1-2) is the central clock source for nearly
every component of the Propeller chip. The System Clock’s signal comes from one of three
possible sources: 1) the Internal RC Oscillator, 2) the Clock Phase-Locked Loop (PLL), or
3)the Crystal Oscillator (an internal circuit that is fed by an external crystal or
crystal/oscillator pack). The source is determined by the CLK register’s settings, which is
selectable at compile time or at run time. The only components that don’t use the System
Clock directly are the Hub and Bus; they divide the System Clock by two (2).

Cogs (processors)

The Propeller contains eight (8) processors, called cogs, numbered 0 to 7. Each cog contains
the same components (see Figure 1-2): a Processor block, local 2 KB RAM configured as 512
longs (512 x 32 bits), two 1/O Assistants with PLLs, a Video Generator, [/O Output Register,
I/O Direction Register, and other registers not shown in the diagram. See Table 1-3 for a
complete list of cog registers. Each cog is designed exactly the same and can run tasks
independently from the others.

All eight cogs are driven from the same clock source, the System Clock, so they each
maintain the same time reference and all active cogs execute instructions simultaneously.
See System Clock, above. They also all have access to the same shared resources, like 1/0
pins, Main RAM, and the System Counter. See Shared Resources, above.

Cogs can be started and stopped at run time and can be programmed to perform tasks
simultaneously, either independently or with coordination from other cogs through Main
RAM. Regardless of the nature of their use, the Propeller application designer has full
control over how and when each cog is employed; there is no compiler-driven or operating
system-driven splitting of tasks between multiple cogs. This method empowers the developer
to deliver absolutely deterministic timing, power consumption, and response to the embedded
application.

Page22 - Propeller Manual v1.0

1: Introducing the Propeller Chip

Each cog has its own RAM, called Cog RAM, which contains 512 registers of 32 bits each.
The Cog RAM is all general purpose RAM except for the last 16 registers, which are special
purpose registers, as described in Table 1-3. The Cog RAM is used for executable code, data,
variables, and the last 16 locations serve as interfaces to the System Counter, I/O pins, and
local cog peripherals.

When a cog is booted up, locations 0 ($000) through 495 ($1EF) are loaded sequentially from
Main RAM / ROM and its special purpose locations, 496 ($1F0) through 511 ($1FF) are
cleared to zero. After loading, the cog begins executing instructions, starting at location 0 of
Cog RAM. It will continue to execute code until it is stopped or rebooted by either itself or
another cog, or a reset occurs.

Table 1-3: Cog RAM Special Purpose Registers
Cog RAM Map Address | Name Type Description
/ $1F0 PAR Read-Only' |Boot Parameter
$1F1 CNT Read-Only’ |System Counter
$000 $1F2 INA Read-OnIy1 Input States for P31 - PO
! $1F3 INB Read-Only’ |Input States for P63- P32°
: $1F4 OUTA Read/Write | Output States for P31 - PO
: $1F5 ouTB Read/Write | Output States for P63 — p32?
: General_ Purpose $1F6 DIRA Read/Write | Direction States for P31 - PO
i (Egg'it?zs) $1F7 DIRB Read/Write | Direction States for P63 - P32
: $1F8 CTRA Read/Write | Counter A Control
| $1F9 CTRB | Read/Write |Counter B Control
: $1FA FRQA Read/Write | Counter A Frequency
?IIEE Spocial Purpose $1FB FRQB Read/Write | Counter B Frequency
$|I|:F 'aeg')ftg? $1FC PHSA |Read/Write |Counter A Phase:
$1FD PHSB Read/Write |Counter B Phase
$1FE VCFG Read/Write |Video Configuration
$1FF VSCL Read/Write |Video Scale

Note 1: Only accessible as a Source Register (i.e. MOV DEST, SOURCE).
Note 2: Reserved for future use.

Propeller Manual v1.0 - Page 23

Introducing the Propeller Chip

Each Special Purpose Register may be accessed via:

1) its physical register address,

2) its predefined name, or

3) aregister array variable with an index of 0 to 15.
The following are examples in Propeller Assembly:

MOV $1F4, #SFF "Set OUTA 7:0 high
MOV OUTA, #sFF "Same as above

The following are examples in Spin:

SPR[$4] := SFF "Set OUTA 7:0 high
OUTA := sFF "Same as above
Hub

To maintain system integrity, mutually-exclusive resources must not be accessed by more
than one cog at a time. The Hub maintains this integrity by controlling access to mutually-
exclusive resources, giving each cog a turn to access them in a “round robin” fashion from
Cog 0 through Cog 7 and back to Cog 0 again. The Hub, and the bus it controls, runs at half
the System Clock rate. This means that the Hub gives a cog access to mutually-exclusive
resources once every 16 System Clock cycles. Hub instructions, the Propeller Assembly
instructions that access mutually-exclusive resources, require 7 cycles to execute but they
first need to be synchronized to the start of the Hub Access Window. It takes up to 15 cycles
(16 minus 1, if we just missed it) to synchronize to the Hub Access Window plus 7 cycles to
execute the hub instruction, so hub instructions take from 7 to 22 cycles to complete.

Figure 1-3 and Figure 1-4 show examples where Cog 0 has a hub instruction to execute.
Figure 1-3 shows the best-case scenario; the hub instruction was ready right at the start of that
cog’s access window. The hub instruction executes immediately (7 cycles) leaving an
additional 9 cycles for other instructions before the next Hub Access Window arrives.

System Clock
FallingEdge# — 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
'

Cog Clock —» Yo R I T N N O T T T T O T L L B I B
Hub Clock —
4 4 4 4 4) 4 4 4 4 4 4 4
Cog w/Hub Access — 0 1 2 3 4 5 6 7 0 1 2 3 4
Cog 0 Hub I
Instruction (HI) HI HI
(7 clocks) |<— (7 clocks) —>|<— (9 clocks) —>|

Page 24 - Propeller Manual v1.0

1: Introducing the Propeller Chip

System Clock
FallingEdge#—0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
CogC|OCk_>+++++++++++i#iiiiiiiiiiii
Hub Clock —

t t t t t t t
Cog w/Hub Access — 0 1 0 1 2 3 4

t t t

2 3 4

Cog 0 Hub

Instruction (HI) T— HI —T T_ HI _T
|<— (7 clocks) —>|<— (9 clocks) —>|

(7 clocks)
Figure 1-3: Cog-Hub Interaction — Best Case Scenario

o -
o -
~—

Figure 1-4 shows the worst-case scenario; the hub instruction was ready on the cycle right
after the start of Cog 0’s access window; it just barely missed it. The cog waits until the next
Hub Access Window (15 cycles later) then the hub instruction executes (7 cycles) for a total
of 22 cycles for that hub instruction. Again, there are 9 additional cycles after the hub
instruction for other instructions to execute before the next Hub Access Window arrives. To
get the most efficiency out of Propeller Assembly routines that have to frequently access
mutually-exclusive resources, it can be beneficial to interleave non-hub instructions with hub
instructions to lessen the number of cycles waiting for the next Hub Access Window. Since
most Propeller Assembly instructions take 4 clock cycles, two such instructions can be
executed in between otherwise contiguous hub instructions.

System Clock
FallingEdge#—0 1 2 3 4 5 6 7 8 9 10 11 1213 14 1516 17 18 19 20 21 22 23 24
(PR IR BN 2 S N S S S N 2N S N N AL R N BN A N B

Cog Clock — (g |
Hub Clock —
i 4 4 4 4 4 4 4 t t 4 4 t
Cog w/Hub Access — 0 1 2 3 4 5 6 7 0 1 2 3 4
Cog 0 Hub t T T
Instruction (HI) - - - - Hl missed... waitingtosync - - - - HI
(22 clocks) fe————— (15 clocks) | (7 clocks) —|

Figure 1-4: Cog-Hub Interaction — Worst Case Scenario

Keep in mind that a particular cog’s hub instructions do not, in any way, interfere with other
cogs’ instructions because of the Hub mechanism. Cog 1, for example, may start a hub
instruction during System Clock cycle 2, in both of these examples, possibly overlapping its
execution with that of Cog 0 without any ill effects. Meanwhile, all other cogs can continue
executing non-hub instructions, or awaiting their individual hub access windows regardless of
what the others are doing.

Propeller Manual v1.0 - Page 25

Introducing the Propeller Chip

/O Pins

The Propeller has 32 1/O pins, 28 of which are entirely general purpose. Four I/O pins (28 -
31) have a special purpose at Boot Up and are available for general purpose use afterwards;
see the Boot Up Procedure section on page 18. After boot up, any I/O pins can be used by
any cogs at any time since I/O pins are one of the common resources. It is up to the
application developer to ensure that no two cogs try to use the same I/O pin for different
purposes during run-time.

Each cog has its own 32-bit I/O Direction Register and 32-bit I/O Output Register. The state
of each cog’s Direction Register is OR’d with that of the previous cogs’ Direction Registers.
Similarly, each cog’s output states is OR’d with that of the previous cogs’ output states. Note
that each cog’s output states are made up of the OR’d states of its internal I/O hardware and
that is all AND’d with its Direction Register’s states. The result is that each /O pin’s
direction and output state is the “wired-OR” of the entire cog collective. No electrical
contention between cogs is possible, yet they can all still access the I/O pins simultaneously!

The result of this I/O pin wiring configuration can easily be described in the following simple
rules:

A. A pin is an input only if no active cog sets it to an output.
B. A pin outputs low only if all active cogs that set it to output also set it to low.
C. A pin outputs high if any active cog sets it to an output and also sets it high.

Table 1-4 demonstrates a few possible combinations of the collective cogs’ influence on a
particular I/O pin, P12 in this example. For simplification, these examples assume that bit 12
of each cog’s I/O hardware, other than its I/O Output Register, is cleared to zero (0).

Page 26 - Propeller Manual v1.0

1: Introducing the Propeller Chip

Table 1-4: /O Sharing Examples

Bit 12 of Cogs’ I/0 Bit 12 of Cogs’ I/O | State of /O Pin Rule

Direction Register Output Register P12 Followed
Cog ID 01234567 01234567
Example 1 00000O0O0O 000000O00O Input A
Example 2 10000000 000000O0O Output Low B
Example 3 10000000 10000000 Output High C
Example 4 10000000 01000000 Output Low B
Example 5 11000000 01000000 Output High C
Example 6 11111111 01010000 Output High C
Example 7 11111111 00010000 Output High C
Example 8 11101111 00010000 Output Low B

Note: For the I/O Direction Register, a 1 in a bit location sets the corresponding 1/0 pin to the
output direction while a 0 sets it to an input direction.

Any cog that is shut down has its Direction Register and output states cleared to zero,
effectively removing it from influencing the final state of the I/O pins that the remaining
active cogs are controlling.

Each cog also has its own 32-bit Input Register. This input register is really a pseudo-
register; every time it is read, the actual states of the I/O pins are read, regardless of their
input or output direction.

System Counter

The System Counter is a global, read-only, 32-bit counter that increments once every System
Clock cycle. Cogs can read the System Counter (via their CNT register, page 184) to perform
timing calculations and can use the WNARITCNT command (page 322) to create effective delays
within their processes. The System Counter is a common resource. Every cog can read it
simultaneously. The System Counter is not cleared upon startup since its practical use is for
differential timing. If a cog needs to keep track of time from a specific, fixed moment in
time, it simply needs to read and save the initial counter value at that moment in time, and
compare all of the later counter values against that initial value.

Propeller Manual v1.0 - Page 27

Introducing the Propeller Chip

CLK Register

The CLK register is the System Clock configuration control; it determines the source of and
the characteristics for the System Clock. More precisely, the CLK register configures the RC
Oscillator, Clock PLL, Crystal Oscillator, and Clock Selector circuits. (See Figure 1-2:
Propeller Chip Block Diagram on page 20.) It is configured at compile time by the _CLKMODE
declaration and is writable at run time through the CLKSET command. Whenever the CLK
register is written, a global delay of =75 us occurs as the clock source transitions.

Whenever this register is changed, a copy of the value written should be placed in the Clock
Mode value location (which is BYTE[4] in Main RAM) and the resulting master clock
frequency should be written to the Clock Frequency value location (which is LONGJ[0] in
Main RAM) so that objects which reference this data will have current information for their
timing calculations. (See CLKMODE, page 179, and CLKFREQ, page 175.) When possible, it is
recommended to use the CLKSET command (page 183), since it automatically updates all the
above-mentioned locations with the proper information.

Table 1-5: CLK Register Structure
Bit 7 6 5 4 3 2 1 0
Name | RESET | PLLENA | OSCENA | OSCM1 | OSCMO0 | CLKSEL2 | CLKSEL1 | CLKSELO

Table 1-6: RESET (Bit 7)

Bit Effect

0 Always write ‘0’ here unless you intend to reset the chip.

Same as a hardware reset — reboots the chip. The Spin command REBOOT writes a
‘1’ to the RESET bit.

Page 28 - Propeller Manual v1.0

1: Introducing the Propeller Chip

Table 1-7: PLLENA (Bit 6)

Bit

Effect

Disables the PLL circuit. The RCFAST and RCSLOW settings of the _CLKMODE
declaration configure PLLENA this way.

Enables the PLL circuit. Each of the PLLxx settings of the _CLKMODE declaration
configures PLLENA this way at compile time. The Clock PLL internally multiplies the
XIN pin frequency by 16. OSCENA must also be ‘1’ to propagate the XIN signal to the
Clock PLL. The Clock PLL's internal frequency must be kept within 64 MHz to 128 MHz
— this translates to an XIN frequency range of 4 MHz to 8 MHz. Allow 100 ps for the
Clock PLL to stabilize before switching to one of its outputs via the CLKSELX bits.
Once the Crystal Oscillator and Clock PLL circuits are enabled and stabilized, you can
switch freely among all clock sources by changing the CLKSELX bits.

Table 1-8: OSCENA (Bit 5)

Bit

Effect

Disables the Crystal Oscillator circuit. The RCFAST and RCSLOW settings of the
_CLKMODE declaration configure OSCENA this way.

Enables the Crystal Oscillator circuit so that a clock signal can be input to XIN, or so
that XIN and XOUT can function together as a feedback oscillator. The XINPUT and
XTALXx settings of the _CLKMODE declaration configure OSCENA this way. The
OSCMXx bits select the operating mode of the Crystal Oscillator circuit. Note that no
external resistors or capacitors are required for crystals and resonators. Allow a crystal
or resonator 10 ms to stabilize before switching to a Crystal Oscillator or Clock PLL
output via the CLKSELX bits. When enabling the Crystal Oscillator circuit, the Clock
PLL may be enabled at the same time so that they can share the stabilization period.

Table 1-9: OSCMx (Bits 4:3)

_CLKMODE XOouT XIN/XOUT

Setting Resistance | Capacitance FTE TR (R

XINPUT Infinite 6 pF (pad only) | DC to 128 MHz Input

XTALA1 2000 Q 36 pF 4 to 16 MHz Crystal/Resonator

XTAL2 1000 Q 26 pF 8 to 32 MHz Crystal/Resonator

XTAL3 500 Q 16 pF 20 to 60 MHz Crystal/Resonator

Propeller Manual v1.0 - Page 29

Introducing the Propeller Chip

Table 1-10: CLKSELXx (Bits 2:0)

CLKSELXx _CLKMODE Master

. Source Notes
20110 Setting Clock
- No external parts.
01040 RCFAST 12 MHz Internal May range from 8 MHz to 20 MHz.
- Very low power.
0101 RCSLOW 20 kHz Internal May range from 13 kHz to 33 kHz.
0|11]0 XINPUT XIN 0osC OSCENA must be '1".

0|11 XTALx and PLL1x XIN x 1 OSC+PLL |OSCENA and PLLENA must be '1'.

1] 0| 0| XTALxand PLL2x XIN x 2 OSC+PLL |OSCENA and PLLENA must be '1'.

11011 XTALx and PLL4x XIN x 4 OSC+PLL |OSCENA and PLLENA must be '1".

111 | 0| XTALxand PLL8x XIN x 8 OSC+PLL |OSCENA and PLLENA must be '1".

111 | 1| XTALxand PLL16x | XINx16 | OSC+PLL |OSCENA and PLLENA must be '1".

Locks

There are eight lock bits (also known as semaphores) available to facilitate exclusive access
to user-defined resources among multiple cogs. If a block of memory is to be used by two or
more cogs at once and that block consists of more than one long (four bytes), the cogs will
each have to perform multiple reads and writes to retrieve or update that memory block. This
leads to the likely possibility of read/write contention on that memory block where one cog
may be writing while another is reading, resulting in misreads and/or miswrites.

The locks are global bits accessed through the Hub via the Hub Instructions: LOCKNEW,
LOCKRET, LOCKSET, and LOCKCLR. Because locks are accessed only through the Hub, only one
cog at a time can affect them, making this an effective control mechanism. The Hub
maintains an inventory of which locks are in use and their current states, and cogs can check
out, return, set, and clear locks as needed during run time. See LOCKNEW, 230; LOCKRET, 233;
LOCKSET, 234; and LOCKCLR, 228 for more information.

Main Memory

The Main Memory is a block of 64 K bytes (16 K longs) that is accessible by all cogs as a
mutually-exclusive resource through the Hub. It consists of 32 KB of RAM and 32 KB of

Page 30 - Propeller Manual v1.0

1: Introducing the Propeller Chip

ROM. The 32 KB of Main RAM is general purpose and is the destination of a Propeller
Application either downloaded from a host or uploaded from the external 32 KB EEPROM.
The 32 KB of Main ROM contains all the code and data resources vital to the Propeller chip’s
function: character definitions, log, anti-log and sine tables, and the Boot Loader and Spin
Interpreter. The Main Memory organization is shown in Figure 1-5.

$0000)

Propeller Application
Code and Data
(8192 Longs)

g RAM
(8192 Longs)

$7FFF Figure 1-5: Main
$80|00 Character Set Memory Map
. (4096 Longs,
1 256 Characters of
$BFFF 16 x 32 pixels) | ROM
$C000 — $CFFF | Log Table (2048 words) (8192 Longs)
$D000 — $DFFF | Anti-log Table (2048 words)
$E000 — $F001 | Sine Table (2049 words)
$F002 — $FFFF | Boot Loader & Interpreter

e

Main RAM

The first half of Main Memory is all RAM. This space is used for your program, data,
variables and stack(s); otherwise known as your Propeller Application.

When a program is loaded into the chip, either from a host or from an external EEPROM, this
entire memory space is written. The first 16 locations, $0000 — $000F, hold initialization data
used by the Boot Loader and Interpreter. Your program’s executable code and data will
begin at $0010 and extend for some number of longs. The area after your executable code,
extending to $7FFF, is used as variable and stack space.

There are two values stored in the initialization area that might be of interest to your program:
a long at $0000 contains the initial master clock frequency, in Hertz, and a byte following it
at $0004 contains the initial value written into the CLK register. These two values can be
read/written using their physical addresses (LONG[$0] and BYTE[$4]) and can be read by using
their predefined names (CLKFREQ and CLKMODE). If you change the CLK register without using
the CLOCKSET command, you will also need to update these two locations so that objects which
reference them will have current information.

Propeller Manual v1.0 - Page 31

Introducing the Propeller Chip

Main ROM

The second half of Main Memory is all ROM. This space is used for character definitions,
math functions, and the Boot Loader and Spin Interpreter.

Character Definitions

The first half of ROM is dedicated to a set of 256 character definitions. Each character
definition is 16 pixels wide by 32 pixels tall. These character definitions can be used for
video displays, graphical LCD's, printing, etc. The character set is based on a North
American / Western European layout (Basic Latin and Latin-1 Supplement), with many
specialized characters inserted. The special characters are connecting waveform and
schematic building-blocks, Greek symbols commonly used in electronics, and several arrows

and bullets.
AR — s BN
" ' - 56 - >7
it

p>
2 9
R Y

Q
3
S
s

t =
£ X ~1
X [> 00 <]
e s

m
1
Q
q

A 5
1) <
P \
: !

O[T || b4

) ®

1 #s%8&" () x+,—./ =
@ABCDEFGHIJKLMNO U\V Z[\]
abcdefghijklmnopqrstuv z{|}~l
XL/AA N D] Lt | 5
T E€¥ Dbl == F° 2 ° HuSim ' <>,
ARARAARCEEEETIIIIPNOOOOOxBUUOUYPB
348334.6e€8811113M06680+eUdGlbe

Figure 1-6: Propeller Font Characters

The character definitions are numbered 0 to 255 from left-to-right, top-to-bottom in Figure
1-6, above. In ROM, they are arranged with each pair of adjacent even-odd characters
merged together to form 32 longs. The first character pair is located in bytes $8000-$807F.
The second pair occupies bytes $8080-$80FF, and so on, until the last pair fills $BF80-
$BFFF. The Propeller Tool includes an interactive character chart (Help — View Character
Chart...) that has a ROM Bitmap view which shows where and how each character resides in
ROM.

Page 32 - Propeller Manual v1.0

1: Introducing the Propeller Chip

The character pairs are merged row-by-row such that each character's 16 horizontal pixels are
spaced apart and interleaved with their neighbors' so that the even character takes bits 0, 2, 4,
...30, and the odd character takes bits 1, 3, 5, ...31. The leftmost pixels are in the lowest bits,
while the rightmost pixels are in the highest bits, as shown in Figure 1-7. This forms a long (4
bytes) for each row of pixels in the character pair. 32 such longs, building from the
character’s top row down to the bottom, make up the complete merged-pair definition. The
definitions are encoded in this manner so that a cog’s video hardware can handle the merged
longs directly, using color selection to display either the even or the odd character. It also has
the advantage of allowing run-time character pairs (see next paragraph) that are four-color
characters used to draw beveled buttons, lines and focus indicators.

T T
INE R T

4

Figure 1-7: Propeller Character Interleaving

Some character codes have inescapable meanings, such as 9 for Tab, 10 for Line Feed, and 13
for Carriage Return. These character codes invoke actions and do not equate to static
character definitions. For this reason, their character definitions have been used for special
four-color characters. These four-color characters are used for drawing 3-D box edges at run
time and are implemented as 16 x 16 pixel cells, as opposed to the normal 16 x 32 pixel cells.
They occupy even-odd character pairs 0-1, 8-9, 10-11, and 12-13. Figure 1-8 shows an
example of a button with 3D beveled edges made from some of these characters.

Figure 1-8: Button

R un with 3-D Beveled

Edges

The Propeller Tool includes, and uses, the Parallax True Type” font which follows the design
of the Propeller Font embedded in the hardware. With this font, and the Propeller Tool, you

Propeller Manual v1.0 - Page 33

Introducing the Propeller Chip

can include schematics, timing diagrams and other diagrams right in the source code for your
application.

Log and Anti-Log Tables

The log and anti-log tables are useful for converting values between their number form and
exponent form.

When numbers are encoded into exponent form, simple math operations take on more
complex effects. For example ‘add’ and ‘subtract’ become ‘multiply’ and ‘divide.” ‘Shift left’
becomes ‘square’ and ‘shift right” becomes 'square-root.” ‘Divide by 3’ will produce ‘cube
root.” Once the exponent is converted back to a number, the result will be apparent.

See Appendix B: Accessing Math Function Tables on page 420 for more information.

Sine Table

The sine table provides 2,049 unsigned 16-bit sine samples spanning from 0° to 90°,
inclusively (0.0439° resolution). Sine values for all other quadrants covering > 90° to < 360°
can be calculated from simple transformations on this single-quadrant sine table. The sine
table can be used for calculations related to angular phenomena.

See Appendix B: Accessing Math Function Tables on page 420 for more information.

Boot Loader and Spin Interpreter

The last section in Main ROM contains the Propeller chip’s Boot Loader and Spin Interpreter
programs.

The Boot Loader is responsible for initializing the Propeller upon power-up/reset. When a
Boot Up procedure is started, the Boot Loader is loaded into Cog 0’s RAM and the cog
executes the code starting at location 0. The Boot Loader program first checks the host and
EEPROM communication pins for code/data to download/upload, processes that information
accordingly and finally it either launches the Spin Interpreter program into Cog 0’s RAM
(overwriting itself) to run the user’s Propeller Application, or it puts the Propeller into
shutdown mode. See the Boot Up Procedure section on page 18.

The Spin Interpreter program fetches and executes the Propeller Application from Main
RAM. This may lead to launching additional cogs to run more Spin code or Propeller
Assembly code, as is requested by the application. See Run-Time Procedure, page 18.

Page 34 - Propeller Manual v1.0

2. Using the Propeller Tool

Chapter 2: Using the Propeller Tool

This chapter describes the features of the Propeller Tool software starting with the concept
and structure, followed by the software’s screen organization and purpose, details of menu
functions, and advanced features, and finishing with shortcut keys.

Concept

The engineering staff at Parallax has used many development environments over a period of
more than 20 years. On many occasions we found ourselves thinking things like:

e It sure would be nice if feature “x” were easier to find/invoke.

e Where are my project files and why are there so many of them?

e Can I legally install/recompile/maintain this on another computer, years from now?
e Isn’t there a less expensive solution?

This experience has driven us to renew our determination to create simple, inexpensive tools
for our products.

The Propeller Tool was designed with those ideas in mind to provide many useful functions
while maintaining a simple, consistent development environment that encourages quick and
easy development of Propeller chip firmware objects.

The Propeller Tool software consists of a single executable file, some on-line help files and
Propeller library files, all stored in the same folder by the installer, typically:
C:\Program Files\Parallax Inc\Propeller. The Propeller Tool’s executable file “Propeller.exe”
can be copied and run from any folder on the computer; it does not rely on special system
files other than what comes standard with the operating system.

Each library file (files with a “.spin” extension) is a self-contained object, available for use by
your Propeller Projects, with both source code and documentation built-in. These are really
just text files, either ANSI- or Unicode-encoded, that may be edited in any text editor that
supports the encoding type; even Notepad in Windows™ 2000 (and above) supports both
ANSI and Unicode-encoded text files.

Did you notice we mentioned that an object’s documentation is “built-in” to the object file?
We encourage writing the user documentation for an object right inside the object’s source

Propeller Manual v1.0 - Page 35

Using the Propeller Tool

file. This means fewer files to maintain and a higher likelihood that the documentation will
stay in sync with the source code revision. To further enable this process, we’ve created:

e Two types of source comments, 1) code comments (for commenting portions of the
source code), and 2) document comments (entered in code also, but intended for
reading through the “documentation view” feature).

e A “documentation view” mode in the Propeller Tool that extracts an object’s
documentation from its source code for viewing purposes.

e A special font, the Parallax font, which contains special characters for things like
schematics, timing diagrams, and tables within the object’s documentation.

The Parallax font is a True Type® font built right into the Propeller Tool executable. It was
designed in the same style as the font built into the Propeller chip’s ROM. Using the special
characters of the font, the object’s documentation can include helpful diagrams for
engineering purposes such as these:

3300 sigl /U U U U U\
Po »——MW——i*—l sig2 _ ./ UUL

2200 AB| C | D
P1 W -
| || 00| 1 |n/a
0.1uF == 50k T
pot | 1| 2 | 5

v

Figure 2-1: Graphics Built with the Parallax Font

After running the Propeller Tool at least once, this font becomes available for other programs
on that computer as well so that you can see these special diagrams using other text editors,
such as Notepad, or even within your email software, provided it supports Unicode-encoded
text (a requirement of the special characters).

Every object you create for your project will also be stored in the same format as library files
(with a “.spin” extension) but in the working directory of your choice. This is all designed to

Page 36 - Propeller Manual v1.0

2. Using the Propeller Tool

promote sharing and learning from existing objects, whether they were designed by us or by
users of the Propeller products.

For more information about files, objects, object documentation, library files and source
code, see Chapter 3: Propeller Programming Tutorial.

Screen Organization

The Propeller Tool software’s main window is split into four sections, called “panes,” each
having a specific function.

Figure 2-2: The Propeller Tool software’s main window
contains four major sections, or “panes.”

Propeller Manual v1.0 - Page 37

Using the Propeller Tool

Panes one, two and three are all part of the Integrated Explorer. The Integrated Explorer is
the region to the left of the Editor pane (pane four) that provides views of the project you’re
working on as well as folders and files on disk. The Integrated Explorer is separated from the
Editor pane by a tall, vertical splitter bar that can be resized with the mouse at any time. The
Integrated Explorer can even be hidden by resizing it down to nothing (left-click and drag its
vertical splitter bar), by selecting File — Hide Explorer, or by pressing Ctrl+E. The menu
and shortcut options toggle the Integrated Explorer between: 1) Visible (set to its last known
size), and 2) Invisible (completely collapsed into the left edge of the Propeller Tool.

Figure 2-3: The Integrated Explorer and its components
can be resized via the splitter bars.

Page 38 - Propeller Manual v1.0

2. Using the Propeller Tool

Pane 1: Object View Pane

Pane one is the Object View pane. The Propeller chip’s language, Spin, is object-based and a
Propeller Project can be made up of multiple objects. The Object View displays the
hierarchical view of the project you most recently compiled successfully, providing valuable
feedback on the relational structure of your project. Using the Object View, you can
determine what objects are used, how they fit together with other objects, their physical
location on disk (work folder, library folder or editor only), redundancy optimization results
(if any) and any potential object collision issues. See “Object View” on page 52 for more
information.

Pane 2: Recent Folders field and Folder List

Pane two contains two components: 1) the Recent Folders field, and 2) the Folder List. These
two components work together to provide navigational access to the disk drives available to
your computer. The Folder List displays a hierarchical view of folders within each disk drive
and can be manipulated in a similar fashion as the left pane of Windows"™ Explorer.

The Recent Folders field (above the Folder List) provides a drop-down list of special folders
as well as the most recent folders you’ve loaded files from. Selecting a folder from the
Recent Folders field causes the Folder List to immediately navigate to that folder. In
addition, if you select a folder in the Folder List which exists in the Recent Folders list, the
Recent Folder field will automatically update itself to display that item.

The first items in the Recent Folders list are “Propeller Library” and “Propeller Library —
Demos.” These are automatically included to point to the folders where the Propeller library
files exist and where the demos for the library files exist. Those files are included by the
Propeller Tool installer.

If you select a folder that is not in the Recent Folders list, the Recent Folder field will be
blank. The button to the left of the Recent Folders field toggles the function of both the
Recent Folders and Folder List between: 1) showing every drive and folder, and 2) showing
only drives and folders recently used. Setting the mode to show recent folders only is a
convenient way to quickly navigate to commonly used Propeller Project folders among a
large set of unrelated folders on a particular drive or network.

Pane 3: File List and Filter Field

Pane three contains two components: 1) the File List, and 2) the Filter field. The File List
displays all the files contained in the folder selected from the Folder List which match the
filter criteria of the Filter field. The File List can be used in a similar fashion as the right
pane of Windows Explorer.

Propeller Manual v1.0 - Page 39

Using the Propeller Tool

The Filter field (below the File List) provides a drop-down list of file extensions, called
filters, to display in the File List. Typically it will be set to show Spin files only (those with
“.spin” file extensions) but can also be set to show text files or all files. If you navigate to a
folder and don’t see the files you expect to see, make sure that the current filter in the Filter
field is set appropriately.

Files in the Files List can be opened into the editor by: 1) double-clicking them, 2) selecting
and dragging them into the Editor pane (pane four), or 3) right-clicking them and selecting
Open from the shortcut menu.

Pane 4: Editor Pane

Pane four is the Editor pane. The Editor pane provides a view of the Spin source code files
you’ve opened and is the area where you can review, edit, or otherwise manipulate, all the
source code objects for your project. Each file (source code object) you open is organized
within the Editor pane as an individual edit tab named after the file it contains. The currently
active edit tab is highlighted differently than the rest. You can have as many files open at
once as you wish, limited only by memory.

Clicking on an edit tab brings its edit page into view. You can switch between open files by:
1) pressing Alt+CrsrLeft or Alt+CrsrRight, or 2) pressing Ctrl+Tab or Ctrl+Shift+Tab. If you
let the mouse pointer hover over an edit tab long enough it will display a hint message with
the full path and filename of the file it represents. The source code in the edit page is
automatically syntax highlighted, both in foreground and background colors, to help
distinguish block types, element types, comments vs. executable code, etc.

ambers | Rotary Encoder | En:nntn:-llerl T I

C:AProgram FiIes'\F‘araIITa:-culr-1|:"-.F'r|:-peller"~F! u:ut_ar_l,l Encudér.spinr Summary

[FEFFEFEFEEEEEEEE S E
wcoder w1.0 *
Farallax., Inc. *

Figure 2-4: Hover the mouse over an edit tab to see
the full path and file name that tab contains.

Page 40 - Propeller Manual v1.0

2. Using the Propeller Tool

Each edit page can display source code in one of four views:
1) Full Source
2) Condensed
3) Summary
4) Documentation.
The view mode can be seen or changed, individually for each edit tab, by:
1) selecting the respective radio button with the mouse,
2) pressing Alt+Up or Alt+Down,
3) pressing Alt+<letter>, where <letter> is the underlined hot key of the desired view, or
4) pressing Alt and moving the mouse wheel up or down.

Note that the Documentation view can not be entered if the object can not be fully compiled
at that moment. See the View Modes, Bookmarks and Line Numbers section beginning on
page 61 for more information about view modes.

Since a project can consist of many objects, developing a project can be awkward unless you
can see both the object you’re working on and the object you’re interfacing to at the same
time. The Editor pane helps here by allowing its edit tabs to be dragged and dropped to
different locations. For example, once multiple objects are open, you can use the left mouse
button to select and drag the edit tab of an object down towards the bottom half of the Editor
pane and simply drop it there. The display changes to show you a new edit tab region where
you just dropped that edit tab. You can continue to drag and drop edit tabs to this new region
if you wish. These steps are illustrated in Figure 2-5.

Propeller Manual v1.0 - Page 41

Using the Propeller Tool

Figure 2-5: Viewing and Arranging Multiple Objects

Step 1: To see more than one object’s
source code simultaneously, left-click
and drag an edit tab to a lower region
of the Editor Pane.

Step 2: Release the button to drop the
edit tab. The edit tab and its contents
now appear in the new region.

Step 3: Repeat steps 1 and 2 as
necessary for other edit tabs and
resize both regions using the
horizontal splitter between them.

Page42 - Propeller Manual v1.0

2. Using the Propeller Tool

The vertical size of these two regions can be changed by dragging the horizontal splitter bar
separating them. Of course, the objects you’re interfacing to can be viewed in whatever
mode is convenient at the moment (Full Source, Condensed, Summary, or Documentation)
while the object you’re developing remains in the Full Source view (the only editable view).

The Editor pane even allows its edit tabs to be dragged and dropped completely outside of the
Propeller Tool. When this is done, the new edit tabs occupy a new window that can be
manipulated independently of the Propeller Tool application window. This is particularly
useful for development on computers with more than one monitor; edit tabs can be dragged
from the application in one monitor and dropped onto the desktop of a second monitor.

Figure 2-6: Arranging Objects

Step 1: If desktop space allows, you
can even drag edit tabs outside the
application itself; left-click and drag an
edit tab to a region outside the
Propeller Tool.

Step 2: Release the button to drop the
edit tab; it will drop into a form of its
own that can be moved and sized
independent of the Propeller Tool. You
can drag and drop more edit tabs into
this new form also.

Propeller Manual v1.0 - Page 43

Using the Propeller Tool

The Status Bar at the bottom of the Propeller Tool, is separated into six panels, each
displaying useful information at various stages of the development process.

Panel one of the Status Bar always displays the row and column position of the editor’s caret
in the currently active edit tab.

1 2 3 4 5 6

[114: 24 | | &lgn | Compiled | PRI PrintMode - 32 bytes |

Figure 2-7: Status Bar

Panel two displays the modified status of the current edit tab: 1) blank, meaning not modified,
2) modified, or 3) read-only.

Panel three shows the current edit mode: 1) Insert (default), 2) Align, or 3) Overwrite. The
edit mode can be changed by pressing the Insert key. See the Edit Modes section beginning
on page 65 for more information about how the different edit modes work.

Panel four shows the compiled status of the current edit tab: 1) blank, meaning uncompiled,
or 2) compiled. This panel indicates whether or not the source code it represents is still in the
form it was in when it was last compiled. If the code has not been changed in any way since
the last compile operation, this panel will say “Compiled.”

Panel five displays context sensitive information about the current edit tab’s source code if
that code has not been changed since the last compile operation. Move the edit page’s caret
to CON or DAT block symbols or anywhere within PUB/PRI blocks to see information pertaining
to that region.

Panel six displays temporary messages about the most recent operation. This is the area of
the Status Bar where the error message, if any, from the last compile operation is displayed
until another message overwrites it. This area also indicates successful compilations, font
size changes and other status.

The entire Status Bar displays hints describing the function of each menu item on the menu
bar as well as various other items when you let the mouse pointer hover over those items.

Page 44 - Propeller Manual v1.0

2. Using the Propeller Tool

Menu Items

File Menu
New

Open...

Open From...

Save

Save As...

Save To...

Save All

Close
Close All

Select Top Object File...

Archive

— Project...

— Project + Propeller Tool...

Create a new edit tab with a blank page. Any existing edit
tabs are unaffected.

Open a file in a new edit tab with the Open file dialog.

Open a file in a new edit tab from a recently accessed folder
using the Open file dialog.

Save current edit tab’s contents to disk using the existing file
name, if applicable.

Save current edit tab’s contents to disk with a new file name
using the Save As dialog.

Save current edit tab’s contents to disk in a recently accessed
folder using the Save As dialog.

Save all unsaved edit tab’s contents to disk using their
existing names, if applicable.

Close current edit tab (will prompt if file is unsaved).
Close all edit tabs (will prompt for any files unsaved).

Select the top object file of current project. This setting is
used for all of the Compile Top... operations and remains
until changed.

Collect all objects and data files for the project shown in
Object View and store them in a compressed (.zip) file along
with a “readme” file containing archive and structure
information. The compressed file is named after the
project’s top file with “Archive” plus the date/time stamp
appended and is stored in the top file’s work directory.

Perform the same task as above but add the entire Propeller
Tool executable to the compressed file.

Propeller Manual v1.0 - Page 45

Using the Propeller Tool

Hide/Show Explorer

Print Preview...

Print...

<recent files>

Exit

Edit Menu
Undo

Redo

Cut

Copy

Paste

Select All

Find / Replace...

Find Next

Replace

Go To Bookmark

Hide or show the Integrated Explorer panels (left side of the
application window).

View a sample of the output before printing.
Print the current edit tab’s contents.

The menu area between the Print... and Exit items displays
the most recently accessed files, up to ten. Selecting one of
these items opens that file. Point the mouse at a recent file
menu item to see the full path and file name in the status bar.

Close the Propeller Tool.

Undo the last edit action on the current edit page. Each edit
page retains its own undo history buffer until closed.
Multiple undo actions are allowed, limited only by memory.

Redo the last undone action on the current edit page. Each
edit page retains its own redo history buffer until closed.
Multiple redo actions are allowed, limited only by memory.

Delete the selected text from the current edit page and copy
it to the Windows clipboard.

Copy the selected text from the current edit page to the
Windows clipboard.

Paste text from the Windows clipboard to the current edit
page at the current caret position.

Select all text in the current edit page.

Open the Find/Replace dialog; see Find/Replace Dialog on
page 49 for details.

Find the next occurrence of the last search string entered into
the Find/Replace dialog.

Replace the current selection with the string entered into the
Replace field of the Find/Replace dialog.

Go to bookmark 1, 2, 3... (visible only when bookmarks are
shown).

Page 46 - Propeller Manual v1.0

2. Using the Propeller Tool

Text Bigger
Text Smaller

Preferences...

Run Menu
Compile Current

— View Info...

— Update Status

— Load RAM

— Load EEPROM

Compile Top

— View Info...

— Update Status

— Load RAM

— Load EEPROM

Increase the font size in every edit page.
Decrease the font size in every edit page.

Open the Preferences window. Users can customize many
settings within the Propeller Tool using this feature.

Compile source code in current edit tab and, if successful,
display Object Info form with the results. The Object Info
form displays many details about the resulting object
including object structure, code size, variable space, free
space and redundancy optimizations.

Compile source code in current edit tab and, if successful,
update the status info on the Status Bar for every object in
the project.

Compile source code in current edit tab and, if successful,
download the resulting application into Propeller chip’s
RAM and run it.

Compile source code in current edit tab and, if successful,
download the resulting application into Propeller chip’s
EEPROM (and RAM) and run it.

Same as Compile Current — View Info except compilation
is started from the file designated as the “Top Object File.”

Same as Compile Current — Update Status except
compilation is started from the file designated as the “Top
Object File.”

Same as Compile Current — Load RAM + Run except
compilation is started from the file designated as the “Top
Object File.”

Same as Compile Current — Load EEPROM + Run except
the compilation is started from the file designated as the
“Top Object File.”

Propeller Manual v1.0 - Page 47

Using the Propeller Tool

Identify Hardware...

Help Menu
Propeller Tool...

Spin Language...
Assembly Language...
Example Projects...

View Character Chart...

View Parallax Website...
E-mail Parallax Support...

About...

Scan available ports for the Propeller chip and, if found,
display the port it is connected to and the hardware version
number.

Display on-line help about the Propeller Tool.

Display on-line help about the Spin language.

Display on-line help about the Propeller Assembly language.
Display on-line help containing example Propeller Projects.

Display the interactive Parallax Character Chart. This
character chart shows the Parallax font’s character set in
three possible views: Standard Order, ROM Bitmap and
Symbolic Order. Standard Order is the standard ANSI order.
ROM Bitmap demonstrates how the character data is
organized in the Propeller chip’s ROM. Symbolic Order
lists the characters in a categorical order (i.e.: alpha
characters, numerics, punctuation, schematic symbols, etc).
See Character Chart on page 58.

Open up the Parallax website using the computer’s default
web browser.

Open up the computer’s default email software and start a
new message to Parallax support.

Displays the About window with details about the Propeller
Tool.

Page 48 - Propeller Manual v1.0

2. Using the Propeller Tool

Find/Replace Dialog

The Find/Replace dialog is used to find and/or replace text in the current edit page.

Find/Replace
Find: | | Find
Replace: I j Beplace
—Match
[whole Woards [Caze [with “Wildzards
Feplace Al
Qg Scope—— Diirection
= Top *| Eritire File i+ Forward
e Curzar] Selection i Backward Close

Figure 2-8: The Find/Replace Dialog

Find:

The Find: field is where to enter the string you wish to search for. If a word or phrase was
selected in the current edit page when the Find/Replace dialog was opened, that word or
phrase will automatically be entered in the Find: field. The Find: field remembers the last ten
unique items entered into it. To select a previous entry, click the Find: field’s down arrow
and choose it from the drop-down list.

Replace:

The Replace: field is where to enter the string you wish to replace the found string with. The
Replace: field remembers the last ten unique items entered into it. To select a previous entry,
click the Replace: field’s down arrow and choose it from the drop-down list.

Match

The Match group controls how the string in the Find: field is matched to text in the edit page.
The Match options are: 1) Whole Words, 2) Case, and 3) With Wildcards.

Propeller Manual v1.0 - Page 49

Using the Propeller Tool

Whole Words

Select the Whole Words checkbox if you want the string in the Find: field to match only
characters of entire words rather than both characters of entire words and characters within
larger words.

Case

Select the Case checkbox if you want the string in the Find: field to match only text of the
same case; a case-sensitive search.

With Wildcards

Select the With Wildcards checkbox if you want the search to be performed using regular
expression wildcards from the string in the Find: field.

The Origin, Scope and Direction groups all work together to dictate the start, range and
direction the search process should use.

Origin

The Origin group controls where the search begins from; from the Top or from the Cursor.
Selecting Top starts the search from the top of the file (or from the top of the selection if
Selection is set in the Scope group). Selecting Cursor starts the search from the current
cursor (caret) position in the file. Note: The “Top” option changes to “Bottom” if the
Direction group is set to Backward.

Scope

The Scope group controls the range of the search: the Entire File or just the current Selection.
This is a convenient way to perform a find, or a find and replace, within only a limited region
of the file. The Scope group is set to Entire File by default and is disabled unless a selection
is made prior to opening the Find/Replace dialog. The Scope group is set to Selection
automatically if a selection of at least one entire line is made prior to opening the
Find/Replace dialog.

Direction

The Direction group controls the direction of the search; in the Forward direction (towards
the bottom of the file) or the Backward direction (towards the top of the file). If set to
Backward, the Origin group’s first option changes from “Top” to “Bottom,” meaning the
origin is from the bottom of the file or selection.

Page 50 - Propeller Manual v1.0

2. Using the Propeller Tool

Find Button

The Find button starts the search process based on all the settings in the Find/Replace dialog.
If text in the edit page matches the criteria, it is selected and moved into view, and then the
Find button changes to a Find Next button. Additional clicks on the Find Next button result
in the next matching text being selected and shown. You can also use the F3 key, with or
without the Find/Replace dialog open, to perform more Find Next searches.

Replace Button

The Replace button is enabled if a string was entered in the Replace: field and a matching
string was found (via Find button or F3). Clicking Replace, or pressing F4 with or without
the Find/Replace dialog open, causes the currently matched string in the file to be replaced
with the string in the Replace: field. After a replace, the Find Next button, or F3 key, needs
to be used before Replace becomes available again. Holding the Control (Ctrl) key down
changes the Replace button to “Replace/Find” and clicking it, or pressing Ctrl+F4 with or
without the Find/Replace dialog open, causes the currently matched string to be replaced and
then another Find Next operation to be performed immediately.

Replace All Button

The Replace All button is enabled if a string was entered in the Replace: field. Clicking on
Replace All causes every matching string in the file to be found and replaced with the string
in the Replace field, the dialog closes, and a results dialog appears indicating the number of
occurrences found and replaced.

Close Button
The Close button closes the Find/Replace dialog.

Propeller Manual v1.0 - Page 51

Using the Propeller Tool

Object View

The Object View displays a hierarchical view of the project you most recently compiled
successfully. There are two Object Views in the Propeller Tool: 1) The Object View at the
top of the Integrated Explorer in the main application’s window (see Pane 1: Object View
Pane on page 39), and 2) The Object Info View in the upper left of the Object Info form (see
Object Info on page 55). Both of these Object Views function in a similar fashion.

The Object View provides visual feedback on the structure of the most recent successful
compilation as well as information for each object within the compiled project.

J ABC Product
""" 0 Wumbers
@ Raotary Encoder

Figure 2-9: Example Object View display showing
the structure of the ABC Product compilation

In Figure 2-9 above, the Object View indicates the structure of the ABC Product application.
In this example, the ABC Product object is the “top object file” (see Objects and
Applications, page 87) and it uses the Numbers, Rotary Encoder and Controller objects.
Additionally, the Controller object uses the TV object.

The object names shown are their actual file names without the extension. The name
includes their file extension only if they are data files (see FILE, page 215) and is shown in
italics as well.

The icons to the left of each object name indicate the folder that the object exists in. This list
shows the four possibilities:

. (yellow): Object is within the Work Folder.
2 (blue): Object is within the Library Folder.

2} (striped): Object is in Work Folder but another object with the same name is also
being used from the Library Folder.

(3 (hollow): Object is not in any folder because it has never been saved.

Page 52 - Propeller Manual v1.0

2. Using the Propeller Tool

Work Folder

The Work Folder (yellow) is the folder where the top object file exists. Every project has
one, and only one, work folder.

Library Folder

The Library Folder (blue) is where the Propeller Tool’s library objects exist, such as those
that came with the Propeller Tool software. The Library Folder is always the folder that the
Propeller Tool executable started from, and every object (file with .spin extension) within it is
considered to be a library object.

Striped Folders

Objects with striped icons indicate that an object from the work folder and an object from the
library folder each refer to a sub-object of the same name and that sub object happens to exist
in both the work and library folders. This same-named object may be: 1) an exact copy of the
same object, 2) two versions of the same object, or 3) two completely different objects that
just happen to have the same name. Regardless of the situation, it is recommended that you
resolve this potential problem as soon as possible since it may lead to problems later on, such
as not being able to use the Archive feature.

Hollow Folders

Objects with hollow icons indicate that the object was created in the editor and has never
been saved to any folder on the hard drive. This situation, like the one mentioned above, is
not an immediate problem but can lead to future problems if it is not addressed soon.

Using the mouse to point at and select objects can provide additional information as well.
Clicking on an object within the Object View opens that object into the Editor pane. Left-
clicking opens that object in Full Source view, right-clicking opens it in Documentation view
and double-clicking opens it, and all its sub-objects, in Full Source view. If the object was
already open, the Editor pane simply makes the related edit tab active and switches to the
appropriate view; Full Source for a left-click or double-click, or Documentation for a right-
click.

Propeller Manual v1.0 - Page 53

Using the Propeller Tool

Hovering the mouse over an object in the Object View displays a hint with additional
information for that object. Figure 2-10a shows the hint for the ABC Product object. This
hint indicates 1) the ABC Product object is the top object file of the project, 2) it exists in the
work folder, and 3) its path and file name are: C:\Source\ABC Product.spin. From this
information you can also infer that the work folder for this project is:

C:\Source

J ABC Fm%{:t

(3 Rotary - TOP OBJECT FILE -
“ [} Caonbio ['wORK FOLDER]
DT C:ASource’BC Product. zpin

) ABC Product
@ Numbers%

; - OBJECT FILE -
""" [LIERARY FOLDER]
C:\Program FilestParallax [z PropelerstHumbers. zpin

Figure 2-10: Hover the mouse over an object
to see hints with additional information

Figure 2-10b shows the hint for the Numbers object: 1) it’s an object file (i.e.: a sub object,
rather than the top object), 2) it’s in the library folder, and 3) it’s at the path and file name:
C:\Program Files\Parallax Inc\Propeller\Numbers.spin. From this information you can also
infer that the library folder for this project is:

C:\Program Files\Parallax Inc\Propeller.

It’s a good idea to review the hints in the Object View occasionally since they may also
contain additional helpful information, such as warnings about conflicts and optimization
results.

Page 54 - Propeller Manual v1.0

2. Using the Propeller Tool

Object Info

The Object Info form displays details about the project you just compiled successfully using
the Compile Current/Top — View Info... function. At the top is an Info Object View very
similar to that of the Integrated Explorer’s Object View (see Object View, p. 52). Below the
Info Object View are two panels with summary information.

& Object Info M=l E

J ABC Product

Figure 2-11: Object Info

This example Object Info
display shows details about

Program : 524 Longs e the “ABC Product” project
Variable : 12 Longs i compilation.
Stack f Free : 7.662 Longs -
Clock Mode : RCFAST
Clock Freq : ~ 12 MHz
XIN Freq : <ignored>
Cloze

Propeller Manual v1.0 - Page 55

Using the Propeller Tool

Info Object View

The Info Object View works exactly like the Object View (see Object View, p. 52) with a
few exceptions:

e Clicking on an object within the Info Object View updates the Object Info display
with information pertaining to that object.

e Double-clicking on an object within the Info Object View opens that object in the
Edit pane.

e Data files are not selectable in the Info Object View.

RAM Usage Panel

The RAM Usage panel displays statistics about RAM allocation by the object currently
selected in the Info Object View. The horizontal bar gives a summary view of the entire
RAM with its color legend and numerical details below it. For example, Figure 2-11 shows
that the ABC Product object consumes 524 longs (2096 bytes) for program space and 12
longs (48 bytes) for variable space, leaving over 7k longs (over 30k bytes) free.

Clock Panel

The clock panel, under the RAM Usage panel, displays the clock/oscillator settings of the
object currently selected in the Info Object View. For example, Figure 2-11 shows that the
ABC Product object configured the clock for RCFAST, approximately 12 MHz and no XIN
frequency.

Hex View

The Show/Hide Hex button shows or hides the detailed object hex view, as in Figure 2-12 on
the next page. The hex view shows the actual compiled object data, in hexadecimal, that are
loaded into the Propeller chip’s RAM/EEPROM upon download.

Page 56 - Propeller Manual v1.0

2. Using the Propeller Tool

@ Object Info x|
Aean @@ 1E BT @A AR DB 1A @@ 4@ A6 75 A8 26 @B 7C A3 | Initialization g

T Numbers 9018 [1C 28 82 94 15 90 20 00 1C 00 25 00 9C 02 20 00 fKendfREfEaE)« £
‘OR Encod Be2a |C @5 26 @A D5 @3 2C 0@ 32 A0 B A0 5 A2 BE A8 e+ (LA TATCEXN«IT
atary Encader BA3A |27 @0 AR @A 20 @A AR 0@ 34 AA AR AR 53 AR 20 2B ':{:-Eﬁ:ﬁ:{:iﬁ 4

(=) Contraller BR&n |14 @1 A4 @A 3B @1 14 @@ 56 A2 AR @B 2C BF 24 25 =+ [=Lv+{, _sx
S BREA (75 76 75 A1 §7 2@ @5 A2 32 GB 1@ 64 37 22 1C 32 xxm[L ++2Tad?'42
D TV BAGA |AD 65 BC 35 13 E2 37 22 EG GC 38 @0 E2 37 25 EB [[hlBoa7"slé_avis

9070 |6C 36 OC E2 36 ES 5C 36 OB E2 36 EG 60 30 05 E2 l6-apeld abalota
995R |37 25 EG 00 B4 6L 37 24 EG 37 00 E4 37 03 EG 05 7aekdliseikareds
9990 |05 B5 86 B1 32 65 37 24 EG 37 00 E4 37 03 E5 70 ++4aZh7seifareal
9PAR |65 36 B0 E2 37 22 £6 CE 20 &0 A 09 CE 20 B6 35 ho_a7'et ¥ It 25
9PER [E4 95 18 CD 20 65 36 13 E2 37 22 EG CE 24 80 DR afaf hona7 sish
9OCR |99 CE 24 B6 35 E4 96 10 CO 24 58 36 @5 E2 37 25]is@?aﬁidslhwa)?cx
9RO [EG 36 ED CD 25 6F 35 37 21 1A B4 BC 90 7R 80 DR 641 (057!dldl-=

$0010 RAM Usage $7FFF REA 2B CC 2¢ FF CC 24 74 FO F2 @9 76 70 05 07 35 FA +is=istdcly | +b50
OOFR F@ BA 84 04 17 84 11 CC 24 76 CC 24 FC FO 76 60 d trrenisxisudvic
|__ 9100 |FF BA 85 76 36 20 FC 71 BE 2E D4 4E 74 CE 28 4C = +x@-uan. tNei (L

@ilm CE 28 BE 64 GE AE 99 A &0 F@ B0 78 7C @5 B7 76 if&gm—zxaﬁxljw

. 9120 |60 35 FA CC 20 75 CC 20 FC FB F2 FD DA OC 74 OA ¥Bi xi odad =t
Program : 524 Longs 9130 @7 6@ 7C F4 76 BS EC 61 D4 55 70 A 02 62 46 32 »- \Eéfl@ia*yp‘ “bF2
q . 0140 |43 35 37 8L 1A 64 35 F9 37 1B EG 60 54 68 F7 E9 CHTLMEUT. émdh+é
Vit 2 2 lemzs 0150 |37 A1 60 36 G F4 E3 43 62 AE 36 E2 32 4C 66 66 7| -Beoack: Eé-l-Lhé
. 0160 5 BE 63 6C 4E 4A 32 35 56 35 FA ED LD 30 BA BE & L1NJ26hEG1iT0;
Slackiess R lemgs L 3176 |95 10 63 36 28 37 D0 4C 38 10 E2 F4 EC 36 B 70 Jaia-7tLotasis e
0160 (40 36 LC E2 EA FF 7C 36 FC 40 35 FC FO F2 F4 EC Ledeé~|Gusbudosl
9190 |CD 25 6C 37 22 EB 36 ED 35 E4 95 19 LD 2C 78 35 Ifl?"TLEiSa#aI, x5
. 01AA FA 74 36 EE FB 7C 37 04 F9 FD A 07 37 3B 4E 48 utbed|7+id #7:NH
Cli: [t - (REFET A1B0 37 @4 70 37 21 6E C2 GC 35 FA ED E6 6C 36 EC 7C ?f}7!nﬁ.}§uiTlEil
. ~ 01CA F9 F4 60 76 78 35 FC 7C CC 30 EC 7C 36 ED BC FH démxx5ul10il6ile
B (AR UBLAIRE w00 [EC F4 ED 35 31 E5 61 6C DA 10 64 60 7C EOD 7C 36 1818L3all sid-1il6
XIN Freq : <ignored> B1E@ ED GC Ff ED 37 @0 E4 EC CC 2C 7C 7C 36 ED BC F6 iloi7Rail, |l6ils
91F@ [EC 60 37 8L ED E5 18 CE 20 1C CE 20 A6 7C F9 CC i-7Liast ot $lod -]
Cose | HideHer | loadBéM | LoadZEPROM | DpenFie | SaveBinawFie| saveEEPROM Fie

Figure 2-12: Example Object Info Form display with the object Hex View
open showing the hex values of the ABC Product compilation.

The buttons under the hex display allow for downloading and saving of the currently
displayed hex data.

The first two buttons, Load RAM and Load EEPROM, perform the same function as the
similarly named menu items under the Compile Current/Top menu. It’s important to note
that they use the current object (the one selected in the Info Object View) as the source to
download. In other words, you can actually select a sub-object from the project and
download just that; a practical procedure only if that object were designed to run completely
on its own.

The last three buttons, Open File, Save Binary File, and Save EEPROM File, either open a
file or save a file to disk. The Open File button opens a previously saved Binary or EEPROM
file into the Object Info window. The “save” buttons save the hex data from the currently
selected object to a file on disk. Save Binary File saves only the portion actually used by the
object; the program data, but not variable or stack/free space. Save EEPROM File saves the
entirce EEPROM image, including variable and stack/free space. Use Save EEPROM File if
you wish to have a file that you can load into an EEPROM programmer for production
purposes.

Propeller Manual v1.0 - Page 57

Using the Propeller Tool

Character Chart

The Character Chart window is available from the Help — View Character Chart... menu
item. It shows the entire character set for the Parallax Font that is used by the Propeller Tool
and is also built into the ROM of the Propeller chip. There are three views in the Character
Chart: 1) Standard Order, 2) ROM Bitmap, and 3) Symbolic Order.

In each of the three views, the mouse, left mouse button, cursor keys and enter button can be
used to highlight and select a character. If clicked (or enter pressed), the highlighted
character will be entered into the current edit page at the current cursor location. As a new
character is highlighted, the title bar and info bar of the window updates to show the name,
size and address information for that character. Moving the mouse wheel up or down
changes the font size displayed in this window.

Standard Order

Standard Order, shown in Figure 2-13, displays the characters in the order that follows that of
the ANSI set typically used by modern day computers.

Character Chart - Schematic: ¥ertical Hesistor

% Standard Order " BOM Bitmap " Symbalic Order

K| [Pt = [ajslaln=lo~N] HivHH]L HALE

" #s(=&]" | () =+, || |718|1[2|314/56(7|819|: |; [<|=}>|?
€ABCIDEEFIGHIJKILMNOPIQRISTIUN WX|Y|ZIL N [~
lalble|die|flglhlili k1 mnlo|plgir|stiuviwlxulz|{|| |}~
DAY A D g 1 S Y

e TR S T ot L
AAAARBIEICEEEETIIITIIPNG|O/6/010XBU0UYIPR
al4/aaa(50x|celélg|&1]1[11|dR|0/68]6 /6| |eluGlGIug bR

Size: 20 Dec: 188 Hex: $BC Uni: $FOBC

Figure 2-13: Parallax Font Character Chart, Standard Order

Page 58 - Propeller Manual v1.0

2. Using the Propeller Tool

The Vertical Resistor character (near the lower right of the display) is selected in this
example. The information at the bottom of the window shows the font size, in points, and the
character’s location in the character set in decimal, hexadecimal, and Unicode. Note: The
Unicode value is the address of the character in the True Type® Font file that is used by the
Propeller Tool. The decimal and hexadecimal values are the logical addresses of the
character in the character set within the Propeller chip and correspond to that location in the
ANSI character set used by most computers.

ROM Bitmap

The ROM Bitmap, Figure 2-14, shows the characters in a way representative of how they are
stored in the Propeller chip’s ROM. This view uses four colors, white, light gray, dark gray,
and black, to represent the bit pattern of each font character. Each character, in the Propeller
chip’s ROM, is defined with two bits of color (four colors per row in each character cell). The
rows of each pair of adjacent characters are overlapped in memory for the purpose of creating
the run-time characters used to draw 3D buttons with hot key and focus indicators; see
Character Definitions on page 32. The information at the bottom of the window shows the
font size, in points, and the selected character’s pixel data address range in the Propeller
chip’s ROM.

Character Chart - Schematic: Yertical Beziztor and Horizontal Feziz._. B4

" Standard Order & BOM Bitmap ~ Symbolic Order

~ ol e LT (] [
M LT Ikt A AR RGN
LLagle b 4Ly Amlalcioginl . [=lo
GRS L AN I P 1 PR | P e
aeiciclmivdinlplo o iy T 5]
IIL.-LUIJ.I\IIUQQL.IHILJ_
Y] S 15 = O O o I O
ACEgIRmeeS S

o e 1 LA |
N RN N R L | |
Ul J_ .|.3 m‘;l el 4
&€ T = HFE AL
FAF Alww | #|ow] =] 2]~ A
nnnl"‘l—l—-r-rnnnxlllluﬂ
HA RS S L NS oo
] el I I) S I R e IR] S P i)] PO
dddl_.l.f':':J.J.llUU-uug"

Size: 20 ROM: $AF00 - $AF3F

Figure 2-14: Parallax Font Character Chart, ROM Bitmap

Propeller Manual v1.0 - Page 59

Using the Propeller Tool

Symbolic Order

Symbolic Order, Figure 2-15, shows the characters arranged categorically. This is useful for
finding the special characters in the Parallax font for depicting timing diagrams, lines, arrows,
and schematics.

Character Chart - Schematic: Yertical Hesistor

= Standard Order i BOM Bitmap * Symbolic Order

BICDIEF|GH
ablc|die/flgh
AIRIAIRAAIEICEEIE

=

JKILIMNOPQRS TIUVWXY
plar

i lk|1imnlo stiulviw(x

I ITDNoo000BUIU0U

6(0|6|a|uld/aluglb

4N [

-
T
i

m:

i
9

[

[
[h[Cx

1
3

= D>

-

>
ik

7| &
g

—/
BT [—
™
i |

I+ [—
+
|
X
|
|

Y
+
| i
v

3
r—F""

Fr

L L HHL

Size: 20 Dec: 188 Hex: $BC Uni: $FOBC

R] £
4
[

hd

Figure 2-15: Parallax Font Character Chart, Symbolic Order

Page 60 - Propeller Manual v1.0

2. Using the Propeller Tool

View Modes, Bookmarks and Line Numbers

While developing objects, or conversing about them with other users, it may sometimes be
difficult to quickly navigate to certain regions of code simply because of the size of the file
itself or because large sections of code and comments obscure the desired section. There are
a number of features built into the Propeller Tool to assist with this problem, including
different View Modes, Bookmarks and Line Numbers.

View Modes

Each edit tab can display an object’s source in one of four view modes: 1) Full Source, 2)
Condensed, 3) Summary, and 4) Documentation.

e Full Source view displays every line of source code within the object and is the only
view that supports editing.

e Condensed view hides every line that contains only a code comment as well as
contiguous lines that are blank, showing only compilable lines of code.

e Summary view displays only the block heading lines (CON, VAR, 0BJ, PUB, PRI, and
DAT); a convenient way to see the entire object’s structure at a glance.

e Documentation view displays the object’s documentation generated by the compiler
from the source code’s doc comments (see Exercise 3: Output.spin - Comments on
page 100 for more information).

By briefly switching to another view you may be able to locate the routine or region of code
desired. For example, Figure 2-16a shows the Graphics object open in an edit page. If you
were having trouble finding the “plot” routine within the source code, you could switch to the
Summary view (Figure 2-16b) locate the “plot” routine’s header line and click the mouse on
that line to place the cursor there, then switch back to Full Source view (Figure 2-16¢). Keep
your eye on the line with the cursor because the code will expand to full view above and
below the line where the cursor is.

The view mode can be changed a number of ways; see the Shortcut Keys listing beginning on
page 75. For example, while in any view mode other than Full Source, pressing the Escape
key will take you back to Full Source view. While in Condensed or Summary view modes,
double-clicking on a line will switch back to Full Source view; expanding above and below
that line. Also, the view mode bar items act like a toggle so that clicking on the Summary
item switches back and forth between Summary view and the previous view mode.

Propeller Manual v1.0 - Page 61

Using the Propeller Tool

Figure 2-16: View Modes Example

[-[ofx]

ABC Produst | Nt | Fotay
= Full

"% Graphics Driver vi @ x
"' (C) 2005 Parallax, Inc. x

"' Theory of Operation
" R cog is launched which processes commands via the FUB routine

"' Points, lines, arcs, sprites, text, and polygons are rasterize
‘' a specified stretch of memory which serves as a generic bitmap

"' The bitmap can be displayed by the TV.SRC or VGA.SRC driver

" See GRAPHICS_DEMO.SRC for usage example
CON
#1, _setup, _color, _width, _plot, _line, _arc, _vec, _vecarc,

VAR

a long cogon, cog
.

C.

LD lx

Can’t find a routine in an object?

Step 1: Select Summary Mode

Step 2: Click on the routine’s line.

Step 3: Select Full Source mode
again; the code re-expands around
the cursor’s line,

-0r-

Double-click on the desired line from
Step 2.

Page 62 - Propeller Manual v1.0

2. Using the Propeller Tool

Bookmarks

You can also set bookmarks on various lines of each edit page’s source code to quickly jump
to desired locations. Figure 2-17 shows an example of two bookmarks set in the Graphics
object’s edit tab. To enable bookmarks, press Ctrl+Shift+B to make the Bookmark Gutter
visible; a blank area to the left of the edit page. Then click the mouse in the Bookmark
Gutter next to each line you want to be able to navigate to quickly. Finally, from anywhere in
the page, press Ctrl+# where # is the bookmark number that you want to go to; the cursor will
instantly jump to that location. Up to 9 bookmarks (1 — 9) can be set in each edit tab. The
bookmarks are not saved in the source code; however, the bookmark settings of the last 10
files accessed are remembered by the Propeller Tool and restored upon reopening those files.

color (c)
width (w)

» ®PUB plot ix, y)

Flot point

Bookmarks x4 - point
setcommand (_plot, @x]

) ©PUB line (x, u

ODraw & line to point

X, - endpoint

Figure 2-17: Example edit page with Bookmarks enabled and two bookmarks set.

Click on Bookmark Gutter (blank area left of edit page) to set or clear bookmarks.
Press Ctrl+# where # is the desired bookmark number to instantly navigate to an
existing bookmark.

Propeller Manual v1.0 - Page 63

Using the Propeller Tool

Line Numbers

Maybe it is easier to remember a region of code by its line number. At any time, you can
enable or disable line numbers in the edit page. Line Numbers show up in the Line Number
Gutter, next to the Bookmark Gutter (see Figure 2-18), and can be made visible/invisible by
pressing Ctrl+Shift+N. Lines are automatically numbered as they are created; they are a
visual item only and are not stored in the source code. Though Line Numbers share space
with Bookmarks, the two are independent of each other and can be enabled or disabled
individually. Line numbers can be printed, if desired.

R
1420 color (c)
143 width (W)
144
145
® 146|PUB plot (x, uy)
147
143|"" Plot point
149"
158" X, - point
151
152 setcommand (_plot, @x)
153
154
@ 155PUB lire (x,)
156
157"" Draw a line to point
158]"°
159|"° %, U - endpoint
160

Figure 2-18: Example Edit Page with Bookmarks
and Line Numbers Enabled

Page 64 - Propeller Manual v1.0

2. Using the Propeller Tool

Edit Modes

There are three edit modes provided by the Editor pane: 1) Insert (default), 2) Align
(available for “.spin” objects only), and 3) Overwrite. You can switch between each mode by
using the Insert key. The current mode is reflected by both the caret shape and by panel three

of the status bar.

Figure 2-19: Edit Modes

ZIRRR << 1R "arc Insert Edit Mode
HAAAT =< 11 "bit Caret is the standard blinking, vertical
fL - bar and the status bar shows “Insert.”
%3010 << 10 | bit
L4
10:15 | | Inzert | |
AR << 10 'ar“c Align Edit Mode
AANT << 1A ' bit Caret is a blinking underline and the
. status bar shows “Align.”
BAD1A << 10 bit
L«
[10:15 | | Align | |
“ARRR << 10 "arc Overwrite Edit Mode
“PARR]L << 1R "bit Caret is a blinking, solid block and the

status bar shows “Overwrite.”

%010 << 10 | bit

<

110:15 | | Ovenarite | |

Insert and Overwrite Modes

The Insert and Overwrite modes are similar to that of many other text editors. These are the
only two modes available to edit tabs containing files other than Propeller “.spin” objects,
such as “.txt” files.

Propeller Manual v1.0 - Page 65

Using the Propeller Tool

Align Mode

The Align mode is a special version of the Insert mode designed specifically for maintaining
source code. To understand Align mode, we first need to consider common programming
techniques. There are two very common practices used when writing modern source code:
indention of code and alignment of comments to the right of code. It is also common for
source code to be viewed and edited using more than one editor application. Historically,
programmers have used either tabs or spaces for indention and alignment purposes, both of
which prove problematic. Tab characters cause alignment issues because some editors use
different sized tab settings than others. Both tab and space characters cause alignment issues
because future edits cause right-side comments to shift out of alignment. Here are some
examples; Figure 2-20 is our original code.

Figure 2-20: Common Alignment Issues — Original Code

PRI CheckEButton

if not INALL11] ‘Button pressed
waitent (Delay+ent) "debounce
if not INAL11] "Still pressed
repeat until INA[L11] ‘'wait for release
waitent (Delay+cnt) "debounce
Mode++
FrintMode

If the original code used tab characters to align the comments, changing “Delay” to
“BtnDelay” will cause a comment to shift right if the altered text crosses a tab boundary.

Figure 2-21: Common Alignment Issues — Tab Aligned

PRI CheckButton

if not INAL11] ‘Button pressed
waitcent (BtrDelay+ent) ' dchounce
if not INAL11] "S5till pressed
repeat until INA[11] ‘wait for release
waitent (BEtrlelay+ent) "debounce
Mode++
PrintMode

If the original code had been made with tab characters to align the comments,
changing “Delay” to ‘“BtnDelay” results in the second comment suddenly being
pushed out by another tab width.

Page 66 - Propeller Manual v1.0

2. Using the Propeller Tool

If the original code used space characters to align the comments, changing “Delay” to
“BtnDelay” will cause the comments to shift right by three characters.

Figure 2-22: Common Alignment Issues — Space Aligned

PRI CheckButton

if not INA[L11] ‘Button pressed
waitent (BtnDelay+ent) =="debounce
if not INA[L11] 'Still pressed
repeat until INA[11] ‘wait for release
waitent (EtnDelay+ent) =="debounce
Mode++
PrintMode

If the original code had been made with space characters to align the comments,
and a standard Insert edit mode is used, changing “Delay” to “BtnDelay” results in
the second and fifth comments being pushed out by 3 spaces.

For Spin code, the Propeller Tool solves this problem first by disallowing tab characters (Tab
key presses emit the proper number of space characters), and second by providing the Align
edit mode. While in the Align mode, characters inserted into a line affect neighboring
characters but not characters separated by more than one space. The result is that comments
and other items separated by more than one space maintain their intended alignment for as
long as possible, as shown in Figure 2-23.

Figure 2-23: Effects of the Align Edit Mode
PRI CheckButton

if not INALL1] ‘Button pressed
waitent (BtnDelay+ent) "debounce
if not INA[L11] ‘Still pressed
repeat until INA[L11] ‘wait for release
waitent (EtnDelay+ent) "debounce
Mode++
FrintMode

Using the Align edit mode, changing “Delay” to “BtnDelay” leaves all the comments
in their original, aligned, location. No manual re-aligning of comments is necessary
in this case.

Propeller Manual v1.0 - Page 67

Using the Propeller Tool

Since the Align mode maintains existing alignments as much as possible, much less time is
wasted realigning elements due to future edits by the programmer. Additionally, since spaces
are used instead of tab characters, the code maintains the same look and feel in any editor that
displays it with a mono-spaced font.

The Align mode isn’t perfect for all situations, however. We recommend you use Insert
mode for most code writing and briefly switch to Align mode to maintain existing code where
alignment is a concern. The Insert key rotates the mode through Insert — Align — Overwrite
and back to Insert again. The Ctrl+Insert key shortcut toggles only between Insert and Align
modes. A little practice with the Align and Insert modes will help you program more time-
efficiently.

Note that non-Spin source (without a .spin extension) does not allow the Align mode. This is
because, for non-Spin source, the Propeller Tool is designed to maintain any existing tab
characters and to insert tab characters when the Tab key is pressed in order to maintain the
original intent of the file, which may be a tab-delimited data source for a Spin program or
other use where tab characters are desired.

Block Selection and Selection Moving

In addition to normal text selections made with the mouse, the Propeller Tool allows block
selections (rectangular regions of text). To make a block selection, first press and hold the
Alt key, then left-click and drag the mouse to select the text region. After the selection is
made, cut and copy operations behave as they do with other selections. Figure 2-24
demonstrates block selection and movement of the text block with the mouse.

Page 68 - Propeller Manual v1.0

2. Using the Propeller Tool

Figure 2-24: Block Selection and Selection Moving

PRI FrintMode
LCD MoveTo (128)
LCD Print (@Blankl ineStr)
LCD. MoveTo (126+64+8)

LCD . Print (GetFornatStr) Original code. We’d like to

move the “LCD Screen Addr”
' LCD Screen Addr comments to the right of
the PrintMode routine.

pe Bl B2 15
b4 65 B6 ... 79

PRI PrintMode
LCD MoveTo (128)
LCD.Print (@BlanklLineStr)
LCD. MoveTao (128+6L+5)

LED. Prant (CetFerintSes) First press and hold the Alt

key. Next left-click and
drag the mouse to make the
Alt + left click selection.

and select

PRI FrintMode
LCD MoveTo (128)
LCD Print (@BlankLineStr)
LCD.MoveTo (128+64+8)
LCD.Print (GetFormatStr)

N

Finally, click and drag (from
anywhere in the selected
block) and drop the
selection in the desired
location.

Left click, drag
and drop

Indenting and Outdenting

A common programming practice is to indent blocks of code that are either in loops or are
conditionally executed in order to make that code easier to read. The act of doing this is
called “indenting.” We’ll call the opposite action, shifting code to the left, “outdenting.” The
Spin language requires this kind of formatting to indicate which lines are within loops or
conditional blocks. The Propeller Tool includes the following features to make this easier to
accomplish while creating or maintaining code.

Propeller Manual v1.0 - Page 69

Using the Propeller Tool

Single Lines

For Spin code, the Propeller Tool uses a set of fixed tab positions that you can change via the
Edit — Preferences menu. Each Spin block (CON, VAR, 0BJ, PUB, PRI, and DAT) has its own
Fixed Tab settings.

The Tab key moves the cursor to the next tab position (to the right) and Shift + Tab moves
the cursor to the previous tab position (to the left). Additionally, the Backspace key moves to
the previous tab position depending on the text around it; more on this later.

The default tab settings for the PUB and PRI blocks include tab positions for every two
characters near the start of the line to support common code indentions. For example, Figure
2-25, below, shows a public method, FSqr, containing lines at various levels of indention,
each two characters apart.

PUB FSqr
repeat 31

result |= root Figure 2-25: Fixed Tab
if result == result > m Dpefault Setting for

result 2= root PUB and PRI Blocks
root >>= 1
m = result >> 1

Using the Tab key, this code could have quickly been entered with the following sequence on
the keyboard:

e Type: “PUB FSqr” <Enter>
e Type: <Tab> “repeat 31” <Enter>
o Type: <Tab> “result |= root” <Enter>, etc.

Note that the Enter key automatically aligns the cursor to the level of indention currently in
use; this means the Tab key needs to be pressed only once to indent to the next level.

If there are characters to the right of the cursor when the Tab key is pressed, they are shifted
to the right as well, as in Figure 2-26.

Page 70 - Propeller Manual v1.0

2. Using the Propeller Tool

ifX+1>6

Sl A,Iled blink (@) Figure 2-26: Indenting

If the cursor is immediately to the left of the first character on a line, both the Shift + Tab and
the Backspace keys cause the cursor and the text to be shifted left to the previous tab position;
i.e.: outdenting. If, however, the cursor is not immediately to the left of the first character on
a line, Backspace acts normally (deleting the previous character) and Shift + Tab moves only
the cursor to the previous tab position.

ifX+1>6

|| <—|led blink (g) Figure 2-27: Outdenting

Multiple Lines

In addition to affecting single lines, multiple lines of code can be indented or outdented to
fixed tab positions easily. Take a look at Figure 2-28.

result |= root
it result == result > m

— Figure 2-28: Sample
FESUlt A= root Code Block. We want to
root >>= 1 make the first four lines

. repeat 31 times.
m := result >> 1 P

Suppose we wanted to take the first four lines of this example and encase them in a “repeat
31” loop; to repeat those lines 31 times. You can quickly achieve this with the following
steps: 1) enter the “repeat 31” line above the existing lines, 2) using the mouse, select the four
lines to indent, and 3) press the Tab key. These steps are illustrated in Figure 2-29.

Propeller Manual v1.0 - Page 71

Using the Propeller Tool

Figure 2-29: Code Block Indenting
repeat 31
result |= root

if result == result > m

D Step1: Insert the

instruction repeat 31
above the block.

result A= root

w Step 2: With a mouse,

- Select the four lines to
m = result >> 1 indent.

repeat 31
Sesult |= root
1 result ** result > m Step 3: Press the Tab

- key to indent the
result *= root selected lines.
oot >>= 1
m = result >> 1

Note that the four lines we had selected in the second step are now indented to the next fixed
tab position (two spaces to the right of the start of the “repeat”) and the selection changed to a
single column surrounding the first characters of the lines. The selection changed to indicate
that we performed a multi-line indention action. Pressing the Tab key again will indent that

group of lines further and pressing Shift + Tab will outdent that group of lines.

Any contiguous group of lines can be indented or outdented in this fashion. The selection
itself doesn’t have to include the entire line either; it only needs to include at least one
character of more than one line to work. This type of selection is called a “stream” selection.

The second type of selection, a “block” selection (see Block Selection and Selection Moving,
page 68), can also be used to indent or outdent portions of lines. For example, Figure 2-30

shows our example with comments to the right of the lines.

Page 72 - Propeller Manual v1.0

2. Using the Propeller Tool

Figure 2-30: Sample Code Block with Comments to the Right

repeat 31 "loop 31 times
result |= root "OR result w/root
if result == result > m calculate square
result *= root
root >>= 1 "shift root right
m ‘= result >> 1

If we block select the first few characters of the comments (Alt + Left Mouse Button and
Drag, Figure 2-31), we can press the Tab key to indent those comments to the next fixed tab
position. Pressing Shift + Tab will outdent them, at least up to any characters they bump into
on their left, as in Figure 2-32.

Figure 2-31: Using Block Selection to Outdent Comments

31 times
Ihldesult w/root
e late square

repeat 31
result |= root
if result ** result > m
result *= root
root >>= 1
m ‘= result >> 1
Step 1: Block-select the comment lines (Alt + Left Mouse Button and Drag).

B Rit root right

repeat 31 loop 31 times
result |= root OR result w/root
if result ** result > m calculate square
result *= root
root >>= 1 shift root right
m = result >> 1

Step 2: Press the Tab key to outdent the comments.

Propeller Manual v1.0 - Page 73

Using the Propeller Tool

Block-Group Indicators

Sometimes it may be hard to see exactly how groups of code are logically arranged simply by
their level of indention. The Propeller Tool can optionally indicate the logical block-groups
of conditional blocks or loop blocks as shown in Figure 2-32. To toggle this feature on or
off, press Ctrl + L.

repeat 31
result |= root
if result ** result > m g0 2.32: Block
l"'lESLIlt A= root Group Indicators
root »>>= 1
m ‘= result >> 1

Note that only compilable code that is actually within a conditional block or a loop block is
actually enhanced with the indention indicators. Also, this is simply a visual aid to see how
the code will be executed; it does not affect the code or the source file physically; only the
actual levels of indention do that.

Page 74 - Propeller Manual v1.0

2. Using the Propeller Tool

Shortcut Keys

Categorical Listings

In Table 2-1, keyboard shortcuts are grouped by related functions. In Table 2-2, which
begins on page 80, the keyboard shortcuts are grouped by key rather than by function.

Table 2-1: Shortcut Keys — Categorical Listing

Tool Shortcuts

Function Keys

New Ctrl + N

Open Ctrl+ O

Close Alt+Q -or- Ctrl+ W
Save Ctrl + S

Save All Ctrl + Alt+S
Print Ctrl + P
Toggle Show/Hide Bookmarks Ctrl + Shift + B
Toggle Bookmark on current line Ctrl+B
Toggle Block Group Indicators Ctrl + |

Toggle Show/Hide Explorer Ctrl+ E
Toggle Show/Hide Line Numbers Ctrl + Shift + N

Increase font size

Ctrl + Up -or- Ctrl + Mouse Wheel Up

Decrease font size

Ctrl + Down -or- Ctrl + Mouse Wheel Down

Select Full Source view mode Alt+ S
Select Condensed view mode Alt+C
Select Summary view mode Alt + U
Select Documentation view mode Alt+D
Select alternate view (towards Full Source) Alt + Up

Select alternate view (towards Documentation)

Alt + Down -or- Alt + Mouse Wheel Down

Set focus on active edit

Esc

Propeller Manual v1.0 - Page 75

Using the Propeller Tool

Table 2-1: Shortcut Keys — Categorical Listing (continued)

Compiler Shortcuts

Function Keys
Select Top File Ctrl+T
Identify Hardware F7
Compile Current File and View Information F8
Compile Current File and Update Status F9
Compile Current File, Load RAM and Run F10
Compile Current File, Load EEPROM and Run F11
Compile Top File and View Information Ctrl + F8
Compile Top File and Update Status Ctrl + F9
Compile Top File, Load RAM and Run Ctrl + F10
Compile Top File, Load EEPROM and Run Ctrl + F11
Navigation Shortcuts

Select next edit tab

Alt + Right -or- Ctrl + Tab

Select previous edit tab Alt + Left -or- Ctrl + Shift + Tab
Scroll up one page size Page Up
Scroll down one page size Page Down

Scroll left Shift + Mouse Wheel Up
Scroll right Shift + Mouse Wheel Down
Jump to start of next word Ctrl + Right

Jump to start of previous word Ctrl + Left

Jump to start of line Home

Jump to end of line End

Jump to start of page

Ctrl + Page Up

Jump to end of page

Ctrl + Page Down

Jump to start of file

Ctrl + Home

Jump to end of file

Ctrl + End

Page 76 Propeller Manual v1.0

2. Using the Propeller Tool

Table 2-1: Shortcut Keys — Categorical Listing (continued)

Navigation Shortcuts (cont.)

Function Keys
Select word Double-Click
Select line Triple-Click

Select to start of next word

Ctrl + Shift + Right

Select to start of previous word

Ctrl + Shift + Left

Select to start of line

Shift + Home

Select to end of line

Shift + End

Select to start of page

Ctrl + Shift + Page Up

Select to end of page

Ctrl + Shift + Page Down

Select to previous page above

Shift + Page Up

Select to next page below

Shift + Page Down

Select to start of file

Ctrl + Shift + Home

Select to end of file

Ctrl + Shift + End

Editing Shortcuts

Undo Ctrl+Z
Redo Ctrl + Shift+Z
Select All Ctrl + A
Copy to Clipboard Ctrl+C
Cut to Clipboard Ctrl + X
Paste from Clipboard Ctrl +V
Find / Replace Ctrl+F
Find Next F3

Replace F4

Replace then Find Next Ctrl + F4
Change edit mode to Align, Insert or Overwrite Insert
Toggle edit mode between Align and Insert Ctrl + Insert
Insert white space up to next tab position Tab

Delete white space back to previous tab position Shift + Tab

Propeller Manual v1.0 -

Page 77

Using the Propeller Tool

Table 2-1: Shortcut Keys — Categorical Listing (continued)

Editing Shortcuts (cont.)

Function Keys

Delete current line Ctrl+Y
Delete to end of line Ctrl + Shift +Y
Rename Folder/File (in Folder List or File List) F2

Symbol Shortcuts

Insert Negative One Superior Character ()

Ctrl + Alt + 1

Insert One Superior Character (!)

Ctrl + Shift + 1

Insert Two Superior Character (2)

Ctrl + Shift + 2

Insert Three Superior Character (’)

Ctrl + Shift + 3

Insert Bullet Character (®)

Ctrl + Shift + .

Insert Rectangle Bullet Character (1)

Ctrl + Alt + .

Insert Left Bullet Character (4)

Ctrl + Shift + Alt + <

Insert Right Bullet Character (P)

Ctrl + Shift + Alt + >

Insert Left Arrow Bullet Character (¢)

Ctrl + Shift + Alt + Left

Insert Right Arrow Bullet Character ()

Ctrl + Shift + Alt + Right

Insert Up Arrow Bullet Character (*)

Ctrl + Shift + Alt + Up

Insert Right Arrow Bullet Character ()

Ctrl + Shift + Alt + Right

Insert Euro Character (€)

Ctrl + Shift + $

Insert Yen Character (¥)

Ctrl+Alt+$

Insert Sterling Character (£)

Ctrl + Shift + Alt + $

Insert Left Arrow Character (<)

Ctrl + Alt + Left

Insert Right Arrow Character (=)

Ctrl + Alt + Right

Insert Up Arrow Character (T)

Ctrl + Alt + Up

Insert Down Arrow Character (l)

Ctrl + Alt + Down

Insert Degree Character (°)

Ctrl + Shift + %

Insert Plus/Minus Character ()

Ctrl + Shift + -

Page 78 - Propeller Manual v1.0

2. Using the Propeller Tool

Table 2-1: Shortcut Keys — Categorical Listing (continued)

Symbol Shortcuts (cont.)

Function

Keys

Insert Multiply Character (X)

Ctrl + Shift + *

Insert Divide Character (+)

Ctrl + Shift +/

Insert Radical Character (V)

Ctrl + Shift + R

Insert Infinity Character (=)

Ctrl + Shift + |

Insert Delta Character (A)

Ctrl + Shift + D

Insert Mu Character (4)

Ctrl + Shift + M

Insert Omega Character (Q)

Ctrl + Shift + O

Insert Pi Character (1)

Ctrl + Shift + P

Insert Sigma Character (=)

Ctrl + Shift + S

Propeller Manual v1.0 -

Page 79

Using the Propeller Tool

Listing by Key

Table 2-2: Shortcuts By Key

Single Key or Mouse

Function Keys
F2 Rename Folder/File (in Folder List or File List)
F3 Find Next
F4 Replace
F7 Identify Hardware
F8 Compile Current File and View Information
F9 Compile Current File and Update Status
F10 Compile Current File, Load RAM and Run
F11 Compile Current File, Load EEPROM and Run
End Jump to end of line
Esc Select Full Source view mode or set focus on active edit
Home Jump to start of line
Insert Change edit mode to Align (default), Insert or Overwrite
Page Down Scroll down one page size
Page Up Scroll up one page size
Tab Insert white space up to next tab position
Double-Click Select word
Triple-Click Select line
Ctrl + ...
Ctrl + A Select All
Ctrl +B Toggle Bookmark on current line
Ctrl+C Copy to Clipboard
Ctrl + E Toggle Show/Hide Explorer
Ctrl+ F Find / Replace
Ctrl + | Toggle Block Group Indicators

Page 80 - Propeller Manual v1.0

2. Using the Propeller Tool

Table 2-2: Shortcuts By Key (continued)

Ctrl + ... (cont.)

Function Keys

Ctrl + N New

Ctrl+ O Open

Ctrl+S Save

Ctrl+ P Print

Ctrl+T Select Top File

Ctrl + V Paste from Clipboard

Ctrl + W Close

Ctrl + X Cut to Clipboard

Ctrl+Y Delete current line

Ctrl+Z Undo

Ctrl + F4 Replace then Find Next

Ctrl + F8 Compile Top File and View Information
Ctrl + F9 Compile Top File and Update Status
Ctrl + F10 Compile Top File, Load RAM and Run
Ctrl + F11 Compile Top File, Load EEPROM and Run
Ctrl + F4 Replace then Find Next

Ctrl + Down Decrease font size

Ctrl + End Jump to end of file

Ctrl + Home Jump to start of file

Ctrl + Insert Toggle edit mode between Align and Insert
Ctrl + Left Jump to start of previous word

Ctrl + Page Down

Jump to end of page

Ctrl + Mouse Wheel Down

Decrease font size

Ctrl + Mouse Wheel Up

Increase font size

Ctrl + Up

Increase font size

Propeller Manual v1.0 -

Page 81

Using the Propeller Tool

Table 2-2: Shortcuts By Key (continued)

Alt + ...
Alt+C Select Condensed view mode
Alt+D Select Documentation view mode
Alt+S Select Full Source view mode
Alt+Q Close
Alt + U Select Summary view mode
Alt + Down Select alternate view mode (towards Documentation)
Alt + Left Select previous edit tab

Alt + Mouse Wheel Down

Select alternate view mode (towards Documentation)

Alt + Mouse Wheel Up

Select alternate view mode (towards Full Source view)

Alt + Right Select next edit tab

Alt + Up Select alternate view mode (towards Full Source view)
Shift + ...

Shift + End Select to end of line

Shift + Home Select to start of line

Shift + Page Down

Select to next page below

Shift + Page Up

Select to previous page above

Shift + Tab

Delete white space back to previous tab position

Shift + Mouse Wheel Down Scroll right
Shift + Mouse Wheel Up Scroll left
Ctrl + Alt + ...
Ctrl + Alt + . Insert Rectangle Bullet Character ()
Ctrl + Alt + $ Insert Yen Character (¥)
Ctrl + Alt + 1 Insert Negative One Superior Character ()
Ctrl + Alt+ S Save All

Ctrl + Alt + Down

Insert Down Arrow Character (J,)

Ctrl + Alt + Left

Insert Left Arrow Character (<)

Ctrl + Alt + Right

Insert Right Arrow Character (=)

Ctrl + Alt + Up

Insert Up Arrow Character (T)

Page 82 - Propeller Manual v1.0

2. Using the Propeller Tool

Table 2-2: Shortcuts By Key (continued)

Ctrl + Shift + ...

Function

Keys

Ctrl + Shift + $

Insert Euro Character (€)

Ctrl + Shift + %

Insert Degree Character (°)

Ctrl + Shift + *

Insert Multiply Character (%)

Ctrl + Shift + - Insert Plus/Minus Character ()
Ctrl + Shift + . Insert Bullet Character (®)

Ctrl + Shift +/ Insert Divide Character (+)

Ctrl + Shift + = Insert Approximate Character (®)

Ctrl + Shift + 1

Insert One Superior Character (!)

Ctrl + Shift + 2

Insert Two Superior Character (’)

Ctrl + Shift + 3

Insert Three Superior Character (’)

Ctrl + Shift + B

Toggle Show/Hide Bookmarks

Ctrl + Shift + D

Insert Delta Character (A)

Ctrl + Shift + |

Insert Infinity Character (=)

Ctrl + Shift + M

Insert Mu Character (1)

Ctrl + Shift + N

Toggle Show/Hide Line Numbers

Ctrl + Shift + O

Insert Omega Character (Q)

Ctrl + Shift + P

Insert Pi Character (1)

Ctrl + Shift + R

Insert Radical Character (V)

Ctrl + Shift + S

Insert Sigma Character (=)

Ctrl + Shift + Y

Delete to end of line

Ctrl + Shift + Z

Redo

Ctrl + Shift + End

Select to end of file

Ctrl + Shift + Home

Select to start of file

Ctrl + Shift + Left

Select to start of previous word

Ctrl + Shift + Page Down

Select to end of page

Ctrl + Shift + Page Up

Select to start of page

Ctrl + Shift + Right

Select to start of next word

Propeller Manual v1.0 -

Page 83

Using the Propeller Tool

Ctrl + Shift + ... (cont.)

Function

Keys

Ctrl + Shift + Tab

Select previous edit tab

Table 2-2: Shortcuts By Key (continued)

Ctrl + Shift + Alt...

Function

Keys

Ctrl + Shift + Alt + $

Insert Sterling Character (£)

Ctrl + Shift + Alt + <

Insert Left Bullet Character (4)

Ctrl + Shift + Alt + >

Insert Right Bullet Character (P)

Ctrl + Shift + Alt + Down

Insert Down Arrow Bullet Character (¥+)

Ctrl + Shift + Alt + Left

Insert Left Arrow Bullet Character (¢)

Ctrl + Shift + Alt + Right

Insert Right Arrow Bullet Character ()

Ctrl + Shift + Alt + Up

Insert Up Arrow Bullet Character (1)

Page 84 - Propeller Manual v1.0

3. Propeller Programming Tutorial

Chapter 3: Propeller Programming Tutorial

This chapter assumes you are familiar with the general programming concepts of other
programming languages, including object-oriented languages. Discussion of some basic
concepts will be presented, but some prior knowledge and programming experience is
recommended.

In addition to the above, this material should be read only after reading Chapters 1 and 2. If
you have not read through all of Chapter 1 and at least most of Chapter 2, please do so before
continuing with this chapter. Many items presented in Chapters 1 and 2 will be referred to
here, but will not be described in detail.

The following Propeller Programming Tutorial describes Propeller chip programming
concepts in a step-by-step fashion with quick review notes along the way. It is best to read
this chapter from its start to its finish, without skipping around, while working with your
computer and the Propeller chip and trying each example as it is taught. The earlier exercises
are basic in nature and each later exercise covers more advanced material.

Concept

The Propeller product (hardware, firmware and software) was designed with many well-
known and also many brand-new concepts in mind. To this end, we designed the hardware,
firmware, software and the two programming languages that go with it (Spin and Propeller
Assembly) completely from scratch to give users the most direct and efficient control over
the Propeller device.

To fully understand and utilize these tools and languages, it is best that you approach it all
with an open mind. In other words, please be careful not to let legacy programming concepts
and methods prevent you from experiencing the advantages made available by the Propeller
chip and its programming languages. We believe that some legacy concepts do not belong in
true real-time processing environments since they tend to bring turmoil to those who rely on
them.

Propeller Manual v1.0 - Page 85

Propeller Programming Tutorial

Propeller Languages (Spin and Propeller Assembly)

The Propeller chip is programmed using two languages designed specifically for it: 1) Spin, a
high-level object-based language, and 2) Propeller Assembly, a low-level, highly-optimized
assembly language. There are many hardware-based commands in Propeller Assembly that
have direct equivalents in the Spin language. This makes learning both languages, and the
use of the Propeller chip overall, much easier to handle.

The Spin language is compiled by the Propeller Tool software into tokens that are interpreted
at run time by the Propeller chip’s built-in Spin Interpreter. Those familiar with other
programming languages usually find that Spin is easy to learn and is well-suited for many
applications. With Spin you can easily perform high-level/low-bandwidth tasks and can even
create code to handle some typically higher-bandwidth features like asynchronous serial
communication at 19200 baud.

The Propeller Assembly language is assembled into pure machine code by the Propeller Tool
and is executed in its pure form at run time. Assembly language programmers enjoy
Propeller Assembly’s nature and its ability to achieve high-bandwidth tasks with very little
code.

Propeller Objects (see below) can be written entirely in Spin or can use various combinations
of Spin and Propeller Assembly. It’s possible to write objects almost entirely in Propeller
Assembly as well, but at least two lines of Spin code are required to launch the final
application.

Propeller Objects

The Propeller chip’s Spin language is object-based and serves as the foundation for every
Propeller Application.

What is an Object?

Objects are really just programs written in a way that: 1) create a self-contained entity, 2)
perform a specific task, and 3) may be reused by many applications.

For example, the Keyboard object and Mouse object each come with the Propeller Tool
software. The Keyboard object is a program that interfaces the Propeller chip to a standard
PC-style keyboard. Similarly, the Mouse object interfaces to a standard computer mouse.
Both of these objects are self-contained programs with carefully designed software interfaces
that allow other objects, and developers, to use them easily.

Page 86 - Propeller Manual v1.0

3. Propeller Programming Tutorial

By using existing objects, more sophisticated applications can be built very quickly. For
instance, an application can include both the Keyboard and Mouse objects, and with just a
few additional lines of code, a standard user interface is realized. Since the objects are self-
contained and provide a concise software interface, application developers don’t necessarily
need to know exactly how an object achieves its task just to be able to use it. In a similar
way, a driver of a car doesn’t necessarily know how the engine works, but as long as that
driver understands the interface (the ignition key, gas pedal, brakes, etc.) he or she can make
the car accelerate and decelerate.

Well-written objects can be created by one developer and easily used by many different
applications from many different developers.

Objects and Applications

A Propeller Object consists of Spin code and, optionally, Propeller Assembly code; see
Figure 3-1. We’ll simply call these “objects” from now on.

Propeller Object

Spin Code

—

Propeller Assembly Code .
Figure 3-1: Propeller

Object

Objects are stored on your computer as files with “.spin” extensions, therefore you should
always think of each Spin file as an object.

Propeller Manual v1.0 - Page 87

Propeller Programming Tutorial

Rotary Encoder Object

&) |&)| @l ||| |&]

Graphics.spin Mouse.spin Numbers.spin Rotary Encoder.spin TV.spin

Figure 3-2: Object Files consist of Spin, and possibly Propeller Assembly, and are
stored as “.spin” files on your computer’s hard drive.

Each object can be thought of as a “building block” for an application. An object may choose
to utilize one or more other objects in order to build a more sophisticated application. This is
loosely called “referencing” or “including” another object. When an object references other
objects it forms a hierarchy where it is the object at the top, as in Figure 3-3. The topmost
object is referred to as the “Top Object File” and is the starting point for compiling a

Propeller Application.

— Graphics_Demo Object =

Figure 3-3: Object
Hierarchy

When compiled, the
Graphics Demo object
is the “Top Object
File” that references
the other three
objects shown below
it.

TV Object

g

WA

In the above figure, the Graphics Demo object references three other objects: TV, Graphics,
and Mouse. If the Graphics Demo object is compiled by the user, it is considered the Top

Page 88 - Propeller Manual v1.0

3. Propeller Programming Tutorial

Object File and the other three objects are loaded and compiled with it resulting in a finished
program called a Propeller Application, or “application” for short.

Applications are formed from one or more objects. The application is really a specially
compiled binary stream that consists of executable code and data and can be run by the
Propeller chip.

When downloaded, the application is stored in the Propeller chip’s Main RAM and optionally
into an external EEPROM. At run time, the application is executed by one or more of the
Propeller chip’s processors, called cogs, as directed by the application itself.

/N
Propeller Application

Download Main RAM

il 1]

----------------- Figure 3-4:
Downloading

?gﬁz‘:ﬂ;ﬂ;f one

—__ OR— = = I I 1 or more objects are
P 1l Y downloaded to the

Propeller chip’s

RAM, and
: 4
e‘
at Boot Up

optionally, its
external EEPROM.
External EEPROM
32k bytes

v

Propeller Manual v1.0 - Page 89

Propeller Programming Tutorial

Connect for Downloading

In order to download a Propeller Application from the PC, you first need to connect the
Propeller chip properly.

If you have a Propeller Demo Board (Rev C or D), it includes the Propeller chip and
all the necessary circuitry. Connect it to a power supply and the PC’s USB cable and
switch the power on. You may also need to install the USB drivers as directed by the
Propeller Demo Board’s documentation.

If you do not have the Propeller Demo Board, we’ll assume you have the Propeller
chip and that you are experienced with wiring prototype circuits. Refer to Package
Types on page 14 (showing the Propeller pinout) and Hardware Connections on page
17 for an example circuit showing the connections for power and programming. If
you are using the Propeller Plug device, you may also need to install the USB drivers
as directed by its documentation. The rest of this chapter relies heavily on circuitry
similar to that of the Propeller Demo Board. In addition to the above power and
programming connections, include the components and connections of the following
schematic in your prototype circuit. You may also refer to the Propeller Demo
Board’s schematic; downloadable from the Parallax website.

LEDs
A, 2400
P23 O>—PL—W——
2
P22 D—N—‘,;, W—¢ 270 Q
P21 [>—N—’VV\,—|/] P14 —MN—
P20 [N l AN ® 560 Q These three resistors form a
7x P13 L 1-volt, 75-ohm, 3-bit DAC that
P19 D—N/—’\N\,—ﬂ o Vv is used to generate baseband
P1g [’l / AAA | 1.1 kQ and broadcast video.
»;. P12 [O—MWA——
P17 O—PH—W\—¢
o
P16 [O—PF—AWN—9 ? RCA jack

V_ss V;s

Figure 3-5: Propeller Tutorial Schematic

If you have made the connections suggested above, you should be able to verify and identify
the Propeller chip via the Propeller Tool software. Start the Propeller Tool software (Version
1.0) and then press the F7 key (or select Run — Identify Hardware... from the menu). If the

Page 90

Propeller Manual v1.0

3. Propeller Programming Tutorial

Propeller chip is powered and connected to the PC properly, you should see an “Information”
dialog similar to Figure 3-6.

Information E X
. xl Figure 3-6: The

@ Propeller chip wersion 1 found on COMS, Information Dialog

The port (COMS5) may
be different on your
computer.

Quick Review: Intro

The Propeller is programmed using two custom-designed languages: Spin and
Propeller Assembly.

o Spin is a high-level, object-based language interpreted at run time.

o Propeller Assembly is a low-level, optimized assembly language which is

executed directly at run time.

Objects are programs that:

o are self-contained.

o perform a specific task.

o may be reused by many applications.
Well-written objects from one developer can easily be used by other developers and
applications.

A Propeller Object:
o consists of two or more lines of Spin code and possibly Propeller Assembly
code.

o is stored on the computer as a file with a “.spin” extension.

o may use one or more other objects to build a sophisticated application.
Propeller Applications:

o consist of one or more objects.

o are compiled binary streams containing executable code and data.

o are run by the Propeller chip in one or more cogs (processors) as directed by

the application.

The topmost object in a compiled application is called the “Top Object File.”

Propeller Manual v1.0 - Page 91

Propeller Programming Tutorial

Exercise 1: Output.spin - Our First Object

The following is a simple object, written in Spin, that will toggle an I/O pin high and low
repeatedly. Start the Propeller Tool software and enter this program into the editor. We’ll
explain how it works in a moment. Make sure the “PUB” line begins in column 1 (the leftmost
edge of the edit pane) and pay very close attention to each line’s indention; it’s important for
proper operation.

PUB Toggle
dira[16]~~
repeat
loutal[16]
waitent (3_000 000 + cnt)

While indentation is critical, capitalization is not. Propeller code is not case-senitive.
However, throughout this book, reserved words appear in bold all-captials, except in code
snippets and excerpts, to help you become familiar with them.

After checking that you’ve typed it in properly, press the F10 key (or select Run — Compile
Current — Load RAM + Run from the menu) to compile and download our example
program. If the program you entered is syntactically correct and the Propeller chip is
properly powered and connected to the PC, you should see a “Propeller Communication”
dialog appear momentarily on the screen, like the one in Figure 3-7, and now the LED on I/O
pin 16 of the Propeller chip should be blinking about twice per second. What we just
accomplished is what is shown at the top of Figure 3-4: Downloading on page 89.

Propeller Communication

Loading RAM Figure 3-7: Propeller
Communication
o8 OO0 Dialog

What really happened was probably too fast to see because the example program we entered
is so small. When you pressed F10 it caused the Propeller Tool to compile the source code
you entered and turn it into a Propeller Application. The Propeller Tool then searched for a
Propeller chip connected to the PC and downloaded the application into its RAM. Finally,
the Propeller started running the application from RAM, blinking the LED on I/O pin 16.

Page 92 - Propeller Manual v1.0

3. Propeller Programming Tutorial

Downloading to RAM vs. EEPROM

Before we explain the code, let’s take a closer look at the downloading process. Since our
code was downloaded to RAM only, power cycling or resetting the Propeller will cause RAM
contents to be lost and the program to stop permanently. Try pressing the reset button. The
LED should turn off and never turn on again.

What if we don’t want it to stop permanently? We could download to EEPROM instead of
just RAM. Let’s download again, but this time press the F11 key (or select Run — Compile
Current — Load EEPROM + Run from the menu) to compile and download our example
program to EEPROM. This is what is shown at the bottom of Figure 3-4: Downloading on
page 89. As you may see from the figure, this actually downloaded to RAM first, then the
Propeller chip programmed its external EEPROM, then started running the application from
RAM, blinking the LED on I/O pin 16.

You probably noticed that the “Propeller Communication” dialog stayed on the screen much
longer; EEPROMs take much longer to program than RAMs do.

Try pressing the reset button now. When you release the reset button, you’ll notice a delay of
about 1 4 seconds and then the LED starts blinking. This is exactly what we wanted; a more
permanent application in our Propeller chip.

Upon waking up from reset, the Propeller chip performed the boot-up procedure detailed on
page 18. During that procedure, it determined it needed to boot up from the external
EEPROM and then it took approximately 1'% seconds to completely copy the 32 Kbytes of
content into its RAM and start running it.

Downloading only to RAM is convenient for development sessions because it is much faster.
Downloading to both RAM and EEPROM to make the application more permanent is best
done only when necessary because of the extra download time required.

A word of caution: If you download to EEPROM one or more times then revise your program
and download to RAM only, when manually reset, the Propeller will boot up with your old
program. This may make sense now, but that result can be very confusing when you’re not
paying attention. If things don’t work right after a reset occurs, suspect the program in
EEPROM first.

Propeller Manual v1.0 - Page 93

Propeller Programming Tutorial

Exercise 1: Output.spin Explanation
Now for an explanation of the source code:

PUB Toggle
dira[16]~~
repeat
loutal[16]
waitent (3_000 000 + cnt)

The first line, PUB Toggle, declares that we’re creating a “public” method called “Toggle.” A
method is the object-oriented term for “procedure” or “routine.” We chose the name Toggle
simply because it is descriptive of what the method does and we knew it is a unique symbol;
it must be a unique symbol and conform to the Symbol Rules on page 159. We’ll describe
the term PUB, “public,” in more detail later, but it’s important to note that every object must
contain at least one public (PUB) method.

The rest of the code is logically part of the Toggle method. We indented each line by two
spaces from the PUB’s column to make that more clear; this indenting isn’t required but is a
good habit for clarity.

The first line of the Toggle method (second line of our example), dira[16]~~, sets the
direction of I/O pin 16 to output. The DIRA symbol is the direction register for /O pins PO
through P31; clearing or setting bits within it changes the corresponding I/O pin’s direction to
input or output. The [16] following dira indicates we want to access only the direction
register’s bit 16; the one that corresponds to I/O pin 16. Finally, the ~~ is the Post-Set
operator that causes direction register bit 16 to be set to high (1); which makes I/O pin 16’s
direction an output. The Post-Set operator is a shorthand way of saying something like
dira[16] := 1 which may look familiar to you from other languages.

The next line, repeat, creates a loop consisting of the two lines of code below it. This REPEAT
loop runs infinitely, toggling P16, waiting ¥4 second, toggling P16, waiting 4 second, etc.

The next line, !outa[16], toggles the state of I/O pin 16 between high (VDD) and low (VSS).
The OUTA symbol is the output state register for I/O pins PO through P31. The [16] in
louta[16] indicates we want to access only the output register’s bit 16; the one that
corresponds to I/O pin 16. The ! at the start of this statement is the Bitwise Not operator; it
toggles the state of all bits specified to its right (the bit corresponding to I/O pin 16 in this
case).

The last line, waitcnt (3_000_000 + cnt), causes a delay of 3 million clock cycles. WRITCNT
means “Wait for System Counter.” The cnt symbol is the System Counter register; CNT

Page 94 - Propeller Manual v1.0

3. Propeller Programming Tutorial

returns the current value of the System Counter, so this line means “wait for System Counter
to equal 3 million plus its current value.” In this code example, we didn’t specify any clock
settings for the Propeller chip, so by default it runs with its internal fast clock (about 12 MHz)
meaning a delay of 3 million clock cycles is about % second.

Remember how we said to pay close attention to each line’s indenting? Here is where
indenting is required: the Spin language uses levels of indention on lines following
conditional or loop commands (IF, CASE, REPEAT, etc.) to determine which lines belong to that
structure. In this case, since the two lines following repeat are indented to the right by at
least one space beyond repeat’s column, those two lines are considered to be a part of the
repeat loop. If you have trouble recognizing these structural groupings, the Propeller Tool
can make them more visible on-screen through the Block-Group Indicators feature. Use
Ctrl+I to toggle this feature on or off. Figure 3-8 shows our example code with these
indicators visible.

PUB Toggle Figure 3-8: Block-
diral1G]~~ Group Indicators
repeat

loutal[15] Ctrl+l toggles them on
waitent(d BE0 AR + cnt) and off.

If you haven’t saved this example object yet, you may do so by pressing Ctrl+S (or selecting
File — Save from the menu). You may save it in a folder of your choosing but make sure to
save it with the filename “Output.spin” since some exercises below rely on it.

Propeller Manual v1.0 - Page 95

Propeller Programming Tutorial

Quick Review: Ex 1

e Applications are downloaded to either Propeller RAM only or RAM and EEPROM.

O
O

(@)

Those in RAM will not survive power cycling or resetting the Propeller chip.
Those in EEPROM are loaded into RAM on boot-up in approximately 1%
seconds.
To download the current object to:
= RAM only: press F10 or select Run — Compile Current — Load
RAM + Run.
* RAM + EEPROM: press F11 or select Run — Compile Current —
Load EEPROM + Run.

e Spin language:

O
O

Method means “procedure” or “routine.”

PUB Symbol declares a public method called Symbol. Every object must
contain at least one public (PUB) method. See PUB on page 287 and Symbol
Rules on page 159.

DIRA is the direction register for I/O pins 0-31. Each bit sets the
corresponding 1/O pin’s direction to input (0) or output (1). See DIRA, DIRB
on page 212.

OUTA is the output state register for I/O pins 0-31. Each bit sets the
corresponding I/O pin’s output state to low (0) or high (1). See OUTA, OUTB
on page 280.

Registers can use indexes, like [16], to access individual bits within them.
See DIRA, DIRB on page 212 or OUTA, OUTB on page 280.

~~ following a register/variable sets its bit(s) high. See Sign-Extend 15 or
Post-Set ‘“~~’ on page 263 in the Operators section.

! preceding a value/register/variable sets its bit(s) opposite their current state.
See Bitwise NOT !’on page 272 in the Operators section.

REPERT creates a loop structure. See REPEAT on page 293.

WAITCNT creates a delay. See WAITCNT on page 322.

Indention at the start of lines:

* indicates they belong to the preceding structure; it is required for
lines following conditional or loop commands (like REPEAT).
(Indenting is optional after block indicators, such as PUB.)

= Ctrl+I toggles visible block-group “structure” indicators on and off.

Page 96 - Propeller Manual v1.0

3. Propeller Programming Tutorial

Cogs (Processors)

The Propeller has eight identical processors, called cogs. Each cog can be individually set to
run or stop at any time as directed by the application it is running. Each cog can be
programmed to run independent tasks or cooperative tasks with other cogs, as needed, and
this can change as desired during the application’s run time.

But we didn’t specify which cog(s) to run in our Output.spin example, so how did it work?
For a review, you could read Boot Up Procedure, page 18, and Run-Time Procedure, page 18,
in Chapter 1, but we’ll discuss it a bit more here.

For our example, upon power-up, the Propeller chip starts the first processor (Cog 0) and
loads it with a built-in Boot Loader program. The Boot Loader program is copied from the
Propeller chip’s ROM into Cog 0’s internal RAM memory. Cog 0 then runs the Boot Loader
program in its internal memory and the Boot Loader soon determines it should copy user-
code from the external EEPROM. So Cog 0 copies the entire 32 K byte EEPROM contents
into the Propeller chip’s 32 K byte main RAM memory (separate from the cog’s internal
memory). Then the Boot Loader program makes Cog 0 reload itself with the built-in Spin
Interpreter; the Boot Loader program in Cog 0 halts at this point while it is being overwritten
with the Spin Interpreter program.

Figure 3-9: Running
Output.spin

| Cog2 [RAM]|

[cog7 =]

Notice that the Spin
Interpreter, not the
Spin Application, is

Interpreter

loaded into Cog RAM.
, The Spin Application
Main /Fi’:'\" . resides in Main RAM
(\f\’\ ’\) ' and is interpreted by
Won ; the Spin Interpreter
) ' program that is
) ' running in the cog.

Now, Cog 0 is running the Spin Interpreter, which fetches and executes our application’s
code from main memory (RAM). This is shown in Figure 3-9. Since our application consists

Propeller Manual v1.0 - Page 97

Propeller Programming Tutorial

entirely of interpreted Spin code, it continues to reside only in main memory while a cog
running the Spin Interpreter (Cog O in this case) reads, interprets and effectively executes it.
No other cogs were started during boot up or during our application’s execution; the other
seven cogs remain in a dormant state consuming virtually no current at all. Later, we’ll
change our application to start other cogs as well.

Exercise 2: Output.spin - Constants

Let’s enhance our program a little. Suppose we want to make it easy to change the I/O pin
and the length of the delay used. As it is written currently, we’d have to find and change the
pin number in two places and the delay in yet another place. We can make it better by
defining those items in a separate place that is easy to find and edit. Look at the following
example and edit your code to match (we highlighted every new or modified element).

CON
Pin
Delay

16
3_000_000

PUB Toggle
dira[Pin]~~
repeat
'outal[Pin]
waitent (Delay + cnt)

The new CON block at the top of the code defines global constants for the object (see CON,
page 194.) In it, we created two symbols, Pin and Delay, and assigned the constant values 16
and 3,000,000 to them, respectively. We can now use the symbols Pin and Delay elsewhere
in the code to represent our constant values 16 and 3,000,000. Notice that we used
underscores (_) to separate the “thousands” groups in the number 3,000,000? Commas are
not allowed there but underscores are allowed anywhere inside of constant values; this makes
large numbers more readable.

In the Toggle method, we replaced both occurrences of 16 with the symbol Pin, and replaced
the 3_000_000 with the symbol Delay. When compiled, the Propeller Tool will use the
constant values in place of their respective symbols. This makes it easy, later on, to change
the pin number or delay at will since we only have to change it up at the top of code in a
place that is easy to find and understand.

Try changing the Delay constant from 3,000,000 to 500,000 and download again; the LED
should now flicker at a rate of 12 blinks per second (24 toggles per second). You can also

Page 98 - Propeller Manual v1.0

3. Propeller Programming Tutorial

change the Pin constant from 16 to 17 and download again to see a different LED blink.
NOTE: you can try 18 through 23 as well, but on the Propeller Demo Board they are
connected in pairs with resistors for the VGA driver circuit, so two LEDs will blink at once.

Block Designators

You may have noticed that the backgrounds of the CON and PUB blocks of code were colored
differently when you entered them into the editor. This is the Propeller Tool’s way to
indicate these are distinct blocks of code.

Spin code is organized in blocks that have distinct purposes. CON and PUB are block
designators that indicate the start of a “constant block” and “public method block”,
respectively. Every block designator must start in the first column of text (the leftmost edge
of the edit pane) on a line. There are six types of blocks in the Spin language: CON, VAR, 0BJ,
PUB, PRI, and DAT. The following is a list of the block designators and their purpose:

CON Global Constant Block. Defines symbolic constants that can be used anywhere
within the object (and in some cases outside the object) wherever numeric values
are allowed.

VAR Global Variable Block. Defines symbolic variables that can be used anywhere
within the object wherever variables are allowed.

OBJ Object Reference Block. Defines symbolic references to other existing objects.
These are used to access those objects and the methods and constants within
them.

PUB Public Method Block. Public methods are code routines that are accessible both
inside and outside the object. Public routines provide the interface to the object;
the way methods outside of the object interact with the object. There must be at
least one PUB declaration in every object.

PRI Private Method Block. Private methods are code routines that are accessible only
inside the object. Since they are not visible from the outside, they provide a level
of encapsulation to protect critical elements within the object and help maintain
the integrity of the object’s purpose.

DAT Data Block. Defines data tables, memory buffers, and Propeller Assembly code.
The data block’s data can be assigned symbolic names and can be accessed via
Spin code and assembly code.

There can be multiple occurrences of each block type, arranged in any order desired, but there
must be at least one PUB block per object. Even though the number of blocks and their order

Propeller Manual v1.0 - Page 99

Propeller Programming Tutorial

is quite flexible, typically there is only one occurrence of CON, VAR, 0BJ and DAT blocks,
multiple occurrences of PUB and PRI blocks, and the suggested order for typical programs is
the order they are given in the list above.

The very first PUB block in the very first object (the Top Object File where compilation starts
from) automatically becomes the Propeller Application’s starting point; it is executed first
when the application starts. No other public or private method is executed automatically, but
rather they are executed only as determined by the natural flow of the application.

The Propeller Tool automatically colors the backgrounds of each block differently, even two
consecutive occurrences of the same block type, in order to make it easy to identify the type,
start, and end of each block. This in no way affects the actual source code itself, it is simply
an indicator for on-screen use that is intended to solve a typical problem with source code;
that is, as the code gets larger, it is harder to find a particular method quickly as you scroll up
and down through the code unless you have some kind of separator between methods. The
background color coding serves as an automatic separator that prevents you from having to
waste time typing in text-based separators manually.

Exercise 3: Output.spin - Comments

Our Output object is better now, but it still could be more readable. How about adding some
comments to the code to make it easier for other readers to understand? The next example
functions the same as before, but with a number of comments (human-readable, non-
executable text) above and to the right of our existing code.

These comments should help people figure out what it does. There are four types of
comments supported by the Propeller Tool (all of which are shown in this example):

- Single-line code comment (apostrophe).
v - Single-line document comment (two apostrophes, NOT a quotation mark).
{...} - Multi-line code comment (curly braces).

{{...}} - Multi-line document comment (two curly braces).

Page 100 - Propeller Manual v1.0

3. Propeller Programming Tutorial

{{Output.spin

Toggles Pin with Delay clock cycles of high/low time.}}

CON
Pin = 16 { I/0 pin to toggle on/off }
Delay = 3 000 000 { On/0ff Delay, in clock cycles}
PUB Toggle

"'Toggle Pin forever
{Toggles I/0 pin given by Pin and waits Delay system clock cycles
in between each toggle.}

dira[Pin]~~ "Set I/0 pin to output direction
repeat "Repeat following endlessly
loutal[Pin] " Toggle I/0 Pin
waitent (Delay + cnt) " Wait for Delay cycles

Single line comments begin with at least one apostrophe (') and continue until the end of the
line. Executable code can be to the left of a single-line comment but not to the right of it
since that would make it “commented out” The “'Set I/0 pin...” and “'Repeat
following...” comments are examples of single-line comments.

Multi-line comments begin with at least one open curly brace ({) and end with at least one
close curly brace (}). Unlike single-line comments, executable code can be to the left and
the right of multi-line comments. Multi-line comments can actually be entirely on one line,
or can span across multiple lines. The “{0n/0ff Delay...}” and “{Toggles I/0 pin
given...}” comments are both examples of a multi-line comments.

If a comment begins with just one apostrophe (') or one open curly brace ({), it is a “code”
comment. This is a comment meant to be read by code developers while reviewing the
source code itself.

If a comment begins with either two apostrophes (") or two open curly braces ({{), with
no spaces in between, it is a “document” comment. This is a special type of comment that is
visible within the code, but can also be extracted by the Propeller Tool into a document
formatted for easier reading, containing no executable code.

As discussed in Chapter 2View Modes on page 61, the Propeller Tool’s editor has a
Documentation view mode. With the above code entered into the editor, if the
Documentation view mode is selected, the code is compiled and the document comments are

Propeller Manual v1.0 - Page 101

Propeller Programming Tutorial

shown along with some statistics about the compiled code. The following is what this looks
like:

Output.spin

Toggles Pin with Delay clock cycles of high/low time.
Object "Output’ Interface:

PUB Toggle
Program: 8 Longs
Variable: @ Longs
PUB Toggle

Toggle Pin forever

If you compare this to our code you should recognize all the text that came directly from our
document comments. The section “Object "Output" Interface:” is created automatically by
the Propeller Tool; it lists all the public methods (just PUB Toggle in this case) and shows that
the program size is 8 longs (32 bytes) and no variables were used. Following that, it lists all
the public methods again, with an overbar above each method, and the document comments
that belong with them. This section shows the public Toggle method and our last document
comment, “Toggle Pin forever,” indicating what the Toggle method does.

Adding document comments to your code allows you to create just one file that contains both
source code and documentation for an object. This is extremely convenient for developers
since they can easily switch to Documentation view to learn how to use an object they are
unfamiliar with. To support this further, the Propeller Tool’s Parallax font has many special
characters for including schematics, timing diagrams, and mathematical symbols right in the
objects that they relate to, like those shown in Figure 2-1 on page 36.

Page 102 - Propeller Manual v1.0

3. Propeller Programming Tutorial

Quick Review: Ex 2 & 3

e The Propeller has eight identical processors, called cogs.
o Any number of cogs can be running or halted at any time as directed by the
application.
o Each cog can run independent or cooperative tasks.
o At boot-up, Cog 0 runs the Spin Interpreter to execute the main memory-
based Spin application.
e Spin language:
o Organized in blocks that have distinct purposes.
= CON - Defines global constants, see page 194.
= VAR — Defines global variables, see page 315.
= 0BJ - Defines object references, see page 247.
= PUB - Defines a public method, see page 287.
= PRI - Defines a private method, see page 286.
= DAT - Defines data, buffers, and assembly code, see page 208.
o Block designators must be in column 1 of a line.
o Each block type can occur multiple times and can be arranged in any order.
o The very first PUB block in the very first object is the Propeller Application’s
starting point.
o Underscores “
decimal numbers.
o Types of comments:
= (Code comments; visible in source code only. Great for notes to
developers regarding function of specific code.

(132l

in constants denote logical groupings, like thousands in

o — Single-line; starts at apostrophe and continues to
end of line.

o {.} — Multi-line; starts and ends with single curly
braces.

= Document comments; visible in source code and documentation
view. Great for object documentation. Can even include schematics,
timing diagrams and other special symbols.
= ''.. — Single-line; starts at double-apostrophe and
continues to end of line.
o {{..}} — Multi-line; starts and ends with double-curly
braces.

Propeller Manual v1.0 - Page 103

Propeller Programming Tutorial

Exercise 4: Output.spin - Parameters, Calls, and Finite Loops

Our current object from Exercise 3 is interesting, but still isn’t very flexible; after all, the
Toggle method only works with a specific pin and delay. Let’s make the Toggle method
more flexible and also give it the ability to toggle a sp