

Real-time Gesture Mapping in Pd Environment using
Neural Networks

Arshia Cont
Researcher, La kitchen

78 Avenue de la République
75011, Paris, France.

Tel: +(33) 1 56 79 02 89

Arshia.Cont@la-kitchen.fr

Thierry Coduys
Director, La kitchen

78 Avenue de la République
75011, Paris, France.

Tel: +(33) 1 56 79 02 89
Thierry.Coduys@la-kitchen.fr

Cyrille Henry
Researcher, La kitchen

78 Avenue de la République
75011, Paris, France.

Tel: +(33) 1 56 79 02 89

Cyrille.Henry@la-kitchen.fr

ABSTRACT
In this paper, we describe an adaptive approach to gesture
mapping for musical applications which serves as a mapping
system for music instrument design. A neural network approach is
chosen for this goal and all the required interfaces and
abstractions are developed and demonstrated in the Pure Data
environment. In this paper, we will focus on neural network
representation and implementation in a real-time musical
environment. This adaptive mapping is evaluated in different
static and dynamic situations by a network of sensors sampled at a
rate of 200Hz in real-time. Finally, some remarks are given on the
network design and future works.

Keywords
Real-time gesture control, adaptive interfaces, Sensor and actuator
technologies for musical applications, Musical mapping
algorithms and intelligent controllers, Pure Data.

1. INTRODUCTION
Gestural control of musical events has become a trend in
computer music over the past years. Rapid growth of sensor
technologies and their processing tools in addition to the growing
computing power of personal computers have made this
technology available to the computer and electronic music
communities. On the other hand, most sensor mapping approaches
are fixed and confined to few parameters thereby do not allow
much control and freedom over musical events. On the other
hand, from an instrumental view, the problem of mapping is
essential for any new instrument design and the rapid growth of
technology is asking for new and intelligent mapping algorithms
and controllers.

Our aim was to implement an intelligent black-box that adapts to
gestures performed by the user. The black-box would accept
parameters describing physical gesture as input and generates the
desired high-level parameters as output. For this augmented
mechanism of mapping, we have chosen adaptive neural networks
which would learn automatically during a training phase.

Comparing to conventional methods of mapping, this system has
the following advantages:

• The user can work directly with the desirability of
correspondence between gesture and produced results, rather
than the complex mechanism of the mapping algorithm

• The empirical approach of neural networks can evade the
complexity of formalizing the problem

• The system can perform well even in the presence of non-
linearity and noise in the input

• Ability to make mappings of ‘unseen’ input patterns

• Cheap computation compared to other methods of complex
mappings

• Neural Networks do not require expertise to train and
maintain the network.

2. HISTORICAL REMARKS
Among works in adaptive interfaces for musical control, we cite
two that have most influenced our approach.

A Neural Network Interface between a Data-Glove and a Speech
Synthesizer has been implemented by Sidney S. Fels and G.
Hinton in University of Toronto [1]. This system recognizes the
hand gestures of sign-language using adaptive neural networks.
The networks’ output is the parameters for a speech synthesizer.
The trained networks are small enough to achieve real-time
performance, however the training sessions are heavy and the
system was not developed in a musical environment.

In another approach and concerned with the other aspect of
adaptive interfaces, i.e. the training, the Center for New Music
and Audio Technologies has implemented a simple back
propagation with forward-pass as an external (called “mlp”, short
for "multi-layer perceptron") for Max/MSP programming
environment [2]. This implementation is among the first of such
interfaces in a real-time musical environment and the graphical
interface allows the user to train and obtain a network with ease.

The main interest of Glove-Talk for our application is the Neural
Network concept and architecture for the gesture recognition.
The interest of CNMAT’s “mlp” object lies in the training
interface implemented in Max/MSP real-time programming
environment.

3. OVERVIEW OF THE SYSTEM
The system consists of two different stages: the first being the
network design and the second the real-time application.
In the first stage—training and design of the network—we use
Neural Network simulators such as SNNS and Matlab’s Neural
Network Toolbox. Software developed at La kitchen takes the

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 39

networks designed in these simulators and produces text files that
consequently serves as input for the Neural Network abstractions
in Pure Data real-time music programming environment [5]. Our
final goal is to implement a neural network training environment
in Pure Data itself that handles several architectures and network
schemes useful for instrumental and gestural system design.
During this research, several network architectures and training
schemes were evaluated and those suitable for general musical
applications were implemented for further use. We experimented
with two general architectures: Static-networks and Dynamic-
networks. In a static network, we map the data without any use of
time-delay for recognition and in dynamic application we use
time-delay that introduces a notion of memory in a pattern
recognition problem and allows gesture mapping and control.
In the second stage, data acquisition is done using series of
sensors that describe gestures. A sensor interface routes this data
to a real-time software environment containing a trained neural
network. Finally the neural network produces the desired
parameters for event generation and continuous control of a
musical process or application. A well-trained neural network
system in general, would generalize its knowledge and respond to
unseen gestures appropriate to defined preferences.
The interest of the adaptable mapping lies in the ability to use any
input device for mapping. For the sake of this research, data
acquisition is done using La kitchen’s sensors and the “Toaster”
or the wireless “Kroonde” interfaces [3] (see Figure1). These
interfaces provide the gesture data to a real-time musical
application using the OpenSoundControl protocol [4].
Preprocessing operations designed with the interface and sensors,
prepare the desired inputs for the trained network. Sensors and
interfaces designed in La kitchen allow a time resolution input of
5ms (equivalent of 200Hz) with 10-bit precision for “Kroonde”
and 16-bit precision for “Toaster” which would allow high-
resolution control over the events.

Figure 1. Kroonde and Toaster, high-resolution real-time

sensor interfaces.
For the real-time musical environment, Pure Data [5] is chosen
for its availability, open-source license and its active community.
Data acquisition patches were already available for the mentioned
sensors and interfaces along with some preprocessing tools in
Pure Data developed at La kitchen. Neural network abstractions
are created in Pure Data which take a trained network and
perform the network operations. For their design, we had the
following constraints in mind:

• High-level and easy interface

• General network implementation that minimizes the
sophistication of huge networks

• Real-time performance

4. NEURAL NETWORK REALIZATION IN
PURE DATA
A general neuron is presented in Figure 2. A designed network
consists of a series of additions and multiplications along with a
transfer function. Each neuron’s operation can be considered as
vector operations.

Figure 2. A neuron model in a neural network

A neural network is made up of layers, each of which contains
several neurons. With the above model, problems arise when
constructing more complicated networks that demand a large
number of neurons. To solve this sophistication, we consider each
layer as a matrix operation as shown in Figure 3. In this approach,
the number of neurons used depends on the size of the input
vector and weight matrix and all operations including the transfer
function would be on matrices instead of numbers. Most matrix
operations for this purpose are available through Pure Data’s
Zexy library.

Figure 3. Matrix representation of a layer in a neural

network
Figure 4 shows a Pd realization of a layer in neural network.
Each layer, despite the number of neurons will be represented by
one abstraction and reduces the complexity of network
representation. The left inlet accepts the input arranged as a
matrix and other inlets would be the trained network parameters
which are: layer’s weight matrix (equivalent of w in Figure 5),
layer’s bias vector (equivalent of b in Figure 5) and the transfer
function. These trained parameters are loaded only once into the
patch. The transfer function is selected by sending a symbol to the
inlet which can be either a log-sigmoid or tan-sigmoid functions.
Due high-level representation of network parameters, more
transfer functions can be defined by the interested user. In our
applications so far, we have not encountered any need for others.
The two mentioned transfer functions output data in a range of
[0,1] and [-1,+1] respectively which is useful to know for
designing the network.

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 40

Figure 4. Pd abstraction of a layer of a neural network

For time-delay considerations- to be elaborated in the following
sections- we prepare the inputs of a neural network using down
sampling and constructing delay lines.
Using the above abstraction, we have constructed a time-delay
feedforward neural network which can be used for mapping and
gestural recognition systems. There is only one mathematical
function which is written as an external for PD. The high-level
aspect of this realization allows easy modification of the
architecture and implementation of other architectures using the
same concept. Figure 5 shows the details of a two layer neural
network which will be used as a single abstraction in a mapping
system patch.

Figure 5. Details of a two-layer network patch

5. TRAINING THE NEURAL NETWORK
Network design and training is the first step towards constructing
a network for real-time mapping. For this, the user will need some
predetermined input samples, their targets and a defined
architecture to start the training.
The training session of a neural network does not require an
expertise to realize the network. An empiric approach with trials
and errors would eventually make the network converge to the
desired behavior. However, a clever choice of network
architecture and parameters would save a lot of time in realizing
the network.
In our experience, for most musical applications, a maximum of
three hidden layer seems to suffice. While use of excessive
neurons makes the network converge more rapidly, it degrades
the generalization in most applications. There is no law
determining the number of neurons needed; this factor is realized
by a heuristic approach towards the design of neural networks.
There are numerous learning methods available in the neural
network literature. For sensor mapping applications, batch
training suffices for convergence. However due to high non-
linearity of sensors, the most convenient method does not
necessarily converge. We have found that for most sensor
mapping applications, the Reduced-Memory-Levenberque-
Marquardt algorithm [6] converges with acceptable
generalization.

After the training is done and results are satisfactory, network
weights and parameters are automatically prepared as Pd MTX
files to be used in the real-time application.

6. REAL-TIME APPLICATION
At this point, we will examine the neural network mapping for
two different applications: a static network which would map a
sensor network to a simple spherical coordinate and a dynamic
network for pattern recognition of a circular movement using a
network of sensors.

6.1 Static Networks
Two experiments were performed: the first with two magnetic
sensors on the palm, and the second with one flexure sensor and
one magnetic sensor on the ankle and near the shoulder
respectively. The goal was to map these input values to Cartesian
and Spherical coordinates. A total of 25 points were used as
samples for network training.
Satisfactory behavior is observed for a two-layer network
architecture with a goal of 0.01 and network parameters are
exported to Pd MTX files.
The network realization using the abstractions discussed in
section 4 is shown in Figure 6. Sensor inputs are routed using the
OSC protocol and from the wireless Kroonde interface. The
sensor data is preprocessed, calibrated and fed into the network.
As is seen in the figure, only one neural network abstraction is
presented in the patch which takes care of all the mapping. All the
rest are data acquisitions and preprocessing.
Real-time performance is achieved using 200Hz data entrance and
the final layer output would correspond to the desired behavior
and can be used for further control.

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 41

Figure 6. Pd patch for a static network application

6.2 Dynamic Networks
At this stage, our interest is to implement dynamic networks
which evolve with time. Gesture recognition is one application. In
this manner, we chose to experiment with a circular movement
recognition using two accelerometer sensors in two perpendicular
axes. For this reason, we use down sampled time delay vectors as
entry which introduces a notion of memory for the recognition
system.
Sample/target acquisition for training is similar to the previous
section but in most applications like this, the target should be
assigned manually. We used the Gaussian approach suggested by
Fels and Hinton [1] in assigning the target values for each
recorded gesture. The training, although heavier than before,
converges for more number of neurons and more tries are
necessary to meet satisfactory generalization behavior. Figure 7
shows the Pure Data realization of this gesture recognition
system.

Figure 7. A Gesture Mapping sample network in Pd

The output is presented as a ‘bang’, that is a bang is observed
once the gesture is recognized and a threshold, set and observed
during training, is used for this recognition. The same system can
be used for more gestures (more bangs) but needs heavier
training.
As before, real-time performance is achieved and the network can
be used beside other tasks for control of events and high-level
parameters. One important aspect of this experience is the
generalization behavior of the system. We trained the system with
6 constant speed circles and the network response to a large
variety of circles (different speeds and sizes) is satisfactory.

7. FUTURE WORK
Still the training is being done in a Neural Network simulator.
One main goal of this project is to construct a training interface in
Pd environment with the same design principle shown above.
When using several gestures at the same time, the training
becomes very heavy. Although this is a trade-off of the high-level
accessibility, we will consider parallel approaches with neural
networks for this application in the future.

8. CONCLUSIONS
A general Neural Network mapping scheme was suggested for
musical applications due to several reasons, notably ability to
generalize the knowledge and its easy and friendly interface.
Neural Network abstractions are implemented in the Pd
environment using very few externals, in a way that would
minimize sophistication of dealing with unnecessary network
parameters and complications. Following this, two main
applications have been developed and tested using high-speed and
high-resolution sensor interfaces, achieving real-time application.
This work finds applications in live and interactive performances
and live control of events using a sensor network. Eventually, the
user will be able to define and construct a desired mapping to
high-level parameters.

9. REFERENCES
[1] Fels, S. S. and Hinton, G. E. Glove-Talk: A neural network

interface between a data-glove and a speech synthesizer.
IEEE Trans. On Neural Networks, vol. 4, No. 1, 1993.

[2] Lee, M., Freed, A., Wessel, D. "Real-Time Neural Network
Processing of Gestural and Acoustic Signals", Proceedings
of the 17th International Computer Music Conference,
Montreal, 1991.

[3] Coduys, T. and Henry, C. " Nouveaux matériels de captation
haute précision ", Proceedings of 10th ‘Journée
d’Informatique Musicale’, Montbeliard, France, 2003.

[4] Wright, M., Freed, A., " Open SoundControl: A New
Protocol for Communicating with Sound Synthesizers",
ICMC , Thessaloniki, Greece, 1997.

[5] Puckette, M. "Pure Data." Proceedings, International
Computer Music Conference. San Francisco, 1996.

 http://www-crca.ucsd.edu/~msp/software.html
[6] Hagan, M. T., and M. Menhaj, "Training feedforward

networks with the Marquardt algorithm," IEEE Transactions
on Neural Networks , vol. 5, no. 6, pp. 989-993, 1994.

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 42

	INTRODUCTION
	HISTORICAL REMARKS
	OVERVIEW OF THE SYSTEM
	NEURAL NETWORK REALIZATION IN PURE DATA
	TRAINING THE NEURAL NETWORK
	After the training is done and results are satisfactory, net
	REAL-TIME APPLICATION
	At this point, we will examine the neural network mapping fo
	Static Networks

	Two experiments were performed: the first with two magnetic
	Dynamic Networks

	FUTURE WORK
	CONCLUSIONS
	REFERENCES

