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Abstract
In this paper, I present a possible approach for
the control of musical tempo in real-time from
dance movement. This is done through the
processing of video analysis data from a USB
web cam that is used to capture the movement
sequences. The system presented here, consists
of a library of Max externals that is currently
under development. This set of Max externals
processes video analysis data from other libraries
and objects that already do this type of analyses
in real-time in this programming environment
such as Cyclops (Singer 2001) and softVNS2
(Rokeby 2002). The aim for the creation of such
system is to enable dancers the control of
musical tempo in real-time in interactive dance
environments. In this session I will also do a
short a demonstration of the performance of the
objects created so far.

1 Introduction
Musical rhythm bears a strong relationship to

the physical characteristics of the human body
(Parncutt 1987; see also Fraisse 1974; Fraisse
1982). Accompanying music that has a strong
sense of pulse with simple body movements such
as rocking is a natural human manifestation
(Fraisse 1974).

Dance is commonly set to music. The degree
of synchronization that can exist between bodily
movement in dance and music suggests that
there may be some common features between
musical rhythm and rhythm in dance. In one of
the few studies that address this aspect, Hodgins
(1992) notes that analyzing the temporal
interaction between dance and music is a
difficult task, as the nature of their realizations in
the temporal domain is so similar. He also notes
the qualitative differences between the rhythmic
realizations of music and dance: the gestural
tempi of music performance involve in general
actions of smaller body parts than those of dance.
The degree of temporal accuracy in musical
performance may reside in this fact.

However, this does not prevent us from
considering that there may be a point of
intersection between musical rhythms and the
rhythms in dance, since synchronizing bodily
movement with musical rhythm is such a natural
task for humans.

The considerations summarized above
provide the background for the creation of an
interactive system that enables dancers to control
musical tempo in real-time The main motivations
that underlie the creation of such system reside
in the fact that, in performances of dance to pre-
recorded music, it is sometimes hard for a dancer
to maintain proper synchronization with the
music. Pre-recorded music imposes a straight
jacket on a dancer. Having an expert system that
allows a dancer to slightly control the tempo of
the music being played could therefore be an
interesting aspect to implement in interactive
dance performance.

The system presented here consists of a set of
Max externals that can do that with a certain
degree of success, by processing movement
analysis data gathered from a simple web cam.
These externals process movement analysis data
performed by libraries for image analysis that
recently became available to the Max
programming environment such as Cyclops
(Singer 2001) or softVNS2 (Rokeby 2002). One
of the attractive features of this system is that it
can produce some interesting results by using a
non-invasive medium such as a web cam, and by
applying digital signal processing techniques to
movement analysis data.

2 The system
The system can be schematically described as

follows:
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Figure 1. Schematic representation of the
system

A fixed video camera grabs the movement
data at 25 or 30 frames per second. The video
signal is digitized and the sum of pixels that
changed color between consecutive frames are
computed (a technique commonly known frame
differencing). Subsequently, that time-varying
data is given a representation in the frequency
domain, and the most prominent frequency is
computed. Finally, that frequency value feeds an
adaptive clock that can control the tempo of a
musical sequence.

2.1 Characteristics of the video
analysis signal.

If we are in a relatively controlled lighting
environment, we can detect the variation of the
quantity of motion over time of a moving body
by applying frame differencing analysis to the
digitized image of that environment. This
quantity represents the number of pixels that
changed color between consecutive frames.
Since the background does not change, all the
changes detected through frame differencing will
correspond proportionally to the amount of
movement performed by the moving body. The
more the body moves, the greater will be the
number of pixels that changed color between
consecutive frames. If we analyze the variation
of pixel difference in periodic movement actions
over time, we can detect periodicities in the
video analysis signal that are in direct
correspondence to the actions performed. This

works very well for simple periodic actions such
as jumping or waving a hand, for example.

Moreover, wider actions correspond to
increasing the amplitude of the frame
differencing signal and faster actions correspond
to increasing the frequency.
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Figure 2. Several pixel differences graphs of
movement of waving hand. 2 a) and 2 b): Same
frequency, with two different amplitudes. 2 c):
faster frequency with amplitude variation.

If we remove the DC offset from the signal,
the similarities to periodic acoustic signals are
simply striking. This means that if we apply
some pitch detection algorithm to this signal that
works for frequencies in the non-audible range,
we can detect the fundamental frequency
(tempo) of a periodic movement action.

Figure 3. DC offset removal of pixel difference
variation of video caption of a waving hand.



2.2 The m-objects
The m-objects are a library of Max externals

I am creating for detecting periodicities,
including tempo, in dance movement. These
objects take as input video analysis data for
processing.

This library has at its core two Max
externals: m.bandit1 and m.clock. m.bandit is a
bank of 150  second order recursive band pass
filters with center frequencies ranging from 0.5
to 15Hz. This bank of band pass filters outputs a
frequency domain representation of the video
analysis signal, the most prominent frequency
detected in the signal, and zero crosses of the
phase of the most prominent frequency. m.clock
is an adaptive clock that can adapt to tempo
changes according to some rules. Other objects
that help the processing of periodicities are being
developed. In this session I will focus mostly on
m.bandit and m.clock.

2.3 Tracking the musical tempo
Musical tempo tracking utilizing adaptive

oscillator models or adaptive filters is not new
(see for example Large and Kolen 1994,
Toiviainen 1998, Cemgil et al 2000). As noted
by Rowe (2001), pulse is essentially a form of
oscillation, and beat tracking is equivalent to
finding the period and phase of a very low
frequency. The adaptive model for musical
tempo detection and control in dance presented
here is inspired on these approaches. Instead of
using adaptive oscillators or adaptive filters,
tempo detection is done by correlating the
frequency-domain representation of the time
varying signal with a 1Hz pulse train.

Obtaining the frequency domain
representation of the pixel difference
variation. One of the functions of m.bandit is to
give a frequency domain representation of the
signal for analysis. In order to obtain a frequency
domain representation of the variation over time
of the pixel difference values, a bank of 150
second order recursive band pass filters is used.
The center frequencies of such filters span from
0.5 to 15 Hz and their bandwidth is proportional
to the center frequency (about 10% of the center
frequency). Once the pixel difference signal
passes through the filter bank, we get a real-time
representation of that signal in the frequency
domain.

                                                
1 Max objects appear in bold typeface in this text

Figure 4. Frequency domain representation of
pixel difference variation in movement of a
waving hand.

Obtaining the fundamental frequency. In
order to obtain the most prominent frequency in
the signal, equivalent to the beat, each sample of
the frequency domain representation is correlated
with a the frequency domain representation of a
1Hz pulse train. The most prominent frequency
is obtained by finding the center frequency of the
band pass filter that has the highest correlation
with the pulse train.

The adaptive clock. m.clock is an adaptive
clock that outputs and adapts to the tempo
according to certain rules. The most prominent
frequency is output by m.bandit every frame,
i.e. 25 or 30 times per second depending on the
amount of frames per second being grabbed.

The adaptive clock is modeled according to
the formula:

Tn= a*Tn-1 +b*(Tn-1+∆t) (1)

Tn is the clock value in milliseconds at frame
n, Tn-1 is the clock value at the previous frame,
and ∆t is the difference between the
measurement that was output by the band pass
filter bank (converted to milliseconds) and Tn. A
and b are coefficients between 0 and 1, and b=1-
a.

This clock only works for values that can be
considered musical beats — 300 to 1500
milliseconds (Rowe 2001), or 3.33 to 0.66 Hz.
Each time a new value is received, the clock
object checks if the value is within the musical
beat boundaries. If the value is not within
boundaries, that value is ignored and no



calculations are performed. If the value is the
first one to be within boundaries, Tn gets
initialized to that value. For subsequent legal
beat values, the clock object checks if the
variation between the received value and the
current clock time is within the allowable margin
for variation. If it is, the new clock value is
computed according to equation 12. The
coefficients a and b can be used to set the degree
of “strictness” of the clock. If the user wants the
clock to be extremely strict, coefficient a can be
set to a value close to 1. This will make the clock
very little sensitive to tempo changes induced by
the dancer. If, on the other hand, coefficient a is
set to a value close to 0 (b=1-a), the clock will
adapt faster to tempo changes. The clock object
thus has two parameters that can be set by the
user. The first, is the value of the allowable
margin for variation from the initial beat value.
The second value is the degree of strictness of
the clock.

This is intended to enable the user of the
system to choose the behavior of the clock
according to the situation in which is utilized. If
the margin and strictness parameters are set to a
low value and a high value respectively, the
clock will resist a lot to tempo changes behaving
almost like a metronome. If the opposite
happens, the clock will follow the dancer’s
tempo behaving almost chaotically. An
intermediate situation between these two
extremes usually offers the best results.

3 Demonstration
For the demonstration in this session, I built

a Max patch that utilizes some softVNS2 objects
to do the frame differencing of the video stream.
Two situations are presented. The first,
demonstrates the performance of the system
utilizing live input from a web cam. The second
situation shows the performance of the system
utilizing short video clips of a dancer dancing
samba. The video analysis part of the patch
utilizes the objects v.movie, v.dig, v.motion, and
v.sum. v.movie reads and plays a QuickTime
movie and outputs the raw video stream data to
the v.motion object. The object v.dig digitizes
the input coming of the web cam. v.motion
performs frame differencing on the video stream,
and the object v.sum calculates the sum of pixels
that change color between consecutive frames.
The output from v.sum passes through

                                                
2 I thank Ali Taylan Cemgil for suggesting this
approach for the clock behavior.

m.sample that samples the data at a rate defined
by the user. This is intended to optimize the
performance of m.bandit whose calculations
depend on the sampling rate. Finally, the output
of m.bandit is sent to m.clock which in turn
sends its output to Max’s metro object.

Figure 5. Demo patch processing a video clip of
choreographer/dancer Susanne Ohmann dancing
samba

4 Conclusion
Detecting tempo in dance through the

analysis of the variation of pixel differences
between consecutive frames of a video stream
seems to be a promising way towards enabling
dancers to control musical tempo in real-time in
interactive dance systems. The fact this system
produces some good results in both simple
movement sequences such as waving a hand or
jumping, as well as in dances containing
movement sequences that are well articulated in
time, provides a good motivation towards
continuing investigating the processing of video
analysis signal for tempo detection in movement
sequences. The fact that this can be achieved
through the use of a simple, non-invasive
medium such as a web cam, that is easily set up,
can make this system a useful tool for interactive
dance performance.
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