
Signal-based Music Structure Discovery for Music Audio Summary
Generation

Geoffroy Peeters and Xavier Rodet

Ircam - Analysis/Synthesis Team
1, pl. Igor Stravinsky - 75004 Paris- France

email: peeters@ircam.fr, rod@ircam.fr

Abstract
Deriving directly music structure from signal analysis,
without going to symbolic information, is a new subject
of interest. Two approaches are studied here in order to
derive the structure: - the “sequence” approach, which
considers the audio signal as a repetition of sequences of
events – the “state” approach, which considers the audio
signal as a succession of “states”. Both approaches are
derived from dynamic features observations extracted
from the audio signal. The obtained structures are then
used for the creation of audio summary.

1 Introduction
Automatic music structure discovery from signal

analysis has become a major field of interest in the field
of digital media (digital music) content analysis. Since a
symbolic information is most of the time unavailable,
and therefore deriving the structure from score or pitch
(Walmsley, Godsill et al. 1999) (Dannenberg 2002) is not
possible, people started thinking of deriving directly the
structure from the audio signal. Among the applications
of music structure discovery are: - browsing music
catalogs/items by content (browsing by verse/ chorus/
solo), - quick pre-listening (automatic audio summary
generation) - musicology (analysis of performances).
Music structure discovery from signal analysis takes its
sources back from the works on signal segmentation first
developed for speech applications and later used for
musical applications. Music structure discovery from
signal analysis methods are based on a search for
repetitions of motives or melodies. The repetitions are
detected by measuring the similarity between signal
observations or groups of observations. This similarity is
then used in order to group the observations two by two

(or into clusters) or oppositely to segment the temporal
flow of observations into segments. Various distances
can be used in order to measure the similarity: Euclidean
distance, cosine distance, …

In order to visualize the structural information of a
piece of music, (Foote 1999) proposed to combine the
similarity between each pair of times into a matrix, the
so-called similarity matrix. If we note ),( ji tts the

similarity between the observations at two instants it and

jt , the similarity of the feature vectors over the whole

piece of music is defined as a similarity matrix
IjittsS ji ,...1,),( == . Since the distance is

symmetric, the similarity matrix is also symmetric.
A high value in the similarity matrix ),( ji ttS

represents a high similarity of the observations at times ti
and tj. If a specific segment of music ranging from times

it  to Iit +  (sequence of events at time ti,ti+1,ti+2,…) is
repeated later in the music from jt to Jjt + ( sequence of

events at time tj,tj+1,tj+2,…), the succession of feature
vectors in [ ]Iii tt +,  is supposed to be identical (close to)
the ones in [ ]Jjj tt +, . This is represented visually by a

lower (upper) diagonal in the similarity matrix. The lag
between the repetition (starting at ti) and the original
(starting at tj) is given by projecting ti on the diagonal of
the matrix and is therefore given by ti-tj. This is
represented in the lag-matrix L :

),(),( , jiijii tttSlagtL −= .

The diagonal-sequences in the similarity-matrix
become line-sequences in the lag-matrix.



Figure 1 Similarity matrix using MFCC
features on the title “Natural Blues” by

“Moby”
Figure 2 Similarity matrix using
Dynamic features with short duration
modeling on the title “Natural Blues”
by “Moby”

Figure 3 Similarity matrix using
Dynamic features with long duration
on the title “Natural Blues” by “Moby”

2 Dynamic audio features
The observations derived from the signal, used to

compute the similarity, play an essential role in the
obtained results. Various types of signal features have
been proposed for the task of music structure discovery.

• Mel Frequency Cepstral Coefficients (MFCCs)
(Foote 1999) (Logan and Chu 2000)
(Aucouturier and Sandler 2002)

• Mean and standard deviation of MFCCs
(VanSteelant, DeBaets et al. 2002)

• Chromagram (harmonic content of the spectrum)
(Bartsch and Wakefield )

• Scalar features (such as the spectral centroid,
spectral rolloff, spectral flux, zero-crossing rate,
…) (Tzanetakis and Cook 1999) (VanSteelant,
DeBaets et al. 2002)

Each of the previously mentioned signal features
(MFCC, chromagram, ...) represents a specific
description (description of the spectral shape, of the
harmonic content, ...) of the signal at (around) a given
time. For this reason, we call them ``static'' features.
The succession of this feature along time (succession of
MFCC, chromagram along time) gives the evolution
along time. ``Dynamic'' features aims at representing
directly the evolution of the features along time. This
evolution is modeled with a Short Time Fourier
Transform applied to the values of the feature along
time: around each time instant t, the time evolution of the
feature on a specific duration L is modeled by a Fourier
Transform. If the feature is multi-dimensional, the same
process is applied to each dimension.

The best results were obtained when modeling the
time evolution of the energy output of an auditory
filterbank:

• The audio signal x(t) is first passed through a
bank of N Mel filters.

• The slow evolution ([0-50] Hz) of the energy of
each output signal xn(t) of the Nn∈  filters is
then analyzed by Short Time Fourier Transform
(STFT).

The output of this is, at each instant t, a matrix
( )ωtnX ,  representing the amplitude of the variations at

several speed ω of several frequency band n observed
with a window of size L. The feature extraction process
is represented in Figure 4.

In the case of dynamic features, a specific
combination of several frequencies n in several speeds of
variation ω  can be chosen for a specific application. The
feature vector )(tf contains then only this features. The

window size L used for the STFT analysis of xn(t)
determines the kind of structure (short term or long term)
that we will be able to derive from signal analysis
favoring one of the two approaches:

• short duration of the model → sequence
approach,

• long duration of the model → state approach.
�

Several advantages come from the use of dynamic
features: 1) for an appropriate choice of ω , n and L, the
search for repeated patterns in the music can be far
easier, 2) the amount of data (and therefore also the size
of the similarity matrix) can be greatly reduced: for a 4
minute long excerpt, the size of the similarity matrix is
around 24000*24000 in the case of the MFCCs (analysis
hop size of 10ms), it can be only 240*240 in the case of
the ``dynamic'' features (analysis hop size of 1s).
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Figure 4 Dynamic features extraction from signal.
From left to right: signal, filter bank, output of filter
bank, output of each of filter, STFT of the outputs signal

In Figure 1, the similarity matrix using MFCCs is
represented for the first 100 s of the music. We see the
repetition of the sequence 1 "oh lordy" t=[0,18] at
t=[18,36], the same is true for the sequence 2 "went
down" t=[53,62] which is repeated at t=[62,71]. In
Figure 2, the similarity matrix using dynamic features
with a short duration (L=2.56s) is represented for the
whole title duration (252 s). Compared to the results of
Figure 1, we see that the sequence 1 t=[0,18] is in fact
not only repeated at t=[18,36] but also at t=[36,54],
t=[72,89], [89,107], [160,178], ...  This was not visible
using MFCC parameterization because the arrangement
of the music changes at time t=36 masking the sequence
repetition. Note that the features' sampling rate used here
is only 4 Hz (compared to 100 Hz for the MFCC). In
Figure 3 the similarity matrix using dynamic features
with a long duration (L=10.54s) is represented for the
whole title duration (252 s). It shows the introduction at
t=[0,36], the entrance of the first rhythm at t=[36,72],
the main rhythm at t=[72,160], the repetition of the
introduction at t=[160,196], the repetition of the main
rhythm at t=[196,235], and ending with a third repetition
of the introduction at t=[235,252].

3 Sequence approach
The ``sequence'' approach considers the music audio

signal as a repetition of sequences of events. These
methods rely mainly on the analysis of the similarity
matrix.

3.1 Related works
Foote showed in (Foote 1999) that a similarity matrix

applied to well-chosen features (MFCC in (Foote 1999))
allows a visual representation of the structural
information of a piece of music, especially the detection
of repetitions of sequences through the lower (upper)

diagonals of the matrix. The similarity matrix can be
used for the determination of the direct location of the
key sequence of a piece of music used then as the audio
summary (Bartsch and Wakefield ) (Cooper and Foote
2002) or can be used for discovering the underlying
structure of a piece of music. In order to do that,
(Aucouturier and Sandler 2002) propose a method
combining Gaussian distribution filter or the ``Hough
Transform'' for diagonal detection and pattern matching
techniques for structure derivation.

3.2 Proposed approach
Our approach for deriving a sequence representation

of a piece of music works in three stages:
1. from the feature similarity/lag matrix we first

derive a set of lines (a line is defined here as a
possibly discontinuous set of points in the
matrix)

2. from the set of lines we then form a set of
segments (a segment is defined here as a set of
continuous times).

3. from the set of segments (original and repetition
segments) we finally derive a sequence
representation (a sequence is defined by a
number and a set of time intervals where the
sequence occurs; a sequence representation is
defined by a set of sequences).

The global flowchart of the proposed algorithm for
sequence representation is represented in Figure 5.
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Figure 5 Sequence presentation flowchart

3.3 Search for diagonals/lines in the matrix
In order to facilitate the detection of line-sequences

(or diagonal-sequences) in the matrix, usually people
first apply 2D kernel filters (Aucouturier and Sandler 2002)
to the matrix in order to increase the contrast between
sequences and the so-called ``noisy'' similarity. However,
use of kernel based filtering techniques, if it allows one
to get rid of most of the ``noisy'' similarity, blurs the



values and therefore prevents the detection of the exact
start and end positions of a sequence. For this reason, we
studied the applicability of 2D structuring filters.

Structuring filters: For a specific data point y,
structuring filters usually used neighboring values [y-
lagy, y+lagy] to decide on keeping the value y or
canceling it. This choice is based on the local mean
around y. This can be expressed in a MATLAB way as:

if y < mean([y-lagy:y+lagy])
then y=0
The 2D structuring filter method we propose for

vertical lines detection (see Figure 6) is based on
counting the number of values in the neighboring
interval [y-lagy, y+lagy] which are above a specific
threshold t1. If this number is below another threshold,
t2, then y is canceled. This can be expressed in a
MATLAB way as:

if y < length( find([y-lagy:y+lagy]) >t1 ) < t2
then y=0
The first threshold, t1, allows one to get rid off the

low values in the similarity matrix. The second
threshold, t2, defines the number of values before and
after y which must be above t1. This threshold is
proportional to the size of the considered interval:
t2=k*(2*lagy+1), where k range from 0 (no values need
to be above t1) to 1 (all values must be above t1).

Since a sequence can be repeated at a slower or
quicker rate (resulting in a departure of the line-sequence
from the column x to its neighboring column x-lagx or
x+lagx), we extend the 2D structuring filter in order to
take also into account the contribution of the neighboring
columns [x-lagx, x+lagx]:

if, for a specific y, at least one of the values on the
interval ([x-lagx,x+lagx],y) is above a specific threshold
t1 then a new hit is counted (there is no cumulative total
across y).

In order to avoid that all the contribution to the
counter would come from a neighboring column, we had
the condition that the main contribution to the counter
must come from the main column x.

The results of the application of the proposed 2D
structuring filter is represented on Figure 7 for the title
“Love me do” by The Beatles
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Figure 6 Two dimensional  structuring filter for vertical
lines detection

.

Figure 7 [Upper part] Lag-matrix for the title “Love me
do” by “The Beatles” [Lower part] 2D structuring filter
applied to the lag matrix

Avoiding doubled lines: Resulting from the previous
stage is a subset of lines detected in the lag-matrix.
However, because of the extension to the consideration
of the neighboring columns x in our algorithm, doubled
lines detection is possible. We remove doubled lines by
defining the minimum delay between two sequences'
repetition (fixed to a value of 5 s in our experiment -
which means that we won't be able to detect a sequence
repeated with a period less than 5 s). When several
sequences are neighboring, only the longest one is kept.
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Figure 8 Sequences connections in the lag-matrix

3.4 From diagonals/lines to segments
Detected lines can be discontinuous (the line

suddenly disappears during some values of y). In order
to be able to define segments, we need to define the
maximum gap tolerated inside a segment. If the observed
gap is larger, then the line is divided into two separated
segments. We also define the minimum accepted length
for a segment.

A sequence i is now define by its start time s(i), its
end time e(i) and - since segment the detected lines are
only the repetitions of some original segments - its lag
from the original sequence lag(i).

3.5 From segments to sequence:
interpreting the detected segments

The connection between the various segments
(finding which segment is a repetition of which other
one, finding which segment can be considered as the
reference for the sequence) is not an easy task.

Each segment i is in fact defined by its repetition
segment ir (the detected line) and its original segment io
(the detected line translated by lag). In the left part of

Figure 8, we represent the ideal case. The segment a
is defined by its repetition ar and its original segment ao.
The same is true for b. We see that bo shares the same
period of time as ao. And logically since ao and bo are
the same and ar and ao are the same, there is a segment c
which original is co and which share the same period of
time as ar. However what we observe in practice is
closer to the right part of

Figure 8: bo and ao only share a portion of time
(which one is the reference then ?); the sequence c can
be very short, co is in ar but, since it shares a too short
period of time with br, it is not in br. This is in
contradiction with the usual transition rule: cr->co->ar-
>bo.
Proposed algorithm

In order to perform the connections between
segments, and form sequences, the following algorithm
is proposed: Two segments are said to belong to the
same sequence if the period of time shared by the two

segments is larger than a specific amount of their
duration1, if they share less than this amount they are
said to be different.

The algorithm works by processing segments one by
one and adding them to a sequence container. We note
• jO the original of a new segment and jR the

repetition of a new segment (the detected line)
• iO the original of a segment already present in the

container.
init define S=minimum shared time
init add first jO and jR to the container
_while there is non-processed segment j
__take a new j (original jO of length jOL)
__if new segment jO shares time with a iO in the

container
___for each of these i,
define iOL the length of iO,
define jOL the length of jO,
define ijOL the shared time length of iO and jO,
define the ratio c1=ijOL/jOL,
define the ratio c2(i)=ijOL/iOL
____select the i with the smallest c1+c2
____if c1 > S | c2 > lag then repetition
_____if c1 > S & c2 < lag then jO is in iO
_____if c1 < S & c2 < lag then iO is in jO
_____add jR to the  sequence container with the

same tag as iO
____else
_____add jO and jR to the container with a new tag
____end
__else
___add add jO and jR with a new tag
__end
_end

3.6 Results
In Figure 9, we illustrate our sequence representation

method on the same signal as for Figure 7 (title “Love
me do” from the artist “The Beatles”). The upper part
represent the similarity matrix, the lower part represent
the detected sequences along time. Three different
sequences were detected. Sequence 1 is the harmonica
melody played several times across the song, sequence 2
is the “love me do” melody and sequence 3 is the
“someone to love” melody. Note that the second
occurrence of sequence 3 is in fact the same melody
“someone to love” played by the harmonica. The only
false detection was the sequence 1 at time 450.

                                                
1. 1 we’ve chosen a value of 70%



Figure 9 Sequence approach applied to the title "Love
me do" by "The Beatles" [top] similarity matrix [bottom]
sequences along time

4 State approach
The ``state'' approach considers the music audio

signal as a succession of states  so that each state
represents (somehow) similar information found in
different parts of the piece. These methods rely mainly
on clustering algorithms.

4.1 Related works
A study from Compaq (Logan and Chu 2000) uses the

MFCC parameterization in order to create “key-phrases”.
The song is first divided into fixed length segments
which are then grouped according to a cross-entropy
measure. The longest example of the most frequent
episode constitutes the “key-phrase” used for a summary.
Another method proposed by (Logan and Chu 2000), close
to the method proposed by (Aucouturier and Sandler 2001),
is based on the direct use of a hidden Markov model
applied to the MFCC. While temporal and contiguity
notions are present in this last method, poor results are
reported by the authors.

4.2 Proposed approach
The states we are looking for are specific for each

piece of music. Therefore no supervised learning is
possible. We therefore employ unsupervised learning
algorithms to find out the states as classes.

A new trend in video summary is the “multi-pass”
approach (Zhang, Kankanhalli et al. 1993). As for video,
human segmentation and grouping performs better when
listening (watching in video) to something for the second
time (Deliege 1990). The first listening allows the
detection of variations in the music without knowing if a
specific part will be repeated later. The second listening

allows one to find the structure of the piece by using the
previously mentally created templates.

In (Peeters, Laburthe et al. 2002) we proposed a multi-
pass approach for music state representation, we review
it here briefly. The global flowchart of this multi-pass
approach is depicted Figure 10.
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Figure 10 States representation flowchart

4.3 Proposed method: a multi-pass
approach

First pass: The first pass of the algorithm performs a
signal segmentation which allows the definition of a set
of templates (classes) of the music. In order to do that,
the upper and lower diagonals of the similarity matrix S

of )(tf  (which represent the frame to frame similarity of

the features vector) are used to detect large and fast
changes in the signal content and segment it accordingly.
The mean values of )(tf  inside each segment is used to

define “potential” states ks .
Second pass: The second pass uses the templates

(classes) in order to define the music structure. The
second pass operates in three stage:
1) Nearly identical “potential”' states are grouped.
2) The reduced set of states is used as initialization for

a Fuzzy K-means (K-means with probabilistic
belonging to class) algorithm (knowing the number
of states and having a good initialization).

3) The output states of the Fuzzy K-means algorithm
are used for the initialization of a hidden Markov
model (HMM) learning (Rabiner 1989). Since no
priori training on a labeled database is possible we
are in the case of ergodic HMM. The Baum-Welch
algorithm is used in order to train the model. The
outputs of the training are the state observation
probabilities, the state transition probabilities and
the initial state distribution.



4) Finally, the optimal representation of the piece as a
HMM state sequence is obtained by decoding using
Viterbi algorithm given the hidden Markov model
and the signal feature vectors )(tf .

4.4 Results
In Figure 11, we illustrate the proposed multi-pass

approach for the title ``Smells Like Teen Spirit'' by
`'Nirvana''. The upper part of the figure represents the
similarity matrix while the lower part represents various
detected states along time. Seven different states were
found. State 1 represents the [guitar intro], state 2 seems
to be a garbage state containing most drum rolls, state 3
contains the [intro], state 4 is the [verse], state 5 the
[transition], state 6 is the [chorus], state 7 represents both
the [break] and the [guitar solo]. Considering that the
most important part of the title is the (chorus/ transition/
verse/ solo), the detected representation is successful.

5 Audio summary construction

5.1 Related works
In the recent MPEG-7 standard (Multimedia Content

Description Interface) (MPEG-7 2002) a set of meta-data
has been normalized in order to store multimedia
summaries: the Summary Description Scheme (DS). This
Summary DS provides a complete set of tools allowing
the storage of either sequential or hierarchical
summaries. However, while the storage of audio
summaries has been normalized, few techniques exist
allowing their automatic generation. Without any
knowledge of the audio content, the usual strategy is to
take a random excerpt from the music signal, or an
excerpt in the middle of it. In speech, time-compressed
signals, or time-skipped signals are preferred in order to
preserve the message. A similar strategy can be applied
in music by providing excerpts from meaningful parts of
the music.

5.2 Proposed approach
In our approach, the audio summary is generated by

choosing specific excerpts of the signal derived from the
So far, a sequence number or a state number has been
assigned to each time frame of the audio signal. From
this representation several possibilities can be taken in
order to create an audio summary.

Figure 11 State approach applied to the title " Smells like
teen spirit " by “Nirvana” [top] similarity matrix
[bottom] state number along time.

Let us take as example the following structure: AA
B A B C AA B. The generation of the audio summary
from this sequence/state representation can be done in
several ways: - [Each]: providing a unique audio
example of each sequence/state (A, B, C) – [All]:
reproducing the sequence/class successions by providing
an audio example for each sequence/state apparition (A,
B, A, B, C, A, B) – [Longest]: providing only an audio
example of the most important sequence/state (in terms
of global time extend or in term of number of
occurrences of the sequence/state) (A) – [Transition]: in
the case of state representation: providing audio example
of class transitions (A -> B, B -> A, B -> C, C -> A).

A A B A B C A A B

AB BA BC CA

A B C

A B A B C A B

A

Transition

Each

All

Longest

Figure 12 Various possibilities for Audio Summary
construction from state representation

The audio summary is generated by taking short
fragments of the segment/state's signal. The quality of
the audio signal of the summary can be further improved
by applying an overlap-add technique of the audio
fragment. For highly structured music, beat synchronized
reconstruction allows improving largely the quality of
the audio summary. This can be done 1) by choosing the
size of the fragments as integer multiple of 4 or 3 bars, 2)
by synchronizing the fragments according to the beat
position in the signal. The flowchart of the audio



summary construction of our algorithm is represented on
Figure 13.

Process

Song

overlap-add
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Figure 13 Audio summary construction from class
structure representation; details of fragments alignment
and overlap-add based on tempo detection/ beat
alignment

While the choice between the various proposed
methods should rely on user preferences and on time
constraints on the summary duration, the “each”
summary method was found to be informative (all states
are represented in the summary), compact (only one
occurrence of a state is represented) and reliable at the
same time.

6 Conclusion
In this paper we studied a “sequence” and “state”

representation for music structure detection with the aim
of generating visual and audio summaries. We
introduced dynamic features which seems to allow
deriving powerful information from the signal. We
proposed a 2D structuring filter algorithm for lines
detection in the lag matrix; and an algorithm to derive a
sequence representation from these lines. We proposed a
multi-pass algorithm based on segmentation and
unsupervised learning (fuzzy-kmeans and HMM) for
state representation of the music. We finally investigated
the generation of audio summaries generation from both
sequential and state representations.

Combining both segment and state approach:
Further work will concentrate on combining both
sequence and state approaches. It is clear that both
approach can help each other since the probability of
observing a given sequence at a given time is not
independent of the probability of observing a given state
at the same time.
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