
From the concept of sections to events in Csound

Pedro Kröger
Federal University at Bahia, Brazil
email: kroeger@pedrokroeger.net

Abstract

In this article will be approached some solutions involving
the division of the csound score in smaller parts to reduce the
time of rendering to a minimum. The ultimate solution in-
volves the use of events. Besides solving elegantly the prob-
lem, the definition of events make possible the creation of
scores with a hierarquical structure. This concept has been
implemented in monochordum, a compositional environment
for csound.

1 Introduction

Csound uses two files as input, the orchestra and the score
file. Traditionally only one monolithic score file is used per
composition. Unfortunately, Csound does not have any de-
vice to compile1 only separated parts so the full composition
is rendered even if only one part was modified. Nevertheless,
it is not very productive to wait for the rendering of the entire
piece only to hear one small section.

In this paper some solutions for this problem will be pro-
posed based in splitting the score into smaller parts and using
the utility for recompilation Make. The goal is to reduce the
time for recompilation to a minimum.

Finally, a solution will be introduced involving the use of
events, a structure between the list of notes and the section.
The use of events not only solves elegantly the problem but al-
lows the creation of hierarquical structures. Besides the pos-
sibility of defining blocks of events, it is possible to define the
relationship between these events. This concept has been im-
plemented in Monochordum, a complete compositional envi-
ronment for Csound.

1In this article the word “compile” is used as synonym for “render”, i.e.,
run Csound over an orchestra and score files to get some output (usually a
sound file).

2 Solutions

2.1 Manual splitting

Commenting sections out is a primitive way to select parts
to render. Although this procedure works with small files, it is
impracticable with larger ones with hundreds of lines. A bet-
ter way is to use the Csound’s #include command. Sections
are saved in separated files and called in a main file with the
#include command (ex. 2.1). The sections not going to be
rendered can easly be commented out. For example, section
3 in ex. 2.1 will not be compiled.

Example 2.1 The main score file
1 #include :section-1.sco
2 s
3 #include :section-2.sco:
4 s
5 ;#include :section-3.sco:
6 e

This procedure has some advantages; it only uses Csound
(not needing any external tool), and arbitrary sections can be
selected (e.g., sections 1 and 3).

The disadvantages are: the selected sections are always
fully compiled, even if nothing was modified at all; there are
more files to manage, and the #include command has a long
history of bugs.

Using Make. The previous solution can be much more au-
tomatized with Make. The same file structure as in ex. 2.1 is
kept, but the main score file is discarded.

The Make tool was created to automatize the process of
program compilation. It can recompile only the necessary
files based in the modified source files. Although widely used
to manage computer programs, “make is not limited to pro-
grams. You can use it to describe any task where some files
must be updated automatically from others whenever the oth-
ers change”. (Stallman and McGrath 1998, p. 1)

A deeper description of Make is out of the scope of this
paper, for more information please refer to the manual. now is
enough to know that it has “rules” described in a file usually
named makefile or Makefile. Make’s rules has the format
shown in ex. 2.2, where “a target is usually the name of a file
that is generated by a program, . . . a dependency is a file that
is used as input to create the target. A target often depends
on several files, . . . a command is an action that Make carries
out. A rule may have more than one command, each on its
own line.” (Stallman and McGrath 1998, p. 3).

Example 2.2 Make’s rule
1 target: dependencies
2 command

The ex. 2.3 shows a simple use of Make. The rule sec1.wav
is defined and can be called by typing make sec1.wav in a
terminal.

Example 2.3 Rule for a section
1 sec1.wav: sec1.sco
2 Csound -Wo sec1.wav Main.orc sec1.sco

Since we don’t have the main score anymore we need
some way to mix the sections together. The Csound mixer
tool or programs like ecasound and sox can be used for this
purpose.

The real power of Make can be seen in ex. 2.4. The rule
Main.wav has the rules sec1.wav, sec2.wav, and sec3.wav
as dependencies. That means that to be able to perform the
command in the “Main.wav” rule the three dependencies have
to be complete. If one of them is not, Make will automatically
compile only the missing section. An overview of the process
is shown in fig. 1.

Example 2.4 The mixer
1 Main.wav: sec1.wav sec2.wav sec3.wav
2 mixer -T 0 sec1.wav \
3 -T 120 sec2.wav -T 160 sec3.wav

Conclusion. By splitting the score into separated files and
using Make, the renderization of individual sections is possi-
ble, giving more flexibility and speed. The second solution
shows an advance in comparison with the first, since in the
later the renderization time is not as small as in the former.
Nevertheless, in both solutions the files have to be created
and named manually. This is a hassle, especially if the com-

Figure 1: Overview of the process

position changes and new sections are created between the
existent ones.

2.2 Automatic splitting

In the previous sections we could see how handy and flex-
ible is the use of Make to render Csound scores. The major
problem is the somewhat cumbersome management and edit-
ing of separated files in large compositions. In this section
will be presented a few solutions using the same concept but
now the composer will be dealing with one score file only.
The secondary files will be generated automatically.

Using the section command s. Probably the most direct
aproach is the creation of a script that will read the score
and create one file for each section defined with s. Thus, the
problem of managing multiple files is solved, they are created
automatically and named according a given prefix. The sec-
tions then can be compiled with the command make prefix
sectionNumber. (fig. 2)

i1 0 10
... more csound code ...
s

i1 0 10
... even more code ...
s

i1 0 10
... a bit more code ...
s

scoSplitter

prefix1.sco

prefix2.sco

prefix2.sco

Figure 2: Splitting the score

Using a new section command. Although the previous so-
lution is a great improvement, the mixer data is still sepa-
rated from the music. A more complete solution is to cre-
ate a new command section. It accepts a label and the
start time of the section. Naturally Csound doesn’t have this
command and we are not going to implement it in Csound’s
core. The previous script will be modified to extract the sec-
tions using the new command. Since we want to have some

backward-compatibility the section command will be pre-
ceded of the comment character ; and the | character. The
later is necessary to avoid the script catching a valide com-
ment with the word “section”. The ex. 2.5 shows the syntax.
The lines 1 and 4 define valid sections while in line 7 we have
a regular comment.

Example 2.5 The section command
1 ;|section foo 0
2 i1 0 10 ...
3 more notes here
4 ;|section bar 10
5 i1 0 10 ...
6 more notes here
7 ; section, sweet section
8 i1 0 10
9

Now not only the files for each section are automatically
generated but the mixing data as well. A good side effect of
this approach is that the user no longer uses the mixer com-
mands directly anymore. The mixing engine can be replaced
without the user notice.

This is the best of the four solutions, backward compati-
bility is kept while gives more power, flexibility and conve-
nience.

3 From the concept of sections to events

3.1 Introduction

The previous solutions splitted the score in sections to re-
compile only the necessary parts. However, this procedure is
inefficient when the goal is to manipulate smaller elements.
In fig. 3 the boxes represent events in time. The common
aproach of moving events around while composing is cum-
bersome with plain Csound because the durations of notes
have to be recalculated manually, one by one. Splitting the
score into sections, as in the previous examples, would not
work since the large box in 3 delimits a section. The best
solution is the possibility of defining events.

I am working in a compositional environment called mono-
chordum that uses Csound as a rendering engine. It imple-
ments, among other things, the concept of events. Mono-
chordum works basically using the same idea of the previous
examples; it creates a separated score for each event and a
Makefile to control the rendering process.

The ex. 3.1 shows the basic syntax to create events. An
event is defined with the event command followed by a label.

0 5 10 15 20 25 30

Figure 3: Events

The start time of each event can be defined with the option
-start. The Csound code is inserted after event and the
label, between curly braces. The option -gain determines
the event’s gain value in the final mixing. (fig 1)

Example 3.1 Event syntax
1 event foo {
2 i1 0 2 ...
3 ...
4 }
5 event bar {
6 i1 0 3
7 ...
8 }
9 foo configure -start 0 -gain .5

10 bar configure -start 30

Naturally, events can be nested. At that point it is possible
to represent hierarquical and more complex structures than
with plain Csound, or even with the previous section-based
solutions. (ex. 3.2)

Example 3.2 Nested events
1 event foobar {
2 event foo {
3 ...
4 }
5 event bar {
6 ...
7 }
8 foo configure -start 0
9 bar configure -start 30

10 }
11 foobar configure -start 30

3.2 Advanced features

In monochordum an event time can be expressed in re-
lation to the time of other events. The implementation was

freely based in the relations proposed by Allen (Allen 1991).
This relations can indicate that one event starts after another
event, or one event starts with another one. In ex. 3.3 the
event “bar” starts right after “foo”, while the event “chords”
starts at the same time of “bar”. The fig. 4 shows a graphic
representation of ex. 3.3.

Example 3.3 Events relations
1 foo configure -start 0
2 bar configure -start {after foo}
3 chords configure -start {with bar}

foo

bar

chords

Figure 4: Events relations

Events definitions can be more flexible if they have paddings
(positive or negative). In ex. 3.4 both events “bar” and “chords”
start after “foo”, however “bar” has a padding of 2 seconds
while “chords” a padding of -2 seconds. (fig. 5)

Example 3.4 Events padding
1 bar configure -start {after foo} -pad {2s}
2 chords configure -start {after foo} -pad {-2s}

Others relations such as before, finishes, middle and
meets are available, but the user can create their own rela-
tions as well.

4 Implementation

Monochordum is implemented in [incr tcl], a well-known
object-oriented extension to Tcl. Besides the general orga-
nization of classes in attributes (e.g. start and duration)
and methods (e.g. with, before, and after) some features
of [incr tcl] are used such as the configure command. The
value of an attribute can be changed with the command object
configure -attribute value, where object is the name
of the object, attribute is the name of the attribute, and value
is the new value of the attribute.

foo

bar

chords

positive
pad

negative
pad

Figure 5: Events padding

5 Future work

This idea can be extended to work with other languages
besides Csound. This will allow a more easy and consis-
tent use of languages with different paradigms. A feature
already implemented in monochordum is a high-level score
language, capable of using notes names or letters (e.g. do or
c), rhythms, chords, graphical notation (using lilypond), etc.

6 Conclusion

The score splitting into smaller files and the use of a re-
compilation tool such as Make can provide more flexibility,
speed, and power in the process of Csound rendering. Never-
theless is necessary to create some sort of device to split the
score and generate the secondary files automatically. The ul-
timate solution is the definition of events, a structure between
a note list and a section. Besides solving elegantly the former
problem, the definition of events make possible the creation
of scores with a hierarquical structure. This concept has been
implemented in monochordum, a compositional environment
for Csound.

References
Allen, J. F. (1991). Time and time again: the many ways to repre-

sent time. International Journal of Intelligent Systems 6 (4),
341–355.

Stallman, R. M. and R. McGrath (1998). GNU Make: A Pro-
gram for Directing Recompilation. Boston, MA: Free Soft-
ware Foundation.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Pedro Kroger

