
Audio and User Directed Sound Synthesis

Marc Cardle, Stephen Brooks, Peter Robinson
Computer Laboratory, University of Cambridge

email: {mpc33, sb329, pr}@cl.cam.ac.uk

Abstract
We present techniques to simplify the production of
soundtracks in video by re-targeting existing soundtracks.
The source audio is analyzed and segmented into smaller
chunks, or clips, which are then used to generate
statistically similar variants of the original audio to fit
particular constraints. These constraints are specified
explicitly by the user in the form of large-scale properties
of the sound texture. For instance, by specifying where
preferred clips from the source audio should be favored
during the synthesis, or by defining the preferred audio
properties (e.g. pitch, volume) at each instant in the new
soundtrack. Alternatively, audio-driven synthesis is
supported by matching certain audio properties of the
generated sound texture to that of another soundtrack.

1 Introduction

Human perception of scenes in the real world is
assisted by sound as well as vision, so effective videos
require the correct association of sound and visuals.
Currently, artists are faced with the daunting task of
finding, recording or generating appropriate sound effects
and ambiences, and then fastidiously arranging them to fit
the video, or changing the video to fit the soundtrack.

We present a solution for simple and quick soundtrack
creation that generates new, controlled variations on the
original sound source of arbitrary length, which still bear
a strong resemblance to the original, using a controlled
stochastic algorithm.

The idea for this work is inspired by recent work on
sound textures [1,3,4]. In Dubnov et al. [1], the
conditional probabilities of the paths of the input sound's
wavelet tree representation is learnt and sampled to
generate new random tree instances. Hoskinson [3] and
Lu et al. [4] operate in a similar fashion by first analyzing
and segmenting the input into variable-sized chunks that
are recombined into a continuous stream, where each
chunk is statistically dependant on its predecessor. In all
these previous approaches, no control is possible over
new instances of a sound texture since they are by
definition random. By adding user control over the
synthesis process, the basic concept of a sound texture
can be extended to further increase its applicability.
Based on Lu et al.�s self-similarity-based approach [4],
our controllable sound textures allows for various types
of user interactivity as described below.

In the simplest case, users manually indicate large-
scale properties of the new sound to fit an arbitrary video.
This is done by manually specifying which types of
sounds in the original audio are to appear where in the
new soundtrack. A controllable statistical model is
extracted from the original soundtrack and a new sound
instance is generated that best fits the user constraints.

It is also possible to use audio to constrain the
synthesis process. The goal here is to produce a new
sound texture that exhibits some similar property (such as
volume or pitch) to that of a separate guiding soundtrack.
For example, a laughing audience�s recording could be
automatically replaced by a synchronized �booing�
soundtrack. The user only has to specify the audio
matching feature to use.

An advantage of our method is that it provides a very
natural means of specifying soundtracks. Rather than
creating a soundtrack from scratch, broad user
specifications such as �more of this sound and less of that
sound� are possible. Alternatively, a user can simply
supply a driving soundtrack and, given a new target
sound, say, in effect: �Make it sound like this whilst
syncing with that�. This significantly simplifies existing
soundtrack recycling since no editing, wearisome
looping, re-mixing or imprecise sound source separation
is necessary.

We first describe our unconstrained sound texture
model and then extend it to provide control. After which,
three interaction methods are outlined.

2 Random Sound Synthesis
For the sake of brevity, only a short description of Lu

et al.�s two-stage sound synthesis [4] is given here. In the
analysis stage, the similarity matrix M is first derived by
calculating the difference in Mel-Frequency Cepstral
Coefficients (MFCCs) from every frame of the input
audio to every other. By sliding a cross-correlation kernel
[2] along the diagonal of M, we obtain the self-similarity
novelty curve N for the input. The input is then
segmented into shorter clips along the local maxima of N.
These points correspond to points of maximum audio
change such as pattern breakpoints. The resultant clips
form the input�s characteristic building patterns.

The sound texture is essentially a Markov process,
with each state corresponding to a single clip, and the
probabilities Pij corresponding to the likelihood of
transitions from one clip i to another j. The transition

probability from frame i to frame j depends on the MFCC
similarity between frames i+1 and j so that:

1, 1i jS

ijP e σ
+ − 

  
∝  with

m
i k j k

ij k
k m i k j k

V V
S w

V V
+ +

=− + +

•
=

⋅





∑




where σ is a scaling parameter and Sij is the similarity
distance between frame i and j. Sij is defined as the
weighted sum of the autocorrelation vectors over the
previous m and next m neighbouring temporal frames
with binomial weights [-wm,�,wm], where Vi and Vj are
the MFCC feature vectors of frames i and j. All the
probabilities for a given row of P are normalized so that
ΣjPij = 1. The synthesis step, or random play, does a
Monte-Carlo sampling of P to decide which clip should
be played after a given clip.

3 Directed Sound Synthesis
The above algorithm works well with almost no

artifacts on both stochastic and periodic sound textures.
However, no control is possible over new instances of a
sound texture since they are by definition random. We
now introduce high-level user-control over the synthesis
process. This is achieved by enabling the user to specify
which types of sounds from the input sound should occur
when, and for how long, in the output synthesized
soundrack. These user-preferences translate into either
hard or soft constraints during synthesis. In this section,
we first look at how these synthesis constraints are
defined, and then, by what means they are enforced in our
controlled algorithm.

3.1. Constraint Specification
In order to synthesize points of interest in the

soundtrack, the user must identify the synthesis
constraints. First, the user selects a source segment in the
sample sound such as an explosion in a battle soundtrack.
Secondly, the user specifies a target segment indicating
when, and for how long, in the synthesized sound the
explosion(s) can be heard. The constraints for the rest of
the new soundtrack can be left unspecified, so that in our
video example, a battle-like sound ambience will
surround the constrained explosion.

The source and target segments, each defined by a start
and end time, are directly specified by the user on a
familiar graphical amplitude x time sound representation.
Since the target soundtrack has yet to be synthesized and
therefore no amplitude information is available, target
segments are selected on a blank amplitude timeline of
the length of the intended sound. Note that the number,
length and combinations of source and target segments
are unrestricted, and that exclusion constraints can also be

specified so as to prevent certain sounds from occurring
at specific locations.

The user can associate a probability with each
constraint, so controlling its influence on the final sound.
To this end, a weighting curve is assigned to each target
segment, designating the probability of its associated
source segment(s) occurring at every point in the target
area. The weights vary from [-1, 1], where -1 and 1 are
equivalent to hard-constraints guaranteeing, respectively,
exclusion or inclusion. Soft-constraints are defined in the
weight ranges (-1,0) and (0,1) specifying the degree with
which exclusion or inclusion, respectively, is enforced.
Furthermore, the reserved weight of 0 corresponds to
unconstrained synthesis. The weights of overlapping
targets are added up so that clips that satisfy both
constraints are even more or less likely to occur. For
consistency, the user is prevented from defining
overlapping hard-constraints.

Therefore, each separate constraint c∈1,�,n defines
one or more source segments S from the input sound, one
or more target segments T in the new audio and W , the
weighting curve defining the likelihood of audio from S
appearing at every instant of T . Once the input audio has
been segmented, the clips included in time segments S
form s , the set of source clips for constraint c.

c

c c,

c

c

c

c

3.2. Hard and Soft Constrained Synthesis
Directed synthesis is achieved by dynamically scaling

the clip probabilities P in the Markov table during
synthesis so as to maximize constraint satisfaction. Since
clips originating from the current targeted source are
preferred, we therefore proportionally increase their
associated likelihood of being selected. Let i be the last
generated clip and u the current temporal synthesis
position, then for all c∈{c∈1,�,n | u∈T }, we must
rescale all the probabilities P to the next clip j for all
j∈s . In other words, when synthesizing inside a
constrained target segment, we rescale the probabilities of
all clips belonging to s in the following manner:

ij

c

ij

c

c

 (1) ()' max min () 1 ,0.999 ,0P f P w Puij ijij
  = +    

where wu=max(min(ΣcWc,-1),1) so that weights of
overlapping constraints are added up. wu and P�

ij are
clamped to respectively prevent illegal weight and
probability values. The scaling function f determines the
influence of the constraint weights whilst favoring greater
scaling on lower weights, and inversely. f is defined as:

1 1
1 1P kij kf e e

 
  

   + +   = −

Figure 1 (Top) Source regions A and B. (Middle) Weighting curve for A
and B. (Bottom) Directed synthesis output.

+ (2)

where k controls the overall weight influence in the
synthesis and is user-settable. Bigger values of k, better
enforces the constraints at the cost of randomness and
audio continuity.

We then rescale and renormalize the weights of all
other unconstrained clips in P so that they share the left-
over probabilities from the scaled constrained weights.
Let m∉s then P� = (1-Σ P)(P /Σ P).

i

c im j
�
ij im m im

• If ΣjP�

ij
 > 1 (1) or if wu ≥ 1 (2), then for ∀m∉sc

im

,
P� = 0 and P�

ij ij = P� /ΣjP�
ij.

• If ∃y∈{y∈c | Wy =1} (3), then for ∀m∉sy im, P� = 0.
• If ∃y∈{y∈c | Wy = -1} (4), then ∀m∈sy, P�

im = 0.
• If w ≤ -1 (5), then ∀m∉s , P = 0. u c

�
im

Conditions (2) and (3) ensure that any detected hard-
constrained weights equal to 1 provoke the exclusion of
clips from a different source. In a similar fashion,
condition (4) and (5) exclude any sources with hard-
constrained weights equal to �1.

3.3 Anticipation

Smooth transitions near boundaries between
unconstrained and hard-constrained areas might
sometimes be difficult to achieve. This is due to the fact
that hard-constrained areas drastically reduce the clip
candidate set, potentially forcing the selection of clips
with low probabilities when jumping from unconstrained
to hard-constrained areas and vice-versa. Adding hard-
constraints anticipation capabilities to the synthesis
avoids such situations. In this manner, a look-ahead
mechanism is triggered when the current synthesis
position u below a distance d from the start of a hard-
constrained area Tc such that:

ssound
d clip

sclip

β×
=
 
  

s× (3) and sound

clip
clip

n

s
s = (4)

where s is the total length of the input sound, n the
number of clips detected during segmentation, s the
average clip size and β controls the anticipation distance
(usually set to 5%).

sound clip

clip

Anticipation works by backtracking from the start of
Tc up until u with a step-size of sclip and using the
gathered data to bias the clip choice at point u. The effect
is that, gradually, clips with distant successors in sc will
be favored. For example, before synthesizing the last
unconstrained clip i before Tc, we first find the top n clips
a1 with the highest likelihood that their next clip j belongs

to sc. Hence, clips a1 are favored by increasing their
respective probabilities when picking clip i. We then
backtrack by sclip and find the top n clips a2 with the
highest likelihood that their next clip belongs to a2. This
continues r-times until we reach u where ar is used to bias
the choice of the next clip. Before renormalization, the
probabilities of the top n clips a are scaled in the
following manner:

p

' clip

ij ij ij

p s
P P P

d
α

×
= +

 
 
 

 (5)

where α determines the enforcement level of the
anticipation (usually set to 30%).

4 User Control
In this section, we look at how users specify the

synthesis constraints in the manual interaction mode. The
user starts by specifying one or more source regions in
the sample sound. In the example depicted in Figure 1,
two distinct source regions are defined corresponding to
areas A and B (top). Note that A is defined by two
segments. The user then draws the target probability
curve for both sources A and B directly on the timeline of
the new sound. A's weightings are zero except for two
sections where short and smooth soft-constraints lead to a
1-valued hard-constraint plateau. This results in region A
smoothly appearing twice, and nowhere else. On the other
hand, B�s curve also defines two occurrences but is
undefined elsewhere, imposing no restrictions. Thus
sounds from B might be heard elsewhere.

In this example, both sounds comprising source A are
similar. Instead of selecting both sounds, the user can
simply select the first segment of A and then let the
system find similar sounds. By performing sound-
spotting audio matching [5], perceptually similar audio
segments to the sound A are found in the rest of the
soundtrack. This is especially valuable for selecting
frequently recurring sounds over extended soundtracks.

5 Audio-driven Sound Synthesis

The goal here is to use audio as the synthesis
constraint so as to produce a new sound texture that
exhibits some similar property (such as volume or pitch)
to that of a separate guiding soundtrack Xguide. Up until
now, to synthesize a new sound X , a source sound
X and a set of user-constraints were required. Instead
here, we replace the soundtrack X with another one
X , built up from sounds in X , by simply matching
some feature of the old soundtrack X with that of the
new soundtrack X . That way, we can change the
building blocks of a soundtrack, without changing its
overall properties.

new

source

guide

new source

guide

new

Let i be the last generated clip and u the current
temporal synthesis position in Xnew, then we must rescale
all the probabilities Pij to the next clip j so as to maximize
the likelihood that clip j will exhibit similar audio
properties to that of Xguide at the same position u.

The user first defines the audio feature, or combination
of audio features, to use for the matching. Examples of
which are the mel-frequency cepstral coefficients, RMS
volume, short time energy, zero crossing rates, sub-band
powers distribution, brightness, bandwidth or spectrum
flux. These are then pre-calculated for every sliding
window position in Xsource previously used in the
segmentation algorithm. The same is also carried out over
Xguide. These features are used to calculate the
distance u

jD between all the windows from Xsource forming

the potential next clip j and the corresponding windows in
Xguide:

2

0
(() ())

j

guide source

j

u n wsize b n wsize

X X
t

u n
j

j

f w f w
D

t

+ × + ×

=

−
=
∑

 (6)

where guideX

uw is the window from Xguide at position u,
sourX

uw ce the window from Xsource at position u, sj the total
number of windows forming clip j, f the feature extraction
routine and the wsize the window sample size (e.g. 1024).
Before synthesizing each new clip, D is evaluated for all
potential next clips and its renormalized value is used as
weight wu in Equation (1). The synthesis then proceeds as
normal with these rescaled weights.

6 Results and Discussion

The examples are in the accompanying video1 as
printed figures could not convey our results meaningfully.
The first example illustrates the use of manual control to
derive a new sound track from an existing one when the

corresponding video sequence is edited. If the results are
not what the user expected, at most a small number of
iterations are required to produce a soundtrack that better
accommodates the user's intentions. This is relatively
quick since synthesis is done in real-time. Not
surprisingly, better results are obtained if the source and
targets regions are similar in length, otherwise unexpected
results occur. For example, a laughing sequence sounds
unnatural if it is prolonged for too long using hard-
constraints.

Our second example illustrates the use of audio-driven
synthesis. Given a racing video, the soundtrack of a
dragster-like motor is automatically replaced by that of
lawnmower�s. We simply use the RMS volume as the
matching feature. In our final example, we use voice to
drive the synthesis. The user simply records himself
imitating the sound from X that he/she wants at any
given point in X . The recording is then used as X in
the synthesis. This is a rapid way of generating controlled
sound textures using an intuitive, rapid and familiar
interface.

http://www.cl.cam.ac.uk/users/mpc33/icmc03.html

)

Synchronizing Computer
Graphics Animation and Audio

1 Video:

source

new guide

Note that it is possible for the user to simply draw one
or more curves defining the values in Equation
(6). In this manner, a user-specified pitch curve could be
directly used to control the synthesized.

7 Conclusion and Future Work

1:(guideX
endf w

We introduce a new method for generating
controllable sound textures. The user is given several
intuitive ways of directing the synthesis process through
manual constraint specification, soundtrack-driven and
voice-driven synthesis as well as preferred audio
properties curves.

There are still many opportunities for future work such
as identifying and dynamically resizing quasi-silent
portions [6] in the clips, as well as time-scaling [4] them,
so as to better fit the user constraints. It would also be
useful to develop a more intuitive way of defining multi-
dimensional preferred audio properties curves.

References
[1] DUBNOV, S., BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND

WERMAN, M. 2002.
. IEEE Computer Graphics and Applications.

Synthesizing sound textures through wavelet
tree learning

[2] FOOTE, J. AND COOPER, M. 2001. Visualizing Musical Structure and
Rhythm via Self-Similarity. Proc. International Conference on Computer
Music (ICMC 2001), Habana, Cuba, September 2001.

[3] HOSKINSON, R., AND PAI, D., 2001. Manipulation and Resynthesis
with Natural Grains. Proc. of the International Computer Music Conference.

[4] LU, L., LI, S., LIU, W., AND ZHANG, H.. 2002. Audio Textures. Proc.
of IEEE International Conference on Acoustics, Speech and Signal Processing.

[5] SPEVAK, C., AND POLFREMAN, R., 2001. Sound spotting - A frame-
based approach, Proc. of the Second Annual International Symposium on
Music Information Retrieval: ISMIR 2001.

[6] TADAMURA, K., AND NAKAMAE, E. 1998.
, IEEE Multimedia, Oct-Dec. No 2,

Vol 5.

http://www.cs.ubc.ca/~reynald/cr1193.pdf
http://www.cs.ubc.ca/~reynald/cr1193.pdf
http://research.microsoft.com/users/llu/Publications/ICASSP02_AT.pdf
http://ismir2001.indiana.edu/posters/spevak.pdf
http://ismir2001.indiana.edu/posters/spevak.pdf
http://www.cl.cam.ac.uk/users/mpc33/icmc03.html

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Peter Robinson
	Stephen Brooks
	Marc Cardle

