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Abstract 
We present techniques to simplify the production of 
soundtracks in video by re-targeting existing soundtracks. 
The source audio is analyzed and segmented into smaller 
chunks, or clips, which are then used to generate 
statistically similar variants of the original audio to fit 
particular constraints. These constraints are specified 
explicitly by the user in the form of large-scale properties 
of the sound texture. For instance, by specifying where 
preferred clips from the source audio should be favored 
during the synthesis, or by defining the preferred audio 
properties (e.g. pitch, volume) at each instant in the new 
soundtrack. Alternatively, audio-driven synthesis is 
supported by matching certain audio properties of the 
generated sound texture to that of another soundtrack. 

1  Introduction 

Human perception of scenes in the real world is 
assisted by sound as well as vision, so effective videos 
require the correct association of sound and visuals. 
Currently, artists are faced with the daunting task of 
finding, recording or generating appropriate sound effects 
and ambiences, and then fastidiously arranging them to fit 
the video, or changing the video to fit the soundtrack.  

We present a solution for simple and quick soundtrack 
creation that generates new, controlled variations on the 
original sound source of arbitrary length, which still bear 
a strong resemblance to the original, using a controlled 
stochastic algorithm.  

The idea for this work is inspired by recent work on 
sound textures [1,3,4]. In Dubnov et al. [1], the 
conditional probabilities of the paths of the input sound's 
wavelet tree representation is learnt and sampled to 
generate new random tree instances. Hoskinson [3] and 
Lu et al. [4] operate in a similar fashion by first analyzing 
and segmenting the input into variable-sized chunks that 
are recombined into a continuous stream, where each 
chunk is statistically dependant on its predecessor.  In all 
these previous approaches, no control is possible over 
new instances of a sound texture since they are by 
definition random. By adding user control over the 
synthesis process, the basic concept of a sound texture 
can be extended to further increase its applicability. 
Based on Lu et al.�s self-similarity-based approach [4], 
our controllable sound textures allows for various types 
of user interactivity as described below. 

In the simplest case, users manually indicate large-
scale properties of the new sound to fit an arbitrary video. 
This is done by manually specifying which types of 
sounds in the original audio are to appear where in the 
new soundtrack. A controllable statistical model is 
extracted from the original soundtrack and a new sound 
instance is generated that best fits the user constraints. 

It is also possible to use audio to constrain the 
synthesis process. The goal here is to produce a new 
sound texture that exhibits some similar property (such as 
volume or pitch) to that of a separate guiding soundtrack. 
For example, a laughing audience�s recording could be 
automatically replaced by a synchronized �booing� 
soundtrack. The user only has to specify the audio 
matching feature to use. 

An advantage of our method is that it provides a very 
natural means of specifying soundtracks. Rather than 
creating a soundtrack from scratch, broad user 
specifications such as �more of this sound and less of that 
sound� are possible.  Alternatively, a user can simply 
supply a driving soundtrack and, given a new target 
sound, say, in effect: �Make it sound like this whilst 
syncing with that�. This significantly simplifies existing 
soundtrack recycling since no editing, wearisome 
looping, re-mixing or imprecise sound source separation 
is necessary. 

We first describe our unconstrained sound texture 
model and then extend it to provide control. After which, 
three interaction methods are outlined. 

2  Random Sound Synthesis 
For the sake of brevity, only a short description of Lu 

et al.�s two-stage sound synthesis [4] is given here. In the 
analysis stage, the similarity matrix M is first derived by 
calculating the difference in Mel-Frequency Cepstral 
Coefficients (MFCCs) from every frame of the input 
audio to every other. By sliding a cross-correlation kernel 
[2] along the diagonal of M, we obtain the self-similarity 
novelty curve N for the input. The input is then 
segmented into shorter clips along the local maxima of N. 
These points correspond to points of maximum audio 
change such as pattern breakpoints. The resultant clips 
form the input�s characteristic building patterns. 

The sound texture is essentially a Markov process, 
with each state corresponding to a single clip, and the 
probabilities Pij corresponding to the likelihood of 
transitions from one clip i to another j. The transition 



probability from frame i to frame j depends on the MFCC 
similarity between frames i+1 and j so that: 
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where σ is a scaling parameter and Sij is the similarity 
distance between frame i and j. Sij is defined as the 
weighted sum of the autocorrelation vectors over the 
previous m and next m neighbouring temporal frames 
with binomial weights [-wm,�,wm], where Vi and Vj are 
the MFCC feature vectors of frames i and j. All the 
probabilities for a given row of P are normalized so that 
ΣjPij = 1. The synthesis step, or random play, does a 
Monte-Carlo sampling of P to decide which clip should 
be played after a given clip. 

3  Directed Sound Synthesis 
The above algorithm works well with almost no 

artifacts on both stochastic and periodic sound textures. 
However, no control is possible over new instances of a 
sound texture since they are by definition random.  We 
now introduce high-level user-control over the synthesis 
process. This is achieved by enabling the user to specify 
which types of sounds from the input sound should occur 
when, and for how long, in the output synthesized 
soundrack. These user-preferences translate into either 
hard or soft constraints during synthesis. In this section, 
we first look at how these synthesis constraints are 
defined, and then, by what means they are enforced in our 
controlled algorithm. 

3.1. Constraint Specification 
In order to synthesize points of interest in the 

soundtrack, the user must identify the synthesis 
constraints. First, the user selects a source segment in the 
sample sound such as an explosion in a battle soundtrack. 
Secondly, the user specifies a target segment indicating 
when, and for how long, in the synthesized sound the 
explosion(s) can be heard. The constraints for the rest of 
the new soundtrack can be left unspecified, so that in our 
video example, a battle-like sound ambience will 
surround the constrained explosion. 

The source and target segments, each defined by a start 
and end time, are directly specified by the user on a 
familiar graphical amplitude x time sound representation. 
Since the target soundtrack has yet to be synthesized and 
therefore no amplitude information is available, target 
segments are selected on a blank amplitude timeline of 
the length of the intended sound. Note that the number, 
length and combinations of source and target segments 
are unrestricted, and that exclusion constraints can also be 

specified so as to prevent certain sounds from occurring 
at specific locations. 

The user can associate a probability with each 
constraint, so controlling its influence on the final sound. 
To this end, a weighting curve is assigned to each target 
segment, designating the probability of its associated 
source segment(s) occurring at every point in the target 
area. The weights vary from [-1, 1], where -1 and 1 are 
equivalent to hard-constraints guaranteeing, respectively, 
exclusion or inclusion. Soft-constraints are defined in the 
weight ranges (-1,0) and (0,1) specifying the degree with 
which exclusion or inclusion, respectively, is enforced. 
Furthermore, the reserved weight of 0 corresponds to 
unconstrained synthesis. The weights of overlapping 
targets are added up so that clips that satisfy both 
constraints are even more or less likely to occur. For 
consistency, the user is prevented from defining 
overlapping hard-constraints.  

Therefore, each separate constraint c∈1,�,n defines 
one or more source segments S  from the input sound, one 
or more target segments T  in the new audio and W , the 
weighting curve defining the likelihood of audio from S  
appearing at every instant of T . Once the input audio has 
been segmented, the clips included in time segments S  
form s , the set of source clips for constraint c.  
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3.2. Hard and Soft Constrained Synthesis 
Directed synthesis is achieved by dynamically scaling 

the clip probabilities P  in the Markov table during 
synthesis so as to maximize constraint satisfaction. Since 
clips originating from the current targeted source are 
preferred, we therefore proportionally increase their 
associated likelihood of being selected. Let i be the last 
generated clip and u the current temporal synthesis 
position, then for all c∈{c∈1,�,n | u∈T }, we must 
rescale all the probabilities P  to the next clip j for all 
j∈s . In other words, when synthesizing inside a 
constrained target segment, we rescale the probabilities of 
all clips belonging to s  in the following manner: 
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where wu=max(min(ΣcWc,-1),1) so that weights of 
overlapping constraints are added up. wu and P�

ij are 
clamped to respectively prevent illegal weight and 
probability values. The scaling function f determines the 
influence of the constraint weights whilst favoring greater 
scaling on lower weights, and inversely. f is defined as:  
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Figure 1  (Top) Source regions A and B. (Middle) Weighting curve for A 
and B. (Bottom) Directed synthesis output. 

+         (2) 
 
where k controls the overall weight influence in the 
synthesis and is user-settable. Bigger values of k, better 
enforces the constraints at the cost of randomness and 
audio continuity. 

We then rescale and renormalize the weights of all 
other unconstrained clips in P  so that they share the left-
over probabilities from the scaled constrained weights. 
Let m∉s  then P�  = (1-Σ P )(P /Σ P ). 
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• If ∃y∈{y∈c | Wy =1} (3), then for ∀m∉sy im, P� = 0. 
• If ∃y∈{y∈c | Wy = -1} (4), then ∀m∈sy, P�

im = 0. 
• If w  ≤ -1 (5), then ∀m∉s , P  = 0. u c
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Conditions (2) and (3) ensure that any detected hard-
constrained weights equal to 1 provoke the exclusion of 
clips from a different source. In a similar fashion, 
condition (4) and (5) exclude any sources with hard-
constrained weights equal to �1. 

3.3  Anticipation 

Smooth transitions near boundaries between 
unconstrained and hard-constrained areas might 
sometimes be difficult to achieve. This is due to the fact 
that hard-constrained areas drastically reduce the clip 
candidate set, potentially forcing the selection of clips 
with low probabilities when jumping from unconstrained 
to hard-constrained areas and vice-versa. Adding hard-
constraints anticipation capabilities to the synthesis 
avoids such situations. In this manner, a look-ahead 
mechanism is triggered when the current synthesis 
position u below a distance d from the start of a hard-
constrained area Tc such that: 
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where s  is the total length of the input sound, n  the 
number of clips detected during segmentation, s  the 
average clip size and β controls the anticipation distance 
(usually set to 5%).  

sound clip

clip

Anticipation works by backtracking from the start of 
Tc up until u with a step-size of sclip and using the 
gathered data to bias the clip choice at point u.  The effect 
is that, gradually, clips with distant successors in sc will 
be favored. For example, before synthesizing the last 
unconstrained clip i before Tc, we first find the top n clips 
a1 with the highest likelihood that their next clip j belongs 

to sc. Hence, clips a1 are favored by increasing their 
respective probabilities when picking clip i. We then 
backtrack by sclip and find the top n clips a2 with the 
highest likelihood that their next clip belongs to a2. This 
continues r-times until we reach u where ar is used to bias 
the choice of the next clip. Before renormalization, the 
probabilities of the top n clips a  are scaled in the 
following manner: 
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where α determines the enforcement level of the 
anticipation (usually set to 30%). 

4  User Control 
In this section, we look at how users specify the 

synthesis constraints in the manual interaction mode. The 
user starts by specifying one or more source regions in 
the sample sound. In the example depicted in Figure 1, 
two distinct source regions are defined corresponding to 
areas A and B (top). Note that A is defined by two 
segments. The user then draws the target probability 
curve for both sources A and B directly on the timeline of 
the new sound. A's weightings are zero except for two 
sections where short and smooth soft-constraints lead to a 
1-valued hard-constraint plateau. This results in region A 
smoothly appearing twice, and nowhere else. On the other 
hand, B�s curve also defines two occurrences but is 
undefined elsewhere, imposing no restrictions. Thus 
sounds from B might be heard elsewhere.  

In this example, both sounds comprising source A are 
similar. Instead of selecting both sounds, the user can 
simply select the first segment of A and then let the 
system find similar sounds.  By performing sound-
spotting audio matching [5], perceptually similar audio 
segments to the sound A are found in the rest of the 
soundtrack. This is especially valuable for selecting 
frequently recurring sounds over extended soundtracks. 



5  Audio-driven Sound Synthesis 

The goal here is to use audio as the synthesis 
constraint so as to produce a new sound texture that 
exhibits some similar property (such as volume or pitch) 
to that of a separate guiding soundtrack Xguide. Up until 
now, to synthesize a new sound X , a source sound 
X  and a set of user-constraints were required. Instead 
here, we replace the soundtrack X  with another one 
X , built up from sounds in X , by simply matching 
some feature of the old soundtrack X  with that of the 
new soundtrack X . That way, we can change the 
building blocks of a soundtrack, without changing its 
overall properties.  

new

source

guide

new source

guide

new

Let i be the last generated clip and u the current 
temporal synthesis position in Xnew, then we must rescale 
all the probabilities Pij to the next clip j so as to maximize 
the likelihood that clip j will exhibit similar audio 
properties to that of Xguide at the same position u. 

The user first defines the audio feature, or combination 
of audio features, to use for the matching. Examples of 
which are the mel-frequency cepstral coefficients, RMS 
volume, short time energy, zero crossing rates, sub-band 
powers distribution, brightness, bandwidth or spectrum 
flux. These are then pre-calculated for every sliding 
window position in Xsource previously used in the 
segmentation algorithm. The same is also carried out over 
Xguide. These features are used to calculate the 
distance u

jD between all the windows from Xsource forming 

the potential next clip j and the corresponding windows in 
Xguide:  
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where guideX

uw  is the window from Xguide at position u, 
sourX

uw ce  the window from Xsource at position u, sj the total 
number of windows forming clip j, f the feature extraction 
routine and the wsize the window sample size (e.g. 1024). 
Before synthesizing each new clip, D is evaluated for all 
potential next clips and its renormalized value is used as 
weight wu in Equation (1). The synthesis then proceeds as 
normal with these rescaled weights. 

6  Results and Discussion 

The examples are in the accompanying video1 as 
printed figures could not convey our results meaningfully. 
The first example illustrates the use of manual control to 
derive a new sound track from an existing one when the 

corresponding video sequence is edited. If the results are 
not what the user expected, at most a small number of 
iterations are required to produce a soundtrack that better 
accommodates the user's intentions. This is relatively 
quick since synthesis is done in real-time. Not 
surprisingly, better results are obtained if the source and 
targets regions are similar in length, otherwise unexpected 
results occur. For example, a laughing sequence sounds 
unnatural if it is prolonged for too long using hard-
constraints. 

Our second example illustrates the use of audio-driven 
synthesis. Given a racing video, the soundtrack of a 
dragster-like motor is automatically replaced by that of 
lawnmower�s. We simply use the RMS volume as the 
matching feature. In our final example, we use voice to 
drive the synthesis. The user simply records himself 
imitating the sound from X  that he/she wants at any 
given point in X . The recording is then used as X  in 
the synthesis. This is a rapid way of generating controlled 
sound textures using an intuitive, rapid and familiar 
interface.  

                                                 
http://www.cl.cam.ac.uk/users/mpc33/icmc03.html

)

Synchronizing Computer 
Graphics Animation and Audio

1 Video:  

source

new guide

Note that it is possible for the user to simply draw one 
or more curves defining the values in Equation 
(6). In this manner, a user-specified pitch curve could be 
directly used to control the synthesized. 

7  Conclusion and Future Work 

1:( guideX
endf w

We introduce a new method for generating 
controllable sound textures. The user is given several 
intuitive ways of directing the synthesis process through 
manual constraint specification, soundtrack-driven and 
voice-driven synthesis as well as preferred audio 
properties curves.  

There are still many opportunities for future work such 
as identifying and dynamically resizing quasi-silent 
portions [6] in the clips, as well as time-scaling [4] them, 
so as to better fit the user constraints. It would also be 
useful to develop a more intuitive way of defining multi-
dimensional preferred audio properties curves. 
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