
The CREATE Signal Library (“Sizzle”): Design, Issues, and
Applications

Stephen Travis Pope and Chandrasekhar Ramakrishnan
Center for Research in Electronic Art Technology (CREATE)

University of California, Santa Barbara (UCSB)

email: {stp, sekhar}@create.ucsb.edu

Abstract
The CREATE Signal Library (CSL) is a portable

general-purpose software framework for sound syn-
thesis and digital audio signal processing. It is imple-
mented as a C++ class library to be used as a stand-
alone synthesis server, or embedded as a library into
other programs. This first section of this paper
describes the overall design of CSL version 3 and
gives a series of progressive code examples. We also
present CSL's facilities for network I/O of control
and sample streams, and the development and
deployment of distributed CSL systems. What is
more interesting is the discussion that follows of the
design issues we faced in implementing CSL, and the
presentation of a few of the applications in which
we've used CSL over the last year.

1 Introduction
This document describes the CREATE Signal

Library (CSL, pronounced “sizzle”), a flexible, porta-
ble, and scalable software framework for sound syn-
thesis and digital signal processing. The following
sections describe the basic system requirements and
present the design and its implementation of version
3, with extensive code examples along the way.

The initial design of CSL dates back to 1998 (it
was then called the CREATE Oscillator, or CO), but
the current incarnation was started by students in the
MAT 240D Sound Synthesis Techniques course at
UCSB in the Spring of 2002. A C++ implementation
of a minimal sound synthesis framework (in less than
1000 lines) was developed by the first author and
introduced at the start of the class, and during the
quarter the students added a large number of synthe-
sis classes (refining the basic framework signifi-
cantly as they went).

In the year since that time, CSL has continued to
evolve as we used it for several larger applications
(desribed below), and a revised version of the core
framework—version 3—was written (primarily by
the second author) in the Spring of 2003. During
these reimplementations, a series of design discus-
sions were held, which corresponded with later grad-
uate courses in the MAT 240X series, especially a

course on programming interfaces (APIs) for real-
time sound streaming, and the most recent course on
spatial and surround sound programming.

CSL is now an open source project; the current
source code and documentation can be retrieved over
the Internet from the CREATE Web site at http://cre-
ate.ucsb.edu/CSL.

1.1 What CSL is
CSL is a simple yet powerful library of sound syn-

thesis and signal processing functions. It is packaged
as an object-oriented C++ class hierarchy for stan-
dard DSP and computer music techniques, and is
suitable for integration into existing applications, or
use as a stand-alone synthesis/processing server.

CSL is similar to the JSyn (Burke 1998), Com-
monLispMusic (Schottstaedt 2000), STK (Cook and
Scavone 2002), and Cmix (Pope 1993) frameworks
in that it is packaged as a library in a general-pur-
pose programming language, rather than being a sep-
arate “sound compiler” as in the Music-N family of
languages (Pope 1993). We have already used CSL to
build stand-alone applications, interactive installa-
tions, MIDI instruments, and light-weight plug-ins
for DSP tools.

CSL is designed from the ground up to be used in
distributed systems, with several CSL programs run-
ning as servers on a local-area network, streaming
control commands and sample buffers between them.
We describe these facilities in more detail below.

1.2 What CSL is not
CSL is not a music-specific programming lan-

guage such as Music-N or SuperCollider (McCart-
ney 1996); rather, CSL programs are written in stan-
dard C++ and then linked with the CSL library. CSL
has no graphical user interface (as in Max/Pd [Puck-
ette 1996] or Kyma [Scaletti 1989]), but it is
expected that GUIs will be built that manipulate
“patches” and “scores” for CSL. CSL is not a music
representation language such as Smoke/Siren (Pope
2001), rather it is a low-level synthesis and process-
ing engine. (We use CSL to build synthesis engines
that can be controlled from Siren applications via net-

work or MIDI messages.) CSL has no scheduler, it
simply responds to in-coming control messages as
fast as it can.

This flexibility means, however, that CSL can
serve a number of different purposes, from being
used as a plug-in library for other applications to
serving as the basis of synthesis servers for other
front-end languages, such as MPEG4/SAOL.

1.3 Design Goals
The composers and researchers at CREATE need a

scalable, portable, and flexible network-driven sound
synthesis package. “Scalable” means that the system
needs to be able to support what we call “orchestral-
scale” sound synthesis—large groups of instruments
with complex synthesis models and dynamic multi-
modal control, mixed and spatialized out to 16 or
more output channels. This scalability will be
achieved by running clusters of CSL-based synthesis
and processing server programs on many computers
connected by a fast local area network. “Portable”
means that the software must not depend on a partic-
ular hardware platform or operating system. CSL is
written entirely in “generic” C++ and uses hardware
abstraction classes for I/O ports, network interfaces,
and thread APIs. “Flexible” means that the library
should support several techniques of software sound
synthesis, digital audio signal processing of sound
files or live input, and also be appropriate for use as a
signal processing library for embedding into other
applications. “Network-driven” is important because
we plan to separate user input and control gesture
mapping onto different computers than those per-
forming the actual sound synthesis and spatialization.

From the start, we decided that CSL had to run on
Linux, UNIX (Solaris, IRIX, OpenBSD), and
MacOSX; MS-Windows is supported as well, though
some features of CSL (primarily the networking sup-
port and multi-threaded processing) are missing on
that platform. We require it to support all popular
sound synthesis and processing techniques, and it
must be callable over a local-area network via the
OSC (Freed and Wright 1997) or CORBA (http://
www.omg.org) protocols. It should send its output
samples either directly to an output device, or to a
network socket (e.g., connected to a remote spatial-
ize/mix/play program). For scalability, multiple CSL
processes running on different machines had to sup-
port inter-machine sample streaming and be inte-
grated into the CREATE Real-time Application Man-
ager (CRAM, Pope et al. 2001) distributed applica-
tion development/deployment framework.

Given these basic requirements, a whole range of
design issues arise in the process of implementing

such a software framework. We will present the cur-
rent CSL system, and discuss the design solutions as
they come up.

1.4 A Quick Example
Within a CSL program, there are C++ objects that

correspond to what are called “unit generators” in tra-
ditional software sound synthesis languages—sound
sources, processors, mathematical operations, etc.
These can be connected together using C++ vari-
ables to represent the inputs and outputs of the unit
generator objects.

As an initial example, consider a sine wave oscilla-
tor to which an amplitude envelope is applied. The
CSL C++ code for this is shown below. (Comments
are preceded by “//” in C++.)

// Create a sine wave oscillator named “vox”
// with a frequency of 220Hz.

Sin vox(220.0);
// Create an ADSR envelope named “env”;
// the arguments to the constructor are
// (duration, attack, decay, sustain, release).

ADSR env(3.0, 0.06, 0.2, 0.2, 1.5);
// Create a signal multiplier named “mul” giving it
// the oscillator and the envelope as its inputs.

MulOp mul(vox, env);
// Set the multiplier as the client of the output driver

io.set_root(mul);
To run this example, one needs to “include” the

main CSL header file in the source code file, call the
C++ compiler with the source, and link the resulting
object code file with the CSL class library. We will
discuss how CSL handles the program’s “main” func-
tion later.

When this example program executes, it creates
the unit generator objects—the oscillator, the enve-
lope generator, and the multiplier—and then tells the
output driver (the global variable io) that its “root”
output object is the multiplier. The output driver then
periodically requests buffers of samples from the
multiplier.

When this happens, the multiplier asks each of its
inputs for a buffer of data and multiplies them. We
call this the “pull model” of synthesis; each time the
output object requests a new buffer of samples, the
“tree” of CSL unit generator objects is traversed with
each object requesting sample data from its inputs.

As an aside to demonstrate the flexibility of CSL
objects, note that we used the envelope object in the
preceding example as if it were an “envelope genera-
tor” on an analog synthesizer, and the multiplier as a
kind of “voltage-controlled amplifier.” CSL enve-
lopes can also be used as “processors,” in that they

can scale a dynamic input, allowing us the re-write
the example as follows.

// Simplified sine-with-envelope example using
// the envelope object as a combined gernerator
// and amplifier

Sin vox(220.0);
ADSR env(3.0, 0.06, 0.2, 0.2, 1.5);
env.set_input(sin);
io.set_root(env);

1.5 Components
The CSL library and default “main” program con-

sists of several components:
- the object framework for the synthesis/process-

ing engine;
- the unit generator class library;
- the start-up, configuration, and system save/

restore facilities;
- the OSC control interfaces;
- the database interface for sound samples and

spectra; and
- the CRAM “Service” interface for management

of multiple CSL instances on a network.

2 Inside The CSL Framework
An instance of a CSL-based program is character-

ized by its graph of DSP units, generally a number of
“patches” (subgraphs) connected to a mixer object as
in other software sound synthesis programs. In the
simplest case, the DSP graph can be a single unit
generator, e.g., a fixed-waveform oscillator con-
nected directly to the output. A CSL DSP graph has a
single “root” node, usually the output unit generator
or a mixer that takes several subgraphs as its inputs.
Envelope and instrument objects allow subgraphs to
be triggered independent of one another, and define
the notion of active versus turned-off subgraphs for
increasing the efficiency of mixers.

Each instance of a CSL-based program can imple-
ment multiple voices, possibly using different synthe-
sis techniques. CSL instances are dynamically recon-
figurable, though we have avoided dynamic DSP
graphs on the applications we’ve built to date.

2.1 The Core CSL Framework
CSL is based on an object-oriented domain model

that consists of abstractions for:
- objects that create or process blocks of sound

samples (Buffer, FrameStream, SampleStream,
Processor, etc.);

- objects representing control variables (Static-
Variable, DynamicVariable);

- objects that connect to I/O drivers (IO and its
subclasses); and

- objects that help manage CSL “patches” and
instrument libraries (Instrument).

The evaluation of the DSP graph is triggered by
the “pull” of an IO object (an instance of a subclass
of IO), which is typically connected to a direct out-
put API such as PortAudio (Bencina and Burke
2001), CoreAudio, to a socket-based network proto-
col, or to a sound file. The IO object holds onto the
“root” of the DSP graph, and periodically calls the
root's next_buffer() function, passing it a pair of sam-
ple buffer objects (input and output).

In the basic CSL framework, there is no essential
difference between constant values, control signals,
and audio signals. DSP graphs can also incorporate
unit generators running at different sample rates,
default buffer sizes, and number of channels, so con-
trol-rate generators (and parallel expansion of multi-
channel processing) are possible.

2.2 The Synthesis/DSP Classes
The heart of CSL is its unit generator and signal

processing class library: the subclasses of Frame-
Stream. There are several flavors of signal and con-
trol sources including wavetable oscillators (in both
perfect and band-limited versions), noise sources,
chaotic generators, FFT/IFFT, and others.

Signal processors such as filters and panners are
objects that take signal synthesis graphs as their
inputs and manipulate the sample buffers their inputs
gene ra t e . These a r e a l l subc l a s se s o f bo th
FrameStream and the mix-in class Processor. CSL
includes canonical-form and FIR filters, panners,
mixers, convolution, and flexible delay lines.

Simple operators such as addition and multiplica-
tion of signals are handled by the AddOp and MulOp
unit generators.

Sampled sound files can be loaded using several
sound file formats, and SoundFile objects can play
them back into a DSP graph.

Envelopes are handled as breakpoint functions of
time. Breakpoints can occur in the middle of a sam-
ple buffer, and the envelope class handles the sub-
segments properly. There are helper classes that pro-
vide constructor methods for the standard envelope
types: Triangle, AR, ADSR, various windows, etc.

Plugging unit generators together is simple, one
can simply use the output of one as an input, e.g., to
t h e set_frequency() function, of another (see the
examples below). To scale and offset dynamic con-
trol functions, “variable” objects are provided by the
CSL framework.

2.3 CSL Mixer/Spatializer Programs
CSL instances can have their own direct output

objects (to a sound output interface on the local
machine), or they can send their output (blocks of
samples) through sockets to another mixer/reverbera-
tor/spatializer/play program. We have designed a pro-
tocol based on the UDP network interface in which
data packets have a header that incorporates an
instance ID and sequence number. CSL servers can
then run on multiple machines in a server farm that
have no special audio IO hardware.

The mixer and spatializers are, in fact, simply
CSL-based programs that perform no actual synthe-
sis, but rather read sample blocks from other CSL
instances (over a network) and process them.

To complement this brief introduction to the CSL
framework, we will move on to a series of code
examples. A discussion of the details of the imple-
mentation will then follow.

3 Code Examples
These annotated code examples are intended to

give the reader a taste of CSL programming;a much
more complete set of examples is included in the
CSL manual; see http://create.ucsb.edu/CSL. As
mentioned above, patch editors can and have been
built that will allow non-C++-literate users to con-
struct and combine CSL DSP graphs.

3.1 Simple Oscillators and Patching
// Create a 220 Hz sine-wave oscillator object
// named “vox” using the Sin class.

// Sin class constructor function
Sin vox(220);

// Plug it in to the global output driver (io).
io.set_root(vox);

// Use a 3 Hz. sine to amplitude-modulate a
// sine wave in a multiplier.

// Create two oscillators, one with an assigned
// frequency and one with the default.

Sin vox(220), mod;
// Set the frequency of the second oscillator.

mod.set_frequency(3);
// Multiply (amplitude modulate) the two.

MulOp mul(vox, mod);
io.set_root(mul);

3.2 Processing and Filtering
// Using a sine wave for L/R panning.

Sin vox(220), pos(2); // signal, panner
// A panner takes an input and a position function.

Panner pan(vox, pos);
io.set_root(pan);

// Apply a band-pass filter (300 - 700 Hz
// [= 500 +- 200]) to pink noise.

PinkNoise pnoise (20000);
ButterworthFilter filter(pnoise, pnoise.rate(),

kFilterBandPass, // type
500, 200); // cf, bw

io.set_root(filter);

3.3 Spectral Processing
// Create a spectrum with odd harmonics and
// perform inverse FFT synthesis.
// Create an IFFT oscillator.

IFFT vox;
// Set some data in the spectrum
// (freq, amplitude, phase).

vox.set_partial(1, 0.5, 0);
vox.set_partial(3, 0.25, 0);
vox.set_partial(5, 0.05, 0);
vox.set_partial(9, 0.01, 0);
io.set_root(vox);

4 The Implementation of CSL
CSL is written in portable C++, with plug-in syn-

thesis modules written as subclasses of an abstract
unit generator class. The primary class hierarchies are
described in the following sections. CSL uses 32-bit
floating-point numbers to represent samples (though
this can be changed with a single definition to allow
for integer or higher-precision floating-point process-
ing). All processing is done in blocks, which are typi-
cally between 32 and 1024 sample frames in size.

4.1 The FrameStream Class Hierarchy
The main CSL declarat ions are in the f i le

FrameStream.h, which defines the following classes:
- Buffer, the basic n-channel sample buffer class;
- FrameStream, the frame stream class, the central

abstraction to CSL3;
- SampleStream, a 1-channel frame stream;
- Processor, a mix-in for framestreams that pro-

cess an input frame stream;
- Writeable, a mix-in for framestreams that one

can write into;
- Phased, a mix-in for framestreams with phase

accumulators;
- Positionable, a mix-in for framestreams that one

can position; and
- IO, an input/output stream or driver abstraction.
Instances of the Buffer class represent multi-chan-

nel sample buffers; they have memory pointers to
sample storage (which may be placed in a special
heap or pool) as well as a set of flags about the stor-
age state (allocated, zero, populated, etc.). The class
has methods to allocate, zero, and free sample stor-

age, and several convenience methods.
FrameStreams represent objects that can generate

buffers of frames. (“Frame” refers to a collection of
samples that are designed to be played [or manipu-
lated] simultaneously.) This class is the root of all
functions and unit generators. The key methods
FrameStreams implement are:

- next_buffer() - make a buffer's worth of frames
- next_value() - answer just one value (sample)
- is_fixed_over() - say if my value is fixed in the

next buffer
The actual function signature of the next_buffer()

method is,

// get a buffer of samples
// this is the core CSL "pull" function
virtual status next_buffer(Buffer & inputBuffer,

Buffer & outputBuffer);
Note that an input buffer is provided; it represents

the (optional) input sample buffer coming from the
A/D convertors. The return value is a status flag—a
member of a special enumeration—which we use
(rather than exception handling) throughout CSL.

Since buffers are inherently multichannel, but
many standard computer music unit generators are
not, the default behavior of next_buffer() is to call a
monophonic version of itself (called mono_next_
buffer()) for each output channel. Subclasses of
FrameStream are free to override this with different
behaviors, allowing true mono unit generators, copy-
mono-to-all-output-channels, or various other multi-
channel behaviors.

The function is_fixed_over() is used for some opti-
mizations where we know that the FrameStream will
only generate one value over the next n frames.

SampleStream is a FrameStream of special impor-
tance; it is a one-channel frame stream that calls the
monophonic next_buffer() method and then copies
the single-channel buffer data to all output channels
(using memcpy()). The default unit generators, Opera-
tors, and Variables are all SampleStreams. This is not
a necessity, but it is a convenience: it makes the inter-
nals of CSL much simpler.

4.2 Envelopes
Control functions are often most-simply described

as break-point envelope functions. Breakpoints can
occure in the middle of buffers. Interpolation
between breakpoints can be linear, exponential,
cubic, or use other interpolation algorithms.

4.3 Kernel Helper Classes
The class Gestalt has class (static) methods for the

sample rate, default buffer size, safe memory alloca-

tion, etc.
One useful subclass of FrameStream that bears

special mention here is the ThreadedFrameStream,
which uses a background thread to compute samples.
It caches some number of buffers from its “pro-
ducer” sub-graph and supplies them to its “con-
sumer” thread immediately on demand. It controls
the scheduling of the thread of its producer. While
this obviously introduces latency within a DSP graph.
It is a known latency with no latency jitter.

Interleaver is a helper class for taking non-inter-
leaved sample buffers (as used within CSL and by the
Apple CoreAudio API), where the samples for each
channel are stored in a separate array, and copying
them into and out of interleaved sample buffers (as
used by several common I/O APIs, including PortAu-
dio).

To accomodate FrameStreams and Processors that
might want to have different buffer sizes, a BlockRe-
sizer object can be placed between two elements of a
DSP graph. This buffers calls to its up-stream client
into groups of a different block size than the next_
buffer() calls it receives. The main application of
these is in graphs that use time-frequency trans-
forms, so that, for example, one can use a wavelet (or
Fourier) transform with a large window size in a
graph that needs to be run with low I/O latency.

4.4 Variables
Variable objects permit CSL programmers to use

constants anywhere signals are expected, and to do
simple scaling (multiplication) or offset (addition) of
dynamic signals and constants.

4.5 The IO Classes
All activity within a CSL program is triggered by

some output object calling the next_buffer() function
of some FrameStream. The simplest IO object is an
interface to a sound output device driver that receives
call-backs from the operating system at a regular rate
(the sample rate divided by the output buffer size),
and forwards them to the root of its DSP graph. Other
IO classes are available that write samples to sound
files, or receive output requests via a network socket
and pass their data packets back over the same socket
(these are called UDP_IO ports, see below).

Note the importance of this for real-time perfor-
mance; input control commands come in asynchro-
nously (e.g., via OSC or MIDI), and the synthesis
process is driven by output calls coming from another
thread of control. Thus CSL has no internal notion of
time, but unit generators may have state, e.g., related
to their current phase or indices within envelope con-
trol functions. Thus, the minimal granularity of tim-

ing is the IO buffer frame rate, e.g., ~1 msec for 64-
frame output blocks and a sample rate of 44 kHz.

4.6 RemoteFrameStreams and UDP_IO
A RemoteFrameStream is a FrameStream that is

connected by a UDP network socket to another CSL
process. In response to the next_buffer() call, the
RemoteFrameStream sends a UDP request to its
server to get the next sample buffer. The server is
assumed to be on a remote machine, and is a CSL
program that uses a UDP_IO object as its output
“driver.” The request packet sent to the server causes
the server to call i ts DSP graph's next_buffer()
method and return the sample buffer to the client via
a UDP message.

To set this up, the server must be a CSL program,
and the UDP_IO object must know what port it lis-
tens to. The client (the RemoteFrameStream) needs
to know the server's host name, the port it listens on,
and the port that the client is to listen on for response
packets. The client first sends the server an “introduc-
tion” packet with its IP/port so that the server can
open a response socket. Then the client can send the
server sample buffer requests.

4.7 Instrument Classes
There are several utility classes to make it easier to

manage DSP graphs. A Instrument object has a DSP
graph, a set of reflective accessors, and a list of enve-
lopes. The DSP graph is the instrument’s “patch,” the
accessors describe what the control parameters of the
patch are (i.e., their names, types, and “setter” func-
tions), and the envelope list is the collection of enve-
lopes that need to be triggered to start a new note.

With this abstraction of a graph, one can easily
construct code that automatically creates the map-
ping “glue” to control CSL programs from OSC or
MIDI. As an example, a simple instrument might cre-
ate several accessors in a list with the following code.

list[0] = new Accessor("du", set_duration_f,
CSL_FLOAT_TYPE);

list[1] = new Accessor("am", set_amplitude_f,
CSL_FLOAT_TYPE);

A special start-up method can take a “library” (a
list of Instrument objects) and generate an OSC
address space like the following.

/i1/ instrument 1 (simple example)
/i1/du: set-duration command
/i1/am: set-amplitude command

4.8 Input and Control
Using the instrument/accessor framework, one can

set up CSL programs to respond to commands com-
ing in from a variety of sources, such as OSC, MIDI,
CORBA messages or from score file readers.

5 Using CSL
There are several ways to compile CSL programs,

and several versions of the main() function to be used
for CSL programs. For many kinds of applications,
CSL is not even involved in the main() function.
Since CSL is simply a C++ class library, one can eas-
ily reuse it in any number of ways:

- incorporate it as a component of another applica-
tion (e.g., a game);

- use CSL to build plug-ins, e.g., for Steinberg’s
VSL API or Apple’s CoreAudio API; or

- build an application with a graphical user inter-
face that controls CSL synthesis and processing.

The generic CSL main() function is used for test-
ing, and calls an arbitrary test function that can be
supplied by the user. This function generally sets up a
DSP graph (the test to be run), plays a note, and then
exits.

Another configuration uses a file reader that parses
and executes a score file in an abstract ASCII ver-
sion of MIDI (described elsewhere).

The most common interactive version of CSL uses
a main() function that sets up an OSC address space
(given an instrument library as an array of CSL
instrument objects, see above) and waits for in-com-
ing OSC messages to set control values and trigger
instrument envelopes.

As we mentioned above, CSL is designed from the
ground up to be used in distributed systems, with sev-
eral CSL programs running as servers on a local-area
network. The companion paper in these Proceedings
discusses the distributed processing framework in
more detail.

6 Open Design and
Implementation Issues

As we mentioned in the Introduction, the design of
a framework such as CSL forces one to make a num-
ber of policy decisions that have various impacts on
subsequent implementation details. Over the genera-
tions of evolution of CSL, we have sought novel
solutions to a number of age-old design issues in
computer music software.

We should admit here that both authors of this
paper are more accustomed to programming in
Smalltalk than in C++, and that several important
design decisions were made by the coin-toss method
(with later evaluation of the impact of the coin toss).

Some of our issues relate to building portable,
robust, and fast C++ software. These are require-

ments that contradict each other to some extent.
For example, the C++ standard template library

provides vector and list classes, but these are both
quite slow (relative to using C-style arrays and point-
ers), and not entirely portable to the platforms we
care about.

In general, CSL classes are conservative about
buffer allocation. No allocations are ever done at run-
time, and unit generators (even processors) try to
reuse the buffers they are given whenever possible.

The CREATE Oscillator (which was essentially
CSL version 0), used object pointers throughout;
while we have now moved to using references in
function calls, there are still problems in several
places with reference counting.

We still occasionally have reason to debate the rel-
ative merits of interleaved (as in PortAudio) vs. non-
interleaved (as in CoreAudio) sample storage. The
main impact is seen in processors such as filters

We have also tried several different approaches to
representing buffers of data in other domains (e.g.,
FFT or wavelet spectra), in the cases that they’re
even exposed.

The handling of is_fixed_over(), is_linear_over(),
and the facilities for flexible (multi-rate) control-rate
processing will be revisited in the next revision.

The last interesting open question is whether or
when FrameStreams should know their assumed
number of channels; there are cases where this might
be very important, and others where it’s better to
make some reasonable default assumption.

7 Applications
Since the Winter of 2002, we have used CSL for

several very different applications. We introduce
these next.

7.1 Sensing/Speaking Space
Sensing/Speaking Space is an interactive audio/

video installation developed by one of us (Pope) in
collaboration with the media artist George Legrady; it
premiered at the San Francisco Museum of Modern
Art in February, 2002. In the installation, a computer
vision system analyzes the movement of spectators in
the gallery and sends OSC messages to a sound syn-
thesis server. The first version of the sound server
was written in SuperCollider (version 2), but suf-
fered from persistent reliability problems (intermit-
tent crashing), an excessive memory foot-print (1
GB), and poor debuggability (no SuperCollider
debugger).Starting in January, 2003, Sensing/Speak-
ing Space was rewritten in C++ using CSL.

While a detailed evaluation of the re-write and in-
depth comparison of CSL and Supercollider is

beyond the scope of this document, the new version
o f Sensing/Speaking Space premiered in a gallery
performance in April of 2003, ran very reliably for a
week, and sounded just like the first version. In both
cases, the source code for the piece totals about 1200
lines, includes several helper classes, and incorpo-
rates a simple GUI with sliders to mix the various
layers. The performance was also comparable
between the SuperCollider versions in that a 500
MHz Apple G4 PowerBook was kept quite busy run-
ning the synthesis and spatialization engine with 6
output channels (and overtaxed to produce 8 output
channels).

Given the reasons why it was necessary to port
Sensing/Speaking Space from SuperCollider to C++,
the CSL framework stood up quite well to its first
real-world performance.

7.2 Ouroboros and OndeCorner
Ouroboros is an application for processing, sam-

pling, and looping audio input and sound files. In this
case, CSL is not used for the processing. Ouroboros
hosts AudioUnits, the standard plug-in format on
MacOS X, and lets the user create graphs of Audi-
oUnits for adding effects to sound. Ouroboros
employs CSL to simplify the reading and writing of
sound files and for capture and looping of audio.

OndeCorner is an AudioUnit plug-in built using
CSL. OndeCorner transforms sound to the wavelet
domain and lets the user modify wavelet coefficients
with a variety of processes. The resulting wavelet
coefficients are inverse transformed to the time
domain to product the output.

Figure 1: Ouroboros and OndeCorner Screens
In addition to being an example of a plug-in writ-

ten in CSL, OndeCorner is a showcase for using CSL
to integrate DSP code from other sources. CSL can
be used to easily take code that was not designed spe-
cifically for processing audio, and apply it to audio

domain processing. In this case, we used the Wave++
(http://www.scs.ryerson.ca/~lkolasa/CppWave-
lets.html) from Ryerson Polytechnic University for a
wavelet transform implementation. After building a
simple wrapper class, we could use apply their wave-
let transform to real-time audio signal processing.

7.3 Reverb Plug-in
In a recent UCSB graduate course on spatial

sound, students developed a series of panners, rever-
berators, and spatializers based on the CSL frame-
work. Later, CSL was used for a convolution-based
reverberator and HRTF-based spatializer that uses the
FFTW library for the analysis and synthesis.

7.4 The Expert Mastering Assistant
(EMA)

Our largest current project using CSL is an expert
system that uses fine-grained multi-level music anal-
ysis to suggest parameters for signal processing to be
applied during music mastering. We’re using a com-
bination of CSL, AudioUnits, and third-party DSP
code along with multi-dimensional scaling functions
and a blackboard system for application manage-
ment. The figure on the right illustrates the current
(July, 2003) mock-up of the EMA user interfaces,
showing the output and logging pane on the left. The
central pane is the metering and control pane, with
several kinds of signal displays and a transport con-
trol. The right-most pane is for control of the real-

time mastering signal processing.

Figure 2: EMA GUI (mock-up) as of 7/2003

8 Plans for Future Work
There are several enhancements underway at

present in the CSL workgroup. Some are related to
adding new synthesis methods such as various kinds
of physical and spectral modeling, while others relate
to providing better integration between CSL and the
CREATE CRAM System infrastructure.

9 Conclusion
The CREATE Signal Library is a working, open-

source, portable, flexible sound synthesis and pro-
cessing engine. The CSL class library can be used to
construct stand-alone synthesis/processing servers, or
can be integrated into other applications that require
some sound generation or processing functions (e.g.,
games, music software, web-based services, or edu-
cational applications). The complete CSL manual is
on-line at http://create.ucsb.edu/CSL.

10 References
Burk, Phil. 1998. “JSyn–A Real-time Synthesis API for

Java.” Proc. 1998 ICMC.

Bencina, Ross and Phil Burk. 2001. “PortAudio: an Open
Source Cross Platform Audio API.” Proc. 1998 ICMC.

Cook, Perry R. and Gary P. Scavone. 2003. “STK software
documentation.” http://www-ccrma.stanford.edu/soft-
ware/stk.

Freed, Adrian and Matthew Wright. 1997. "Open Sound-
Control: A New Protocol for Communicating with
Sound Synthesizers." Proc. ICMC 1997.

McCartney, James. 1996. “SuperCollider: a new real time
synthesis language.” Proc. 1998 ICMC.

Pope, S. T. 1993. “Machine Tongues XV: Three Packages
for Software Sound Synthesis.” Computer Music Jour-
nal 17(2).

Pope, S. T. 2001. “Music and Sound Processing in Squeak
Using Siren.” in Guzdial, Mark and Kim Rose. Squeak:
Open Personal Computing and Multimedia. (book and
CD-ROM) Prentice-Hall.

Pope, S. T., A. Engberg, F. Holm, and A.Wolf. 2001. "The
Distributed Processing Environment for High-Perfor-
mance Distributed Multimedia Applications." in Proc.
2001 IEEE Multimedia Technology and Applications
Conf., U. C. Irvine.

Puckette, Miller. 1996. "Pure Data." Proc. 1996 ICMC.

Pope, S. T. and C. Ramakrishnan, 2003. “Recent Devel-
opments in Siren: Modeling, Control, and Interac-
tion for Large-scale Distributed Music Software.”
Proc. 2003 ICMC.

Ramakrishnan, C. 2003 Musical Effects in the Wavelet
Domain. Graduate Thesis: Media Arts and Technology
Program, UCSB.

Sandell, Greg. 1998. SHARC: The Sandell Harmonic
Archive. see http:/ /www.parmly.luc.edu/parmly/
sharc.html

Scaletti, C. 1989. “The Kyma/Platypus Computer Music
Workstation.” Computer Music Journal 13:(2). reprinted
in S. T. Pope, ed. 1991. The Well-Tempered Object.
Cambridge, Massachusetts: MIT Press.

Schottstaedt, W. 2000. Common Lisp Music Documenta-
tion. see http://ccrma-www.stanford.edu/software/clm.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Stephen Pope
	Chandrasekhar Ramakrishnan

