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 Abstract 
 

The goal of computational music modeling is to construct 
models that capture the structure of music. We present our 
work on learning style-specific models for the rhythmic 
structure on a single line of music. The task by which the 
model is evaluated is to predict the duration of the next note 
given the sequence of durations leading to that note. We 
construct several different models that we train using works 
by a given composer (Palestrina), and assess the success of 
our models by looking at the prediction accuracy on unseen 
works by the same composer. We show that introducing 
style-specific musical knowledge improves the predictive 
ability of our models. 

proficient in transcription, trying to reproduce a musical 
score, where one musician has never listened to that specific 
style, and the other is an expert in that style. It is reasonable 
that the expert will be more accurate and faster in this task. 
We therefore suggest that methods for transcription of music 
in a particular style should be supported with a rhythm model 
that is specific to that style. Such models are more likely to 
produce accurate and fast (speed is especially important for 
online systems) rhythm quantifiers. An additional benefit of 
having a successful rhythm quantifier is that it will help in 
resolving uncertainty during tempo tracking, since the two 
problems are highly connected.  

     
1 Introduction 2 Problem Definition and Approach 

The goal of computational music modeling is to 
construct models that can capture the structure of music. A 
computational model is often useful in systems based on 
artificial intelligence techniques: compositional, 
improvisational, and performance systems (Lopez de 
Mantaras and Arcos 2002), as well as systems for music 
transcription and music information retrieval. Computational 
models for music have been employed since as early as Hiller 
and Isaacson’s work (1958) on machine composition of 
music using Markov chains and Simon and Sumner’s 
description (1968) of a formal pattern language for music. 
Such models for structural organization in music are still 
studied in computational musicology.        

2.1   Problem Definition 

The goal of this paper is to build an accurate 
probabilistic model of single line rhythm in a specific 
musical style. There are three major limitations of this goal: 
first, we only consider rhythm and no other musical elements 
(such as pitch, dynamics, etc.); second, we look at single 
lines of music and disregard the parallel lines; and finally, we 
construct a model for a specific musical style, as opposed to a 
general model of musical rhythm. We discuss each limitation 
in turn.   

We have decided to focus on the musical domain of 
rhythm alone, which simplifies the model space and allows 
us to investigate it more deeply. By considering rhythm 
alone, we do lose information that can be inferred from other 
musical elements. However, we believe that the models for 
rhythm and pitch are to some degree separable and there is a 
lot that can be inferred using a model for rhythm alone. 
Furthermore, to develop a coherent integrated model for 
pitch, rhythm and other musical elements, we must first 
understand models for each element individually. 

We are particularly interested in the practical application 
of computational models to the transcription of music. From 
the rhythm perspective, music transcription requires 
associating onset times with discrete locations on a score. 
This involves both keeping track of the tempo and rhythm 
quantization. Tempo tracking and rhythm quantization are 
widely studied tasks, as they are problems that need to be 
addressed when working with real musical data such as audio 
or MIDI input. A significant number of computational 
methods have been suggested for these two tasks, both for 
audio input (Goto and Muraoka 1998; Raphael 2001; 
Scheirer 1998) and for inputs that are presented as a list of 
onset times (Cemgil and Kappen 2003; Desain and Honing 
1994).   

Our focus is on modeling the rhythm on a single line of 
music. Modeling multiple lines of music is clearly a more 
complex task. We suggest that a model for monophonic 
rhythm can be used as a building block for polyphonic 
rhythm. One might argue that because of the parallel 
dependency of musical lines, an investigation of multiple 
lines is necessary for an accurate model of single line rhythm. 
However, rhythm is a primarily linear phenomenon and while 
the rhythmic dependency between parallel lines is sometimes 
important, the linear dependencies predominate. Therefore 
we choose to model monophonic rhythm first, and intend to 
extend our model to polyphonic rhythm in future work. 

One particular aspect that is neglected in previous works 
is a language model for rhythm that contains substantial 
knowledge on the style of the pieces under consideration.    It 
is well know, in the case of speech recognition, that a 
language model can greatly enhance the recognition accuracy 
(Pereira and Riley 1997). Consider two musicians equally  



 

Modeling a specific style, often represented by a single 
composer, and modeling music in general are two distinct 
problems. Although modeling a specific style could appear to 
be a subset of the latter problem, the two are fairly different 
since modeling a single style allows more musical knowledge 
to be incorporated into the model. As a result, models of 
specific styles can actually be more complex but also more 
accurate, and they can be used in more sophisticated tasks for 
the given style (e.g. stylistic harmonization, melody 
completion). Most research in computational analysis of 
music has been on a single style due primarily to the ability 
to incorporate musical knowledge. Another intuitive reason 
for considering single styles follows from the observation 
that humans have different expectations when listening to 
specific styles. We believe that having separate models for a 
range of styles is a reasonable approach even for modeling 
music in general. In this paper we focus on the style of 
Palestrina.   

 The task by which we test the efficiency of our rhythmic 
model is prediction. In rhythm modeling, the two types of 
events are pitches and silences. We specify the task as 
predicting the duration and type of the next event, given the 
sequence of durations and types of events leading to it. There 
are several reasons for the choice of a prediction task. First, 
the predictive ability of a model is objectively measurable. 
We can learn a model using some works by a given 
composer, and use unseen works from the same composer to 
assess its success. We avoid the problems that can be 
encountered when using a subjective measure such as the 
similarity of the outputs generated by the model to the 
specific style. 

Second, prediction of durations can assist in a number of 
practical problems such as automated accompaniment, beat 
tracking, rhythm quantization, and music transcription in 
general. In all of these problems, a predictive model can be 
used to relate continuous performance durations to discrete 
notated durations and vice versa.    

Finally, the prediction task is an interesting problem in 
itself for both computers and humans. Prediction is inherent 
to the process of listening to music, and appreciating music 
has a lot to do with expectation (Narmour 1990). Music is 
based on developing, satisfying and breaking expectations, 
and humans that have the knowledge of a certain style have 
the "right" expectations when listening to a composition in 
that style. We hypothesize that when musical knowledge is 
incorporated into computational models, they will have a 
greater predictive capability, just as humans familiar with a 
style have more accurate expectations.  

 
2.2    Methodology 

In building and assessing models for rhythm, we took 
much of the methodology from work on natural languages, 
since there are a lot of similarities between natural languages 
and music. Both are means of communication and perceptual 
faculties of humans. In fact, it is widely accepted that the 
cognitive system organizes both linguistic and musical 
information using similar hierarchical descriptions  

(Chomsky 1965; Lerdahl and Jackendoff 1983; Longuet-
Higgins 1976). Also, the data that is processed is sequential 
in both music and natural languages, which suggests that the 
employment of sequential models that work well for 
languages can also be beneficial for music.  

Our methodology is as follows: First, following work in 
statistical natural language processing, we build probabilistic 
models using well-known frameworks. We then augment 
these models by incorporating musical knowledge explicitly. 
We hypothesize that musical knowledge will improve the 
predictive ability of the models. Finally, to check this 
hypothesis, we compare "informed" models to the 
"uninformed" models. 

We learn and evaluate models by using a musical corpus 
that contains many works by a given composer. First, the 
majority of the compositions are used to learn a model. Then 
to test the predictive ability of the resulting model, we use 
unseen compositions from the same composer. We employ a 
cross-validation technique where we repeat the same 
procedure by using different pairs of training and test sets, 
and present the average result.  

 To evaluate the models, we use the perplexity metric, 
which is based on the information theoretic measure of 
entropy. When we don't know the true frequency of rhythmic 
events (analogous to the unknown frequency of words in 
natural languages), we can estimate the entropy of the model 
by the average negative log-probability of correct prediction 
on unseen compositions. Since for our purposes each 
composition is a sequence of rhythmic events, we take the 
average negative log-probability under our model, of the 
observation of each event given the subsequence leading to 
it. In Equation 1 below, k is the number of test sequences, nj 

is the number of elements in the jth sequence, and dji denotes 

the ith element of the jth sequence. The probability that the 
model M assigns to an event e given the previous sequence s 
is given by pM(e|s). 
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The perplexity of the model is then defined as 2logpr(M).  

An intuitive interpretation of perplexity is the number of 
elements from which the next event is chosen given the 
rhythmic sequence up to that point. Therefore, the more 
predictive accuracy a model has, the lower its perplexity will 
be. An ideal perplexity would be as close to 1 as possible, 
while a perplexity of 1 would mean that the model always 
predicts the next duration correctly (it assigns a 100% 
probability to the correct event). This cannot be the case for 
real musical styles since the only time a perplexity of 1 is 
possible is when the model only generates the different-
length prefixes of a unique sequence. Unfortunately, the true 
perplexity of any style is unknown. Therefore, we can never 
tell how close to the optimal we are, but perplexity can still 
be used to compare different models. 



 

 3 Data Collection and Representation 
3.3 Data representation 3.1 Choice of Composer   

Rhythmic information on single lines is encoded by 
integer sequences. We first identify the possible note and rest 
durations in Palestrina's compositions by counting the 
occurrence of each symbol in the corpus.  The eighth note 
was chosen to be the unit, since this is the shortest common 
duration in our corpus3. Examining the frequencies in the 
corpus, we have eight cases for notes of duration 1, 2, 3, 4, 6, 
8, 12, and 16 units; and five cases for rests of duration 1, 2, 4, 
6 and 8 units. Two special cases of "long note" and "long 
rest" are respectively used to represent notes longer than 16 
units and rests longer than 8 units. These cases cover all 
occurrences of notes and rest in the corpus. Since we have a 
total of 15 categories, the perplexity of the models can at 
most be 15. However, we do not have a lower bound for 
Palestrina-style, so all we can say is that our perplexity 
results should be between 1 and 15.  

Our choice of composer for the experiments is Giovanni 
Pierluigi da Palestrina (circa 1525-1594), who is considered 
to be the classic model of Renaissance polyphony (Fux 1725; 
Jeppesen 1931), and is the primary composer of that style. 
There are a number of reasons for choosing Palestrina. 
Unlike some composers who write in multiple distinct styles, 
Palestrina has a relatively homogenous style1, and therefore a 
successful rhythmic model learned using his compositions 
would be a general model for Palestrina-style rhythm. Also, 
rhythm is a key element in Palestrina's works: his 
compositions are primarily melodic (horizontal), subject to 
harmonic (vertical) constraints. Since we are focusing on 
single line rhythm, which is again a primarily horizontal 
phenomenon, and the task by which we evaluate our models 
is prediction, Palestrina's compositions yield an interesting 
and nontrivial corpus. 

  

3.2 Musical Corpus 4 Baseline Models 
For music file format of the corpus, we chose the 

Enigma Transportable Format (ETF), which is a cross-
platform format for use with Coda's Finale notation editor. 
Unlike the widespread MIDI standard (Loy 1985), which is a 
communication protocol between electronic instruments and 
computers, and primarily a representation of the performance 
of a composition, ETF provides a high-level, structured and 
exact representation of the musical composition. Almost all 
of the available ETF files for Palestrina are taken directly 
from the score, and therefore are accurate.       

4.1 N-gram Model  

The first baseline model we use is the ordinary n-gram 
model (Shannon 1948) widely employed in the field of 
computational linguistics. In an n-gram model, only the 
previous n-1 elements of the sequence are used to condition 
the probability of the next rhythmic event d, instead of the 
whole sequence leading to it. Under this assumption, the 
conditional probability of observing d is simply a function of 
the n-1 preceding events, as shown in Equation 2.  

To obtain the rhythmic information from the ETF files, 
we implemented an ETF parser that converts the music files 
into an OCaml2 structure, from which we can easily extract 
the desired information. The current work only uses the 
rhythmic information of the music files, but the conversion 
maintains most of the fundamental musical information in the 
ETF files, and can be used for different purposes such as the 
analysis of lyrics, pitch or multiple lines. 
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N-gram probabilities are estimated by looking at the n-

gram frequencies in the training set, as shown in Equations 3 
through 5.  
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A relatively large ETF corpus on Palestrina is available 
online. After checking many files and eliminating the ones 
that were not suitable because of transcription errors, we 
obtained a fairly large and balanced corpus. Since Palestrina 
has somewhat different sub-styles for sacred and secular 
music, we included a representative number of each sub-
style. To ensure homogeneity of the corpus, we discarded a 
small number of compositions in triple meter, and only kept 
compositions in duple or quadruple time. The final corpus we 
use for the experiments is composed of the soprano lines of 
25 madrigals, 39 pieces from masses, and 37 motets or other 
sacred works (a total of 101 compositions). 
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Normally, when employing n-gram models, some n-

grams will not be observed in the training set, although they 
can occur in reality. We need to assign non-zero probabilities 
to these unseen n-grams, and this may require an estimation 

                                                 
                                                 1 Palestrina’s secular and sacred compositions have somewhat different 

characters, but can still be considered to be in the same “Palestrina style”.  3 The only durations smaller than an eight note in the corpus are rare 
sixteenth notes, which always occur in pairs. We consider each pair of 
sixteenth notes to be functionally equivalent to a single eighth note. 

2 OCaml is an object oriented version of Caml (a functional programming 
language from the ML family) developed at INRIA,http://caml.inria.fr/ocaml 



 

of the probabilities of all n-grams given the observed 
frequencies. This is not an important issue for the current 
problem given the small vocabulary size and the relatively 
large corpus. All unigrams and bigrams in the test set are 
observed. Therefore, we use a simple linear interpolation of 
n-gram frequencies as shown in Equation 6: 
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     Figure 2. HMM vs. N-gram perplexity 
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Figure 1. N-gram perplexities 
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where the coefficients λ1, λ2, and λ3 are constrained to be 
positive with their sum equal to 1. The values were obtained 
by comparing several reasonable assignments of values. The 
results of the experiments are not affected by the choice of 
coefficient values as long as λ2 is sufficiently larger than λ1, 
and λ3 is sufficiently larger than λ2.  

The results of the experiments with n-grams are 
presented in Figure 1. In these experiments, λ2 is equal to 
100λ1, and λ3 is equal to 100λ2. As outlined in section 2.2, 
we obtain the n-gram probabilities by looking at a training 
set, and the results are on a held-out test set. We get a 
perplexity of about 6 with unigrams, and observe a 
significant improvement when the model is extended to 
bigrams. A small additional improvement is obtained when 
we use trigrams. The significant gain from bigrams is 
explained by the fact that bigrams can readily capture some 
of the musical information that is binary in nature (most of 
the cases covered by rule 1 of section 5.1).  

 
4.2   Hidden Markov Model (HMM) 

The second baseline model is a HMM (Rabiner and 
Juang 1986), where we have h hidden states and 15 possible 
observations from each state. In an HMM, the world moves 
through a sequence of unobserved states and an observation 
is output at each state. The observations only depend on the 
current state. Also, the Markov assumption states that the 
next hidden state depends only on the current state and not on 
previous states. An HMM is defined by three components: A 
transition model that determines the probability of the next 
hidden state given the current state, an observation model 
that determines the probability of an observation given the 

current state, and an initial model. For this work, 
observations are rhythm events, represented by one of the 15 
categories. The integer sequences that represent the rhythm 
of compositions correspond to observed sequences from the 
HMM. We use the Baum-Welch algorithm (Rabiner and 
Juang 1986) to learn the model parameters for different 
numbers of hidden states.  

Figure 2 presents the results of the experiments, and 
compares HMMs to the trigram model. The fluctuations in 
the curve result from the stochastic nature of the Baum-
Welch algorithm. As the number of hidden states increases, 
we observe a general improvement in the perplexity, 
becoming more or less stable beyond 30 hidden states. We 
also see that HMMs with more than 15 hidden states are 
slightly better than the trigram model, although the difference 
may not be large enough to justify the added complexity and 
learning time of the HMMs with large number of hidden 
states. 

 

5 Informed Models 

In the models of section 4, the only style-specific 
knowledge was the set of outputs that are possible, which 
was obtained by searching through the corpus. In this section, 
we introduce more style-specific musical knowledge and 
incorporate it into the baseline models in different ways. The 
musical knowledge we introduce in this section is based on 
some rhythmic rules musicologists have identified for the 
style of Palestrina, and therefore the improved models in this 
section are specific to that style. However we believe that the 
general approach for determining and incorporating rhythmic 
information will be similar for different styles. 
    

5.1   Musical Knowledge 

According to musicologists (Jeppesen 1931), Palestrina's 
works always obey the following two rules: (1) There cannot 
be syncopated4 notes on off-beats, and (2) a note cannot be 

                                                 
4 Syncopation is an onset on a beat of less importance than one that 
intervenes prior to the next onset (i.e. a note is syncopated if it starts at a 
weak beat and there exists a stronger beat before the start of the next note).  
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longer than the previous note it is tied to. The first rule can be 
restated as disallowing notes longer than a half-beat on the 
off-beats (locations 2,4,6 and 8 when quadruple measures are 
divided in half-beats). Figure 3 illustrates the restrictions 
imposed by the second rule. In notating music, when a note 
traverses the mid-measure as in Figure 3(a) or the bar-line as 
in 3(b), we use a tie to emphasize the metric accent. In tied 
notes starting at locations 3 and 7, if the second note of the 
tie is longer than a quarter note (two half-beats), the second 
rule will be violated. As a result, we are not allowed to have a 
note longer than a half note (four half-beats) starting at 
locations 3 and 7.       
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We keep track of the beat and redistribute the probability 

mass assigned to the outputs that are not allowed as shown in 
Equation 7. To keep track of the beat, we simply add up the 
durations of the events in modulo 8, which is the length of a 
quadruple measure in half-beats. Then, once we identify the 
location of the next event with respect to its measure, we 
look at Table 1 to identify the outputs that are allowed. The 
events that are not allowed have zero probability. Equation 8 
ensures that the sum of the probabilities of the events that are 
allowed is 1. 

  1         3         5          7           1 
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(b) 

The results comparing the baseline N-gram models to 
modified ones are presented in Figure 4. There is an 
improvement for all cases, but as expected, the gain is 
smaller with higher order N-grams5. An interesting result is 
that the modified bigram model has a lower perplexity than 
the plain trigram model. This suggests that adding the 
musical knowledge can be more beneficial than including 
one extra previous event in the model. 

Figure 3. Tied notes 

To verify that our Palestrina corpus obeys these rules 
and to possibly extract other rhythmic information, we 
annotated the rhythm sequences with measure locations for 
each event and collected all possible events (notes or rest 
durations) for each of the eight locations of the measure. As 
expected, the only event observed at the off-beats was an 
eighth note (one half-beat) and no notes longer than four 
half-beats were observed at locations 3 or 7. The results are 
summarized in Table 1. 

For the HMM, we use a similar approach: The HMM is 

learned as before, but we include the beat in the definition of 
the probabilistic model. Events that are not allowed given the 
beat are assigned zero probabilities and the remaining 
probabilities are normalized so that their sum is 1. The 
computations are given in Equations 9 and 10. 

����������
����������

����������
����������

�����������
�����������

����������
����������

����������
����������

����������
����������

3.0

3.5

1-gram M df. 1-

gram

2-gram M df. 2-

gram

3-gram M df. 3-

gram

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

�����������
�����������
�����������

����������
����������

����������
����������

����������
����������

 

5.999

4.835

4.244

4.018 4.069
3.945

4.0

4.5

5.0

5.5

6.0

6.5

P
er

pl
ex

it
yTable 1. Rhythmic Restrictions 

Location Allowed Outputs 
Number of   
Legal Outputs 

1,5 Anything 15 

2,4,6,8 Half-beat note 1 

3,7 
Note equal to  
or less than 4 half-beats; 
Any rest 

10 

 Figure 4.  Modified N-gram Model Perplexities
 

5.2   Modified Models 

A naive way to modify the calculation of probabilities in 
the baseline models is described in this section. As will be 
argued in section 5.3, this approach does not compute the 
probabilities from a proper model, but is a quick 
approximation to the probabilities that would be obtained 
from a model into which musical information is incorporated. 
We call these models "modified models" keeping in mind 
that they are not proper, and in the next section we present a 
proper model with musical information.  
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For the N-gram model, we collect N-gram frequencies as 
usual during the learning phase. However, the probabilistic 
model is defined differently (bk denotes the beat after djk):     

                                                 
5 Note that we do not have an exact understanding of how close to the "true 
perplexity" (TP) the results are. This statement is more meaningful if TP is 
much smaller than 4, and less if TP is close to 4.     
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The results comparing plain HMM to both modified 

models are presented in Figure 5. Similar to Figure 4, 
modified HMMs have lower perplexities compared to the 
plain HMMs, with smaller differences as the number of states 
is increased.  We also see that with about 25 or more hidden 
states, modified HMMs have lower perplexities than the 
modified N-gram model. 

 5.3   Informed Models 

In the previous models, the musical rules were applied 
locally at each note or rest without taking into account the 
ways in which the sequence will continue to be valid. 
However, this  approach is not equivalent to applying 
musical knowledge to complete sequences and it distorts the 
probabilities of the sequences. Technically, local application 
of the rules does not yield probabilities based on maximum 
likelihood estimates (MLE). 

To conserve the relative probabilities of valid sequences, 
when computing probabilities for a sequence Sn of length n, 
we should consider the probability that Sn will be generated 
and also the probability that the model will generate a valid 
sequence of length n. The probability of a sequence Sn under 
the informed models, Pinf(Sn), is given in Equation 11: 
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P(Sn) denotes the probability of Sn under the baseline 
model. P(validn) denotes the probability that a valid sequence 
of length n is generated from the baseline model.    

Unlike the previous approach, this probability model is 
based on MLE: N-gram frequencies and Baum-Welch 
algorithm both yield MLE parameters, and invalid sequences 
are now assigned a zero probability. To illustrate the 

difference between the modified and the informed models, 
consider the following case of a sequence of length two, 
without loss of generality. Let S=d1d2 be the sequence of 
interest. Since d1 is the start of a sequence, all events are 
allowed. However d2 is restricted to the events that are 
allowed at beat b1, where bj denotes the beat after event dj. In 
Equation 12, Pmod(S) denotes the probability of S calculated 
as in section 5.4.  
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The denominators of Equations 12 and 13 are not equal: 
The former is a function only of d1 whereas the latter has a 
summation over all possible events. The fundamental 
difference between the two approaches is that we have a local 
correction in the modified models, whereas in the informed 
models the correction is over the whole sequence. 

We take the following approach for computing the 
probabilities under the informed models: The numerator 
P(Sn) in Equation 11 is readily computed. Computing 
P(validn) is more difficult since it requires considering all 
valid sequences of length n. We describe the computations 
for HMM only, since it is the more complex case. Dynamic 
programming is employed to avoid repeated computations. 
We denote by fi(b,h), the probability of getting a valid 
sequence of length i that starts at beat b and ends in state h. 
We first compute f1(b,h) for all beats and all states directly 
from the initial state probabilities. The remaining 
probabilities f2(b,h) through fL(b,h) are computed using 
Equation 14. The probabilities P(h'| h) and P(o| h) are taken 
respectively from the transition model and the observation 
model. The sum is over all states and all outputs such that 
when the duration of the output is added (in modulo 8) to the 
current beat b, b' is obtained. 

Figure 5. Modified HMM Perplexity 
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Figure 6.  Approximate vs. True HMM Perplexity 
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The perplexity of the true model computed as such is 

actually very close to the approximate perplexity computed 
in section 5.2, as Figure 6 shows. However, the true model is 
consistently better than the approximate model.  

Figure 7 compares both informed trigram model and 
HMM to the baselines. It can be seen again that incorporation 
of musical knowledge is beneficial in both cases and 
informed HMMs with high number of hidden states have 
lower perplexities than the informed trigram model. 

 
5.4   HMM with Beat Classes 

The approach of the models in Section 5.3 was to learn a 
model without using the musical information, and then to 
apply the rules to reject invalid sequences generated by the 
model. In this section we present a HMM that takes into 
account the musical knowledge during the learning phase. 

In the HMM with beat classes, we have different 
submodels each corresponding to a subset of measure 
locations with similar characteristics.  Examining Table 1, we 
identify three different sub-classes: (1) Locations 1 and 5 
corresponding to the beginning and middle of the measure; 
(2) locations 2,4,6 and 8, which are off-beats; (3) locations 3 
and 7 that correspond to the second and fourth beats. As a 
result, we have three different sub-models. Once such a 
model is learned, when we are at beat b, we use the sub-
model that corresponds to b's sub-class to compute transition 
and output probabilities. When learning the parameters of the 
HMM with sub-classes, we keep track of the beat at every 
point in the sequence and the statistics are collected for the 
corresponding sub-model. The usual Baum-Welch equations 
are modified to reflect that the beat is a conditioning variable 
for both the observation and transition models.  

When comparing HMM with subclasses to previous 
models, we need to account for the difference in the actual 
number of parameters. Table 2 compares the number of 
parameters required to learn models with and without sub-
classes, given the number of hidden states h. Because of the 

rules that restrict the outputs according to the beat, the sub-
models have different sizes from each other. The observation 
models for classes 1 and 3 have 15h and 10h parameters 
respectively. Observation Model for class 2 has no 
parameters since the rules require the output to be a half-beat 
note. Also we only have one initial model (for class 1) since 
the sequences start at the first beat.  

Table 2. Number of Parameters in HMMs 

 
Ordinary  

HMM 
HMM with 
sub-classes 

Transition Model h2 3h2 

Observation Model 15h 15h + 10h 

Initial Model h h 

Total h2 + 16h 3h2 + 26h 
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Figure 8 compares the perplexities of all three HMMs: 

ordinary, informed and sub-classed. The horizontal axis is the 
number of states in the HMM with subclasses. For the other 
HMMs, we use Table 2 to compute the number of hidden 
states that will result in the same number of parameters, and 
compare models that have the same number of parameters (a 
weighted average is used if the number of parameters in the 
HMM with subclasses falls between two numbers of hidden 
states for ordinary HMMs).  

Figure 7.  Informed vs. Non-informed Models 
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Figure 8.  Comparison of HMM perplexities 

With small number of parameters, HMM with sub-
classes has lower perplexity than the other models. This 
suggests that when the models are limited, treating sub-
classes separately is beneficial and sub-classes act as 
meaningful separations of hidden states. On the other hand, 
as the models are sufficiently complex, the perplexities of 
models become closer and even higher for the HMM with 
subclasses. A possible explanation is that the training data is 
not distributed efficiently among sub-models. Each sub-
model receives approximately a third of the training data. For 
instance, sub-model 2 receives an equal share of the training 
data, which is unnecessary since its observation model is 
fixed. In the HMMs without sub-classes, training data is 
shared across beat-classes and this seems to result in models 
with better (lower) perplexities when we have a sufficiently 



 

high number of hidden states. The increasing perplexity for 
Multiple Class HMM is an indication that with too many 
hidden states, HMM with sub-classes starts overfitting the 
training data, which is expected when the models are too 
complex with respect to the amount of available training 
data.   

 

6 Conclusion and Future Work 

We have presented our work on learning a style-specific 
model for Palestrina-style rhythm. We suggest that for 
practical problems such as transcription of music, models 
augmented with style-specific information can be more 
successful than generic models. Human listeners bring a lot 
of stylistic knowledge when performing musical tasks, and it 
would be limiting to ignore this information in computer 
systems designed for doing the same tasks. The probabilistic 
models we implement in this paper are aimed at learning 
style-specific information that can be extracted from an off-
line corpus.   

Of course, modeling the rhythm of a single line of music, 
in the style of a single composer, is only a beginning of the 
task of developing probabilistic models of music.  One next 
step is to develop a model for single line pitch, while still 
focusing on a single composer such as Palestrina.  The 
methodology employed in this paper, utilizing well-known 
temporal models such as hidden Markov models as a basis, 
and augmenting them with constraints derived from musical 
knowledge, should carry over quite well to that task.  
Another direction to extend our work is to model the single-
line rhythm of multiple styles.  Again, the methodology 
employed in this paper should work well, though the details 
of the representation and the constraints will surely be 
different.  A third direction to extend the work in this paper is 
to model rhythm in a polyphonic composition.  Richer 
models will need to be developed for that task, to capture 
phenomena such as imitation. 

Each of these tasks extends our work here along one 
dimension.  Our long-term goal is to cover all these 
dimensions, by combining models for pitch and rhythm, 
including polyphonic models, for multiple styles.  A 
hierarchy of tasks for a single style is shown in Figure 9. In 
parallel to this hierarchy is another one involving multiple 
styles.  The task of developing general probabilistic stylistic 

models of music is an important one.  While our work in this 
paper is only a first step towards this task, it lays the 
foundation and presents the basic methodology for 
accomplishing it. 
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