
SPORCH: An Algorithm for Orchestration Based on
Spectral Analyses of Recorded Sounds

David Psenicka

School of Music, University of Illinois
email: dpsenick@uiuc.edu

Abstract
SPORCH (SPectral ORCHestrater) is a Lisp based
computer program that provides orchestrations for
any ensemble of acoustic instruments based on any
arbitrary sound file input. The result, when played,
approximates the sound source in timbre and sound
quality. The amount of approximation depends on
the nature of the source material, the instruments
specified, and other controlling parameters.
SPORCH is a compositional tool for composers who
wish to work directly with complex timbres or
sonorities when composing for acoustic instruments.
Since it is able to detect the presence of specific
instruments and pitches within a complex chordal
structure, it also has potential as an analytical tool.

1 Introduction
Composers have recently created new approaches

to orchestration by considering acoustic phenomena
as a source of inspiration. This way of thinking is not
only concerned with technique but is also the
background for an aesthetic that emphasizes the
evolution of sound material as opposed to the
relationships of inner sections, motives, themes, or
other such elements. (Moscovich 1997) Pioneers in
this approach/aesthetic include the composers
associated with the Spectral Movement that began in
France during the 1970’s, Gerard Grisey and Tristan
Murail being the most well known among them.
(Rose 1996) A common approach is to base choice
of pitch material and instrumentation on information
derived from spectrum analyses of various sound
sources, or to derive material based on acoustic
properties such as combination and difference tones
or FM synthesis. This enables the composer to have
control over the gradual and perceptual evolution of
sound in ways analogous to various sound
phenomena known in the field of acoustics.

Fundamental to the creation and development of
spectral music is the introduction of the digital
computer and with it the ability to analyze the
frequency content of recorded sound material. With
the computational resources available today, the ideas
mentioned above have become more realizable for a
large number of composers and current interest in
these approaches is growing. It would be useful to

devise a tool capable of enabling a composer to
influence the timbral and textural qualities of
orchestration and harmony in a more direct way, or
even to actually specify a certain desired timbre or
possibly the fusion of two or more timbres with a
certain degree of accuracy. If a direct translation
could be made between acoustic sounds or processes
and the realization of them with acoustic instruments,
the entire realm of timbre and sonority would be
much more accessible for composers of acoustic
music. This would allow new techniques in harmony
and orchestration and also affect the possible ways in
which the electro-acoustic medium can be combined
with the acoustic domain.

2 Description of the Algorithm
Following is a description of SPORCH, a

program designed to analyze a recorded sound and
output a list of instruments, pitches and dynamic
levels that when played together create a sonority
whose timbre and quality approximate that of the
analyzed sound. The interface is in the form of a
Common Lisp function, which takes as some of its
input arguments a source sound file and a
specification for a group of instruments. The
program itself is written in both Common Lisp/CLOS
and C++ (the Lisp language must have a suitable
foreign functions interface for it to be fully
functional), and requires Common Music (Taube
1997) to run. Any instruments may be specified for
use by the algorithm, as long as relevant acoustic data
(explained below) and recordings of each of the
pitches over its entire range are available. The
program draws information from its own database,
which must be built by the user for it to make its
decisions.

The creation of SPORCH was motivated by a
desire to experiment with new methods of
determining harmony and instrumentation. It was
initially inspired by the techniques briefly mentioned
above and a desire to use these ideas in my own
music. Many Lisp programming environments now
exist which give composers tools for analyzing and
representing sound data. OpenMusic (Assayag, et al.
1999), CLM (Schottstaedt 1994), and Common

Music are several examples. SPORCH may easily be
incorporated into these environments, provided links
are made between its internal data structures and
whatever interfaces the user wishes to use.

Following is a description of how SPORCH
works.

2.1 The Instrument Database
Before the program can be run, a database

containing technical information for all instruments
used must be built. An instrument may have several
techniques associated with it (for example, a string
instrument may have separate data for both arco and
pizzicato). The database contains the following
information for each instrument and technique:

· The pitch range (if applicable).

· A reduced pitch range (if applicable),

specifying the pitches that are generally easier
to play. This is used by the orchestration
algorithm to produce parts that tend to stay
within a comfortable range for the instrument.
The parts are then more playable than they
would be otherwise.

· An approximation of the loudest and softest

dynamic levels, expressed as two envelopes
over the entire range of the instrument. The
envelopes specify the upper and lower bounds
in terms of SPL values.

· A collection of the most prominent peak

values taken from a spectrum analysis of each
pitch at various dynamic levels. If information
for some pitches is missing, data from the
nearest neighboring pitch is transposed and
used in place of the missing data. The same is
also true with respect to dynamic levels—
missing data is transposed from neighboring
existing data. The harmonic spectrum as a
function of pitch and dynamic is then available
over the entire pitch and dynamic range of the
instrument.

· Notation information (clef, transposition, etc.).

This information is used to store results into a
file suitable for viewing or importing into a
notation program.

· References to the original source sound files

used to build the database. This is used for
resynthesis of the program’s output.

The database exists mostly in the form of a Lisp

list structure, stored in a single file. The peak data
mentioned above is stored in a large collection of
files, each one also containing a list structure of data.
Each combination of instrument, technique, pitch and
dynamic level is represented. The spectrum analyses

used to produce this data are FFT analyses of either
the steady state portions of the tones or the attack
portions if this is more appropriate (as in staccato
articulations). A set of functions exists for the
purpose of building this database automatically from
a given set of source sound files, so that any
instrument may be inserted as long as recordings of it
are obtained and all the relevant acoustic information
is known. As mentioned above, if only some pitches
are available (for example, recordings exist of pitches
only at whole-step intervals from each other), the
orchestration algorithm automatically transposes data
from the nearest available pitch when it is needed.

When the database is built, a pitch detection
function decides which peaks are important in a
sound file’s FFT data to include in its collection of
prominent peaks. This information is extracted so
that noisy data in the FFT analysis is eliminated. The
function is designed to find peaks in both harmonic
and inharmonic spectra and to ignore frequencies that
contribute only as noise. The procedure for this is as
follows. Points of local maximum amplitude with
respect to frequency (peaks) are found. These
amplitude values are analyzed with respect to their
relation to a certain range of neighboring amplitude
values. This range is determined by searching for
nearby maximum amplitude points with nearly equal
or higher amplitude levels than the currently analyzed
peak. Within this range, the lowest maximum
amplitude values on either side of the analyzed peak
are then found (in other words, the smallest peaks in
close proximity on either side). Peaks that have
relatively high amplitudes (i.e. past a certain
threshold) in relation to these lowest points are
regarded as significant and selected for storage in the
database. Certain threshold values are set for this
decision to be made. The result is that only peak
amplitude values that are significantly higher than the
amplitudes of the spectrum at nearby frequencies are
selected for storage. All other peaks are discarded.

The reason for using such an algorithm to extract
this data is that a general method exists for analyzing
any sound with strong frequency components.
Sounds for any instrument or even sounds not
associated with any typical instrument may then be
easily inserted into the database. The same algorithm
is used to analyze the source sound files given as
input to the orchestration function described below.

2.2 The Orchestration Function
Once the database is built and the appropriate

acoustic data is provided, any sound recording may
then be analyzed and orchestrated by calling the
orchestration function. The function accepts the
following arguments: the filename to the source file,
a list structure specifying which instruments to use
(and how many of each, including whether or not
certain substitution may be made), and values
specifying the dynamic and pitch ranges allowed (i.e.
full or reduced). When finished, the program then

outputs an object containing raw analysis data, which
may then be passed to other functions for refinement
or output to a notation program. The orchestration
algorithm works as follows:

1. The sound source file is opened and analyzed

for prominent peaks in its frequency spectrum
(via the procedures described above).

2. The program iterates through every possible
instrument, technique, pitch, and dynamic
level and evaluates these to determine which
one is the “best fit” for the given sound source.
The best fit is determined using a procedure
that compares the source peak data to the
instrument peak data and rates their similarity
with a numerical value. More specifically, the
rating is determined by how much the source
spectrum can be decreased by “subtracting”
the instrument peaks from the source peaks.
The following steps describe this in more
detail:

a. The program iterates through every selected
prominent peak for the
instrument/technique/pitch/dynamic level
currently being evaluated.

b. An attempt is made to match the peak with a
corresponding peak in the source sound. A
match is made if the two peaks occur within
a certain specified frequency range.

c. If the two peaks match, the amplitude value
of the instrument peak is subtracted from the
amplitude of the matching source peak.
(Amplitude values may become negative.)

d. If there isn’t a match, a new “peak” is
created in the source sound data with the
same frequency as the instrument peak. The
amplitude of the new peak is the negative
value of the instrument peak’s amplitude.
(In other words, a new “negative” peak is
created.)

e. After iterating through each instrument peak,
the sum of the squares of each peak in the
source is calculated to determine a value
loosely analogous to the average power of
the source’s spectrum. Squaring the peaks
gives more importance to higher values.
Both positive and negative peak amplitude
values contribute to this sum.

3. A lower value resulting from this procedure
indicates a better fit. If the two spectra are
nearly equivalent, the result is close to 0. If
they are completely different, the result is a
large number. This number might be even
greater than the result if nothing at all were
subtracted from the source data, in which case
the particular instrument, technique, pitch and
dynamic level combination is completely
discarded as a candidate for the best fit and the
program continues to search through other
possibilities.

4. If no instruments are able to decrease the
spectrum by any amount, the program ends its
search and returns the results of its analysis.

5. If the above is not the case, the program adds
the best fit to its list and replaces the source
peak analysis with the “subtracted” one used in
the above evaluation. All subsequent
evaluations then use this data to determine the
next best fit. The iteration continues until
either no instrument is found that decreases the
source data or all of the specified instruments
have been used up.

In essence, the algorithm described above finds a

collection of instruments, pitches, and dynamic levels
whose frequency contents add together to form some
crude resemblance to the frequency content of the
source. Although the resulting orchestration
produces a sound completely different from the
original, recognizable timbral and pitch
characteristics of the original sound are present to
some degree in the orchestrated version. The amount
of similarity varies depending on the source used and
the instrumentation specified. In general, sound
sources with a strong pitch element produce
orchestrations whose results sound relatively closer
with respect to pitch and timbre. Sound sources that
contain noise, however, are also useful—the
algorithm simply attempts to approximate the noise
by selecting a somewhat random but biased collection
of instruments and pitches.

The following illustrations are sample outputs
from the program. Three sound sources were given
as input along with the specification for a small
chamber orchestra. The output specifies quarter tones
and dynamic levels ranging from ppp to fff.

The following graphs show the spectrum of the

original boat whistle sound source and the spectrum
of its orchestration. The circles indicate common
points between the two graphs:

(Above) Spectrum of Original Score, (Below)

Spectrum of Orchestration

Although the spectrum of the orchestration

contains many more prominent frequency
components than that of the original, most of the
original partials are present. The energy of the sound
in both examples is also concentrated within the same
frequency range. When comparing the two aurally,
the timbre of the orchestrated sound is very similar to
the timbre of the original, given the fact that the
texture of the two sounds are completely different.

3 Conclusion
SPORCH is a compositional tool that gives the

composer a great deal of control over aspects of
harmony, orchestration and dynamics. It can be used
as a source of harmonic material, to create gradual
shifts from one sonority to another, combine or
interpolate between different timbres, create groups
of related sonorities, integrate instrumental sounds
with recorded sounds, simulate electronic synthesized
sounds, and so on. I have used SPORCH to generate
an entire orchestra piece from by analyzing a six
minute long audio file of music concrete source
material at half second increments. The result is

Image, a piece for chamber orchestra. Output from
the program was stored in a data structure on which I
did further processing and manipulation (distributing
material among players, adding quarter-tone
inflections, etc.). I have also used the program in
other works in a less direct way to inform me with
harmonic and instrumentation data which are then
integrated with other compositional techniques.

Although it has the potential to be used as a tool
for extracting pitch or instrument information from a
musical recording, tests have shown that SPORCH
tends to become confused when asked to recognize
more than one or two pitches. The orchestrate
function will often accurately assess the pitch content
of a chord, although it will usually add extra pitches
at lower dynamic levels in an attempt to orchestrate
peaks that didn’t match perfectly during the search
process. It will also often correctly guess the
instrument when given a recording of one playing a
single note or several notes, but again begins to add
incorrect information as the source input becomes
more complex. Accuracy is heavily dependent on
input constraints, including the range of dynamic
levels allowed and the amount of amplification or
attenuation applied to the source.

Future versions to this program will improve its
ability to extract such information. Refinements and
heuristics will also be developed to enhance the
underlying search algorithm. A graphical user
interface will also be added. SPORCH will soon be
available as a free downloadable open source package
that can be run on Macintosh or Windows computers
or compiled in any ANSI-standard Common
Lisp/CLOS programming environment.

4 Acknowledgments
Thanks to Heinrich Taube for his support in the

development of this software.

References
Assayag, Gérard, Camilo Rueda, Mikael Laurson, Carlos

Agon, and Olivier Delerue. 1999. “Computer-assisted
composition at IRCAM: From PatchWork to
OpenMusic.” Computer Music Journal 23(3): 59-72.

Moscovich, Viviana. 1997. “French spectral music: An
introduction.” A Tempo 200 (April): 21-27.

Rose, François. 1996. “Introduction to the Pitch
Organization of French Spectral Music.” Perspectives
of New Music 34(2): 6-39.

Schottstaedt, William. 1994. “Machine tongues. XVII:
CLM--Music V meets Common Lisp.” Computer
Music Journal 18(2): 30-37.

Taube, Heinrich. 1997 “An Introduction to Common
Music.” Computer Music Journal 21(1): 29-34.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	David Psenicka

