
Sound Synthesis from Real-Time Video Images

Roger B. Dannenberg and Tom Neuendorffer

School of Computer Science, Carnegie Mellon University
email: dannenberg@cs.cmu.edu, web: www.cs.cmu.edu/~rbd

Abstract
Digital video offers an interesting source of control
information for musical applications. A novel
synthesis technique is introduced where digital video
controls sound spectra in real time. Light intensity
modulates the amplitudes of 32 harmonics in each of
several synthesized “voices.” Problems addressed
include how to map from video to sound, dealing
with global variations in light level, dealing with low
frame rates of video relative to high sample rates of
audio, and overall system implementation. In one
application, images of light reflected from a shallow
pool of water are used to control sound, offering a
rich tactile interface to sound synthesis.

1 Introduction
The connection between images, light, and sound

has been made countless times. This work uses video
to control time-varying spectra, creating an
interesting timbre in constant “motion” as the image
changes. We describe a working system that controls
the time-varying spectra of several voices using live
video.

Section 2 describes related work. Section 3
presents the new synthesis method, and Section 4
describes the implementation, which uses off-the-
shelf hardware. Section 5 presents ideas for future
work and our conclusions.

2 Related Work
Fred Collopy (2003) has written an excellent

annotated bibliography, and quoting from his web-
site, “ the fine art of playing images in the way the
musicians play with sound … has gone by a variety
of names—visual music, color music, audio-visual-
music, motion graphics, synchromy, and lumia.”
Often, images are derived from sounds, depicting
sonic gestures with visual ones. Disney’s “Fantasia”
is a popular example. In other work, sound is derived
from images. For example, Meijer (1992) created a
system for the blind in which video images are
mapped to audio. Many composers have been
inspired by paintings, such as William Kraft in his
“Kandinsky Variations.” In the computer music
domain, MetaSynth (U & I Software, 2003) uses
images to control note parameters and Kieren (2003)
uses a proprietary image-to-sound conversion system.

Penrose’s (1992) Hyperupic system converts still
images to audio.

Video has been used by many composers as a
sensing device, allowing movement to control music.
Examples include Rokeby’s Very Nervous System
(Rokeby, 1998) and some of Winkler’s dance and
installation pieces (Winkler, 1998). STEIM’s Big Eye
software (Demeyer, 1996) has enabled many
composers to incorporate video sensing into their
work. Unlike many of these efforts, our approach
uses video to control spectral variation within notes
rather than to trigger notes or select pitches.

There are a variety of related synthesis techniques
that use one- and two-dimensional data, not
necessarily video, as part of the synthesis algorithm.
In terrain synthesis, as described and implemented by
Rich Gold (Bischoff, Gold, & Horton, 1978), a real or
imaginary terrain is scanned in a closed path, and
movement of the path causes variations in the
generated waveform. Borgonovo and Haus (1985)
describe a similar system in which the terrain and
path are generated by various mathematical formulas.
Scanned synthesis (Boulanger, Smaragdis, & Ffitch,
2000; Verplank, Mathews, & Shaw, 2000) allows the
terrain (sometimes in just one dimension) to vary or
vibrate at a very low rate, causing interesting
variations in the audio waveform.

All of these ideas served as inspiration for our
work, which was first described by Dannenberg, et al.
(Dannenberg, Bernstein, Zeglin, & Neuendorffer,
2003). While the earlier paper describes an artistic
application of the technique, this paper provides
complete detail about the implementation.

3 Sound Synthesis from Video
A natural extension to Gold’s technique uses

video intensity as a source of “ terrain” for synthesis.
Imagine moving a photocell in a circle over the video
image. If the circular path is completed at audio rates
(faster than 20 cycles per second), then a quasi-
periodic waveform will be generated by the photocell,
giving rise to a perceptible pitch. As the image
changes, the generated waveform will also change.

We decided to use images from moving water to
drive our synthesis engine. Water exhibits interesting
wave motion and has obvious parallels to the
vibrating shapes in scanned synthesis. To capture
water motion, we constructed a shallow pool of water

using a wooden frame lined with plastic. We
determined that interesting images can be obtained
either by shining a light on the water at a shallow
angle of incidence in which case light reflects from
the water surface, or by using a greater angle in
which case light refracts through the water and is
reflected from silvered mylar underneath the plastic
pool liner. Reflections from the pool can be observed
by placing a screen behind the pool (see Figure 1).

Light

Camera

Pool
Screen

Figure 1. Light reflected from water forms moving
images on a screen. These are visible to the audience
and captured by a video camera interfaced to a
computer.

3.1 Time Domain vs. Spectral Domain
Using video captured from this setup, we

determined that time-domain interpolation was not as
interesting as we had hoped. One would expect a
decrease in high-frequency sound energy as the water
waves dissipate. In practice, the high frequencies,
represented by small ripples, continue to reflect back
and forth for many seconds. At least with water
images as an input, the sound is “buzzy” : full of high
frequencies and lacking in low harmonics. Even
though there was obvious wave motion in the image,
the generated sound was relatively static, and the
connection to the image was not at all obvious. We
decided to try a different approach.

Captured video shows that the main image
movement is in the form of horizontal bands of light
moving vertically (See Figure 2.), due to the position
of the light. It occurred to us that time variations
along the vertical axis might make an interesting
time-varying spectrum. This is the basis for the
synthesis technique.

3.2 Computing Time-Varying Spectra
The video images used in this work are 256 pixels

square (the power of two is advantageous for texture
mapping when the data is also used for animation; the
dimensions are not critical for audio synthesis.) A
vertical strip 8 pixels wide and 256 pixels high is
used to compute each spectrum. For example, we
generate three voices using the three strips shown at
the bottom of Figure 2. To reduce the noise inherent
in video data, each 8-by-8 block of pixels is averaged
to a single value, for a total of 32 floating point
numbers per strip. (See Figure 3.) These numbers
represent the amplitudes of 32 harmonics.

Absolute light levels are difficult to control, so the
video processing includes a simple automatic gain
control mechanism: the vectors are low-pass filtered
in time to obtain an estimate of local average light
intensity. The difference between the current vector
and this local average estimate is used for synthesis.
This will result in some negative amplitudes, and
these are replaced by zero.

Figure 2. Light reflected from water, captured by
digital video. The vertical strips in the bottom picture
show which video is used to compute audio spectra.

Figure 3. Each 8x8 square of pixels is averaged to
obtain one value, resulting in a 32-element vector.

3.3 From Spectra to Sound
Although it might be possible to synthesize using

an Inverse Fourier Transform, there are well-known
problems associated with discontinuities between
successive frames. Also, video frames arrive at a
relatively low rate (15 to 30 frames per second) that is
not synchronous with audio. Therefore, we use the
video data to determine a waveform and then use
spectral interpolation synthesis to generate sound.

Spectral interpolation synthesis (Dannenberg,
Serra, & Rubine, 1990) was originally developed to
model the time-varying spectra of acoustic
instruments (Dannenberg & Derenyi, 1998). It works
by interpolating between waveform tables that store
single periods of the waveform. Interpolation results
in a smoothly varying spectrum at a low computation
cost because, typically, each waveform table is read
for many periods.

Specifically, there is a linear cross-fade from table
1 to table 2, then from table 2 to table 3, etc. Figure 4
illustrates the spectral interpolation algorithm, and
Figure 5 shows how amplitude functions are
coordinated with waveform changes. In our
implementation, we read a video frame every 40ms,
so each waveform table will be used for many
fundamental periods. Since video frames are not
synchronized with audio, special attention must be
paid to synchronization. Each cross-fade must not
begin until (1) the previous cross-fade finishes (so
that interpolation is always between just two
waveforms), and (2) the next waveform has been
computed from new spectral data (so that there is
something to interpolate to). Even if a new waveform
is unavailable, the synthesis algorithm continues to
generate a tone, and the delay is inaudible. In Figure
5, observe that the cross-fade from wavetable 5 is
delayed slightly until wavetable 6 is available.
Alternatively, we could sample-and-hold the video
data, synchronizing it to the audio, but that would add
undesirable latency.

Table 1

Table 2

Interpolation
Control

××××

××××

+

Frequency
Control

New
Spectra Table

Generator

Phase Generation

Figure 4. Spectral Interpolation Synthesis algorithm.

1

2

3

4

5

6

Figure 5. Coordination of waveforms (numbered in
sequence) with amplitude control (dashed lines).
Waveform 6 arrives later than expected.

Another important point is that only one phase is
computed for both tables (again, see Figure 4). If the
phases of corresponding harmonics in the two tables
are equal, then linear interpolation of the table data is
equivalent to an interpolation of their spectra. Notice
also that the fundamental frequency is independent of
the spectrum, allowing pitch decisions to be made
independently from the spectral control.

4 Implementation
An implementation was created for the first

author’s composition, “The Watercourse Way,” in
which a dancer creates waves in a pool of water

(Figure 1) to control the synthesized sound. Video is
“grabbed” using a BTTV8x8 series chipset on a
commercial video capture card in a Linux PC, which
does all of the sound generation in software. Aura
(Dannenberg & Lageweg, 2001) was extended with
new objects to perform all video and audio
processing. The current implementation generates
three voices in stereo at a 44.1kHz sampling rate, and
the entire computation uses about 10% of a 2.4GHz
Pentium-4 processor.

The video processing consists of reading a frame
of video, computing three vectors of 32 harmonic
amplitudes, and sending these via Aura messages to
software instruments running in a high priority audio
synthesis thread.

The audio computation is implemented in C++
and manages wavetable construction, management of
wavetables, interpolation control, actual sample
computation, amplitude envelopes and stereo
panning. Many parameters can be controlled via Aura
messages, allowing other parts of the system to
control fundamental pitch, turn “notes” on and off,
and control panning.

 The C++ instrument computes 512-sample tables
containing 32 harmonics, which are derived from the
video as described above. At any given moment,
there are at most three tables: two tables are involved
in a cross-fade while the third is computed based on
the next spectrum. An even simpler approach would
just wait until the next wave table is needed, then
compute the table from the video data. This would
cause a large computational demand (512 samples ×
32 harmonics = 16K samples) that is undesirable in a
real-time system. To avoid this, we spread the
computation over time, using the third wave table to
hold the intermediate data until it is ready. In the
current system, audio is computed in blocks of 32
samples, so every time we compute a block of output
samples, we also add one harmonic to the third wave
table. After 32 blocks of 32 samples (32×32/44100=
23ms), the new table is ready. Even when the new
table is ready, the instrument must still wait until the
interpolation factor ramps to its endpoint. Then we
swap tables and begin interpolating to the new one.
This leaves the previous table free to use in
constructing the next wave table.

The latest version of Aura runs under Linux and
benefits enormously from the human and software
resources at PlanetCCRMA (Lopez-Lezcano, 2002),
which provides low-latency patches as well as a
number of critical device drivers for work in
computer music, animation, and video.

5 Discussion and Conclusion
In “The Watercourse Way,” three of these Aura

instruments are allocated and take spectra from three
different parts of the image. Because the water’s
general texture is similar at all three locations, the
general behavior of the three sounds is similar, but

each is unique. Algorithmic composition techniques
are used to select pitches, but the instruments could
be driven easily by MIDI or other data.

The result is a very interesting sound. As water
waves travel up and down the screen, the listener
hears a sweep through the harmonics, somewhat like
a swept filter or a flanging effect. With multiple
waves, this gives the sound a very animated character
that has a very strong correlation with the moving
water image, which was the main goal.

There is no reason to limit input images to light
reflected from water. Any motion will create spectral
changes, and moving one’s hand in front of the
camera gives a very pleasing control over spectra, as
if one can touch the harmonics themselves. Another
amusing effect is to cover the camera lens, creating
silence. Removing the cover creates sound, as if one
has just let the sound escape from inside the camera.

This work suggests many possibilities for the
future. First, there are many choices of synthesis
algorithms. One could also use video to control filters
to process live audio. The mapping from vertical
position to harmonic number gives fairly intuitive and
certainly interesting results; by analogy, one might
look for other sound processes that are naturally
controlled by a one- or two-dimensional vector.

The sounds produced in this work have a
distinctive, scintillating “analog” or “ filter-sweep”
sound. One could add additional controls to limit or
shape the overall spectrum, or one could use the
video input to control weights on more natural spectra
captured from acoustic instruments, for example.

Overall, like many other artists, we find the
control information available through video to be
very interesting and full of possibilities. This work is
fairly original in that is focuses on using video for
time-varying control of audio processing as opposed
to triggering events or gating sounds on and off. With
current laptop and desktop computers, it is relatively
simple to obtain time-varying controls from video.
We hope this work will encourage and enable others
to explore many new possibilities.

Short examples of sounds from this work are
available at
http://www.cs.cmu.edu/~music/examples.html.
Source code is freely available from the authors.

6 Acknowledgments
Fernando Lopez-Lezcano and PlanetCCRMA

provided much-needed operating system support and
expertise. “The Watercourse Way” was created in
collaboration with Barbara Bernstein and Garth
Zeglin, and received its first performance at
Connecticut College’s Symposium on Art and
Technology. Thanks to Dominic Mazzoni for
commenting on a draft of this paper. Parts of this
project were supported by NSF Award #0085945 and
by the Pennsylvania Partners in the Arts program of
the Pennsylvania Council on the Arts, a state agency.

References
Bischoff, J., Gold, R., & Horton, J. (1978). "Music for an

Interactive Network of Microcomputers." Computer
Music Journal, 2(3), 24-29.

Borgonovo, A., & Haus, G. (1985). "Musical Sound
Synthesis by Means of Two-Variable Functions:
Experimental Criteria and Results." Proceedings of the
International Computer Music Conference 1984. San
Francisco: International Computer Music Association,
pp. 35-42.

Boulanger, R., Smaragdis, P., & Ffitch, J. (2000). "Scanned
Synthesis: An Introduction and Demonstration of a New
Synthesis and Signal Processing Technique."
Proceedings of the 2000 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 372-375.

Collopy, F. (2003). Lumia. http://rhythmiclight.com.
Dannenberg, R. B., Bernstein, B., Zeglin, G., &

Neuendorffer, T. (2003). "Sound Synthesis from Video,
Wearable Lights, and 'The Watercourse Way'."
Proceedings: The Ninth Biennial Symposium on Arts
and Technology. Connecticut College, pp. 38-44.

Dannenberg, R. B., & Derenyi, I. (1998). "Combining
Instrument and Performance Models for High-Quality
Music Synthesis." Journal of New Music Research,
27(3), 211-238.

Dannenberg, R. B., & Lageweg, P. v. d. (2001). "A System
Supporting Flexible Distributed Real-Time Music
Processing." Proceedings of the 2001 International
Computer Music Conference. San Francisco: Inter-
national Computer Music Association, pp. 267-270.

Dannenberg, R. B., Serra, M.-H., & Rubine, D. (1990).
"Analysis and Synthesis of Tones by Spectral
Interpolation." Journal of the Audio Engineering
Society, 38(3), 111-128.

Demeyer, T. (1996). Bigeye (Version 1.10). STEIM.
http://www.steim.org/steim/bigeye.html.

Kieren, M. E. (2003). Image-to-sound conversion process.
Draemgate. http://www.draemgate.com.

Lopez-Lezcano, F. (2002). "The Planet CCRMA Software
Collection." Proceedings of the 2002 International
Computer Music Conference. San Francisco:
International Computer Music Association, pp. 138-141.

Meijer, P. B. L. (1992). "An Experimental System for
Auditory Image Representations." IEEE Transactions on
Biomedical Engineering, 39(2), 112-121. (Reprinted in
the 1993 IMIA Yearbook of Medical Informatics, pp.
291-300.)
http://www.seeingwithsound.com/voicebme.html.

Penrose, C. (1992). Hyperupic. http://www.music.prince-
ton.edu/winham/PPSK/hyper.html.

Rokeby, D. (1998). Construction of Experience. In J. Clark
Dodsworth (Ed.), Digital Illusion: Entertaining the
Future with High Technology. New York: ACM Press.

U & I Software. (2003). MetaSynth.
http://www.uisoftware.com.

Verplank, B., Mathews, M., & Shaw, R. (2000). "Scanned
Synthesis." Proceedings of the 2000 International
Computer Music Conference. San Francisco: Inter-
national Computer Music Association, pp. 368-371.

Winkler, T. (1998). "Motion-Sensing Music: Artistic and
Technical Challenges." Proceedings of the 1998
International Computer Music Conference. San
Francisco: International Computer Music Association.

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Roger Dannenberg
	Tom Neuendorffer

