
Implementation of an 8-Channel Real-Time Spontaneous-Input Time
Expander/Compressor

Introduction:
The ability to time stretch and compress acoustical sounds without effecting their pitch
has been an attractive compositional technique for many years. In his article Discovering
Inner Complexity: Time Shifting and Transposition with a Real-time Granulation
Technique Barry Truax describes, “as a sound is progressively stretched, one is less
aware of its temporal envelope and more aware of its timbral character...which with
natural sounds is amazingly complex and musically interesting” [Truax 94]. My own
experience using the technique was with Richard Karpen’s 1992 Csound module
‘sndwarp’ which I used in the composition of The Ghost Within [Keyes 1998] for piano
and tape. While the essential and recognizable timbre of piano samples used were
preserved, the rich grainy quality and time varying textures that resulted were quite
effective in that context. Many of the sounds were created by time stretching sampled
piano sounds 10 fold, and then compressing them 10 fold to maximize the textures
created (and not actually changing the length of the samples). I also used Bill
Schottsaedet’s SND, which uses a similar algorithm in the composition of Li Jiang Etude
No. 1 [Keyes 1999]. As this was a “study” in Chinese instrumental timbres the technique
again proved extremely useful in this context.

The ‘SND’ program actually runs in “real time” on the SGI, meaning that once your
sound was loaded you could hear the results in real time. However, being much more
fascinated with the application of real-time DSP in live performance situations, I longed
for a way in which the technique could be applied to samples coming directly from a
microphone with no audible delay. This, I imagined, would go even further to combine
the “complexity associated with studio composition with the spontaneity of live
performance” [Truax 1988]. I also longed for a way to spatialize the output over many
channels such that different grains could be spread over a much more vast sound field.
Lastly, I wanted a Graphical User Interface (GUI) that would allow a musician to control
it easily on stage. The MAX/MSP “patch” discussed below has so far accomplished this
successfully, and I hope a brief discussion of problems addressed and features
implemented will stimulate interest in its use and/or save time in some one else’s
implementation.

Brief Review of Granular Sampling Technique:
Others may have explained this in greater detail (see Roads 1978 and 1991) but in brief,
the most common approach to time expansion/compression now used begins by taking
slices of samples from a buffer and applying an amplitude window to them. Each ‘slice’
of samples is often referred to as a ‘grain’ and thus the processes referred to as ‘Granular
Sampling’. Grains are then overlapped so that one does not notice (as apparently) the
amplitude changes that result from the windowing (though they usually are perceived at
another level, and that is one of the attractions of the technique!). Thus the main
parameters are the size of the grains (usually expressed in milliseconds) and the degree of
overlapping with other grains. These grains are then all advanced through the buffer by a
separate operator, in the case of figure 1, the large arrow.

 1

|----------a----------|

|-------b-------|

Figure 1: Granular windows of a sampled sound.
a-Window size
b-Overlap

Each of the grains is read by a phasing operator, which continuously loops from the
beginning of the grain to its end at a given frequency. The frequency of resultant pitch is
thus determined by the frequency of the phasor. The length of the resultant sound,
however, is controlled separately by the rate in which these grains advance through the
buffer. Figure 2a shows a simplified version of such a granular engine in MAX/MSP.
Here the phasor element is accomplished by a ‘phasor~’ object, shown there with a
frequency of 20 hertz. As the phasor only counts from 0 to 1, this increment is then
multiplied by 50 for a grain size of 50 milliseconds. This again controls the frequency
and only the frequency. On the left is the object which advances the grains through the
buffer, in this case a ‘line~’ object. Although this simplified engine will actually work,
one will hear discontinuities (clicks) as the ‘line~’ operator moves the grains through the
buffer because there is no windowing operation taking place. By applying a window
element such as in figure 2b, and by advancing the line~ object only when the window is
at zero this problem is easily overcome.

Figure 2a: Simplified grain engine with separate Figure 2b: Grain engine with windowing
operators to control time and frequency. (from Nobuyasu Sakonda’s Granular2.0).

 2

Implementation Issues for Spontaneous-Input

Stationary vs. Circular Buffers:
One of the first major implementation decisions lies in whether to employ circular or
stationary buffers-circular meaning a variable delay line or ‘tapin~/tapout~’ in MSP and
stationary meaning an ordinary fixed buffer or ‘buffer~’ in MSP. Circular buffers,
perhaps the most common for real-time audio applications, are easy to implement, use a
negligible amount of CPU, and since they do not have fixed begin and end points, do not
introduce discontinuities of the wave form. They do though present one major drawback
in this particular application; since the older samples in the queueare constantly being
replaced with newer samples, it becomes difficult, if not impossible to implement real-
time time compression (as described below). Using a stationary buffer on the other hand
allows for this possibility. Because the previously recorded samples remain in a
stationary buffer they can also be repeated, (very handy for fine tuning parameters, both
in the compositional process and during sound checks to for a particular environment)
and can thus be subjected to further granularization. For these reasons, a stationary buffer
was used with its recording cycle triggered by the performer on stage, typically with a
MIDI foot pedal. The process of time expansion then begins 1 millisecond later
(concurrently with the filling of the rest of the buffer). Note that the buffers are read with
the MSP ‘play~’ object (see figure 2a and 2b) because of the necessity of that object
being able to interpolate between samples and sample positions.

Implementation of Time Compression:
Obviously the process of real-time time compression, if implemented as above, would be
over almost as soon as it started. Thus to enable the use this effect in a concert, the
program imposes a delay before the compression begins. The program calculates this
delay such that the time compression will end (the grains reaching the end of the buffer) 1
millisecond after the buffer is full. This has just the opposite effect from time expansion
where the live and processed sounds begin virtually together and then diverge. In this
case the sounds begin at very different points in time and then converge. Although other
delay schemes are possible, this one seems to be the most effect in concert, as the end
result sounds rather like a temporal crescendo.

Avoiding Clicks:
As Truax and others point out, the windowing of each grain element leaves little
possibility for the production clicks or transients when reading a pre-recorded sound file,
assuming that there are no discontinuities in the sound file itself. However, when one is
“sampling on-the-fly” as Lippe puts it [Lippe 1994] there is a strong possibility that
discontinuities will be recorded into the buffer, creating clicks that may then be read by
multiple grain objects and subject to time stretching (not a very useful or pleasant sound
for most). The use of a circular buffer is one obvious solution, but carries the drawbacks
mentioned above. The best solution found for this application was to apply an amplitude
envelope to the input source. Thus once the musician triggers a ‘recording’, the program
initiates a 10-millisecond delay as the current output amplitude is ramped down to zero
and the buffers are cleared. Then the input is ramped back to 1 again over another 10

 3

milliseconds. As a slight time delay is natural between when the player physically
triggers the recording and when they actually want the time compression/expansion to
begin, the 10 to 20 millisecond time delay does not pose any problem in performance. As
it is seldom aesthetically pleasing for the processed sound to end abruptly, a 100
millisecond downward ramping is applied to the end of the of the recording, which is
musically satisfying for most circumstances.

Continuous Input/Output:
Another goal of the program was to have a system where you could continuously record
and output; the musician would play and there would be a constant stream of time/pitch
manipulated sound coming from the loudspeakers over a sustained period of time. The
problem though comes as you reach the end of the buffer and loop back to the beginning.
Even with a circular buffer (and thus no clicks) an audible temporal discontinuity will be
obvious. To avoid this, the program employs two overlapping buffers with a time delay
between them. The delay is calculated (multiplied times the expansion/contraction factor)
such that one will hear only one ‘image’ of the sound (not to separate images) and thus
with the ramping of the input source described above they create one smooth continuous
output. Another benefit of this method is that when continuous recording is NOT required
the other buffer can then be utilized for a second independent expansion/contraction rate,
and thus one can also combine time expansion with time contraction simultaneously.

Graphic User Interface (GUI):
As mentioned above, it seemed crucial that a Graphical User Interface (GUI) give the
musician all the information they needed and all the flexibility they wanted to use the
technique effectively on stage. Chief among these are count down times for various
elements. Figure 3 give the main control GUI. These include a countdown of “Remaining
Recording Time”. This is quite useful when you ask, for example, that a given chord be
time stretched, and on top of this the player continues with the next passage. In this
scenario, if the player starts the next passage too soon, it too will be time stretched, which
many not be desired. Thus the “Remaining Recording Time” countdown tells the player
exactly when the recording time ends (when the end of the buffer has been filled) and
thus when they can continue. In such a scenario one may also wish to select the ringing of
the chord but NOT the attack of the chord as material for time stretching. The ability to
start the recording with a MIDI message from the player then allows the player to decide
an appropriate offset time into the beginning of the sound event, often desired in studio
applications. As figure 3 also shows, the main control window also counts down the
remaining play times for both buffers (the buffer size times the expansion/compression
factor plus compression delay if any).

 4

Figure 3: Main Control Window

Controlling Unwanted Modulation Effects:
In his article Granular Synthesis of Sound [Roads 1985] Curtis Roads warns of an
amplitude modulation effect when grain sizes become small enough that the repetitions of
the grains themselves becomes audible as a modulation signal. As can be seen in figure 3,
the program provides a variety of grain parameter adjustments to avoid this. These
include sliders to control the grain size, grain overlap, and to randomize the grain size.
Randomizing the exact grain position is another very effective alternative, as is adjusting
the relative phase of each of the grain engines.

Other Functions:
As the program utilizes 2 buffers each with 8 grains, the balance slider allows for effects
where, for instance, one may desire a long time stretch in the background but a much
louder time compression in the foreground. Reversing the direction of the phasors with
the ‘Reverse Grain’ switch, and adding the output of the grains back into the input with
the ‘Feedback’ slider achieve other effects. To expand the utility of the program the
‘Read in Sound files’ button does allow one to work with pre-recorded sounds, which is
further enhanced by having two buffers. You can thus work with two different sounds
simultaneously, or of course work with the same sound and two different
expansion/compression rates. To work with more traditional granular sampling, another
button opens the window shown in figure 4. With this window activated the position of

 5

the grains previously supplied by the‘line~’ object is replaced by a start and end point in
the buffer for continuous granularization of shorter sections.

Figure 4: Granularization Window
Transposition:
Since frequency can be controlled independently from time, 16 grains can provide 16
different transpositions. To allow an intuitive control of transposition, the equation
2x*f/1200 was used such that when f=100 transposition is calculated in semitones (equal-
tempered), 1/10 semitones when f=10, and by cents (1/100th of a semitone) when f=1. X
then ranges from –64 to 64 yielding transpositions from +/-1 cent to +/-5 octaves or more.
Figure 5 shows the exact MAX/MSP syntax.

Figure 5: Transposition Equation in MAX/MSP Syntax

Figure 6 shows the GUI for the Transposition Window where buttons are used to change
the 'f' factor above (1, 10, or 100) and sliders for each of the 16 grains. One can also
“click and drag” the number boxes to the left of the sliders to control all sliders of each
row. This function becomes especially useful when used with a MIDI controller. In my
current composition I use a MIDI “expression pedal” to control all of the grain
transpositions, half of them raising and the other half falling when I press the pedal. Thus
with one motion I can control transposition of all 16 grains simultaneously. Lastly
‘Randomize Pitch’ and ‘Harmonize Pitch’ sliders make use of random number generators
(also adapted from Nobuyasu Sakonda’s Granular2.0) to further effect the frequency of
each of the grains.

 6

Figure 6: Transposition Window

Effects of Octophonic Spatialization:
The effects of multi-channel spatialization of each of the grains has turned out to be one
of the most rewarding aspects of working with granular sampling. Allowing for grain
sizes between 130-200 milliseconds and an expansion factor of 1 (no expansion or
compression) leaves the sound relatively unaltered except for the amplitude envelope of
each grain. When spatialized in stereo, the results do not seem especially interesting.
When spatialized in 4 to 8 channels however, the effect becomes both interesting and yet
subtle. Although there seems to be no real change in the sound, the amplitude envelop of
each of the grains results in each channel having its own unique articulation of the sound,
virtually simultaneous with the source (given only a 10-12 millisecond delay). Even
longer grain sizes (1000-1500) and/or lessor distances between the grains produce effects
similar to delay lines, but again, with separate amplitude envelops for each channel
lending them a shimmering quality through the acoustic space. To maximize these effects
and to minimize phase cancellation (resulting when grains become smaller, closer
together, and of uniform size), the two grains for each channel are arranged such that the
overlap factor is greatest between them. Thus with grain overlaps of 2 milliseconds, grain
one is paired with grain 9 with its 18 milliseconds of distance for channel 1, grain 2 and
10 for channel 2 and so on.

End Product:
The finished product, a MAX4/MSP2 "patch" has so far accomplished the objectives set
for it. Principally through time expansion, the program significantly alters the timbre of
acoustical instruments input directly from a microphone, preserving their complex
timbral characteristics while lending them an attractive time varying texture and
spatialization with no audible delay. 13 years its junior, the system is (predictably) much

 7

cheaper, has vastly more memory, and a more intuitive GUI than the one Barry Truax
describes in his article of 1988 [Truax 1988]. It consumes roughly 55% of the available
CPU cycles on a 500Mhz G3 processor, and roughly 32% of an 800Mhz G4 processor.
Program can currently be downloaded from www.hkbu.edu.hk/~lamer/downloads

References:

Keyes, C. (1998) "The Ghost Within” Christopher Keyes: Keyboard Works 1986-97
Centaur Records CRC2377, 8867 Highland Road, Suite 206 Baton Rouge, LA..

Keyes, C. (1999) "Li Jiang Etude No. 2 " CD of the 1999International Computer Music
Conference (Beijing).

Lippe, C. (1994) "Real-Time Granular Sampling Using the IRCAM Signal Processing
Workstation." Contemporary Music Review vol. 10:2, pp. 149-156.

Roads, C. (1978) "Automated Granular Synthesis of Sound" Computer Music Journal
2:2, pp. 61-62.

Roads, C. (1985) "Granular Synthesis of Sound" Foundation of Computer Music ed. C.
Roads & J. Strawn 2:2, pp. 145-149.

Roads, C. (1988) "Introduction to Granular Synthesis" Computer Music Journal 12:2, pp.
11-13.

Roads, C. (1991) "Asynchronous Granular Synthesis" Representations of Musical Signals
ed. by G. De Poli, A. Piccialli, and C. Roads Cambridge, Mass. : MIT Press.

Truax, B. (1988) "Real-TIme Granular Synthesis with a Digital Signal Processor"
Computer Music Journal 12:2, pp. 14-26.

Truax, B. (1994) "Discovering Inner Complexity: Time Shifting and Transposition with
a Real-time Granulation Technique " Computer Music Journal 18:2, pp. 38-48.

 8

	Index
	ICMC 2003 Home Page
	Conference Info
	Message from Chairman
	Message from President
	Message from Music Coordinator
	Paper Coordinator's Speech
	ICMC 2003 Staff
	Acknowledgements

	Sessions
	Wednesday, 1 October, 2003
	WedAmPO1-Poster (1st Oct - 2nd Oct)
	WedAmPS1-Plenary Session
	WedAmOR1-Spatialization
	WedAmOR2-Interactive and Virtual Music, Interfaces I
	WedPmOR1-Aesthetics, Acoustics and Psychoacoustics I
	WedPmOR2-Demo Session I
	WedPmOR3-Visualizing Music
	WedPmOR4-Music Education Panel

	Thursday, 2 October, 2003
	ThuAmOR1-Studio and Project Reports I
	ThuAmOR2-Machine Recognition of Audio and Music
	ThuAmOR3-Composition Systems, Techniques and Tools I
	ThuAmOR4-Interactive and Virtual Music, Interfaces II
	ThuPmOR1-Computers, AI, Music Grammars and Languages I
	ThuPmOR2-Audio Analysis and Resynthesis
	ThuPmOR3-Computers, AI, Music Grammars and Languages II
	ThuPmOR4-Demo Session II

	Friday, 3 October, 2003
	FriAmPO1-Poster (3rd Oct - 4th Oct)
	FriAmOR1-Interactive and Real Time Performance Systems ...
	FriAmOR2-Physical Modeling, New Instruments
	FriAmOR3-Digital Signal Processing
	FriPmOR1-Computers, AI, Music Grammars and Languages II ...
	FriPmOR2-Studio and Project Reports II
	FriPmOR3-Interactive and Real Time Performance Systems ...
	FriPmOR4-Aesthetics, Acoustics and Psychoacoustics II

	Saturday, 4 October, 2003
	SatAmOR1-Composition Systems, Techniques and Tools II
	SatAmOR2-Demo Session II

	Workshop: A Practical Introduction to SuperCollider Server
	Workshop by Gamelan Asmaradana
	Synopsis

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Topics
	Papers by Session

	Topics
	Acoustics
	Aesthetics
	Artificial Intelligence
	Audio Analysis and Resynthesis
	Composition Systems, Techniques and Tools
	Computer Assisted Music Analysis
	Computer Assisted Music Education
	Digital Signal Processing
	Gesture Sensors and Controllers
	Human Machine Interaction in Music Performance and Soun ...
	Interactive and Real Time Performance Systems
	Linux
	Machine Recognition of Audio and Music
	Music and Acoustic Analysis
	Music Education
	Music Grammars and Languages, Methods and Languages for ...
	Music Workstations and Performance Interfaces
	New Musical Instruments
	Open art, open software, open hardware
	Perception, Cognition and Psychoacoustics
	Physical Modeling
	Real-Time Sound and Music Synthesis System
	Spatialization
	Studio Report
	Virtual Music Environments and Immersive Systems
	Visualizing Music
	Other

	Search
	Copyright
	Help
	Browsing the Conference Content
	The Search Function
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Christopher Keyes

