Universal MIDI Packet (UMP) Format
and MIDI 2.0 Protocol

Version 1.0
February 20, 2020

Published By:

Association of Musical Electronics Indusiry AMEI

and
MIDI Manufacturers Association MMA

M2-104-UM
hitp://www.midi.org

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

©2018-2020 Association of Musical Electronics Industry (AMEI)(Japan)

©2018-2020 MIDI Manufacturers Association Incorporated (MMA)(Worldwide except Japan)

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL,
INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT PERMISSION IN

WRITING FROM THE ASSOCIATION OF MUSICAL ELECTRONICS INDUSTRY OR THE MIDI
MANUFACTURERS ASSOCIATION INCORPORATED.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Table of Contents

1.

1 oo 11 ot [o PSSR 7
1.1 Reliance Upon Other SPeCIfiCatiONS.........ccoiviiiiiiiiiie et 7
1.2 R (=] 1<) 00T USSR 8
1.3 B 00110] oo OSSR 9
14 Reserved Words and Specification CONfOrMANCE...........cooceieiiiiniriiereees e 11

Universal MIDI Packet (UMP) FOIMAL.........ccovoiiiiiiiie ettt 12
2.1 UMP Basic Packet and Message FOMMALccuiveiiiiininieiecse s 12

2.1.1 Bit, Byte, and Word Order in UMP Format Diagrams............ccoceevererenieeneneneeneseeseeeeseeneens 12
2.1.2 UMP Format UnivVersal FIElaS.........cccuiiiiiieee e 14
2.1.3 RESEIVEA TTBIMS ...ttt bbb b ettt bbb e ens 15
2.1.4 Message Type (MT) AHIOCALIONcvcveiiiiiiicc st sre et nre s 15

MIDI Protocols in UMP FOFMALcccoiiiiiiiiieicie sttt sne et nne s 17

3.1 L@ T T SRS 17
3.1.1 Groups, Ports, and Virtual MIDI CabIES...........cccvcveiiiiiiee et 17
3.1.2 Selecting @ MIDI ProtoCol fOr @ GrOUPcvvuiiuiriiiieieisiisie e 17

3.2 MIDI 1.0 Protocol in UMP FOIMAL........ccccuiiiiiiiiieiese ettt ees 18
3.2.1 Message Types for MIDI 1.0 ProtoCOlccuuiviiiieiiiii e 18
3.2.2 MIDI 1.0 Protocol and FUture EXPanSIONccoeoeieiiinenieieisesiesie e 18
3.2.3 Protocol Negotiation to the MIDI 1.0 ProtoColccoviiiiiiiiiniieesse e 19

3.3 MIDI 2.0 Protocol in UMP FOIMAL........cccoiiiiiiiiiieie ettt seeees 20
3.3.1 Message Types for MIDI 2.0 ProtOCOLc.coiiiiieii ittt 20
3.3.2 MIDI 2.0 Protocol and FUture EXPanSioncccceveieieeiieseseeieseseseesee e ssee e sressaessesresnes 20
3.3.3 Protocol Negotiation to the MIDI 2.0 ProtoColccovoiiiiiiiiiiniieeese e 21

MIDI Messages iNn UMP FOFMAL ..ottt 22

4.1 MIDI 1.0 Channel VOICE MESSAGEScveuveiirririireieieisi et 23
4.1.1 MIDI 1.0 NOtE Off MESSAGE.cuviitiitiiieiieite et sttt se ettt e e be s re e aesbe e e seesreans 24
4.1.2 MIDI 1.0 NOtE ON MESSAGEcvviuriiiiiieieeiteeieeie sttt sttt sb sttt b bbbt st b et sae e e e nreanes 24
4.1.3 MIDI 1.0 POlY PreSSUIre IMESSA0Ecoveuveiiriiaierieiesietestesie sttt se et sb b sbe e neneas 24
4.1.4 MIDI 1.0 Control Change MESSAGE.c.ueveuiriiriiireieiesiesie et 24
4.1.5 MIDI 1.0 Program Change MESSAQEcceeueeruereeeeieriesieeseestesteeseeseeseeaseeeeseeeseesseseesneeseeseesses 24
4.1.6 MIDI 1.0 Channel PresSsure IMESSA0Ecciveeiveeiieeieeiteerieesieesteesteesteesteesteeseeesreesseesseessesssessseeses 24
4.1.7 MIDI 1.0 Pitch BENA IMESSAQEveiveeiieieeitictieieste sttt ettt sre e st sre e v besnaesnesreans 24

4.2 MIDI 2.0 Channel VOICE MESSAGEScveuvriiriirieieieisii sttt 25
4.2.1 MIDI 2.0 NOte Off MESSAQE. ... ecteerieiieiieeieeiteeieesteesteeste e ste e sreeste e te e teesteesteesreesreesteesreenreesree e 25
4.2.2 MIDI 2.0 NOtE ON IMESSAGEuvveetieeieeesiieestiee st e stteestaeessaeessteessteeesseeessseessaeessteesseeessneesneeesnns 25
4.2.3 MIDI 2.0 POlY PresSUre MESSAQEvviveiveiieitieiestesieesiestesteestestesteeaestestessaestesresneessestessseseeseesnas 26
4.2.4 MIDI 2.0 Registered Per-Note Controller and Assignable Per-Note Controller Messages...... 26
4.2.5 MIDI 2.0 Per-Note Management IMESSAQE.coererieririeientesieeie ettt sre e e sneees 27
4.2.6 MIDI 2.0 Control Change MESSAQE.c.ueuvririiriirieieiisiesie sttt 28
4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller (NRPN) Messages........... 29
4.2.8 MIDI 2.0 Relative Registered Controller (RPN) and Assignable Controller (NRPN) Messages

.. 29
4.2.9 MIDI 2.0 Program Change MESSAJEccveverierieeieieseseestestesteeaeste e esaesaesre s e srestasnaeseesreans 30
4.2.10 MIDI 2.0 Channel Pressure IMESSAQEcveveireeeerierieieeieestesteeiesiesseassessessesseessessasssessessenses 30
4.2.11 MIDI 2.0 PitCh BN MESSAQE.cveueeiiiiiitiiieieieiisie sttt 30
4.2.12 MIDI 2.0 Per-Note Pitch Bend MESSAQGEc..eveiriiriirieieieisiiste e 30
4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data...........cccoooveeiiiciiieirreee e 31
4.2.14 MIDI 2.0 NOtes and PItChociiiiie e s 32

Version 1.0 Page 1 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.3 System Common and System Real TImMe MESSAJEScccvrirrerieiiiiie et 34
4.4 System EXCIUSIVE (7-Bit) MESSATES.eiveieieiiriirieiiee sttt 35
4.4.1 Limitations of Interspersing Other Messages with System Exclusive UMPSs...........c..cccceneaee. 36
4.5 System EXCIUSIVE 8 (8-Bit) MESSAUES.......ccviiuiiiiiieieite sttt st 37
4.5.1 Unexpected ENG OF DAA.........coeiiiiiirieiiiiisie et 38
4.6 MiXEA DAta SEL IMESSAGE. ... veeveeereeerrereeriesteeieere e e e seeaeestesrbesreeeseeeteeeeasteenbeesbeeneeeneeeneeeneeenees 39
4.6.1 ENd OF MiXE0 DAtA SELcciiieiiiiiieie ettt st r et s be e e resneeseesreanes 41
4.7 16-Bit ManUFACTUIEE IDS......ccueeiiiiieeieite sttt sttt e e saeeteeseesbesreeneennesee e 42
4.8 UTHTTY IMIBSSAUES ...tttk bbb bbbt b et b et b e 44
A.8.1 INOOP ...t ettt sttt r e Rttt e Rt R e Rt Rt n et e Re bt eneeneaneneeteneas 44
4.8.2 Basic TIMEStamMP FOIMAL..........ccoiiiiiie e re et besae e e sreers 44
4.8.3 Jitter Reduction (JR) Timestamps (and JR CIOCK)cccccveviiiiiiiie e 45
4.8.4 MIDI-CI Protocol Negotiation and JR TIMESLAMPS........cceruerreiriririerieieesesiesie e 45
4.8.5 JR ClOCK MESSAFE FOIMAL.......cuieiiiiiitiiiieiisieste sttt 46
4.8.6 JR Timestamp MeSSage FOIMALccoiviiiiiiiiee e 46
4.8.7 JR ClOCK IMECNANISIM......utiitiiiieiiite sttt sttt st ne et aneeseeseeenes 47
4.8.8 JR Timestamp MECNANISIcciuieiieie e e et te ettt sre e sre e sreesreesreenreenree e 47
4.8.9 JR Timestamps and JR Clock Recommended PractiCe............ccccevveieieeiiene i 47
4.8.10 Translation to/from the MIDI 1.0 ProtOCOL.........cccoviiiiiiiiiiiirise e 48
Appendix A MIDI 2.0 Registered Per-Note CONtrollers............ccoviiiiiiiiiiiieieece e 49
Appendix B Special Control Change MESSAJEScueieieeirierereeiesteseeee et eree e see e eesee e neeseeseens 50
B.1 Channel Mode Messages: Applicable ChannelsS...........ccoociiiiiiiic e 50
B.2 RESEL Al CONIOIIEES ...ttt st sre e ne e e nee e 50
Appendix C UsSiNg MIDI 2.0 Per-NOtE IMESSAGES........coeiveiiiriiriisiesieisie ettt 51
C1l Shared Per-NOte CONTIOIIEISccveieie ettt et ee e e 51
C.2 Using a MIDI 2.0 Per-Note Management Message Before Note On to Reallocate Per-Note
EXPIIESSION. ...t bbb bR bR R R b bR Rt bbbt e et benn b 52
C3 Using Note Number Rotation, Per-Note Pitch, and Per-Note Management Message for
Independent Per-NOE EXPIESSIONccviiieiiiiieeieiie st et ete e se et e e teesaestesbeess e besteeseebestesaeeseesresteensesresneas 54

Version 1.0 Page 2 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix D Translation: MIDI 1.0 and MIDI 2.0 MESSAJESccerveiriririerieiiese st 57
D.1 Data Value TranSIationS..........couiiiiiiieeieee ettt st seesreeneeneesee e 58

D 20 0 R LT VT SRS 58

D 20 O (N (] TS 58

D.1.3 Upscaling Translation MethodS:..........coeiiiiiiiceieee s 59

D.1.4 Downscaling Translation MethoUs............ooiiiiiiie i e 60

D.1.5 Special CoNSIAEIALIONSeccuieieeiee ettt se s s e ste e sreesre e s esreesreesreesreesneesneesnnesneens 60

D.2 MIDI 2.0 to MIDI 1.0 Default Translationcccoeieiiiniieieienee s 1
D.2.1 Note On/Off, Poly Pressure, CONtrol Changeccoovviiiierieiiiise e 1

D.2.2 CRANNEI PIESSUIEeeiiieeieeieeteeee sttt ettt ettt e et te e e seesteeseen e saesse e e e neesseeeesaeseeeneennenneas 1

D.2.3 Assignable Controllers (NRPN) and Registered Controllers (RPN).........ccccocvvieeveeiesiesieennne. 2

D.2.4 Program Change and Bank SEIECT..........cciiiiiiiiiiiiee ettt sre s 3

D.2.5 PICN BENG ...t b bbbttt 4

D.2.6 SYSIEIM IMBSSAGES. ... eeteitieieetiiteeit ettt ettt ettt b etttk b e s b e b e et e nbesbe e e e bt s be e e e sbeebeenbennenre s 4

D.2.7 SYSIEIM EXCIUSIVE. ...ttt bbb bbb r e 5

D.2.8 Messages That Cannot Be Translated t0 MIDI 1.0ccccooiieiiiiiiniiceeee e 5

D.2.9 Messages That Cannot Be Translated to Non-UMP MIDI 1.0 Systems.........ccccceeevveveeieinieene. 5

D.3 MIDI 1.0 to MIDI 2.0 Default Translationcccooeieiiineneieinenese e e 2

20 20 A A1) (= @ 7@) 5 SRR 2

D.3.2 POIY PIESSUIE ...ttt b bbb et b bt nn e r e 2

D.3.3 Control Change, RPN, and NRPNccoiiiiice et 3

D.3.4 Program Change and Bank SEIECT..........ccciiiiiiiiiiiec ettt st 4

D.3.5 CANNEI PIESSUIEcueitiitiiieiteieiesie sttt ettt bbb bbbttt bbbt 5

IR T o1 (o == o USSR 5

D.3.7 SYSIEIM IMBSSAGES. ... e eteitieieetestesiee st st ettt sttt b et b s bt e b s b e e b e e b nb e s bt e e e bt s be e e e sbesbeen e e nnenre s 6

D4 Alternate Translation IMOGES.ccviiiirie ettt s ne e nre e 7
D.4.1 Selecting an Alternate Translation Mode Using a Profile...........cccccovviiiiiiiii e 7

D.4.2 Selecting Alternate Translation Modes Without a Profileccccoeiviiiniininicnee, 7
Appendix E System Exclusive (7-Bit) and System Exclusive 8 (8-Bit) Message Examples.................. 8
E.l Table of System EXCIUSIVE MESSAge UMPS........cccoiiiiiiiiiiciee e 8

E.2 Complete System Exclusive Message EXamPples.........cooiiiiieiiiiiiieeeee s 9

E.3 Table of System Exclusive 8 (8-Bit) Message UMPS...........ccccuiiiiiiiieieisise e 10
Appendix F All Defined UMP FOIMALS........c.coco ittt st st s re e 12
F.1 A-BYLE UIMP FOIMALS .. c.vviivviiiiiie ettt sttt st steesseessaesnaessaesbaesteessaesneesnaesnsessaessenas 12
F.1.1 Message TYPe OXO0: ULIHITYcviiiiiiiieieiiec e 12

F.1.2 Message Type 0x1: System Common & System Real Timeccccoooviieiiiiiiiiniene e 12

F.1.3 Message Type 0x2: MIDI 1.0 Channel V0ICe MESSAQESc.cvvrrvrrieerieesiiesieeieeieeee e seeeeas 13

F.2 8-BYLE UMP FOIMALSviiiiiieiiit ettt sttt ssbe e s sbe e st e nbe e e snbe e snbeesneeas 14
F.2.1 Message Type 0X3: 8-Byte Data MESSAJES.ccciverriririeriirineerie e 14

F.2.2 Message Type 0x4: MIDI 2.0 Channel V0iCe MESSAQESc.cvvrrrererrierriiesiesieeieeeeeneeeseeeees 14

F.3 16-BYLE UMP FOIMALScciieiiiiiiii ettt sttt stee et stae e e st et e e s e e nsae e snteesntaeensaeennenens 15
F.3.1 Message Type 0x5: 16-Byte Data Messages (System Exclusive 8 and Mixed Data)............... 15
AppendiXx G All DEFINEA IMESSAGEScuviuiiiiieiiiieiciesi ettt 16
Appendix H Overview of EXtensions t0 MIDIcccoiiiiiiii e 18
H.1 Extensions Enabled by the Universal MIDI Packet FOrmatc.ccccooviveveiieiecic v, 18
H.2 Further Extensions in the MIDI 2.0 ProtoCOl..........coooiiiiiiiiniiiiecsee e 18

Version 1.0 Page 3 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Figures

Figure 1 Example UMP FOrmMat DIBgIamS........ccccouiiiuerieieieiseste st 12
Figure 2 Status Field Size Varies with Message TYPE ValUEc.cccvveieiiiiiciie e 14
Figure 3 UMP Formats for EXample IMESSAgE TYPESccveiiiriiieiieiesieeteesieste et steste e esrestesteesresbestaenaesresneas 15
Figure 4 MIDI-CI MIDI 1.0 Protocol Extensions Bitmap Field.............cccccviiiiiiiii i 19
Figure 5 MIDI-CI MIDI 2.0 Protocol Extensions Bitmap Field.............ccooieiiiiiiineiieeeesc e 21
Figure 6 MIDI 1.0 3-Byte Channel VVoice Message General FOrMatccoeovivneriiieiisieneneneeseseseseas 23
Figure 7 MIDI 1.0 2-Byte Channel VVoice Message General FOrmatcccooovvivvvieiiniie e se e see e 23
Figure 8 MIDI 1.0 NOtE Off IMBSSA0Eccveetiiiiiieeteetiite sttt sttt sttt sbesbeesbesbesbeeseestesbesbaeseesrestaeneesreareas 24
Figure 9 MIDI 1.0 NOtE ON MESSATEccueerreterieeteeteitesteestestesteastesresteateesaestesseessestesseassessestessaessesreasaessessessens 24
Figure 10 MIDI 1.0 POlY PreSSUre IMESSAQE.c.ccviuiitirieieiieiesieste sttt sttt st sbesr et sne e 24
Figure 11 MIDI 1.0 Control Change MESSAQEc.eruervereieeierieireieeeest sttt 24
Figure 12 MIDI 1.0 Program Change MESSAJEeeireieereerieerieesieeseeseeseesseesseesssessesssessssesssssssssssssssssnsesnees 24
Figure 13 MIDI 1.0 Channel PreSsure IMESSA0E.cviiuiieeieitiiteiteesiesteeteetestesteeseestestesseestestessaesresresteessessesrens 24
Figure 14 MIDI 1.0 PitCh BeN0 IMESSAQE........ccveiuiiiiiiitiiteete e stestie e ste st e stesta e e sbeste e s e saesbessaesaesresreesaesrenreas 24
Figure 15 MIDI 2.0 Channel Voice Message General FOIMALccocoviieieiiiininieneisesese e 25
Figure 16 MIDI 2.0 NOtE OFf IMESSAGEcviveieieiiiitesieeeee ettt n e nn e 25
Figure 17 MIDI 2.0 NOE ON MESSAQE ... vveiveeieeiteeiieesieesieesteesteesteesseessesssessseesseesseesseessssssesssessssssessseassesssesnees 25
Figure 18 MIDI 2.0 POlY PreSSUIE IMESSAQGE.ccuieueeriiteiteeieitesteeiestesteeteetestesseessestesteassessessesssessessessesssessessens 26
Figure 19 MIDI 2.0 Registered Per-Note Controller MESSAQEccvviveeverieieieeiesieseeseesiesie e sie e sraeae e e 26
Figure 20 MIDI 2.0 Assignable Per-Note Controller MeSSage.........c.couuevirierieininisiesieeee e 26
Figure 21 MIDI 2.0 Per-Note Management IMESSAGEceveruererierierieaieeesieeteeseesteseeaeeseestesseeseeseesseeneeseesneas 27
Figure 22 MIDI 2.0 Control Change IMESSAJEccueieeiieieeiiesieeseeseeseeseestresteessreseesae s e s seeeneesneesneeeeesneas 28
Figure 23 MIDI 2.0 Registered Controller MESSA0Ecveviiviieiieie s etiee sttt sttt s sre st ere s 29
Figure 24 MIDI 2.0 Assignable Controller IMESSAJEcueiiiririeiiinie e 29
Figure 25 MIDI 2.0 Relative Registered Controller MESSage..........ccvviririiieieiiine e 29
Figure 26 MIDI 2.0 Relative Assignable Controller MeSSagecoiveeeieienieiese e 29
Figure 27 MIDI 2.0 Program Change MESSAJEeciveieerieeiieereesieeseeseeseesseesseesseesesssessssesssssssssssessessnsesnnes 30
Figure 28 MIDI 2.0 Channel PreSsUre IMESSA0E.cveiuiieeiereiteittesesteeteetestesteessestestesneestesbessaesaesresreesaesresreas 30
Figure 29 MIDI 2.0 PitCh BeNd MESSAGEcueeeiiiiiiteiieieiieie sttt 30
Figure 30 MIDI 2.0 Per-Note Pitch BENd MESSAGEccveveiiriiiiiiieieiisiesiesie et 30
Figure 31 System Message General FOMMAL...........coooiiiiieieieieee ettt ene s 34
Figure 32 System Exclusive (7-Bit) Message FOrMAL..........cccveiiiiiiiiie et 35
Figure 33 System Exclusive 8 (8-Bit) Message FOrMAaL...........cccccveiiiiiieii i 37
Figure 34 Mixed Data Set ChUNK FOIMALccuoiiiiiiiiieiee et 39
Figure 35 Manufacturer ID TranSIationS...........cocuiiiiiiieiie e 42
Figure 36 Utility Message General FOIMAL...........ccooiiiiiiiiiiiinieieees e 44
Figure 37 NOOP MeSSAQJE FOIMMAL.........cciuiieeiieeiec i e seeseesee e ese e s e st e s e s e st e sreesseesneesneesraeeseeeneeeneeenreenes 44
Figure 38 Timestamp FOrmMat EXAMPIEScciiiiiiiiiie ittt sttt sttt sresbesre e reare s 44

Version 1.0 Page 4 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Figure 39 JR CIOCK MESSAFE FOIMALccuiiiiiieiiiiiite ettt et 46
Figure 40 JR Timestamp MeSSage FOIMAL...........couiiiiriiieieisisie et 46
Figure 41 Two Notes of Same Note Number Share Per-Note Controllers ... 51
Figure 42 Only the Note After the Per-Note Management Message has Per-Note Controlcccccceevenee. 52
Figure 43 D and S Fields in MIDI 2.0 Per-Note Management MESSAgEccuevvevveireierieieeiiese e eeenie e 52
Figure 44 Per-Note Management Example With Per-NOte Panccccviierriiiiniieieee e 53
Figure 45 MIDI 2.0 Registered Per-Note Controller Message with Controller #3 (Pitch 7.25)c..ccccceveei. 55
Figure 46 MIDI 2.0 Note On Message with Attribute #3 (PitCh 7.9)cccoiiiiieii e 56
Figure 47 Value UpSCaling DIagraM........c.cciieiiiieiiie i see e se s eesee e s e e sae e e e e snae e sneesneeeneeeneeeneas 60
Figure 48 Translate MIDI 2.0 Note Off, Note On, Poly Pressure, and Control Change to MIDI 1.0 1
Figure 49 Translate MIDI 2.0 Channel Pressure t0 MIDI 1.0coooiiiiiiniiceeeee s 1
Figure 50 Translate MIDI 2.0 Assignable (NRPN) and Registered (RPN) Controller to MIDI 1.0.................. 2
Figure 51 Translate MIDI 2.0 Program Change t0 MIDI 1.0ccooiiiiiiiieie e 3
Figure 52 Translate MIDI 2.0 Pitch Bend t0 MIDI 1.0.......ccoooiiiieiieie et 4
Figure 53 Translate MIDI 2.0 System Message t0 MIDI 1.0........cccocooiiiiiiiiicccce e 4
Figure 54 Translate MIDI 2.0 System EXCIUSIVE t0 MIDI 1.0......coooviiiiiiiiesee s 5
Figure 55 Translate MIDI 1.0 Note On and Note Off t0 MIDI 2.0........ccooiiiiiiiiiiineeceeee s 2
Figure 56 Translate MIDI 1.0 Poly Pressure t0 MIDI 2.0coooveiieiieie sttt 2
Figure 57 Translate MIDI 1.0 Control Change t0 MIDI 2.0........ccoooiiiiiic e 3
Figure 58 Translate MIDI 1.0 Data Entry LSB Control Change to MIDI 2.0cccccovvoveiiviiiiece e 3
Figure 59 Translate MIDI 1.0 Program Change to MIDI 2.0 (N0 BankK)cccocvviiiieininineneeeesiesieeens 4
Figure 60 Translate MIDI 1.0 Bank and Program Change to MIDI 2.0cccooiiiiiiieinienie s 4
Figure 61 Translate MIDI 1.0 Channel Pressure t0 MIDI 2.0ccooiioiieiii i 5
Figure 62 Translate MIDI 1.0 Pitch BENd t0 MIDI 2.0......cvoiviiiiiec ettt 5
Figure 63 Translate MIDI 1.0 System Message t0 MIDI 2.0........c.cocooiiiiiieii i 6
Figure 64 Translate MIDI 1.0 System Exclusive to MIDI 2.0 (EXample) ..o 6
Figure 65 MIDI 2.0 System Exclusive Message EXample L. 9
Figure 66 MIDI 2.0 System Exclusive Message EXAMPIE 2.........cccveiveieiiiiiiiieeseeseese e se e eeste e 9
Figure 67 MIDI 2.0 System Exclusive Message EXample 3........ccoiiiiiiiiic et 9

Version 1.0 Page 5 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Tables

Table 1 Words Relating to Specification CONfOrMAaNCE.............cciiiiiiiiiierce e 11
Table 2 Words Not Relating to Specification ConformancCe..........cccccveiieeiie i 11
Table 3 Message Type (MT) AOCALIONccoov it sbe e 15
Table 4 MIDI-CI Protocol Negotiation ProtoCOl BYTESccccvieiiiiiieic et s 17
Table 5 Defined Attribute Types for MIDI 2.0 Note On & Note Off.........cccoviiiiiiiii e 31
Table 6 Messages that use System Message General FOrmMat............cooveeiiiiiieienenie e e 34
Table 7 Status Field Values for System EXclusive (7-Bit) MESSA0EScccveiiveveerieerecie et ne e 35
Table 8 Status Field Values for System Exclusive 8 (8-Bit) MESSAJES.........covevveiireeeerieiteieeriesre e s e v e 37
Table 9 16-Bit Values for 7-Bit SPECIAI IDSc.coiiiiicice st sre e 42
Table 10 MIDI 2.0 MfrID Conversions of Example Existing Manufacturer IDS...........cccccoovereininiicnennen. 43
Table 11 MIDI 2.0 Registered Per-Note CONrOIIErS ..o 49
Table 12 Center Valug EXAMPIES.........ccoviiiiiiiieee e ste st te et e e s te e s te e s be e te e beebe e ste e sreesraesraenreenreesreenns 58
Table 13 UMPs for System EXCIUSIVE (7-Bit) MESSAGESciviireiieiieiieiteeiesiesteeeesiestesteesse e steenesresteeeesresreas 8
Table 14 UMPs for System EXCIUSIVE 8 (8-Bit) IMESSAGES........ccverviirieieieiesteeiestesieeee e ste e see e e e sresreens 10
Table 15 4-Byte UMP Formats for Message Type 0X0: ULHITYcooovririiiiiiiineieeee e 12
Table 16 4-Byte UMP Formats for Message Type 0x1: System Common & System Real Time................... 12
Table 17 4-Byte UMP Formats for Message Type 0x2: MIDI 1.0 Channel VVoice Messages...........ccceeveeeene. 13
Table 18 8-Byte UMP Formats for Message Type 0x3: 8-Byte Data MeSSagescoevvvveivevienieseeieeviesvenes 14
Table 19 8-Byte UMP Formats for Message Type 0x4: MIDI 2.0 Channel Voice Messages.........cccccevvervnee. 14
Table 20 16-Byte UMP Formats for Message Type 0x5: System Exclusive 8 and Mixed Data..................... 15

Version 1.0 Page 6 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

1. Introduction

This Specification defines two major extensions to the MIDI 1.0 Protocol:
e Universal MIDI Packet (UMP) Format

UMP can contain all MIDI 1.0 Protocol messages and all MIDI 2.0 Protocol messages in a single,
common container definition with a payload format which is intended to be usable in (or easily
adaptable for) any standardized or proprietary data transport.

The UMP Format adds 16 Groups to MIDI addressing. Each Group contains an independent set of
System Messages, and 16 Channels that are equivalent to the MIDI 1.0 Protocol’s 16 MIDI
Channels.

The UMP Format also adds a per-packet Jitter Reduction (JR) Timestamp mechanism: a JR
Timestamp can be prepended to UMPs to improve timing accuracy.

e MIDI 2.0 Protocol

The MIDI 2.0 Protocol is an extension of the MIDI 1.0 Protocol. Architectural concepts and
semantics remain the same as MIDI 1.0. Compatibility for translation to/from the MIDI 1.0 Protocol
is given high priority in the design of the MIDI 2.0 Protocol.

Compared to the MIDI 1.0 Protocol, MIDI 2.0 Protocol messages have extended data resolution for
all Channel Voice Messages. New properties have been added to some Channel Voice Messages,
and new Channel VVoice Messages have been added with greatly improved Per-Note control and
much more musical expression.

In addition, some functions that require the use of multiple MIDI Messages in the MIDI 1.0 Protocol
(for example: Bank and Program Change, RPN, and NRPN) are easier to use in the MIDI 2.0
Protocol, as they are now implemented as a single, unified message.

A set of new Data Messages has been added, including System Exclusive 8 Messages (very similar
to MIDI 1.0 Protocol System Exclusive message, but allowing use of all 8 data bits per byte) and
Mixed Data Set Messages (for transfer of large data sets, including non-MIDI data).

Both the UMP Format and the MIDI 2.0 Protocol include a large reserved space for future extensibility.

1.1 Reliance Upon Other Specifications

Implementers should understand that this Specification is not a stand-alone document, in the following
regards:

¢ The UMP Format sections describe a transport-independent payload format, not necessarily the low-level
data format that will actually be used “on the wire” or “over the air” for any particular standardized
transport (such as USB, UDP, Bluetooth, Wi-Fi, etc.). MMA/AMEI expect that for every standardized
transport that uses the UMP Format, a separate specification will exist to define how to carry UMP
payload data for that standardized transport. See also Section 2.1.1.1.

e The UMP Format and MIDI 2.0 Protocol descriptions are written as extensions of the MIDI 1.0 Protocol.
Therefore, understanding this document and the technical design of the UMP Format requires
comprehensive knowledge of the MIDI 1.0 Specification [MMAOQ1].

Version 1.0 Page 7 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

1.2 References

[MMAO01] The Complete MIDI 1.0 Detailed Specification, Document Version 96.1, Third Edition,
Association of Musical Electronics Industry, http://www.amei.or.jp/, and MIDI

Manufacturers Association, https://www.midi.org/.

[MMAO02] MIDI Capability Inquiry (MIDI-CI), Association of Musical Electronics Industry,
http://www.amei.or.jp/, and MIDI Manufacturers Association, https://www.midi.org/.

[MMAO3] Confirmation of Approval for MIDI Standard CA-031, CC #88 High Resolution Velocity
Prefix, Association of Musical Electronics Industry, http://www.amei.or.jp/, and MIDI

Manufacturers Association, https://www.midi.org/.

[MMAO04] Defaults for Sound Controllers, Recommended Practice RP-021, MIDI Manufacturers
Association, https://www.midi.org/.

[MMAO05] Redefinition of CC91 and CC93, Recommended Practice RP-023, MIDI Manufacturers
Association, https://www.midi.org/.

Version 1.0 Page 8 Feb. 20, 2020

http://www.amei.or.jp/
https://www.midi.org/
http://www.amei.or.jp/
https://www.midi.org/
http://www.amei.or.jp/
https://www.midi.org/
https://www.midi.org/
https://www.midi.org/

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

1.3 Terminology

Note: Terminology from MIDI 1.0 is the same as defined in the Complete MIDI 1.0 Detailed Specification [MMAO1]

and is not included here.

Alternate Translation Mode: A non-standardized translation of MIDI 1.0 Protocol to MIDI 2.0 Protocol, or
MIDI 2.0 Protocol to MIDI 1.0 Protocol, as described in Appendix D.4 of this specification.

AMEI: Association for Musical Electronics Industry. Authority for MIDI Specifications in Japan.

Attribute Data, Attribute Type: In the MIDI 2.0 Protocol’s Note On and Note Off messages, optional
fields that support additional expression. See Section 4.2.1, Section 4.2.2, and Section 4.2.13.

Data Message: MIDI Message defined in Section 4.4 System Exclusive (7-Bit) Messages, Section 4.5
System Exclusive 8 (8-Bit) Messages, or Section 4.6 Mixed Data Set Message.

Default Translation Mode: A standardized translation of the MIDI 1.0 Protocol to the MIDI 2.0 Protocol, or
from the MIDI 2.0 Protocol to the MIDI 1.0 Protocol, conforming to the rules in Appendix D.1 through
Appendix D.3 of this specification.

JR: Jitter Reduction.

MIDI 1.0 Protocol: Version 1.0 of the MIDI Protocol as originally specified in [MMAOL]. The native
format for the MIDI 1.0 Protocol is a byte stream, but it has been adapted for many different transports.
The UMP format for MIDI 1.0 Protocol messages is defined in Section 4 of this specification.

MIDI 1.0 Protocol Device: Hardware or software device that sends and/or receives MIDI Messages in the
MIDI 1.0 Protocol, using any transport. See also Non-UMP MIDI 1.0 System.

MIDI 1.0 Specification: See [MMAO1].

MIDI 2.0: The MIDI environment that encompasses all of MIDI 1.0 Protocol, MIDI-CI, Universal MIDI
Packet, MIDI 2.0 Protocol, MIDI 2.0 Messages, and other extensions to MIDI as described in this
specification.

MIDI 2.0 Protocol: Version 2.0 of the MIDI Protocol, as defined in this specification. The native format for
MIDI 2.0 messages is UMP as defined in Section 4 of this specification.

MIDI 2.0 Protocol Device: Hardware or software device that sends and receives MIDI Messages in the
MIDI 2.0 Protocol.

MIDI-CI Protocol Negotiation: A two-way exchange of MIDI-CI messages to determine, through
negotiation, which MIDI protocol the two devices will use to communicate. See [MMAQ2].

MIDI Message: (1) A complete MIDI 1.0 Protocol message, irrespective of the transport employed (if any),
as specified in The Complete MIDI 1.0 Detailed Specification [MMAO1], including any updates,
addenda, or errata); or
(2) A complete MIDI 1.0 Protocol message or a complete MIDI 2.0 Protocol message in UMP Format,
irrespective of the transport employed (if any), as specified in Section 3.2, Section 3.3, and Section 4 of
this specification.

In this definition, ‘complete’ means that all specified fields are incorporated, including any reserved bits,
and conform to the message’s defined format. Note that for some transports a single MIDI Message
might span multiple transport packets, or a single transport packet might contain multiple MIDI
Messages.

MIDI Tuning Standard: The mechanism for controlling musical tuning (intonation) as specified in the
System Exclusive Messages section of the MIDI 1.0 Detailed Specification, Document Version 4.2,
which is published in The Complete MIDI 1.0 Detailed Specification [MMAO1].

Version 1.0 Page 9 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Mixed Data Set: Mixed Data Set messages can carry any data payload, without the 7-bit restriction of the
MIDI 1.0 Protocol. See Section 4.6.

MMA: MIDI Manufacturers Association. Authority for MIDI specifications worldwide except Japan.
MMA/AMEI: MIDI Manufacturers Association and Association for Musical Electronics Industry.

Non-UMP MIDI 1.0 System: Any combination of MIDI 1.0 Protocol Devices, transports, applications, or
other system components that does not implement the UMP Format.

Note: At the time of writing this specification, there is no plan to use the UMP Format on the MIDI 1.0 5-
pin DIN transport. Unless/until that plan changes, 5-pin DIN will only support the MIDI 1.0 byte stream
data format.
Per-Note Controller: Any of the following MIDI Messages: Poly Pressure, Per-Note Registered Controllers,
Per-Note Assignable Controllers, or Per-Note Pitch Bend.

Profile: MMA/AMEI specification with purpose-specific definition of MIDI functionality, as defined in the
MIDI-CI specification [MMAO2] or its updates, addenda, or errata.

Receiver: MIDI 1.0 Protocol Device or MIDI 2.0 Protocol Device that receives MIDI Messages from a
Sender and parses them.

Sender: MIDI 1.0 Protocol Device or MIDI 2.0 Protocol Device that creates MIDI Messages and transmits
them to a Receiver.

Translator: A MIDI 1.0 Protocol Device or MIDI 2.0 Protocol Device which is capable of translating MIDI
1.0 Protocol messages to the MIDI 2.0 Protocol, and/or translating MIDI 2.0 Protocol messages to the
MIDI 1.0 Protocol.

UMP: Universal MIDI Packet.
UMP Format: Data format for fields and messages in the Universal MIDI Packet.

UMP MIDI 1.0 Device: any device that sends or receives MIDI 1.0 Protocol messages using the UMP. Such
devices may use UMP Message Types that extend the functionality beyond Non-UMP MIDI 1.0
Systems.

Universal MIDI Packet (UMP): The Universal MIDI Packet is a data container which defines the data
format for all MIDI 1.0 Protocol messages and all MIDI 2.0 Protocol messages. UMP is intended to be
universally applicable, i.e., technically suitable for use in any transport where MMA/AMEI elects to
officially support UMP. See Section 2 of this specification for detailed definition.

Utility Message: MIDI Message composed of one or more of the UMPs defined in Section 4.8.

Version 1.0 Page 10 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

1.4 Reserved Words and Specification Conformance

In this document, the following words are used solely to distinguish what is required to conform to this
specification, what is recommended but not required for conformance, and what is permitted but not required
for conformance:

Table 1 Words Relating to Specification Conformance

Word Reserved For Relation to Spec Conformance

shall Statements of requirement Mandatory.
A conformant implementation conforms to all 'shall’ statements.

should Statements of recommendation Recommended but not mandatory.
An implementation that does not conform to some or all ‘should’
statements is still conformant, providing all 'shall’ statements are
conformed to.

may Statements of permission Optional.
An implementation that does not conform to some or all ‘'may’
statements is still conformant, providing all 'shall’ statements are
conformed to.

By contrast, in this document, the following words are never used for specification conformance statements;
they are used solely for descriptive and explanatory purposes:

Table 2 Words Not Relating to Specification Conformance

Word

Reserved For

Notes

must

Statements of unavoidability

Describes an action to be taken that, while not required (or at least not
directly required) by this specification, is unavoidable.

Not used for statements of conformance requirement (see ’shall’
above).

will

Statements of fact

Describes a condition that as a question of fact is necessarily going to
be true, or an action that as a question of fact is necessarily going to
occur, but not as a requirement (or at least not as a direct requirement)
of this specification.

Not used for statements of conformance requirements (see ‘shall’
above).

can

Statements of capability

Describes a condition or action that a system element is capable of
possessing or taking.
Not used for statements of conformance permission (see ‘may’ above).

might

Statements of possibility

Describes a condition or action that a system element is capable of
electing to possess or take.
Not used for statements of conformance permission (see ‘may’ above).

Version 1.0

Page 11 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

2. Universal MIDI Packet (UMP) Format

Using the format defined in Section 2.1, the Universal MIDI Packet (UMP) Format supports:

o All MIDI 1.0 Protocol Channel Voice Messages using the Message formats defined in Section 4.1

e All MIDI 2.0 Protocol Channel Voice Messages using the Message formats defined in Section 4.2

e The System Common, System Real Time, System Exclusive, System Exclusive 8, Mixed Data Set, and
Utility messages using the Message formats defined in Section 4.3 through Section 4.8.

See also see Appendix F All Defined UMP Formats.

2.1 UMP Basic Packet and Message Format

Each UMP shall be one, two, three, or four 32-bit words long.

Each UMP shall contain one entire MIDI Message, or (in the sole case of Data Messages longer than 128
bits) part of one MIDI Message, and no additional data.

A Data Message that is longer than a single UMP allows will span multiple UMPs.

2.1.1 Bit, Byte, and Word Order in UMP Format Diagrams

In this specification, for clarity UMP Format diagrams present one 32-bit word per line. The leftmost bits are
the most significant bits, for each 32-bit word and for each field within each 32-bit word.

Example Diagram 1: 32-Bit Message in a Single 32-Bit UMP

|31‘30‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 8‘7 6 5 4 3 2 1 0

Example Diagram 2: 64-Bit Message in a Single 64-Bit UMP

First 32-Bit Word: | 31 30 20 28 27 26 25 24,23 22 21 20 19 18 17 1615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Second 32-Bit Word: | 31,30 29 28 27 26 25 24|23 22 21 20 19 18 17 16,15 14 13 12 11 10 9 87 6 5 4 3 2 1 0

Example Diagram 3: 96-Bit Message in a Single 96-Bit UMP

First 32-Bit Word: | 31,30 29 28 27 26 25 24|23 22 21 20 19 18 17 1615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Second 32-Bit Word: | 31,30 29 28 27 26 25 2423 22 21,20 19 18 17 16|15 14 13 12 11,10 9 8,7 6 5 4 3 2 1 0

Third 32-Bit Word: | 31,30 29 28 27 26 25 24,23 22 21 20 19 18 17 1615 14 13 12 11 10 9 8,7 6 5 4 3 2 1 0

Example Diagram 4: 128-Bit Message in a Single 128-Bit UMP

First 32-Bit Word: | 31,30 29 28 27 26 25 2423 22 21 20 19 18 17 1615 14 13 12 11,10 9 87 6 5 4 3 2 1 0
Second 32-Bit Word: | 31,30 29 28 27 26,25 24|23 22 2120 19 18 17 1615 14 13 1211 10 9 8|7 6 5 4 3,2 1 0
Third 32-Bit Word: | 31 30 29 28 27 26 25 24/23 22 21 20 19 18 17 16|15 14 13 12 11 10 9 87 6 5 4 3 2 1 0
Fourth 32-Bit Word: | 31,30, 29 28 27 26 25 24/23 22 21 20 19 18 17 16|15 14 13 12 11,10 9 87 6,5 4,3 2 1 0

Figure 1 Example UMP Format Diagrams

2.1.1.1 Scope of Bit, Byte, and Word Order Guidance

Although UMP 32-bit words can be converted to and from byte streams for storage or transmission, the
formats of such byte streams, including the byte order to be used for such transport and storage, are outside
the scope of this specification. Per Section 1.1, it is expected that separate transport specifications will define
formats and byte orders for each particular transport, and separate file format specifications addressing the
UMP Format will define byte orders for each particular file format.

Version 1.0 Page 12 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

For the internals of any given implementation, a device or system may use any desired format, including
native-endian 32-bit words.

Version 1.0 Page 13 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

2.1.2 UMP Format Universal Fields
Every UMP shall contain the Message Type, Group, and Status fields.

message type

The most significant 4 bits in every UMP shall contain the Message Type field, detailed in
Section 2.1.4. It indicates the message’s general functional area (e.g., Utility, MIDI 1.0 Channel

Voice Messages, MIDI 2.0 Channel VVoice Messages), as well as the UMP’s size, and the size of the
Status field.

group

A 4-bit Group field is next, addressing every UMP Format MIDI Message (and every UMP
comprising any given MIDI Message) to one of 16 Groups.

Per Section 3, each Group shall communicate using only one MIDI Protocol (currently either the
MIDI 1.0 Protocol or the MIDI 2.0 Protocol) at a time. MIDI Protocols shall not be mixed for any
given Group.

Each Group’s set of 16 MIDI Channels shall be separate and independent from any other Group’s set
of MIDI Channels, allowing up to 256 MIDI Channels (i.e., 16 Groups x 16 MIDI Channels) per
UMP-based MIDI connection for Channel-based MIDI Messages. UMPs addressed to different
Groups may be freely interleaved (i.e., transmitted in any order).

Within a given Group, MIDI Messages that do not support a MIDI Channel field (i.e., System
Messages, Data Messages, and JR Timestamps) shall apply to, and shall affect, all MIDI Channels
within that Group. In addition, each Group shall be separate and independent from any other Group
in terms of its response to System Messages.

status

A Status field is next. As detailed in the UMP Format for each MIDI Message, the size in bits of the
Status field depends upon the value of the Message Type.

Within each Message Type multiple messages are defined, distinguished from one another by the
Status field. For example, Message Type 0x2 is “MIDI 1.0 Channel Voice Messages” which contains
the MIDI 1.0 Note Off, MIDI 1.0 Note On, MIDI 1.0 Program Change, and other related messages;
the Status field selects one particular message within that Message Type.

Example 1: Message Type 4 (MIDI 2.0 Channel Voice Message) has 8-Bit Status Field in 64-Bit UMP

mt=4, | | group | | | status | ! | ! |_index |
| | | | | dé_ta | |

Example 2: Message Type 1 (System Message) has 8-bit Status Field in 32-Bit UMP (32 bits)

| mt=1, | 1 group | | | status | | | data | |

Example 3: Message Type 0 (Utility Message) has 4-bit Status Field in 32-Bit UMP
| L mt=0, | L aroup | | status | | | data | | |

Figure 2 Status Field Size Varies with Message Type Value

Version 1.0 Page 14 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

2.1.3 Reserved Items
In this specification, the term Reserved means reserved for future definition by MMA/AMEI.

In particular:

o Messages marked as Reserved shall not be used.

o Fields marked as Reserved shall be set to zero and shall not be used for any purpose.

e Bits marked “r” are reserved, shall be set to zero, and shall not be used for any purpose.

e Option flag bits that are undefined are reserved, shall be set to zero, and shall not be used for any

purpose.

e Receivers, Translators, transports, or other MIDI system components shall not depend upon “r” bits or
Reserved fields necessarily containing the value zero, to allow for future definitions with new uses for
the reserved values.

2.1.4 Message Type (MT) Allocation

The most significant 4 bits of every message contain the Message Type (MT). The Message Type is used as
a classification of message functions. All messages within a Message Type have the same UMP size.

Table 3 Message Type (MT) Allocation

MT UMP Size Description
0x0 32 bits Utility Messages

Ox1 32 bits System Real Time and System Common Messages (except System Exclusive)
0x2 32 bits MIDI 1.0 Channel Voice Messages

0x3 64 bits Data Messages (including System Exclusive)
0x4 64 bits MIDI 2.0 Channel Voice Messages

0x5 128 bits Data Messages

0x6 32 bits Reserved for future definition by MMA/AMEI
0x7 32 bits

0x8 64 bits

0x9 64 bits

OxA 64 bits

0xB 96 bits

oxC 96 bits

0xD 128 bits

OXE 128 bits

OxF 128 bits

System Real Time and System Common Messages (32 bits)

m=0c_ | oqup | _staus | _data

MIDI 2.0 Channel Voice Message (64 bits)

mtioxq | | grqup | | | Stqtus\ | | | | inle |
| _ data |

Figure 3 UMP Formats for Example Message Types

Version 1.0 Page 15 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Reserved Message Types

Per Section 2.1.3, Reserved Message Types marked Reserved in the table above are reserved for future
definition by MMA/AMEI and shall not be used.

These Reserved Message Types provide extensibility for future standardization. They have predefined sizes
so that system components such as APIs, Transports, and Interfaces can be designed in advance to give basic
support for those Message Types, even though the data within the messages are not yet defined.

Version 1.0 Page 16 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

3. MIDI Protocols in UMP Format

3.1 Overview

The UMP Format is capable of encoding multiple MIDI protocols. This version of the UMP Format
specification defines support for the MIDI 1.0 Protocol and the MIDI 2.0 Protocol.

On a per-Group basis, the Sender and Receiver shall cooperatively select exactly one MIDI Protocol at a
time using either the MIDI-CI mechanism [MMAQ2] or additional means, as described in Section 3.1.2. As a
result, no Group shall use more than one MIDI Protocol at a time.

If the devices support independent selection of MIDI Protocol on a per-Group basis, then the UMP stream
for that 16-Group MIDI connection might contain a mixture of different MIDI Protocols.

Note: In other words: A device is free to implement the MIDI 1.0 Protocol on one or more Groups while
implementing the MIDI 2.0 Protocol on one or more other Groups, but no device shall send both MIDI 1.0
Protocol messages and MIDI 2.0 Protocol messages on the same Group.

3.1.1 Groups, Ports, and Virtual MIDI Cables

When connecting to Non-UMP MIDI 1.0 Systems, or MIDI 2.0 systems that integrate MIDI 1.0 Protocol
Devices, each of the 16 Groups may be treated like one virtual MIDI cable interleaved in a shared stream of
16 virtual MIDI cables. Each Group can be represented as a virtual MIDI port that connects to a virtual MIDI
cable.

3.1.2 Selecting a MIDI Protocol for a Group

MIDI-CI Protocol Negotiation [MMAQ2] is the MIDI standard method for discovering or selecting MIDI
Protocols on a per-Group basis. Some devices, interfaces, APIs, or transports might have additional means
for discovering or selecting protocols on a per Group basis to fit the needs of a particular MIDI system.

3.1.2.1 MIDI-CI Protocol Negotiation

MIDI-CI Protocol Negotiation may be used by MIDI Devices to agree to switch between using MIDI 1.0
Protocol messages and using MIDI 2.0 Protocol messages, on a per-Group basis. MIDI-Cl is also used for
selecting optional features (Extensions), including JR Timestamps. MIDI-CI Protocol Negotiation requires
that the transport between the two devices be capable of using the UMP Format.

MIDI-CI Protocol Negotiation messages describe the available protocols with a set of 5 Protocol Bytes:
Table 4 MIDI-CI Protocol Negotiation Protocol Bytes

Protocol Byte Field To DeS(l:.r(l)be MIDI TOMDlgsI(;r.g)e
1 Protocol Type 0x01: MIDI 1.0 0x02: MIDI 2.0
2 Version 0x00: MIDI 1.0 0x00: MIDI 2.0, v1.0
3 Extensions See Section 3.2.3 | See Section 3.3.3
4 Reserved Set to 0x00 Set to 0x00
5 Set to 0x00 Set to 0x00

Details of selecting the MIDI 1.0 Protocol vs. the MIDI 2.0 Protocol are shown in Section 3.2.3 and

Section 3.3.3, respectively.

Version 1.0

Page 17

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

3.2 MIDI 1.0 Protocol in UMP Format

MIDI 1.0 Protocol messages are carried in the UMP using several Message Types. UMP MIDI 1.0 Devices
may use any of the Message Types listed in Section 3.2.1.1. UMP MIDI 1.0 Devices may also use messages
from the Message Types listed in Section 3.2.1.2 within the same Group to add new functionality. But UMP
MIDI 1.0 Devices shall not use any messages from Message Type 0x4, MIDI 2.0 Channel Voice Messages.

3.2.1 Message Types for MIDI 1.0 Protocol

There are two categories of UMP Message Types for the MIDI 1.0 Protocol: those that simply support
traditional (i.e., pre-UMP) MIDI 1.0 Protocol functionality, and those that extend it.

3.2.1.1 Message Types for Traditional MIDI 1.0 Functionality
The following Message Types encapsulate all traditional MIDI 1.0 Protocol messages:
o Message Type 0x1 System Real Time and System Common Messages

e Message Type 0x2 Channel Voice Messages
o Message Type 0x3 Data Messages (for System Exclusive)

3.2.1.2 Message Types to Extend MIDI 1.0 Functionality
UMP MIDI 1.0 Devices may also use the following Message Types to add extended functionality:

o Message Type 0x0 Utility Messages
o Message Type 0x5 SysEx 8 and Mixed Data Set Messages

Note: However, UMP MIDI 1.0 Devices shall NOT use any messages from Message Type 0x4, MIDI 2.0 Channel
Voice Messages.

3.2.2 MIDI 1.0 Protocol and Future Expansion

Per Section 2.1.3 and Section 2.1.4, several Message Type values are reserved for future use, to be defined
solely by MMA/AMEI. Whenever MMA/AMEI do define new messages that use these currently Reserved
Message Types, it will be clearly specified whether UMP MIDI 1.0 Devices may (vs. shall not) use each of
those messages.

Version 1.0 Page 18 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

3.2.3 Protocol Negotiation to the MIDI 1.0 Protocol

Note: For convenience, this Section repeats information from the MIDI-CI Specification [MMAOQ2]. In the event of
any disagreement, [MMAO2] shall take precedence.

Protocol Byte 1: Protocol Type

For the MIDI 1.0 Protocol, the type number is set to 0x01.
Protocol Byte 2: Version

For the MIDI 1.0 Protocol, the version number is set to 0x00.
Protocol Byte 3: Extensions

If the two devices agreeing to a MIDI-CI Protocol Negotiation are connected by a transport that
supports the UMP Format, then there are defined extensions available for using the MIDI 1.0
Protocol. The Extensions field is a bitmap of flags, each representing one extension or optional
feature.

The current version of MIDI-CI defines two extensions. Further extensions might be defined by
MMA/AMEI in future revisions of the MIDI 1.0 Protocol or the UMP Format specification.

| , reserved | S | J |

Figure 4 MIDI-CI MIDI 1.0 Protocol Extensions Bitmap Field
e S: Size of UMP extension flag. When MIDI 1.0 Protocol Devices use the UMP Format, they
shall always be capable of handling UMPs of up to 64 bits in size (8 bytes).

o When S =0, message UMPs exchanged shall not exceed 64 bits in size.
e When S =1, message UMPs of 96 bits (12 bytes) and 128 bits (16 bytes) in size may also be
exchanged. This larger size is necessary to support SysEx 8 and Mixed Data Set messages.

e J: Jitter Reduction Timestamps extension flag. When J = 1, Jitter Reduction Timestamps are
supported and shall be used (i.e., shall be sent) preceding every MIDI 1.0 Protocol UMP.

Devices that report S = 0 and J = 1 shall be capable of handling UMPs up to 64 bits in size, plus 32
bits for a JR Timestamp UMP, for a total combined size of 96 bits (12 bytes).

Devices that report S = 1 and J = 1 shall be capable of handling UMPs of 128 bits in size, plus 32
bits for a JR Timestamp UMP, for a total combined size of 160 bits (20 bytes).

Version 1.0 Page 19 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

3.3 MIDI 2.0 Protocol in UMP Format

The MIDI 2.0 Protocol expands on the architectural concepts and semantics of the MIDI 1.0 Protocol. The
MIDI 2.0 Protocol increases the data resolution for all Channel Voice Messages, and makes some messages
easier to use by aggregating some combination of multiple messages into a single, unified message. Some
MIDI 2.0 Channel Voice Messages have additional properties which are not available in the corresponding
MIDI 1.0 Protocol messages. Several new Channel VVoice Messages are added to provide increased Per-Note
control and musical expression.

MIDI 2.0 Protocol messages are carried in the UMP Format using several Message Types. MIDI 2.0 Protocol
Devices may use any of these messages, and may also use messages from certain other defined Message
Types within the same Group to add new functionality.

3.3.1 Message Types for MIDI 2.0 Protocol

The following Message Types contain all of the core MIDI 2.0 Protocol messages. MIDI 2.0 functionality
may be implemented within a Group using these Message Types:

Message Type 0x1 System Real Time and System Common Messages
Message Type 0x4 MIDI 2.0 Channel VVoice Messages

Message Type 0x3 Data Messages (for System Exclusive)

Message Type 0x0 Utility Messages

Message Type 0x5 Data Messages

MIDI 2.0 Protocol Devices shall not use any messages from Message Type 0x2, MIDI 1.0 Channel Voice
Messages.

3.3.2 MIDI 2.0 Protocol and Future Expansion

Per Section 2.1.3 and Section 2.1.4, several Message Type values are reserved for future use, to be defined
solely by MMA/AMEI. Whenever MMA/AMEI do define new messages that use these currently Reserved
Message Types, it will be clearly specified whether MIDI 2.0 Protocol Devices may (vs. shall not) use each
of those messages.

Version 1.0 Page 20 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

3.3.3 Protocol Negotiation to the MIDI 2.0 Protocol

Note: For convenience, this Section repeats information from the MIDI-CI Specification [MMAOQ2]. In the event of
any disagreement, [MMAO2] shall take precedence.

Protocol Byte 1: Protocol Type

For the MIDI 2.0 Protocol, the type number is set to 0x02.
Protocol Byte 2: Version

For Version 1.0 of the MIDI 2.0 Protocol, the version number is set to 0x00.
Protocol Byte 3: Extensions

The Extensions field is a bitmap of extension flags or optional features.

In this version of the MIDI 2.0 Protocol, the only extension defined is Jitter Reduction Timestamps.
Further extensions might be defined by MMA/AMEI in future revisions of the MIDI 2.0 Protocol or
the UMP Format specification.

| | (ese‘rveq | J |

Figure 5 MIDI-CI MIDI 2.0 Protocol Extensions Bitmap Field
e J: Jitter Reduction Timestamps extension flag. When J = 1, Jitter Reduction Timestamps shall
be supported/used (i.e., sent) preceding every MIDI 2.0 Protocol UMP.

Note: Devices that use the MIDI 2.0 Protocol in the UMP Format shall be capable of handling UMPs of up to 128
bits (16 bytes) in size. Devices that report J = 1 shall be capable of handling UMPs of 128 bits in size, plus 32 bits
for a JR Timestamp UMP, for a total combined size of 160 bits (20 bytes).

Version 1.0 Page 21 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4. MIDI Messages in UMP Format

This Section defines or reserves all possible MIDI Message formats in the UMP Format:

e Section 4.1 MIDI 1.0 Channel Voice Messages
e Section 4.2 MIDI 2.0 Channel Voice Messages
Section 4.3 System Common and System Real Time Messages

e Section 4.4 System Exclusive (7-Bit) Messages
e Section 4.5 System Exclusive 8 (8-Bit) Messages
e Section 4.6 Mixed Data Set Message

e Section 4.8 Utility Messages

See also:

o Appendix F All Defined UMP Formats
o Appendix G All Defined Messages

Version 1.0 Page 22 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.1 MIDI 1.0 Channel Voice Messages

In UMP, the MIDI 1.0 Channel Voice Messages are all 32-bit messages containing the following data:

e 4 bits Message Type with value 0x2

e 4 bits Group

e 24 bits of MIDI 1.0 Channel Voice Message data:
o 8 bits Status that includes a 4-bit opcode and a 4-bit Channel number
e 16 bits index, data, and/or reserved space

Per Figure 6, for 3-byte MIDI 1.0 Channel Voice Messages, all three bytes are copied into bytes 2 through 4
of the UMP. This applies to the Note Off, Note On, Poly Pressure, Control Change, and Pitch Bend
messages.

Per Figure 7, for 2-byte MIDI 1.0 Channel Voice Messages, the two bytes are copied into bytes 2 and 3 of
the UMP, and byte 4 is filled with O bits. This applies to the Program Change and Channel Pressure
messages.

3-Byte MIDI 1.0 Channel Voice Message (per MIDI 1.0 Specification)

status & channel byte 2, | byte 3,
MIDI 1.0 Channel Voice Message
General Format
in UMP
NS NS NS
L mt=2 | | L aroup | | status & channel | byte 3, Lbyte 4,

Figure 6 MIDI 1.0 3-Byte Channel Voice Message General Format

2-Byte MIDI 1.0 Channel Voice Message (per MIDI 1.0 Specification)

status & channel, “ | byte 2, |

00000000

MIDI 1.0 Channel Voice Message
General Format
in UMP

NS NS ==

| mt=2 | | L group | | status & channel _byte 3, | byte 4,

Figure 7 MIDI 1.0 2-Byte Channel Voice Message General Format

Version 1.0 Page 23 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.1.1 MIDI 1.0 Note Off Message
For fundamental functions of Note Off see the MIDI 1.0 Specification [MMAO1].

| , mt=2 | , grqup | | 1 |0 | 0 | 0 | chapnel | r , note number | r \velocity
Figure 8 MIDI 1.0 Note Off Message
4.1.2 MIDI 1.0 Note On Message
For fundamental functions of Note On see the MIDI 1.0 Specification [MMAO1].
[m=2 | g, [1]o]o]1] chapnet |+ notenumber [velocity,

Figure 9 MIDI 1.0 Note On Message

4.1.3 MIDI 1.0 Poly Pressure Message

For fundamental functions of Poly Pressure (Polyphonic Aftertouch) see the MIDI 1.0 Specification
[MMAO1].

| , mt=2 | , group | | 1 |O | 1 |0| channel | r note number | r | data

Figure 10 MIDI 1.0 Poly Pressure Message

4.1.4 MIDI 1.0 Control Change Message
For fundamental functions of Control Change see the MIDI 1.0 Specification [MMAOQ1].

| mt=2 | , group | | 1 |0 | 1 | 1 | chapnel | r index | r , data

Figure 11 MIDI 1.0 Control Change Message

4.1.5 MIDI 1.0 Program Change Message
For fundamental functions of Program Change see the MIDI 1.0 Specification [MMAO1].

| | mtfz | | , group | | 1 | 1 | 0 | 0 | ‘chapnel‘ | r,, program | (ese‘rveq

Figure 12 MIDI 1.0 Program Change Message

4.1.6 MIDI 1.0 Channel Pressure Message

For fundamental functions of Channel Pressure (Channel Aftertouch) see the MIDI 1.0 Specification
[MMAO1].

| | mt=2 | , group | | 1 | 1 | 0 | 1 | channel | r data | reserved

Figure 13 MIDI 1.0 Channel Pressure Message

4.1.7 MIDI 1.0 Pitch Bend Message
For fundamental functions of Pitch Bend see the MIDI 1.0 Specification [MMAO1].

| | mt=2 | , grqup | | 1 | 1 | 1 |0 | chapnel | r |sb data, | r msb data

Figure 14 MIDI 1.0 Pitch Bend Message

Version 1.0 Page 24 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2 MIDI 2.0 Channel Voice Messages

All MIDI 2.0 Channel Voice Messages are 64-bit messages containing the following fields:

4 bits Message Type with value 0x4

4 bits Group

8 bits Status that includes a 4-bit opcode and a 4-bit Channel number
16 bits Index

32 bits Data containing parameter/property value(s)

I mt\=4 I | | grqup | | | Status\ | | | | inle

| _ data |

Figure 15 MIDI 2.0 Channel Voice Message General Format

Devices that use any of these MIDI 2.0 Channel VVoice Messages from Message Type 0x4 in a Group shall
not use any of the MIDI 1.0 Channel VVoice Messages from Message Type 0x2 within that same Group.

4.2.1 MIDI 2.0 Note Off Message
For fundamental functions of Note Off see the MIDI 1.0 Specification [MMAO1].

The MIDI 2.0 Protocol expands the Note Off message with higher resolution Velocity, and the Attribute

Type and Attribute Data fields.

| mt=4 | | L group | |1\0\0‘O| ichannel r | notenumber , | |

|_attribute type |

\veldcity, | attribute data |

Figure 16 MIDI 2.0 Note Off Message
For more information, see:
Section 4.2.2 MIDI 2.0 Note On Message
Section 4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data

4.2.2 MIDI 2.0 Note On Message
For fundamental functions of Note On see the MIDI 1.0 Specification [MMAO1].

The MIDI 2.0 Protocol expands the Note On message with higher resolution Velocity, and the Attribute

Type and Attribute Data fields.

L mt=4 | _group | |1 10,0, 1| channel r | nate number , | |

|_attribute type |

\veldcity, | attribute data |

Figure 17 MIDI 2.0 Note On Message
velocity

Version 1.0

The allowable Velocity range for a MIDI 2.0 Note On message is 0x0000-0xFFFF. Unlike the MIDI
1.0 Note On message, a velocity value of zero does not function as a Note Off. When translating a
MIDI 2.0 Note On message to the MIDI 1.0 Protocol, if the translated MIDI 1.0 value of the
Velocity is zero, then the Translator shall replace the zero with a value of 1.

attribute (attribute type & attribute data)

For more information, see:
Section 4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data
Section 4.2.14 MIDI 2.0 Notes and Pitch

Page 25 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.3 MIDI 2.0 Poly Pressure Message

For fundamental functions of Poly Pressure (Polyphonic Aftertouch) see the MIDI 1.0 Specification
[MMAO1].

The MIDI 2.0 Protocol expands the resolution of the Poly Pressure message from 7 bits to 32 bits.

, mt=4 | , group | | 1.0 1 0| channel | r, , notenumber = | reserved

| | data |

Figure 18 MIDI 2.0 Poly Pressure Message

4.2.4 MIDI 2.0 Registered Per-Note Controller and Assignable Per-Note Controller Messages

The MIDI 2.0 Protocol introduces these new messages with 256 Registered Per-Note Controllers and 256
Assignable Per-Note Controllers:

e The Registered Per-Note Controllers have specific functions defined by MMA/AMEI specifications.
Currently defined Registered Per-Note Controllers are listed in Appendix A MIDI 2.0 Registered Per-
Note Controllers.

, mt=4 | , group | | 0,0 0 0 | channel | r , note number | Index

| | data

Figure 19 MIDI 2.0 Registered Per-Note Controller Message

Note: Registered Per-Note Controller numbers that have no definition are Reserved and shall not be used
until they are defined by MMA/AMEI.

e The Assignable Per-Note Controllers have no pre-defined function, and are available for any device-
specific or application-specific function.

, mt=4 | , group | | 0,00 1 | channel | r note number | , Index |

| | data |

Figure 20 MIDI 2.0 Assignable Per-Note Controller Message

Version 1.0 Page 26 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.5 MIDI 2.0 Per-Note Management Message

The MIDI 2.0 Protocol introduces a Per-Note Management message to enable independent control from Per-
Note Controllers to multiple Notes on the same Note Number.

‘ mt;4 ‘ | L group | | 1 | 1 | 1 | 1 | ‘chapnel‘ | r | nqte n‘umb‘er | | | | optioq flags |D | S

| (ese‘rveq |

Figure 21 MIDI 2.0 Per-Note Management Message
option flags
When bits are set high, specific functions of the Per-Note Management message are active:

D: Detach Per-Note Controllers from previously received Note(s)
S: Reset (Set) Per-Note Controllers to default values

When a device receives a Per-Note Management message with D = 1 (Detach), all currently playing
notes and previous notes on the referenced Note Number shall no longer respond to any Per-Note
controllers. Currently playing notes shall maintain the current values for all Per-Note controllers
until the end of the note life cycle.

When a device receives a Per-Note Management message with S = 1, all Per-Note controllers on the
referenced Note Number should be reset to their default values.

When a device receives a Per-Note Management message with D =1 and S = 1, then the device
should first process the Detach function, and then perform the Reset function. As a result, currently
playing notes on the referenced Note Number maintain the current values for all Per-Note controllers
until the end of the note life cycle. The default value and any further changes to Per-Note Controllers
shall apply to future notes only.

A Per-Note Management Message with D=0 and S=0 has no defined function.

Note: The above defined responses to Per-Note Management messages apply by default to all Per-Note
Controllers. Future AMEI/MMA specifications might define other responses for specific Per-Note
Controllers. For example, a Profile might define different responses for particular Per-Note Controllers
used for specific applications.

See Appendix C Using MIDI 2.0 Per-Note Messages for implementation guidelines.

Version 1.0 Page 27 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.6 MIDI 2.0 Control Change Message
For fundamental functions of Control Change see the MIDI 1.0 Specification [MMAO1].

The MIDI 2.0 Protocol expands the resolution of the Control Change message from 7 bits to 32 bits.

th4

| | , group | | 1.0, 1 1 | chapnel | r index | reserved

\ data \

Figure 22 MIDI 2.0 Control Change Message

Note: The MIDI 1.0 Specification defines Control Change indexes 98, 99, 100, and 101 (0x62, 0x63,
0x64, and 0x65) to be used as compound sequences for Non-Registered Parameter Number and
Registered Parameter Number control messages. These set destinations for Control Change index 6/38
(0Ox06/0x26), Data Entry.The MIDI 2.0 Protocol replaces those compound sequences with unified
messages, see Section 4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller
(NRPN) Messages.

Note: The MIDI 1.0 Specification defines Control Change indexes 0 and 32 (0x00 and 0x20) to be used
as Bank Select associated with following Program Change messages. The MIDI 2.0 Protocol replaces

those compound sequences with unified messages, see Section 4.2.9 MIDI 2.0 Program Change
Message.

Implementation Recommendations

e Devices sending the MIDI 2.0 Protocol should not transmit Control Change messages with indexes of 6,
38, 98, 99, 100, or 101. Instead they should transmit the new Assignable Controller messages and

Registered Controller messages (see Section 4.2.7). These new messages are more friendly to send, to

receive, and to edit in a sequencer.

e Devices sending the MIDI 2.0 Protocol should not transmit Control Change messages with indexes of 0
and 32. Instead they should transmit the new MIDI 2.0 Program Change message (see Section 4.2.9).
e Devices receiving the MIDI 2.0 Protocol should ignore Control Change messages with indexes of 0, 6,

32, 38, 98, 99, 100, and 101.

Version 1.0

Page 28

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller (NRPN) Messages
The MIDI 2.0 protocol introduces 16,384 Registered Controllers and 16,384 Assignable Controllers.

e Registered Controllers have specific functions defined by MMA/AMEI specifications. Registered
Controllers map and translate directly to MIDI 1.0 Registered Parameter Numbers (RPN, see
Appendix D.2.3) and use the same definitions as MMA/AMEI approved RPN messages. Registered
Controllers are organized in 128 Banks (corresponds to RPN MSB), with 128 controllers per Bank
(corresponds to RPN LSB).

(RPN MSB) (RPN LSB)

L mt=4 | L group | 0,0,1,0 | cchannel, | r | _bank | | r | index |
| [L1 ddta | | [|

Figure 23 MIDI 2.0 Registered Controller Message

e Assignable Controllers have no specific function and are available for any device or application-specific
function. Assignable Controllers map and translate directly to MIDI 1.0 Non-Registered Parameter
Numbers (NRPN). Assignable Controllers are also organized in 128 Banks (corresponds to NRPN
MSB), with 128 controllers per Bank (corresponds to NRPN LSB).

(NRPN MSB) (NRPN LSB)

| mt=4 | | L, group | |0\0\1\1| channel |r\ | bank | |r\ | index |
‘ \data\ ‘

Figure 24 MIDI 2.0 Assignable Controller Message

In the MIDI 1.0 Protocol, creating and editing RPNs and NRPNSs requires the use of compound (multiple)
MIDI messages, which can be confusing for both developers and users. In the MIDI 2.0 Protocol, Registered
Controllers and Assignable Controllers replace those compound messages with a single, unified message,
making them much easier to use.

4.2.8 MIDI 2.0 Relative Registered Controller (RPN) and Assignable Controller (NRPN)
Messages

Registered Controller Messages and Assignable Controller Messages (defined above in Section 4.2.7)
directly set the values of the destination properties. With the MIDI 2.0 Protocol’s Relative Registered
Controller and Relative Assignable Controller Messages, it is now also possible to make relative increases or
decreases to the current values of those same properties.

These new messages act upon the same address space as the MIDI 2.0 Protocol’s Registered Controllers and
MIDI 2.0 Assignable Controllers, and use the same controller Banks. However, these Relative controllers
cannot be translated to the MIDI 1.0 Protocol.

L mt\=4 L | L grqup L | 0 L 1 L 0 L O | \Channel\ | r L L L baWnk L | r L L inqex L
| , data | |
Figure 25 MIDI 2.0 Relative Registered Controller Message
‘ mg:4 ‘ , group | 0 ‘ 1 ‘ 0 ‘ 1 ‘cha‘nnel‘ | roo ban ‘ r ‘ inqex ‘
| data | |

Figure 26 MIDI 2.0 Relative Assignhable Controller Message
data

The data field in the MIDI 2.0 Relative Registered Controller and Relative Assignable Controller
messages contains a Two’s Complement value, to provide negative and positive relative control of
the destination value.

Version 1.0 Page 29 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.9 MIDI 2.0 Program Change Message
For fundamental functions of Program Change and Bank Select see the MIDI 1.0 Specification [MMAO1].

In the MIDI 2.0 Protocol, this message combines the MIDI 1.0 Protocol’s separate Program Change and
Bank Select messages into a single, unified message; by contrast, the MIDI 1.0 Protocol mechanism for
selecting Banks and Programs requires sending three MIDI separate 1.0 Messages. The MIDI 1.0 Protocol’s
existing 16,384 Banks, each with 128 Programs, are preserved and translate directly to the MIDI 2.0
Protocol.

| my:4 | | , group | 1 | 1 | 0 | 0| ‘cha‘nnel‘ L ‘rese‘rved‘ | optioq_flags | |B

r program | ‘rese‘rveq r | t‘)ank‘msp | r ‘banl‘< Isq

Figure 27 MIDI 2.0 Program Change Message

The MIDI 2.0 Program Change message always selects a Program. The Bank Select operation is optional,
controlled by the Bank Valid bit (B):

o |f the Sender sets the Bank Valid bit to 0, then the Receiver performs only the Program Change, without
selecting a new Bank (i.e., the Receiver keeps its currently selected Bank). In this case, the Sender shall
also fill the Bank MSB and Bank LSB fields with zeroes.

o If the Sender sets the Bank Valid bit to 1, then the Receiver performs first the Bank Select operation and
then the Program Change operation.

e Other option flags not defined in this specification are Reserved, and shall be set to zero.

4.2.10 MIDI 2.0 Channel Pressure Message

For fundamental functions of Channel Pressure (Channel Aftertouch) see the MIDI 1.0 Specification
[MMAO1].

The MIDI 2.0 Protocol expands the resolution of the Channel Pressure message from 7 bits to 32 bits.

| my:4 | | , group | | 1 | 1 | 0 | 1 | ‘chapnel‘ | | [ese‘rveq | yese‘rveq

| | dqta

Figure 28 MIDI 2.0 Channel Pressure Message
4.2.11 MIDI 2.0 Pitch Bend Message
For fundamental functions of Pitch Bend see the MIDI 1.0 Specification [MMAOL].

The MIDI 2.0 Protocol expands the resolution of the Pitch Bend message from 14 bits to 32 bits. The data
field is an unsigned bipolar value, centered at 0x80000000.

mt=4 | , group | | 1,1, 1,0 | channel | ‘ reserved | reserved

| data |

Figure 29 MIDI 2.0 Pitch Bend Message

4.2.12 MIDI 2.0 Per-Note Pitch Bend Message

The MIDI 2.0 Per-Note Pitch Bend message acts like Pitch Bend in every way, except that it applies to
individual Note Numbers. The data field is an unsigned bipolar value, centered at 0x80000000.

, mt=4 | , group | |0 ,1.1.,0 | channel | r, notenumber = | ‘ reserved

| _ data |

Figure 30 MIDI 2.0 Per-Note Pitch Bend Message

Version 1.0 Page 30 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data

Attribute Type and Attribute Data fields enable a MIDI 2.0 Protocol Note On or Note Off message to address
more properties than a MIDI 1.0 Protocol Note On or Note Off message. Those properties might be defined
as articulation information, pitch information, or any other performance data such as strike position on a
drum or cymbal.

The currently defined Attribute Types are:
Table 5 Defined Attribute Types for MIDI 2.0 Note On & Note Off

Attribute Type Definition Notes
0x00 No Attribute Data Sender shall set Attribute Value to 0x0000
Receiver shall ignore Attribute Value
0x01 Manufacturer Specific Interpretation of Attribute Data is determined by manufacturer
0x02 Profile Specific Interpretation of Attribute Data is determined by MIDI-CI Profile in use
0x03 Pitch 7.9 See Section 4.2.14.3
0x04 — OxFF Reserved Do not use

Attribute Type 0x00: No Attribute Data

In a Note On/Off message with no attribute data, the Attribute Type shall be set to 0x00 and the Attribute
Data shall be set to 0x0000.

Attribute Type 0x01: Manufacturer Specific Data (and Unknown Data Type)

If a Sender transmits Attribute data that does not conform to any defined Attribute Types, then it should set
the Attribute Type to 0x01. If a Sender transmits Attribute data but the type of data is unknown, then it
should set the Attribute Type to 0x01.

Attribute Type 0x02: Profile Specific Data

A MIDI-CI Profile [MMAO02] might optionally specify its own use for the Attribute Type and Attribute data
fields. When such a Profile is in use, the Sender shall set the Attribute Type field to 0x02, and the Sender and
Receiver shall behave as required by the Profile. This mechanism is intended for Profiles that might be less
commonly used and do not warrant the dedication of a whole MIDI 2.0 Attribute Type.

Note: Alternatively, a Profile might define another Attribute Type that is defined for more specific use by that one
Profile only.

The application of an Attribute Type value might be defined by MMA/AMEI in a MIDI-CI Profile
specification. For example, a drum Profile might define an Attribute Type as “Strike Position” with the
Attribute Data value declaring the position from center of drum/cymbal to outer edge. An orchestral string
Profile might define Attribute values to be used as Articulation choice such as Arco, Pizzicato, Spiccato,
Tremolo, etc. Such cases generally require assigning 1 of the 256 available Attribute Types for use by that
Profile. Some Profiles might be able to share some common Attribute types.

Attribute Type 0x03: Pitch 7.9

When using this Attribute Type, the Note Number should be treated as a Note Index only; it does not imply
any scale or pitch. Pitch is a Q7.9 fixed-point unsigned integer that specifies a pitch in semitones. See
Section 4.2.14.3 for implementation details, including interaction with other messages that influence or
determine pitch.

Version 1.0 Page 31 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.14 MIDI 2.0 Notes and Pitch

The MIDI 2.0 Protocol preserves all the tuning definitions of the MIDI 1.0 Protocol, including Note Number,
MIDI Tuning Standard, Master Tuning RPN 01 and RPN 02, and Pitch Bend. In addition, the MIDI 2.0
Protocol adds new mechanisms for Per-Note Tuning and Pitch control.

Pitch of a Note is determined by any combination of the following message components, some of which
override (take priority over) others:

o Messages that Set the Default Pitch as done in the MIDI 1.0 Protocol (pitch is only roughly defined):
e Note On with Note Number
o Messages that Set Pitch (override Default) with Persistent State for Subsequent Note Ons:

e MIDI Tuning Standard
o Registered Per-Note Controller #3: Pitch 7.25

e Messages that Set Pitch (override Default) for One Note Only:
e Note On With Attribute #3 Pitch 7.9
o Messages that Modify Pitch Relatively from Any EXxisting Pitch State:

e Master Tuning RPN 01 and RPN 02
e Per-Note Pitch Bend
e Pitch Bend

Note: There might be other messages, from among the currently reserved messages, or mechanisms defined by
MMA/AMEI in the future that also determine pitch. Such messages or mechanisms might be defined in future
revisions of the MIDI 2.0 Protocol, MIDI-CI Profile specifications, or Articulation Types, or other expansions of
MIDI.

Note: Receivers that select samples for playing a note based on Note Number might choose to instead select
samples based on the first 7 bits of the pitch data in the last valid Registered Per-Note Controller #3: Pitch 7.25 or
in the Note On With Attribute #3 Pitch 7.9.

4.2.14.1 MIDI Tuning Standard

The MIDI 1.0 Protocol and the MIDI 2.0 Protocol both support the existing MIDI Tuning Standard, which is
formatted as a System Exclusive message. For fundamental functions and details of MIDI Tuning Standard,
see the MIDI 1.0 Specification [MMAO1].

Version 1.0 Page 32 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.2.14.2 MIDI 2.0 Registered Per-Note Controller #3: Pitch 7.25
Registered Per-Note Controller #3 is defined as Pitch 7.25. The message’s 32-bit data field contains:

e 7 bits: Pitch in semitones, based on default Note Number equal temperament scale
e 25 hits: Fractional Pitch above Note Number (i.e., fraction of one semitone)

Pitch is a Q7.25 fixed-point unsigned integer that specifies a pitch in semitones. The integer part shall be
interpreted as if it were the pitch implied by the MIDI 1.0 Note Number as defined by the MIDI 1.0
Specification [MMAQ1] in a 12-tone equal tempered scale with A=440 (Note number 69 [0x45]). The
fractional part is a fraction of one semitone.

A Receiver that is capable of receiving Registered Per-Note Controller #3: Pitch 7.25 is free to interpret and
respond to any number of bits of tuning resolution that the Receiver can support. Support for all 25 bits of
fractional pitch resolution is not mandated. However, at least 9 bits should be supported (strongly
recommended).

Pitch Bend and Per-Note Pitch Bend act as offsets from the pitch set by Registered Per-Note Controller #3:
Pitch 7.25.

Important: The Pitch set by this Registered Per-Note Controller #3: Pitch 7.25 overrides the pitch set by
previous MIDI Tuning Standard (MTS) messages. Controllers create persistent state, so all notes that follow
this message use the tuning of the Registered Per-Note Controller #3: Pitch 7.25, unless they have other
tuning information in the Note On message.

Two Typical Uses of Registered Per-Note Controller #3: Pitch 7.25:

o Registered Per-Note Controller #3 (Pitch 7.25) modifies the pitch of an individual Note Number. A set of
these messages for multiple Note Numbers can be used to define a complete tuning table for any and all
128 Note Numbers.

o Registered Per-Note Controller #3 (Pitch 7.25) can also be used to control pitch in real time throughout
the life cycle of a note.

4.2.14.3 MIDI 2.0 Note On With Attribute #3 Pitch 7.9
Attribute Type #3 is defined as Pitch 7.9. The 16-bit Attribute Value field contains:

e 7 bits: Pitch in semitones, based on default Note Number equal temperament scale
e 9 Dits: Fractional pitch above Note Number (i.e, fraction of one semitone)

When using this Attribute Type, the Note Number should be treated as a note index only; it does not imply
any scale or pitch. Attribute Pitch is a Q7.9 fixed-point unsigned integer that specifies a pitch in semitones.
The integer part shall be interpreted as if it were the pitch implied by the Note Number as defined by the
MIDI 1.0 Specification [MMAOQ1] in a 12-tone equal tempered scale with A=440 (Note number 69 [0x45]).
The fractional part is a fraction of a semitone. That has a resolution of 1/512 semitones, which provides an
accuracy of approximately 0.2 cents.

Pitch Bend and Per-Note Pitch Bend act as offsets from the Attribute #3: Pitch 7.9.

Important: The Pitch set by this Attribute Pitch #3: 7.9 overrides the pitch previously set or implied by other
mechanisms such as Registered Per-Note Controller #3: Pitch 7.25 and the MIDI Tuning Standard (MTS).
This override is valid only for the one Note containing the Attribute #3: Pitch 7.9; it is not valid for any
subsequent Notes.

Version 1.0 Page 33 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.3 System Common and System Real Time Messages

System Common and System Real Time messages contain the same data as the message definitions in the
MIDI 1.0 Specification [MMAO1].

System Messages in the MIDI 1.0 Protocol are 1, 2, or 3 bytes long. The same messages in the UMP Format
are formatted to fit in a single 32-bit UMP.

Messages shorter than 3 bytes in the MIDI 1.0 Protocol have unused bytes in the UMP. These unused bytes
are Reserved, shall be set to zero, and shall not be used because they might be defined by MMA/AMEI in
future revisions of the UMP or MIDI protocols.

System Exclusive Messages are a unigque type of System Message, and are specified in Section 4.4. Status
values OxFO0 and OxF7, which in Non-UMP MIDI 1.0 Systems are used with System Exclusive messages, are
not used for UMP System Exclusive; instead, they are reserved.

| | mt=1 | , group | | | status | | MIDI 1.0 byte 2 or reserved | MIDI 1.0 byte 3 or reserved |

Figure 31 System Message General Format
Table 6 indicates which System Common and System Real Time Messages use this UMP Format.

Table 6 Messages that use System Message General Format

Message Status MIDI 1.0 Byte 2 and 3 or Reserved
Reserved O0xFO Reserved Reserved
MIDI Time Code OxF1 Onnndddd Reserved
Song Position Pointer OxF2 onmr* Oommmmmmm?*
Song Select 0xF3 0sssssss Reserved
Reserved OxF4 Reserved Reserved
Reserved OxF5 Reserved Reserved
Tune Request OxF6 Reserved Reserved
Reserved OxF7 Reserved Reserved
Timing Clock OxF8 Reserved Reserved
Reserved O0xF9 Reserved Reserved
Start OxFA Reserved Reserved
Continue OxFB Reserved Reserved
Stop OxFC Reserved Reserved
Reserved OxFD Reserved Reserved
Active Sensing OXFE Reserved Reserved
Reset OxFF Reserved Reserved

* Note: Song Position Pointer data is presented with LSB before MSB, as in the MIDI 1.0 Protocol.

Version 1.0 Page 34 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.4 System Exclusive (7-Bit) Messages

UMP System Exclusive messages carry the same data payload as MIDI 1.0 Protocol System Exclusive
messages, and can be translated directly to and from MIDI 1.0 Protocol System Exclusive Messages.

The MIDI 1.0 Protocol bracketing method with OxFO Start and OxF7 End Status bytes is not used in the UMP
Format. Instead, the SysEx payload is carried in one or more 64-bit UMPs, discarding the 0xF0 and OxF7
bytes. The standard ID Number (Manufacturer ID, Special ID 0x7D, or Universal System Exclusive 1D),
Device ID, and Sub-1D#1 & Sub-1D#2 (if applicable) are included in the initial data bytes, just as they are in
MIDI 1.0 Protocol message equivalents.

System Exclusive Messages use Message Type 0x3.

m;=3 ‘ | , group | | status |

| # of bytes 0 ,data/ reserved

0 data / reserved

0 data/reserved, 0 data / reserved, 0 ,data/ reserved,

0 data / reserved,

Figure 32 System Exclusive (7-Bit) Message Format

status

The 4-bit Status field determines the role of each UMP in a System Exclusive message:

Table 7 Status Field Values for System Exclusive (7-Bit) Messages

Status Field Value UMP Type
0x0 Complete System Exclusive Message in one UMP
0x1 System Exclusive Start UMP
System Exclusive Continue UMP
0x2 There might be multiple Continue UMPs in a single
message.
0x3 System Exclusive End UMP

A short System Exclusive message might fit into one UMP. Other System Exclusive messages might

span multiple UMPs.

Every System Exclusive Message shall be in one of two formats:

1. A Complete System Exclusive Message in one UMP

Or

2. Begin with a System Exclusive Start UMP and terminate with a System Exclusive End UMP.
Optional System Exclusive Continue UMPs may be used between the Start and End UMPs to
provide sufficient payload space for any data set.

of bytes

This declares the number of valid data bytes in each UMP, starting with the byte after the # of bytes
field through to the end of the 64-bit UMP (i.e., O to 6 bytes).

Any unused bytes in the UMP are reserved, and shall be set to zero.

Note: Each System Exclusive UMP may contain fewer than 6 bytes of data. A Start or Continue with
fewer than 6 bytes does not signify a message end.

Version 1.0

Page 35

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.4.1 Limitations of Interspersing Other Messages with System Exclusive UMPs

A significant feature of UMP System Exclusive Messages is direct compatibility with MIDI 1.0 Protocol
System Exclusive Messages in all MIDI protocols and all MIDI systems.

To preserve robust connection to all MIDI devices and systems, Senders shall obey the following data rules
of the MIDI 1.0 Protocol that govern interspersing other messages and termination of System Exclusive
within a Group:

e The Sender shall not send any other Message or UMP between the Start and End of the System
Exclusive Message, except for System Exclusive Continue UMPs and System Real Time Messages.

o System Real Time Messages and JR Clock Messages may be inserted between the UMPs of a System
Exclusive message, in order to maintain timing synchronization.

o If any Message or UMP other than a System Real Time Message is sent after a System Exclusive Start
UMP and before the associated System Exclusive End UMP, then that UMP shall terminate the System
Exclusive Message.

Version 1.0 Page 36 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.5 System Exclusive 8 (8-Bit) Messages

System Exclusive 8 messages have many similarities to the MIDI 1.0 Protocol’s original System Exclusive
messages, but with the added advantage of allowing all 8 bits of each data byte to be used. By contrast, MIDI
1.0 Protocol System Exclusive requires a 0 in the high bit of every data byte, leaving only 7 bits to carry
actual data. A System Exclusive 8 Message is carried in one or more 128-bit UMPs with Message Type 0x5.

Note: System Exclusive 8 Messages cannot be translated to Non-UMP MIDI 1.0 Systems. Many MIDI

applications will continue to use traditional System Exclusive (7-bit) Messages (Section 4.4) for
compatibility across a wide range of MIDI devices. System Exclusive 8 is suitable for applications that only

apply to devices that use the UMP Format.

The initial data bytes found in MIDI 1.0 Protocol System Exclusive messages are included in the bytes
directly following the Stream ID in System Exclusive 8. These bytes are Manufacturer ID (including
Special ID 0x7D, or Universal System Exclusive 1Ds), Device ID, and Sub-1D#1 & Sub-1D#2 (if

applicable).

Manufacturer ID numbers, which are 7-bit and 21-bit values in the MIDI 1.0 Protocol, are encoded in a 16-
bit identifier (MfrID, see Section 4.7) for System Exclusive 8 messages.

! mF=5 ! | | 9rqup | | Status | | #Of lpyte§ || Stregm iq ! ! ! ‘datg/rgaser‘ved‘ !
| data/reserved, | datp/reserved, | ,data/reserved | ,data/reserved,
, ,data/reserved , ,data/reserved, , ,data/reserved , ,data/reserved,
| ,data/reserved | data/reserved | data/reserved, | data/reserved
Figure 33 System Exclusive 8 (8-Bit) Message Format
status

The 4-bit Status field determines the role of each UMP in a System Exclusive 8 message:

Table 8 Status Field Values for System Exclusive 8 (8-Bit) Messages

Status Field Value UMP Type
0x0 Complete System Exclusive 8 Message in one UMP
0x1 System Exclusive 8 Start UMP
0x2 System I_Exclusive 8 _Continue_ UMP _ _
There might be multiple Continue UMPs in a single message.
0x3 System Exclusive 8 End UMP

A short System Exclusive 8 message might fit into one UMP. Other System Exclusive 8 messages

span multiple UMPs.

Every System Exclusive 8 Message shall be in one of two formats:

1. A Complete System Exclusive 8 Message in one UMP

Or

2. Begin with a System Exclusive 8 Start UMP, and terminate with a System Exclusive 8 End
UMP. Optional System Exclusive 8 Continue UMP may be used between Start and End UMPs
to provide sufficient payload space for any data set.

Version 1.0

Page 37

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

of bytes

This 4-bit field declares the number of valid data bytes in each UMP, starting from and including the
Stream ID through to the end of the 128-bit UMP (i.e., 1 to 14 bytes). Stream ID is mandatory (1
byte), so a value of 0x0 is not valid in the # of bytes field.

Unused bytes in the UMP are reserved, and shall be set to zero.

Note: Each System Exclusive 8 UMP may contain fewer than 14 bytes of data. A Start or Continue with
fewer than 14 bytes does not signify a message end.

stream id
Interleaving of multiple simultaneous System Exclusive 8 messages is enabled by use of an 8-bit
Stream ID field.

e A device which supports only one stream shall use 0 as the Stream ID.

o If a Sender wants to use more than one simultaneous stream, then the Sender shall first perform a
MIDI-CI Property Exchange inquiry to determine how many simultaneous Stream IDs are
supported by the Receiver (N). If either the Sender or the Receiver does not support Property
Exchange to discover the Receiver’s support for more than one simultaneous Stream, then the
Sender shall not send more than one simultaneous stream.

o For devices that support multiple streams, only Stream I1Ds from 0 to (N-1) shall be used.

o Stream IDs allow for simple mergers to be created. Streams from multiple sources can be
merged, with the Merger device reassigning Stream IDs as necessary. Before a merger sends
simultaneous System Exclusive 8 messages merged from various sources, it shall first perform a
MIDI-CI Property Exchange inquiry to determine how many simultaneous Stream IDs are
supported by the Receiver (N).

4.5.1 Unexpected End of Data

If the Sender runs out of payload data before sending a System Exclusive 8 End UMP, then the Sender shall
send a System Exclusive 8 End UMP with all data bytes set to zero, and the # of bytes field set to either of
the two following values:

o 0x1 if the Sender knows that the previous data in the SysEx8 message is valid.

o OxF if the previous data is an incomplete message, or if the resulting quality of previous data is
unknown.

Note: Since System Exclusive 8 Messages cannot be translated to Non-UMP MIDI 1.0 Systems, there are no
prohibitions against interspersing other message UMPs, as there are with the 7-bit System Exclusive Messages

(see Section 4.4.1).

Version 1.0 Page 38 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.6 Mixed Data Set Message

Mixed Data Set messages can carry any data payload, without the 7-bit restriction of the MIDI 1.0 Protocol.
This mechanism is targeted primarily for use with large data sets, including non-MIDI data.

Note: Small data sets should continue to use System Exclusive (7-Bit) Messages (Section 4.4) for
compatibility across a wide range of MIDI devices, or use System Exclusive 8 (8-Bit) Messages

(Section 4.5) for applications that only apply to devices that use the UMP Format.

Note: Mixed Data Set Messages cannot be translated to non-UMP MIDI 1.0 Systems. As a result, Mixed
Data Set Messages are only suitable for applications that use the UMP Format.

The Mixed Data Set can carry non-MIDI data payloads such as XML or device firmware updates. The
format of the data payload itself is not defined by this document, only the header and payload UMP Formats
are defined.

Mixed Data Set messages can carry industry-standardized payloads using Universal System Exclusive IDs
defined by MMA/AMEI in the header. Devices can use Mixed Data Set messages to carry any proprietary
data using the device manufacturer’s own Manufacturer ID.

Data is sent in 128-bit UMPs. Multiple 128-bit UMPs make up one Mixed Data Set Chunk. Each Mixed Data
Set Chunk has one Mixed Data Set Header UMP, followed by multiple Mixed Data Set Payload UMPs.
Multiple Mixed Data Set Chunks make up the total Mixed Data Set.

Mixed Data Set Messages use Message Type 0x5.

[y
T L mt=5 I _group | I status=8 I . mds id| number of valid bytes in this chunk
Header number of chunks in mixed data set | ,_number oflthis,chunk
‘manufacturer id, device id

y I I L sub id #1 I ! L L sub id #2
A

| mt=5 _group status=9 _mds id | \

o o | ' first data payload UMP |

I Il I I ‘ I ‘ 1 l l 1 1 1 | ‘

Mixed
‘ ‘ | Data Set
Message
Chunk
Chunk F additional data payload UMPs as needed =
Payload

| mt=5 _ group | status=9 . mds id, Lo

' last data payload UmMP

| A

Figure 34 Mixed Data Set Chunk Format

Note: The total Mixed Data Set Message may require multiple Chunks.

Version 1.0 Page 39 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

mt Message Type
0x5: Data Messages

group
Group
status

0x8: Mixed Data Set Header
0x9: Mixed Data Set Payload

mds id:
Each Mixed Data Set Message is assigned an MDS ID, included in every Chunk to clearly tie

multiple parts together. This also differentiates between up to 16 simultaneous Mixed Data Set
messages within one Group.

f valid | in thi I

This field contains the size of this Mixed Data Set Message Chunk in bytes including the header. The
number of Message Payload UMPs in this Chunk is calculated as required to deliver the full Number
of Valid Bytes in This Message Chunk field.

If Number of Valid Bytes in This Message Chunk is not an integer multiple of 16, then the Sender
shall use pad bytes at the end of the last data payload to fill out the UMP. The pad bytes are set to
zero and are reserved.

f chunks in mixed

This declares the number of Chunks expected in the data set. The Sender shall set this value to zero
if the number of chunks is unknown (e.g. for streaming data). However, when the number of chunks
is unknown, the final Chunk shall declare a new value for Number of Chunks in Mixed Data Set
which matches the Chunk count value declared in the Number of This Chunk field.

number of this chunk
The Sender shall assign each Chunk of the message an incrementing Chunk count number, starting
from 1.
The end of the messages is reached when (Number of this Chunk = Number of Chunks in Mixed
Data Set).
See Section 4.6.1 for exception cases for the ending of a Mixed Data Set.
manufacturer id
This field contains Manufacturer ID. The ID is encoded in a 16-bit ID (MfrID) per Section 4.7.
o

If the Manufacturer ID field contains a Universal System Exclusive ID, then this Device ID field is
intended to indicate which device in the system is supposed to respond.

The device ID OXFFFF, sometimes referred to as the ‘all call’ Device ID, is equivalent to the Ox7F
value in the MIDI 1.0 Protocol and is used to indicate that all devices should respond. For more
details, see Device ID in the MIDI 1.0 Specification [MMAOL].

If the Manufacturer ID is manufacturer specific, then the manufacturer may define the use of this
field.

Version 1.0 Page 40 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

sub id #1
If the Manufacturer ID field contains a Universal System Exclusive ID, then other MMA/AMEI

specifications related to that Universal System Exclusive ID define the Sub ID #1 field. For more
details, see Sub ID #1 in the MIDI 1.0 Specification [MMAO1].

If the Manufacturer ID is manufacturer specific, then the manufacturer may define the use of this
field.

sub id #2
If the Manufacturer ID field contains a Universal System Exclusive ID, other MMA/AMEI

specifications related to that Universal System Exclusive ID define the Sub ID #2 field. For more
details, see Sub ID #2 in the MIDI 1.0 Specification [MMAO1].

If the Manufacturer ID is manufacturer specific, then the manufacturer may define the use of this
field.

4.6.1 End of Mixed Data Set

Under normal circumstances the Mixed Data Set ends and the current MDS ID is closed when (Number of
this Chunk = Number of Chunks in Mixed Data Set).

If Sender runs out of data or is otherwise unable to complete a data set before reaching the expected end of
the Mixed Data Set, then the Sender shall terminate the data set and close the MDS ID in either of the
following two ways:

o |f the Sender knows that the data in this Mixed Data Set Message Chunk is valid, then this final Chunk
shall declare a new value for the Number of Mixed Data Set Message Chunks in Mixed Data Set
which matches the Number of this Chunk.

o If the Sender does NOT know that the data already sent in this Mixed Data Set Message is valid, then for
this final Chunk it shall set the Number of this Chunk field to Zero.

If the Sender runs out of payload data before sending a final Mixed Data Set Message Chunk as above, then
the Sender should send one more Mixed Data Set Message Chunk with Number of Bytes in This Message
Chunk set to 16 (header bytes only) and set the Number of Chunks in Mixed Data Set and Number of
this Chunk fields as defined above.

Note: Mixed Data Set Messages cannot be translated to Non-UMP MIDI 1.0 Systems. Therefore, there are no
prohibitions against interspersing other message UMPs, as there are with the 7-bit System Exclusive Messages

described in Section 4.4.1.

Version 1.0 Page 41 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.7 16-Bit Manufacturer IDs

The Manufacturer ID used in System Exclusive 8 and Mixed Data Set messages encodes the 7-bit and 21-bit
Manufacturer 1Ds and Universal System Exclusive 1Ds from the MIDI 1.0 Protocol into a 16-bit ID (MfriD).
MMA/AMEI might define other messages in the future which also use this format.

MIDI 1.0: 7 Bit Manufacturer ID

16 Bit Manufacturer ID

o] overzo00, [[o] 7T bye2
MIDI 1.0: 21 Bit Manufacturer ID
o] , tver=ow0 [[o] | byep |[o] ., oyes
16 Bit Manufacturer ID
L] ovet, | [o] | bye2

Figure 35 Manufacturer ID Translations

7-Bit (1-byte) Manufacturer IDs

All MIDI 1.0 style 7-bit Manufacturer IDs are expanded to 16 bits, with the highest byte set to 0x00 followed
by the lowest byte set to same value as in the MIDI 1.0 format.

21-Bit (3-byte) Manufacturer IDs

All MIDI 1.0 style 21-bit Manufacturer 1Ds have their highest byte set to 0x00. This first byte 0x00 is
replaced by the most significant bit set high in the lowest byte of the new format. The 7-bit values from byte
2 and byte 3 of the 21-bit Manufacturer ID are copied into the highest and lowest byte of the new format,
respectively.

Special IDs

Special ID values are encoded into the 16-bit format following the format as shown above for all other 7-bit
Manufacturer 1Ds:

Table 9 16-Bit Values for 7-Bit Special IDs

Special ID 7-Bit Value 16-Bit Value
Non-Commercial / Research
No Public Release Ox7D 0x007D
Universal System Exclusive Non-Real Time OX7E 0x007E
Universal System Exclusive Real Time Ox7F 0x007F
Reserved 0x00 0x0000

Version 1.0 Page 42 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Example Conversion Code

o Convert MIDI 1.0 Protocol 3-byte Sys Ex ID (MFID_1, MFID_2, MFID_3) to MIDI 2.0 Protocol
16-bit format (MfriD)

if (MFID_1 == 0x00)
// 3-Byte format: use Bytes 2 & 3, and set high bit
MfrID = 0x8000 | (MFID 2 << 8) | MFID 3;

else

// 1-Byte format: use Byte 1 only
MfrID = MFID 1;

e Convert MIDI 2.0 Protocol 16-bit MfrID to three MIDI 1.0 Protocol Sys Ex ID bytes (MFID_1,
MFID_2, MFID_3)

if ((MfrID & 0x8000) == 0) {
// 1-Byte format

MFID 1 = (MfrID & 0x007F);
MFID 2 = 0;
MFID 3 = 0;
} else {
// 3-Byte format
MFID 1 = 0;
MFID 2 = ((MfrID & O0x7F00) >> 8;
MFID 3 = (MfrID & 0x007F);

Table 10 MIDI 2.0 MfrID Conversions of Example Existing Manufacturer IDs

Manufacturer MIDI 1.0 1- or 3-Byte ID mfid 32 MIDI 2.0 16-bit MfrID
MFID_1 MFID_2 MFID_3 - MfrID MfrID_hi MfriD_lo
Moog 0x04 — — 0x00040000 | 0x0004 0x00 0x04
Midi 9 0x09 — — 0x00090000 | 0x0009 0x00 0x09
Yamaha 0x43 - - 0x00430000 | 0x0043 0x00 0x43
Mark of the Unicorn 0x00 0x00 0x3b 0x0000003b | 0x803b 0x80 0x3b
imitone 0x00 0x02 0x13 0x00000213 | 0x8213 0x80 0x3b
Sensel Inc 0x00 0x02 ox1d 0x0000021d | 0x821d 0x82 Ox1d
Samick 0x00 0x20 0x25 0x00002025 | 0xa025 Oxa0 0x25
Native Instruments 0x00 0x21 0x09 0x00002109 | Oxal09 Oxal 0x09
Bome Software 0x00 0x21 0x32 0x00002132 | 0xal32 Oxal 0x32

Version 1.0 Page 43 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.8 Utility Messages

The UMP Format provides a set of Utility Messages. Utility Messages include but are not limited to NOOP
and timestamps, and might in the future include UMP transport-related functions.

om0, | oo, [staws | | datg or reserved |

Figure 36 Utility Message General Format

4.8.1 NOOP
A NOOP (no operation) message is provided in the Utility Messages Message Type, using opcode zero.

[om0, [,oqup | status=0 | | 0x00000

Figure 37 NOOP Message Format

4.8.2 Basic Timestamp Format

Timestamp messages in Message Type 0 can be either stand-alone messages, or prepended to any non-
Timestamp Message. When the Timestamp is prepended to another message, the Timestamp message is sent
in a separate UMP which is prepended to another UMP.

The Status field describes the application of the message and the contents, semantics, and application of the
Timestamp Data field, whether stand alone or prepended to another message.

Example 1: Timestamps Stand Alone Clock Message

| mt 5 0xQ | L group | | Lstatus | | | ftimgstamp datal |

Example 2: Timestamped MIDI 2.0 Channel Voice Message (uses 2 UMPs)
Timestamp (328t UMPE| o000 | grop, | smws. | . . . | . . . gimesempdam
MIDI 2.0 CV Message mt =5 0x4 | aroup | | | status, L L L1 index ’?AG-BII Timestamped
(64-Bit UMP) essage
| L | ddta | [
Example 3: Timestamped System Message (uses 2 UMPs)
Timestamp (32-Bit UMP):| ¢ = oxg | group | | status | | L o0 o |4y | ftimestamp datal 4 o 4 64-Bit Timestamped
. X Message
System Message (32-Bit UMP): mt = 0x1, | group |)) | status | | . . . | ddta | ag

Figure 38 Timestamp Format Examples

Version 1.0 Page 44 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.8.3 Jitter Reduction (JR) Timestamps (and JR Clock)

Timestamps with Status Set to 0x1 and 0x2
This mechanism defines simple clock synchronization for jitter reduction:

e Sender sends clock messages from time to time so that the Receiver knows the current Sender’s time

e Clock messages allow the Receiver to estimate the maximum jitter, and to continuously adapt to drift

e Sender can precisely specify the timestamp for every non-timestamp message: the render time (in
Sender’s time) of the following message(s)

e Thisis asimple, peer to peer mechanism, not a system-wide synchronization

Goals of JR Timestamps:
1. Capture a performance with accurate timing
2. Transmit MIDI Messages with accurate timing over a system that is subject to jitter

3. Does not depend on system-wide synchronization, master clock, or explicit clock synchronization
between Sender and Receiver.

Note: There are two different sources of error for timing: Jitter (precision) and Latency (sync). The Jitter Reduction
Timestamp mechanism only addresses the errors introduced by jitter. The problem of synchronization or time
alignment across multiple devices in a system requires a measurement of latency. This is a complex problem and
is not addressed by the JR Timestamping mechanism.

4.8.4 MIDI-CI Protocol Negotiation and JR Timestamps

MIDI-CI Protocol Negotiation allows devices to agree to use a MIDI Protocol without JR Timestamps, or a
MIDI Protocol with JR Timestamps. Using the MIDI-CI Protocol Negotiation mechanism, JR Timestamps
are only used when both devices indicate support for JR Timestamps.

MIDI-CI Protocol Negotiation determines the choice of protocol and use of JR Timestamps in both
directions between two devices. If JR Timestamps are being used between two devices, they shall be used
bidirectionally.

If devices agree to use JR Timestamps, then the devices shall continue to use JR Timestamps with every
message exchanged in both directions until a new MIDI-CI Protocol Negotiation is performed. If devices
agree to use a MIDI Protocol without JR Timestamps, then neither device shall send JR Timestamps.

Each Group has its own JR Timestamp time domain, based on the time of the Sender using that Group. JR
Timestamps are in the time domain of the Sender. While this is implementation specific, it is likely that a
Sender will use a single, common source clock when sending to multiple Groups, so JR Timestamps would
all be within the same time domain. If a Receiver cannot handle multiple JR Timestamps time domains, from
multiple Senders on multiple Groups, then it should negotiate to use the protocol with JR Timestamps on
only one Group.

If a device supports JR Timestamps, then it shall also support operation without them.

Version 1.0 Page 45 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.8.5 JR Clock Message Format

, mt=0 | , group | | 0,0 0 1 | reserved | , sender_clock_time

Figure 39 JR Clock Message Format
status

0x1, JR Clock
reserved

Reserved for future definition by MMA/AMEL. It shall be set to zero by the Sender, and ignored by
the Receiver.

sender clock time
A 16-bit time value in clock ticks of 1/31250 of one second (32 psec, clock frequency of 1 MHz /
32).
The time value is expected to wrap around every 2.09712 seconds.
To avoid ambiguity of the 2.09712 seconds wrap, and to provide sufficient JR Clock messages for
the Receiver, the Sender shall send a JR Clock message at least once every 250 milliseconds.

4.8.6 JR Timestamp Message Format

| , mt=0 | , group | | 0,0 1 0 | reserved | sender_clock_timestamp |

Figure 40 JR Timestamp Message Format
status

0x2, JR Timestamp
reserved

Reserved for future definition by the MMA/AMEL. It shall be set to zero by the Sender, and ignored
by the Receiver.

sender clock timestamp
A 16-bit time value in clock ticks of 1/31250 of one second (32 psec, clock frequency of 1 MHz /
32).

Version 1.0 Page 46 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.8.7 JR Clock Mechanism

The JR Clock message defines the current time of the Sender. The Sender shall send the JR Clock message
as close as possible to the time stated in the Time field. The Sender sends independent JR Clock messages,
not related to any other message. JR Clock time is monotonically increasing except when it wraps around.

The Sender shall send a JR Clock message at least once every 250 milliseconds. The JR Clock messages will
be received with the same jitter as other messages, so the Receiver uses JR Clock messages to discover the
jitter characteristics of the connection. The Receiver may use smoothing or averaging of time from each JR
Clock message compared to reception time of the JR Clock message UMP to determine a steady JR Clock to
render against. Then, the Receiver can also determine a suitable delay, based on the discovered jitter, that
shall then be applied to effectively render messages with increased timing accuracy.

A Sender may send additional JR Clock messages with a shorter period to help the Receiver analyze the jitter
and calculate the current time. Because the Sender is not mandated to send messages at an exact period (only
“at least once every 250 ms” is required), the Receiver should not draw any conclusions from the interval
between JR Clock messages.

There is no requirement that Senders or Receivers support the full resolution (of 1/31250 ticks per second
accuracy).

4.8.8 JR Timestamp Mechanism

The JR Timestamp message defines the time of the following message(s). It is a complete message. It is not a
part of another message. The timing of every non-JR Timestamp message is set by the most recent preceding
JR Timestamp.

A JR Timestamp shall be sent before every non-JR Timestamp message, except in the case of simultaneous
messages. If two or more messages are intended to be rendered simultaneously then they can be preceded by
a single JR Timestamp. “Simultaneous” in this case is defined as being within the JR Timestamp tick
(1/31250 seconds). If a message does not have its own, immediately preceding JR Timestamp, the last
received JR Timestamp applies to the message.

JR Timestamps are specified in the Sender’s clock domain as communicated via JR Clock Messages. For
real-time scheduling, the Receiver should convert the time for each message from the Sender's clock domain
to the Receiver's clock domain. The Receiver shall render events at the time referenced against the time of
the JR Clock Mechanism described above.

Sender: JR Timestamped messages shall be sent in the order in which they are intended to be rendered.
Receiver: JR Timestamped messages shall be rendered in the order in which they are received.

There is no requirement that Senders or Receivers support the full resolution (of 1/31250 ticks per second
accuracy).

Receiver Handling of Error Cases

o If a Receiver has not yet received any JR Clock messages but receives other messages, whether with JR
Timestamps or not, the Receiver shall render those messages as soon as possible.

o If a Receiver that does not support JR Timestamps receives a JR Timestamp message, it should render
the message as soon as possible and initiate a MIDI-CI Protocol Negotiation to switch the Sender to a
protocol without JR Timestamps.

4.8.9 JR Timestamps and JR Clock Recommended Practice

When a Sender first starts sending JR Clock messages, it could send many of them for a few seconds to help
the Receiver measure the jitter on the system.

Version 1.0 Page 47 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

4.8.10 Translation to/from the MIDI 1.0 Protocol

This specification does not require all Translators to support JR Timestamps. If a Translator supports JR
Timestamps the Translator relies on MIDI-CI Protocol Negotiation to determine whether to use JR
Timestamps on each connection.

JR Clock and JR Timestamps cannot be translated to Non-UMP MIDI 1.0 Systems, but they can be used by a
Translator to improve timing. When translating from a connection with JR Timestamps to a connection that
does not support JR Timestamps, the Translator shall schedule the MIDI 1.0 Protocol messages according to
the received JR Timestamps. When translating from a connection that does not support JR Timestamps to a
connection with JR Timestamps, the Translator may generate JR Timestamps based on the time of reception.

Version 1.0 Page 48 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix A MIDI 2.0 Registered Per-Note Controllers

The following table lists the MIDI 2.0 Registered Per-Note Controller numbers whose application/function
has been defined.

Table 11 MIDI 2.0 Registered Per-Note Controllers

RPNC

Number Registered Per-Note Controller Name Default Reference
1 Modulation = -
2 Breath - -
3 Pitch 7.25 = Qartinn 4214 9
4-6 Reserved - -
7 Volume - -
8 Balance - -
9 Reserved - -
10 Pan = -
11 Expression — -
12—-69 Reserved - -
70 Sound Controller 1 Sound Variation -
71 Sound Controller 2 Timbre/Harmonic -
Intensity
72 Sound Controller 3 Release Time -
73 Sound Controller 4 Attack Time -
74 Sound Controller 5 Brightness -
75 Sound Controller 6 Decay Time MMA RP-021
76 Sound Controller 7 Vibrato Rate (MMAO4]
77 Sound Controller 8 Vibrato Depth
78 Sound Controller 9 Vibrato Delay
79 Sound Controller 10 Undefined
80-90 Reserved - -
91 Effects 1 Depth Reverb Send Level MMA RP-023
[MMAO5]
92 Effects 2 Depth (formerly Tremolo Depth) — -
93 Effects 3 Depth Chorus Send Level MMA RP-023
[MMAO5]
94 Effects 4 Depth (formerly Celeste [Detune] Depth) - -
95 Effects 5 Depth (formerly Phaser Depth) — -
ggo"’:/r;d Reserved = =
Version 1.0 Page 49 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix B Special Control Change Messages

B.1 Channel Mode Messages: Applicable Channels

MIDI has eight Channel Mode Messages. These are special purpose Control Change messages.

CC#120 All Sound Off
CC#121 Reset All Controllers
CC#122 Local Control
CC#123 All Notes Off
CC#124 Omni Off

CC#125 Omni On

CC#126 Mono On (Poly Off)
CC#127 Poly On (Omni Off)

The UMP Format preserves the fundamental definition of these messages, with added clarifications for
implementation as follows below.

The MIDI 1.0 Specification [MMAO1] states: “These messages are recognized only when sent on the Basic
Channel to which a Receiver is assigned, regardless of the current mode.”

In UMP implementations, Channel Mode messages are defined the same as in the MIDI 1.0 Specification
[MMAO1] within a single Group. Functionality of Mode Messages received in one Group does not apply to
Channels in any other Group in the device.

B.2 Reset All Controllers

The MIDI 2.0 Protocol has newly defined controller types. The function of the Reset All Controllers message
remains as defined by the MIDI 1.0 Specification [MMAO1].

The following new Per-Note controllers are NOT reset by the Reset All Controllers message:

e MIDI 2.0 Registered Per-Note Controllers
MIDI 2.0 Assignable Per-Note Controllers
e MIDI 2.0 Per-Note Pitch Bend

Version 1.0 Page 50 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix C Using MIDI 2.0 Per-Note Messages

The Per-Note Messages of the MIDI 2.0 Protocol (Poly Aftertouch, MIDI 2.0 Per-Note Registered
Controllers, MIDI 2.0 Per-Note Assignable Controllers, and MIDI 2.0 Per-Note Pitch Bend) bring expanded
expression beyond the MIDI 1.0 Protocol. But the assumed statefulness of MIDI controllers, now at the Per-
Note level, brings some new challenges. Per-Note Controllers are shared between all notes that share the
same Note Number.

This appendix examines in depth three implementation options for Per-Note Controllers:

e Shared Per-Note Controllers: Useful for some traditional MIDI instruments, used in a manner similar
to Poly Pressure in the MIDI 1.0 Protocol.
With Per-Note Management Message: Enables increased Per-Note expression capability.
Fully Independent Control with Note Number Rotation mechanism, Per-Note Pitch mechanisms, and

Per-Note Management message: Useful for multitouch devices that allow multiple simultaneous notes on
the same pitch.

C.1 Shared Per-Note Controllers

For the simplest implementation of Per-Note Controllers, notes of the same Note Number share Per-Note
Controllers. Figure 41 shows a typical example where the trailing envelope of Note A shares the Per-note
Controllers that are also controlling Note B.

Note A Life

NoteOn \

NoteOff

/\ Note B Life

N\

NoteOn \

NoteOff
/ \

Per Note Controller

Controls
Both Notes

Figure 41 Two Notes of Same Note Number Share Per-Note Controllers
Per-Note Controller sharing is not problematic on some devices with traditional musical performance
interfaces. This implementation has always been true for the MIDI 1.0 Protocol with Polyphonic Pressure.
With Polyphonic Pressure on a synthesizer keyboard, it is assumed that when you stop playing a note,
Pressure value has returned to a value of zero.

However, this can be a limitation for some instruments which allow multitouch and separate expression on
more than one simultaneously sounding note on the same Note Number. Sequencing/editing in software
might also suffer from problems when notes overlap.

Version 1.0 Page 51 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

C.2 Using a MIDI 2.0 Per-Note Management Message Before Note On to
Reallocate Per-Note Expression

To enable separate control of notes on the same Note Number, the Sender inserts a Per-Note Management
message with Detach bit set before any new Note On message (see Figure 42). The Receiver uses the Per-
Note Management message to detach Per-Note Controllers from any current sounding Notes of the target
Note Number and reset the assignment to the next following Note of the same Note Number.

Note A Life

P
No Per-Note
Control Here

NoteOn \

NoteOff

Il
NoteOff
/|

Note B Life

Per-Note Management Message
Per-Note Managmeent Message

Per Note Controller

Figure 42 Only the Note After the Per-Note Management Message has Per-Note Control

Following the Per-Note Management message, Per-Note controllers are used to set up the upcoming note or
to control it while it is sounding. Note A is no longer controlled by Per-Note Controllers.

Note A might continue to sound while keeping the last known state of controllers that occurred before the
Per-Note Management message.

Note B might optionally reset Per-Note Controller VValues upon receiving the Per-Note Management
message. In this case, if no other Per-Note controllers are sent between the Per-Note Management and the
next Note One, the new Note B uses its default values of all Per-Note controllers.

‘ th4 ‘ | , group | | 1 | 1 | 1 | 1 | ‘chapnel‘ | roo nqte n‘umb‘er | | | optioq flags |D | S

| (ese‘rveq |

Figure 43 D and S Fields in MIDI 2.0 Per-Note Management Message

D: Detach Per-Note Controllers from previous sounding Note(s)
S: Reset (Set) Per-Note Controllers to default values

Version 1.0 Page 52 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

/\ Note A Life >

Pan —\

NoteOn
NoteOff

>

Note B Life >

‘\\\\\\\\\\\

Pan

NoteOn
NoteOff

Per Note Pan = Pan Center
Per-Note Management Message
Per Note Pan = Pan Center

Per-Note Management Message
Per Note Pan = Pan Right

Per Note Pan = Pan Left

Figure 44 Per-Note Management Example with Per-Note Pan

Per-Note Management @Note Number 60

Per-Note Controller @Note Number 60, Pan Left
Note On #60

Per-Note Controller @Note Number 60, Pan Center
Note Off #60

Per-Note Management @Note Number 60

Per-Note Controller @Note Number 60, Pan Right
Note On #60

Per-Note Controller @Note Number 60, Pan Center
Note Off #60

Version 1.0 Page 53 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

C.3 Using Note Number Rotation, Per-Note Pitch, and Per-Note
Management Message for Independent Per-Note Expression

A MIDI 2.0 Protocol Sender can have fully independent control over individual Notes, even applied to
simultaneous Notes on the same pitch. MIDI Polyphonic Expression (MPE) on the MIDI 1.0 Protocol uses a
Channel Rotation mechanism for this kind of flexible expressive control with up to 16 notes of polyphony. In
the MIDI 2.0 Protocol, a Note Number Rotation mechanism can replace the Channel Rotation mechanism for
some applications. This improves on MPE by utilizing only a single MIDI Channel while providing
polyphony of up to 128 notes.

Using the MIDI 2.0 Protocol, the Sender plays Notes with added Pitch data. The added Pitch data overrides
any notion of pitch that might be implied by the Note Number field in the Note On, Note Off, and Per-Note
Controllers. Note Number loses any implication of pitch and only functions as a Note Index.

The Pitch data for each note can come from two different sources:

o Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3)
¢ Note On With Attribute #3 Pitch 7.9 (AttrPitch7.9)

In either case, a Semitone field in the message sets a pitch as a Note Number of the same value might
otherwise imply.

The Sender assigns a Note Number to each note it sends in a rotating fashion. It might try to use the same
value for Note Number as in the Pitch data whenever feasible to serve translation to the MIDI 1.0 Protocol.
Or it might rotate through all 128 Note Number on a Least Recently Used basis to more robustly avoid Per-
Note controller overlap. Or it might use any other scheme it sees fit to assign Note Numbers.

Note Numbers are reused for notes of various pitch. In order guarantee that a new note does not adopt any
state from controllers previously addressed to that Note Number, the Sender sends Per-Note Management
message before sending every Note On message.

Receiver Implementation

Receivers do not necessarily need to know that a rotation scheme is used. They shall respond to the two
standard methods of Pitch control listed above. Many Receivers already do this, in order to support alternate
scales or flexible microtuning. Receivers shall also implement the Per-Note Management message.

Note: Receivers that select samples for playing a note based on Note Number might choose to instead select

samples based on the first 7 bits of the pitch data in the last valid Registered Per-Note Controller #3: Pitch 7.25 or
in the Note On With Attribute #3 Pitch 7.9.

Version 1.0 Page 54 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Sender Implementation

Senders have two choices of source for Pitch Data for each Note, described below as Method 1 and Method
2. The choice between the two methods will largely be determined by the Sender’s user
performance/controller interface.

Method 1: Sender Using Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3)

Some Sender devices’ performance interfaces are designed to provide continuous control over pitch for every
note for the whole life cycle of the note. Such controllers should use the Registered Per-Note Controller #3:
Pitch 7.25 (PNCC#3) to achieve that continuous control.

mt=4 | , group | 0,0 0,0 | chapnel | r note number as index | controller number

| semitqne | | | ﬁractipn qfa§em;ton§ L

Figure 45 MIDI 2.0 Registered Per-Note Controller Message with Controller #3 (Pitch 7.25)

Such devices can then use this pitch controller with Note Rotation and Per-Note Management messages to
achieve independent expressive control over each note. The message sequence for two successive notes that
both play a Middle C might look like this:

Per-Note Management @Note Number 00

PNCC#3 @Note Number 00 Set Pitch 60.0

Note On #00 (Pitch sounds as 60.0)

Several other Per-Note Controllers @Note Number 00
Note Off #00

Per-Note Management @Note Number 0]

PNCC#3 @Note Number 01 Set Pitch 60.0

Note On #01 (Pitch sounds as 60.0)

Several other Per-Note Controllers @Note Number 01
Note Off #01

Because the two notes of the same pitch use different Note Numbers, they can even overlap in time. Multiple
notes can sound simultaneously on the pitch of Middle C, each with its own dedicated set of Per-Note
Controllers.

Version 1.0 Page 55 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Method 2: Sender Using Note On With Attribute #3 Pitch 7.9 (AttrPitch7.9)

Some Sender devices’ performance interfaces are designed to provide continuous control over various
parameters, but pitch is generally constant for the whole life cycle of the note. Such controllers can use the
Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3) as described above. Or such devices can use Note
On messages with AttrPitch7.9 with Note Rotation to achieve independent expressive control over each note.
This alternate mechanism is only suited to applications that do not need to use the Note On Attribute field for
any other purpose.

mt;4

‘l ‘mwp‘|1‘0‘0J| chanpnel r note number gs index | attribute type = Pitch 7.9

\velacity, | semitone | fraction of a semitone

Figure 46 MIDI 2.0 Note On Message with Attribute #3 (Pitch 7.9)

The message sequence of two successive notes that play a Middle C might look like this:

Per-Note Management @Note Number 00

Note On #00 with AttrPitch7.9 = 60.0

Several Per-Note Controllers @Note Number 00
Note Off #00

Per-Note Management @Note Number 01

Note On #01 with AttrPitch7.9 = 60.0

Several Per-Note Controllers @Note Number 01
Note Off #01

Because the two notes use different Note Numbers, they can even overlap in time. Multiple notes can sound
simultaneously on the pitch of Middle C, each with its own dedicated set of Per-Note Controllers.

Version 1.0 Page 56 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix D Translation: MIDI 1.0 and MIDI 2.0 Messages

This section explains how MIDI 1.0 Protocol messages are translated to MIDI 2.0 Protocol messages and
vice versa, including translation between data fields of different sizes. Proper translation is crucial for
preserving intended functionality across a MIDI 1.0 Protocol / MIDI 2.0 Protocol boundary.

There is one strict set of translation rules, the Default Translation Mode, which is compliant with the MIDI
2.0 Specifications. To be compliant, a device must be able to operate in the Default Translation Mode where
it shall follow every rule in Appendix D.1 through Appendix D.3 of this specification.

Devices may optionally make Alternate Translation Modes (i.e., using different translation rules) available as
detailed in Appendix D.4.

Version 1.0 Page 57 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.1 Data Value Translations

In the MIDI 1.0 Protocol, data values are represented by 7-bit or 14-bit numbers. In the MIDI 2.0 Protocol,
data values are represented by 16-bit or 32-bit numbers. This section explains how to convert between these
different resolutions when translating MIDI 1.0 Protocol messages to MIDI 2.0 Protocol messages and vice
versa.

D.1.1 Overview

Default translation of data values shall always scale the value to the full range. For example, this ensures that
continuous controllers always go from minimum to maximum. Discrete enumerations are usually encoded by
dividing the range into sections, where each section represents one enumeration value. This encoding also
survives data scaling (as long as the number of sections does not exceed the data range).

When translating MIDI Protocol 1.0 values, translation should be lossless, in the sense that translating a
MIDI 1.0 Protocol message to a MIDI 2.0 Protocol message and then back to the MIDI 1.0 Protocol should
yield the same or equivalent data as the original MIDI 1.0 Protocol message. Translating MIDI 2.0 Protocol
messages to the MIDI 1.0 Protocol and back to the MIDI 2.0 Protocol will usually result in quantization, due
to the lower resolution of the MIDI 1.0 Protocol.

D.1.2 Core Rules

Minimum/Lowest value is translated to Minimum/Lowest
Maximum/Highest value is translated to Maximum/Highest

For example, a 7-bit value of 127 is translated to a 16-bit value of 65535.

Center Value always translates to Center Value
Center = TRUNC((Highest + 1) / 2)
Table 12 Center Value Examples

. Center Value
Value Size -
Hex Binary

7 bits 0x40 8"b 01000000
14 bits 0x2000 16’b 00100000 00000000
8 bits 0x80 8’b 10000000
16 bits 0x8000 16’b 10000000 00000000
32 bits 0x80000000 | 32'b 10000000 00000000 00000000 00000000

When upscaling, smoothly distribute low resolution values on the range of the high resolution.
The translation algorithm shall yield the same output as the input data when translating:

MIDI 1.0 Protocol = MIDI 2.0 Protocol = MIDI 1.0 Protocol

Note: In some cases, translation in each direction might be performed by independent entities, and in such cases
this result is not mandated.

Version 1.0 Page 58 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.1.3 Upscaling Translation Methods:
For upscaling values to higher resolution, use this algorithm:

e For values from minimum to the center, use simple bit shifting. This ensures smooth increments towards
the center value. The center value remains the center value.

e Use an expanded bit-repeat scheme for the range from center to maximum. This causes the values to
smoothly increase from center to maximum value.

Pseudo Code for the Upscaling Algorithm
(Optimized for readability, not efficiency.)

scaleUp(srcVal, srcBits, dstBits) {
// simple bit shift
uint scaleBits = (dstBits - srcBits);
uint bitShiftedValue = srcVal << scaleBits;
uint srcCenter = 2" (srcBits-1);
if (srcVal <= srcCenter) {
return bitShiftedvValue;
}
// expanded bit repeat scheme
uint repeatBits = srcBits - 1;
uint repeatMask = (2"repeatBits) - 1;
uint repeatValue = srcVal & repeatMask;
if (scaleBits > repeatBits) {

repeatValue <<= scaleBits - repeatBits;
} else {

repeatValue >>= repeatBits - scaleBits;
}
while (repeatValue != 0) {

bitShiftedValue |= repeatValue;

repeatValue >>= repeatBits;

}
return bitShiftedvalue;

}
First, the scaled value using bit shift is calculated by shifting left by the difference of the different bit sizes. If
the original value is the center value or smaller, the bit shifted value is returned.

For values above the center, a repeatvalue is calculated: it is the original value with the top 2 bits
removed. So it has repeatBits significant bits. Finally, the repeatvalue is used according to the Bit-
Repeat scheme to fill the low order bits of the bit shifted value.

Version 1.0 Page 59 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Pseudo Code for Scaling Up from 7-Bit to 16-Bit

uintl6 convert7tol6 (uint7 value7) {
uintl6 bitShiftedvalue = value7 << 9;
if (value7 <= 64) {
return bitShiftedValue;
}
// use bit repeat bits from extended value?
uint6 repeatValue6 = value7 & O0x3F;
return bitShiftedvValue
| (repeatValue6t << 3)
| (repeatValue6 >> 3);

Original MIDI 1.0 Data
Lo]a

b‘c d‘e‘f‘gl

Upscaled MIDI 2.0 Data When a =0
| 0 | b | ¢ | d

e\f\g\Olo\0\O\0\O\O\0\Olo\0\0\0\O\O\O\Olo\o\o\o\o\o\o\ol

Upscaled MIDI 2.0 Data When a = 1
K

Cde\f\g\blc\d e\f\g\b\c\dle\f\g\b\c\d\e\flg\b\c\d\e\f\g\bl

Figure 47 Value Upscaling Diagram

Numerical Examples

e 10 (Ox0a) > 0x1400

e 64 (0x40) -> 0x8000

e 87 (0x57) - Oxaeba

o 127 (Ox7f) -> Oxffff

D.14 Downscaling Translation Methods

For scaling a high resolution value to a value with lower resolution, simple bit shifting (i.e. cutting off the
lower bits) is sufficient and accurate enough.

Pseudo Code for Downscaling Algorithm

scaleDown (srcVal, srcBits, dstBits) {
// simple bit shift
uint scaleBits = (srcBits - dstBits);
return srcVal >> scaleBits;

}

Numerical Examples

e (0x1400 - 0x0a e Oxaeba - 0x57
e (0x8000 -> 0x40 o Oxffff > Ox7f
D.15 Special Considerations

Some devices assign a special meaning to Minimum and Maximum values of some properties. If a Translator
is aware of a special case, then the Translator may choose to translate near-zero data values to a value of 1,
and to translate near-Maximum data values to a value of (Maximum - 1).

Version 1.0 Page 60 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.2 MIDI 2.0 to MIDI 1.0 Default Translation
D.2.1 Note On/Off, Poly Pressure, Control Change

MIDI 2.0 Note Off, Note On, Poly Pressure, Control Change

mt | , group | status & channel byte_3 byte_4
. byt§_5 I I byt?—6 I I by [I I bytg_& I
byt 5
MIDI 1.0 Channel Voice Message \ \ \ \ \ \ \
NZ

1 status & channel 0 byte_2 0 byte_3,
L ? L L L L L 1 L

Figure 48 Translate MIDI 2.0 Note Off, Note On, Poly Pressure, and Control Change to MIDI 1.0

MIDI 2.0 Note On Velocity

The allowable Velocity range for a MIDI 2.0 Note On message is 0x0000-0xFFFF. However, depending on
the chosen translation method, near-zero values can result in a MIDI 1.0 Note On with Velocity of 0, which
has the same function as a Note Off. Therefore, if the translated MIDI 1.0 value of the Velocity is 0, replace
the value with 1. If translation to MIDI 1.0 High Resolution Velocity Prefix (using Control Change #88, see
MMA/AMEI CA#031 [MMAO3]) is supported, then the minimum combined value for the 14-bit velocity is
0x0080.

D.2.2 Channel Pressure

MIDI 2.0 Channel Pressure

mt | , group ‘statpssﬁchqnne‘l ‘bytgfs‘ ‘byt§74‘
 byte_ 5 byte_6 byte_7 byte_8
[| ¥ byes
Y\ \ \ L\
MIDI 1.0 Channel Pressure \ \ \ \ \ \ \
| 1 | | status & channel | | 0 | byte_2/

Figure 49 Translate MIDI 2.0 Channel Pressure to MIDI 1.0

Version 1.0 Page 1 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.2.3

Assignable Controllers (NRPN) and Registered Controllers (RPN)

MIDI 2.0 Assignable Controller (NRPN) and Registered Controller (RPN)

mt | , group | status (&‘ chqnne‘l) ‘ ‘bytg_s‘ byt‘e_4‘
| | | byt?_5 \ | | / | | byt?_e | | | | | | byt?_ L | | byt?_ | |
/
MIDI 1.0 CC#X
y1 \}\\channel | | 0 | \\2 | | 0 | byte 3 |
/
MIDI 1.0 CC#Y
Z
| 1 | ‘ status&chann | 0 | byte_2 | 0 | , byte_ 3 |

If Status = Registered Controller (RPN)
Then: CC#X = CC#101, CC#Y = CC#100

If Status = Assignable Controller (NRPN)
Then: CC#X = CC#99, CC#Y = CC#98

 byte_5

 byte_6

\\\\\\\\\\\\\\

D1 10 GO \\\;;\\

| 1 | | status & channel | | 0 | byte_2 | | 0 | byte_3
MIDI 1.0 CC#38 ¥ * * ¥ ¥ * *
1] . stausacpanpel, [[0] | bye2 | [o] . byes |

Figure 50 Translate MIDI 2.0 Assignhable (NRPN) and Registered (RPN) Controller to MIDI 1.0

Assignable Controllers and Registered Controllers

Assignable Controllers and Registered Controllers are singular messages in the MIDI 2.0 Protocol. When
translating to the MIDI 1.0 Protocol, each message generates a sequence of four MIDI 1.0 Protocol

messages.

Version 1.0

Page 2

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.24 Program Change and Bank Select

MIDI 2.0 Program Change

m | L gouw | | staws(achanne) byte 3, byted 1B
\byt?—sw \byt?—G\ \byt?—7\ | | byt~ L

/

If Bank Valid B=1: Copy Byte 7 & 8
to MIDI 1.0 Bank Select
If B=0: Only Translate Program Change

MIDI 1.0 Bank Select MSBWI)

[1] | sted\ “panpel | [0] = byte2 | [o] *Pves |

MIDI 1.0 Bank Select LSB (optional)
~ Z
1] . statusacpanpe\ N[o] | byte2, | [o] . |byes |

MIDI 1.0 Program Change

1] . statusachanper | [o] " byie2 |

Figure 51 Translate MIDI 2.0 Program Change to MIDI 1.0

Program Change & Bank Select

Program Change and Bank Select are one message in the MIDI 2.0 Protocol. When translating to the MIDI
1.0 Protocol they generate up to three messages:

o If the value of the Bank Valid (B) bit is 0, then only translate the Program Change value to a MIDI 1.0

Protocol Program Change message.
o If the value of the Bank Valid bit is 1, then translate to three MIDI 1.0 Protocol messages in the

following order:

Bank Select MSB
Bank Select LSB
Program Change

Version 1.0 Page 3 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.2.5 Pitch Bend

MIDI 2.0 Pitch Bend

,omt | , group | statys & channel

L ‘bytg_s‘ L byte_6

14bits Translation:

MIDI 1.0 Pitch Bend (only) is Little Endian

MIDI 1.0 Pitch Bend

| 1 | ‘ stgtus‘& chanqel ‘ | |0|

Figure 52 Translate MIDI 2.0 Pitch Bend to MIDI 1.0
Note that Pitch Bend values in the MIDI 1.0 Protocol are presented as Little Endian.

D.2.6 System Messages

System Message

L.om , | oo [staws byte 3, byte 4
v
Use status to Determine Number
of Valid Bytes for Translation
MIDI 1.0 System Message
L] status | [o] . o2 |[o] . byes

Figure 53 Translate MIDI 2.0 System Message to MIDI 1.0

Version 1.0 Page 4

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.2.7 System Exclusive

When translating System Exclusive Messages from the MIDI 2.0 Protocol to the MIDI 1.0 Protocol, all the
data bytes from the whole message (often spanning multiple UMPS) are placed between a starting Status
Byte of OxFO and an ending Status byte of OxF7.

Example:

System Exclusive (This example 9 bytes = 11 MIDI 1.0 bytes with 0xFO0, 9 bytes data, 0xF7)

, mt=3 | L grqup | , 016 start with 6bytes 0,6 | databytel = 0, | databyte2 =
0 I I d?ta pyte‘S I I 0 I I d?ta Pyte\4 I I 0 I I d?ta tpyte‘s I I 0 I I d?ta Pytewe I I
, mt=3 | , grqup | , 0x33 end with 3bytes 0, | databyte7 = 0 | databyte8 =
0 | databyte9 0 data or pad/reserved 0 | data or pad/reserved | 0 | data of pad/reserved |

MIDI 1.0 System Exclusive
N

| OxFQ start | data bytes 1 through 9 | OxF7 end |

Figure 54 Translate MIDI 2.0 System Exclusive to MIDI 1.0

D.2.8 Messages That Cannot Be Translated to MIDI 1.0
The following MIDI 2.0 Protocol messages have no equivalent messages in the MIDI 1.0 Protocol:

o Relative Registered Controllers e Per-Note Management
e Relative Assignable Controllers e Per-Note Pitch Bend
e Per-Note Controllers

As a result, the Default Translation does not address these MIDI 2.0 Protocol Messages. However,
translations for these MIDI 2.0 Protocol Messages may be implemented using Alternate Translation Modes
(see Section D.4).

D.2.9 Messages That Cannot Be Translated to Non-UMP MIDI 1.0 Systems

When not using the UMP Format, the following MIDI 2.0 Protocol messages shall not be used with MIDI
1.0:

e System Exclusive 8
e Mixed Data Set
o Utility Messages

Version 1.0 Page 5 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.3 MIDI 1.0 to MIDI 2.0 Default Translation
D.3.1 Note On/Off

MIDI 1.0 Note Off/On

| status &‘chqnnel‘ | | , hote qumper ‘ | | ‘velqcity‘
L~
MIDI 2.0 Note Off, Note On /]\//
N
‘ my:4 ‘ | , group | | ‘ ‘statps&‘chaﬂo// , hote qumper L | ‘ ‘attri‘butq typ‘e=0‘
, Velocity (upscaled 7 -> 16 bit) ~ ~ | attribute=0xQ00Q

Figure 55 Translate MIDI 1.0 Note On and Note Off to MIDI 2.0

MIDI 1.0 Note On and Note Off

A MIDI 1.0 Protocol Note On message with a Velocity of 0x00 is special (i.e., is equal to Note Off), and
shall be translated to a MIDI 2.0 Protocol Note Off message with Velocity 0x0000.

Attribute Type and Attribute Value: When MIDI 1.0 Protocol Note On and Note Off messages translate to
MIDI 2.0 Protocol Note On and Note Off messages, the Attribute Type shall be set to 0x00 and the Attribute
Value shall be set to 0x0000, unless a MIDI-CI Profile specification that is in effect specifies a different
translation for the Attribute Type and Attribute Value fields.

D.3.2 Poly Pressure

MIDI 1.0 Poly Pressure

§tatgs &‘cha‘nnel‘ | | L nqte n‘umper‘ | | | pressure |

MIDI 2.0 Poly Pressure //
N N

mt=4 , grqup | status & channel ,_hote qumperJ / reserved=0x00
| pressure (upscaled 7 -> 32 pit) \—i‘ |

Figure 56 Translate MIDI 1.0 Poly Pressure to MIDI 2.0

Version 1.0 Page 2 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.3.3 Control Change, RPN, and NRPN

MIDI 1.0 Control Change

| status &‘chqnnel‘ | | ‘ inqex‘ | | ‘ vqlue‘

MIDI 2.0 Control Change //
N N

mt\=4 | | | grqup | | | ‘StatHS & Chénne\l | | | | | inle | \\\/ /l | ‘reSFrVe‘d=o?(00‘ |
value (up;‘.calgd 7->32 b@t)

Figure 57 Translate MIDI 1.0 Control Change to MIDI 2.0

Control Change Messages for RPN/NRPN

e MIDI 1.0 Protocol Inc/Dec messages are translated to Control Change messages in the MIDI 2.0
Protocol. They have no RPN/NRPN related function in the MIDI 2.0 Protocol.

e Individual use of controllers CC 6, 38, 98, 99, 100, and 101 do not translate to the MIDI 2.0 Protocol,
unless they are properly formed RPN/NRPN messages. The Default Translation shall hold the latest
values for controllers CC 6, 98, 99, 100, and 101 until a CC#38 is received. Then, if the Translator has
all the data needed to make a valid RPN or NRPN, it shall send the MIDI 2.0 Protocol message as

follows:

MIDI 1.0 Data Entry LSB Control Change

| §tatgs&‘ch%nnew || ‘inde‘x=3‘8 (dgtagntrylsb) ||0| ‘ v‘alue‘lsb‘(7b‘it) L

| data extracted from

value msb (7 bit)
L L previous messages

most significant 7 bits leas S|gn|f|c§mt>‘glt
* * * ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ * * * RPN/NRPN information extracted from previous messages
, value (14 bit) |0 | , msb | |O| , Isb
MIDI 2.0 Registered Controller
or Assignable Controller
N N
omi=t, | oqu, [ol bachame | | bank, [. index.
| |, value (upscalgd 14 ->32bit) =~ |

Figure 58 Translate MIDI 1.0 Data Entry LSB Control Change to MIDI 2.0

Bank Select Control Change

Individual use of controllers CC 0 and CC 32 shall not translate to the MIDI 2.0 Protocol, unless they are
used in a MIDI 2.0 Protocol Program Change message with the Bank Valid bit set.

Version 1.0 Page 3 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.34 Program Change and Bank Select

When translating MIDI 1.0 Protocol Program Change Messages to the MIDI 2.0 Protocol, include the current
valid Bank Select values in the MIDI 2.0 Protocol Program Change message. If there is no current Bank
Select value associated with the Program Change, then in the MIDI 2.0 Protocol message set the Bank Valid
bit to 0 and fill the Bank Select fields with zeroes.

MIDI 1.0 Program Change, no Bank Select Information Available

status & channe] I I program

|
MIDI 2.0 Program Change .
Set Bank Valid B=0
L mt=4 | | ! qroun/ | status & channel | ___reserved=0x00, | |__optionflags, | 0
program L reserved=0x00, bank msb=0x00 | bank Isb=0x00,

Figure 59 Translate MIDI 1.0 Program Change to MIDI 2.0 (No Bank)

MIDI 1.0 Program Change, Bank Select Information Available

statys &‘cha\nne[| | program

Bank Select data extracted from previous messages

|0| ‘ bgnk §elept m‘sb ‘ | |0| ‘ b‘ank‘sele‘ct Isp

MIDI 2.0 Program Change
Set Bank Valid B=1

, mt=4 | ‘grqup,\/‘ status & channel | [reserved=0x00 J Lopti‘onf!ags‘ 1
program "\(I/‘ reserved=0x00 bank msb | bankisb

Figure 60 Translate MIDI 1.0 Bank and Program Change to MIDI 2.0

Version 1.0 Page 4 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.3.5

Channel Pressure

MIDI 1.0 Channel Pressure

pressure |

§tatqs &‘chqnnel‘
MIDI 2.0 Channel Pressure
N
‘ mg:4 ‘ | , grqup | | ‘statpssﬁchqnne‘l ‘ | T B r‘ese(ved‘=0xpooq
| , pressure (upscaled 7 -> 32 bit) |
Figure 61 Translate MIDI 1.0 Channel Pressure to MIDI 2.0
D.3.6 Pitch Bend

MIDI 1.0 Pitchbend

status & channel | | 0 | ast significant 7 bits | | 0 | most significant 7 bits
nost &gnﬁnt 7 bits I% t significant 7 bits

HHHHHHH|

pltchbend (14 bit

//

MIDI 2.0 Pitchbend

NS

//

om=4 | ooup |

status & chqnne‘l

‘ ‘y/ / reseyved=0xp000

pitchbend (upscaled 14 -> 32 bit)

|
!

Figure 62 Translate MIDI 1.0 Pitch Bend to MIDI 2.0

Note: Pitch Bend values in the MIDI 1.0 Protocol are presented as Little Endian.

Version 1.0 Page 5

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.3.7 System Messages

MIDI 1.0 System Message

[s | [o] . bve2 | [of , oyes

Use status to Determine Number
of Valid Bytes for Translation

System Message

NS NS NS

L .om | oow | _status, | byte 3 | byte 4

System Exclusive

Figure 63 Translate MIDI 1.0 System Message to MIDI 2.0

When translating a System Exclusive Message from the MIDI 1.0 Protocol to the MIDI 2.0 Protocol, the
starting Byte of OxFO and ending byte of OxF7 are discarded. Only the data between those bytes is placed
into the payload of the MIDI 2.0 Protocol System Exclusive message. See example in Figure 64.

Sys.Ex. Data Example: GM2 System On

Status = Complete SysEx in One Packet, 4 Valid Bytes of Payload

mt= qu | , group | , 0x0 | , O0x4 | Ox7E evice |
L 0509 L L 0503 L
OX7E: Universal Non-Real Time SysEx header Note: Status bytes 0xFO0 Start and OxF7
device ID: ID of target device (7F = all devices) End used in the original MIDI 1.0 data
0x09: sub-ID#1 = General MIDI message format are not required and are not
0x03: sub-ID#2 = General MIDI 2 On included in the message.

Figure 64 Translate MIDI 1.0 System Exclusive to MIDI 2.0 (Example)

Version 1.0

Page 6 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

D.4 Alternate Translation Modes

Devices are allowed to implement Alternate Translation Modes for special cases. Alternate Translation
Modes can be marketed as features that bring added value. MIDI 2.0 Protocol Devices are not required to
support Alternate Translation Modes.

A device with Alternate Translation Modes can still be compliant with the MIDI 2.0 specification, as long as
the device has a configuration for the Default Translation.

Products with Alternate Translation Modes should inform the user that the Alternate Translation Mode is
active.

D4.1 Selecting an Alternate Translation Mode Using a Profile

Some MIDI 2.0 Protocol messages or parameters that do not have a direct equivalent in the MIDI 1.0
Protocol might be part of a MIDI-CI Profile for use in MIDI 2.0 Protocol Devices. The Profile specification
might define an indirect equivalent (perhaps via System Exclusive, a compound message, MPE, or some
other mechanism) for use in MIDI 1.0 Protocol Devices. Such Profiles might define a special case
translation.

For example, a MIDI-CI Profile might define Per-Note Controllers in the MIDI 2.0 Protocol and MPE in the
MIDI 1.0 Protocol. Then the Profile might define a translation. Devices that understand the Profile
specification may choose to perform the alternate translations defined by that Profile.

D.4.2 Selecting Alternate Translation Modes Without a Profile

There can be useful alternate translations that are not defined by any MMA specification.

Devices may also enter Alternate Translation Modes by means other than “Profile enable”. The device
should notify the user that an Alternate Translation Mode is in use.

For example, a MIDI 2.0 Protocol Device could receive a System Exclusive message that enables MPE
mode, and this would enable an Alternate Translation Mode translation for MPE note allocation.

Version 1.0 Page 7 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix E System Exclusive (7-Bit) and System Exclusive 8
(8-Bit) Message Examples

E.1 Table of System Exclusive Message UMPs
Table 13 UMPs for System Exclusive (7-Bit) Messages

Byte Number
Message 1 2 3 | 4 | 5 | 6 7 8
UMP Type MT | GR| Status | #bytes Data
Complete SysEx 0x3 ar 0x0 0x0* Reserved Reserved Reserved Reserved Reserved Reserved
Complete SysEx 0x3 ar 0x0 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved
Complete SysEx 0x3 ar 0x0 0x2 0ddddddd 0ddddddd Reserved Reserved Reserved Reserved
Complete SysEx 0x3 gr 0x0 0x3 Oddddddd | Oddddddd | Oddddddd Reserved Reserved Reserved
Complete SysEx 0x3 or 0x0 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved
Complete SysEx 0x3 ar 0x0 0x5 0ddddddd 0ddddddd 0ddddddd | Oddddddd 0ddddddd Reserved
Complete SysEx 0x3 gr 0x0 0x6 0ddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd
SysEx Start 0x3 ar 0x1 0x0* Reserved Reserved Reserved Reserved Reserved Reserved
SysEx Start 0x3 ar 0x1 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved
SysEx Start 0x3 ar 0x1 0x2 0ddddddd 0ddddddd Reserved Reserved Reserved Reserved
SysEx Start 0x3 ar 0ox1 0x3 0ddddddd 0ddddddd 0ddddddd Reserved Reserved Reserved
SysEx Start 0x3 ar 0x1 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved
SysEx Start 0x3 gr 0x1 0x5 0ddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd | Reserved
SysEx Start 0x3 gr 0x1 0x6 O0ddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd
SysEx Continue 0x3 ar 0x2 0x0 Reserved Reserved Reserved Reserved Reserved Reserved
SysEx Continue 0x3 ar 0x2 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved
SysEx Continue 0x3 gr 0x2 0x2 0ddddddd | Oddddddd Reserved Reserved Reserved Reserved
SysEx Continue 0x3 ar 0x2 0x3 0ddddddd 0ddddddd 0ddddddd Reserved Reserved Reserved
SysEx Continue 0x3 ar 0x2 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved
SysEx Continue 0x3 ar 0x2 0x5 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved
SysEx Continue 0x3 gr 0x2 0x6 O0ddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd
SysEx End 0x3 ar 0x3 0x0 Reserved Reserved Reserved Reserved Reserved Reserved
SysEx End 0x3 ar 0x3 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved
SysEx End 0x3 ar 0x3 0x2 0ddddddd 0ddddddd Reserved Reserved Reserved Reserved
SysEx End 0x3 ar 0x3 0x3 0ddddddd 0ddddddd 0ddddddd Reserved Reserved Reserved
SysEx End 0x3 ar 0x3 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved
SysEx End 0x3 gr 0x3 0x5 0ddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd | Reserved
SysEx End 0x3 gr 0x3 0x6 0ddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd | Oddddddd

* Some values for #bytes are not valid as long as messages are required to contain ID Number (Manufacturer ID), which is true for all
System Exclusive messages at the time of the drafting of this specification. These values are only included in the table in case future
MMA/AMEI specifications define the use of short messages without ID Number.

Version 1.0 Page 8 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

E.2 Complete System Exclusive Message Examples

Sys.Ex. Message Example 1: MIDI 1.0 Equivalent = 7* bytes (* FO + 5 bytes payload + F7)

Status = Complete SysEx in One Packet, 5 Valid Bytes of Payload

m=0x3 |

oqup | o0 |

0x5 | , data

data

‘ data

L L d‘?ta L

‘ dqta

Figure 65 MIDI 2.0 System Exclusive Message Example 1

SysEx Message Example 2: MIDI 1.0 Equivalent = 23* bytes (* FO + 21 bytes payload + F7)
Status = Start of SysEx, 6 Valid Bytes of Payload
m=0d | oqup | 0a | o6 _data_ _data
L dﬁta L L d?ta L L dqta L L dqta L
Status = Continue SysEx, 6 Valid Bytes of Payload
m=03 | g, | 02 | o6 _data_ _dafa_|
L dﬁta L L L L dﬁta L L L L L L d%ta L L dqta L
Status = Continue SysEx, 6 Valid Bytes of Payload
m=03 | gow, | o2 | o6 _data_ _dafa_
L data L L data L L dqta L L dqta L
Status = End of SysEx, 3 Valid Bytes of Payload
mt = 0x3 | , group | 0x3 0x3 data data
| data
Figure 66 MIDI 2.0 System Exclusive Message Example 2
Sys.Ex. Data Example: GM2 System On
Status = Complete SysEx in One Packet, 4 Valid Bytes of Payload
mt = 0x3 | , group | , 0x0 | . 0x4 | Ox7E evice |
| | | 0)$09 | | | | | | 0403 | | |
Ox7E: Universal Non-Real Time SysEx header Note: Status bytes 0xFO Start and OxF7
device ID: ID of target device (7F = all devices) End used in the original MIDI 1.0 data
0x09: sub-ID#1 = General MIDI message format are not required and are not
0x03: sub-ID#2 = General MIDI 2 On included in the message.
Figure 67 MIDI 2.0 System Exclusive Message Example 3
Version 1.0 Page 9 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

E.3 Table of System Exclusive 8 (8-Bit) Message UMPs
Table 14 UMPs for System Exclusive 8 (8-Bit) Messages
Byte Number

Message 2 3 |4]ls5]6]7]8]9fw]ar]12]13[14]15] 16

UMP Type MT | GR [Status | Size Data
SysEx8 Complete 5 grp 0x0 0x1* [StreamID [rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x2* | StreamID | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x3 [StreamID [data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x4 | StreamID | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x5 [StreamID [data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x6 | StreamID | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x7 | StreamID [data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x8 [StreamID [data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0x9 [StreamID [data | data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 O0xA | StreamID | data | data | data | data | data [data | data | data | data | rsvd | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0xB | StreamID | data | data | data | data | data | data | data | data | data | data | rsvd | rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0xC [StreamID [data | data | data | data | data | data | data | data | data | data | data [rsvd | rsvd
SysEx8 Complete 5 grp 0x0 0xD [StreamID [data | data | data | data | data | data | data | data | data | data | data [data | rsvd
SysEx8 Complete 5 grp 0x0 OXE | StreamID | data | data | data | data | data [data | data | data | data | data | data | data | data
SysEx8 Start 5 grp 0x1 0x1* [StreamID [rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x2* | StreamID | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x3 [StreamID [data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x4 | StreamID | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x5 [StreamID [data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x6 [StreamID [data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x7 | StreamID | data | data | data [data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x8 [StreamID [data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0x9 | StreamlID [data [data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0xA | StreamID | data | data | data | data | data [data | data | data | data | rsvd | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0xB | StreamID | data | data | data | data | data | data | data | data | data | data | rsvd | rsvd | rsvd
SysEx8 Start 5 grp 0x1 0xC [StreamID [data | data | data | data | data | data | data | data | data | data | data [rsvd | rsvd
SysEx8 Start 5 grp 0x1 0xD [StreamID [data | data | data | data | data | data | data | data | data | data | data [data | rsvd
SysEx8 Start 5 grp 0x1 OXE | StreamID | data | data | data | data | data [data | data | data | data | data | data | data | data
SysEx8 Continue 5 grp 0x2 0x1 [StreamID [rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x2 | StreamID [data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x3 [StreamID [data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x4 | StreamID | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x5 | StreamID | data | data | data [data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x6 [StreamID [data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x7 | StreamID [data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x8 [StreamID [data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0x9 | StreamlID [data [data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 O0xA | StreamID | data | data | data | data | data [data | data | data | data | rsvd | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0xB | StreamID | data | data | data | data | data | data | data | data | data | data | rsvd | rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0xC [StreamID [data | data | data | data | data | data | data | data | data | data | data [rsvd | rsvd
SysEx8 Continue 5 grp 0x2 0xD [StreamID [data | data | data | data | data | data | data | data | data | data | data [data | rsvd
SysEx8 Continue 5 grp 0x2 OXE | StreamID | data | data | data | data | data | data | data | data [data [data | data | data | data
SysEx8 End 5 grp 0x3 0x1 [StreamID [rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x2 | StreamID | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x3 [StreamID [data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x4 | StreamID | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x5 [StreamID [data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x6 [StreamID [data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x7 | StreamID | data | data | data [data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x8 [StreamID [data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0x9 | StreamID | data | data | data | data | data | data | data | data | rsvd | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0xA | StreamID | data | data | data | data | data [data | data | data | data | rsvd | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0xB | StreamID | data | data | data | data | data [data | data | data | data | data | rsvd | rsvd | rsvd
SysEx8 End 5 grp 0x3 0xC | StreamID | data | data | data | data | data | data | data | data | data | data | data | rsvd | rsvd
SysEx8 End 5 grp 0x3 0xD [StreamID [data | data | data | data | data | data | data | data | data | data | data [data | rsvd
SysEx8 End 5 grp 0x3 OXE | StreamID | data | data | data | data | data | data | data | data [data [data | data | data | data
i}fﬁ:gégd 5 grp 0x3 OxF** | StreamID | rsvd [rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd | rsvd

* Some values for #bytes are not valid as long as messages are required to contain ID Number (manufacturer I1D), which is true for all

System Exclusive 8 messages at the time of the drafting of this specification. They are only included in the table in case future

MMA/AMEI specifications define the use of short messages without ID Number.

Version 1.0

Page 10

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

** OxF is not a valid size. This indicates that a System Exclusive 8 message is terminating unexpectedly with no data.

Version 1.0 Page 11 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix F All Defined UMP Formats

F.1 4-Byte UMP Formats

F.1.1 Message Type 0x0: Utility
Table 15 4-Byte UMP Formats for Message Type 0xO0: Utility

Bvyte 1 Bvte 2 Byte 3 Byte 4
Message
MT GR Status Data
UTILITY
NOOP 0x0 aaag 0000 0000 00000000 00000000
JR Clock 0x0 gagg 0001 reserv tetttttt teettttt
JR Timestamp 0x0 agaa 0010 reserv tttttttt tetttttt

F.1.2 Message Type 0x1: System Common & System Real Time
Table 16 4-Byte UMP Formats for Message Type Ox1: System Common & System Real Time

Byte 1 Byte 2 Byte 3 Byte 4
Message
MT GR Status Data

SYSTEM COMMON
MIDI Time Code 0x1 aaad 11110001 Onnndddd reserved
Song Position Pointer 0x1 00ag 11110010 o Ommmmmmm
Song Select 0ox1 aagq 11110011 0sssssss reserved
Tune Request 0ox1 aagq 11110110 reserved reserved
SYSTEM REAL TIME
Timing Clock 0ox1 aagag 11111000 reserved reserved
Start Ox1 ggag 11111010 reserved reserved
Continue 0ox1 gagg 11111011 reserved reserved
Stop 0ox1 [o[s[ee} 11111100 reserved reserved
Active Sensing 0ox1 09a9 11111110 reserved reserved
Reset 0x1 aqaaa 11111111 reserved reserved

Version 1.0 Page 12 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

F.1.3 Message Type 0x2: MIDI 1.0 Channel Voice Messages

Table 17 4-Byte UMP Formats for Message Type 0x2: MIDI 1.0 Channel Voice Messages

Byte 1 Byte 2 Byte 3 Byte 4
Message
MT GR Status Index/Data
MIDI 1.0 CHANNEL VOICE
Note Off 0x2 0aad 1000nnnn rkkkkkkk I'VVVVVVWY
Note On 0x2 gagg 1001nnnn rkkkkkkk IVVVVVVVV
Poly Pressure 0x2 gagg 1010nnnn rkkkkkkk rddddddd
Control Change 0x2 aaag 1011nnnn rcceceecce rddddddd
Program Change 0x2 gagag 1100nnnn rppppPPPP reserved
Channel Pressure 0x2 aaaa 1101nnnn rddddddd reserved
Pitch Bend 0x2 (o o[e]0] 1110nnnn rddddddd rDDDDDDD
Version 1.0 Page 13 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

F.2 8-Byte UMP Formats

F.2.1 Message Type 0x3: 8-Byte Data Messages
Table 18 8-Byte UMP Formats for Message Type 0x3: 8-Byte Data Messages
v Byte 1 Byte 2 Byte 3 | Byte 4 | Byte 5 Byte 6 Byte 7 Byte 8
essage
MT | GR Status Data or Pad/Reserved
DATA
Sys.Ex. in 1 UMP 0x3 | gggg | 0000bbbb Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad
SysEx Start 0x3 | gggg | 0001bbbb Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad
SysEx Continue 0x3 | gggg | 0010bbbb Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad
SysEx End 0x3 | gggg | 0011bbbb Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad Odata/pad
F.2.2 Message Type 0x4: MIDI 2.0 Channel Voice Messages
COLOR KEY: | Does not translate to the MIDI 1.0 Protocol Reseryed B T 5 oy bR
Pad with zeros.
Table 19 8-Byte UMP Formats for Message Type 0Ox4: MIDI 2.0 Channel Voice Messages
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Message
MT | GR | Status Index Data
MIDI 2.0 CHANNEL VOICE
Note Off 0x4 | gggg | 1000nnnn rkkkkkkk AttributeType | VVVVVVVWV VVWVWWWY AAAAAAAA aaaaaaaa
Note On 0x4 | gggg | 1001nnnn rkkkkkkk AttributeType | VVVVVVVWV VVVWWWWWY AAAAAAAA aaaaaaaa
Poly Pressure 0x4 | gggg | 1010nnnn rkkkkkkk reserved DDDDDDDD dddddddd dddddddd dddddddd
Registered Per-Note Ctrl. | 0x4 [gggg [0000nnnn rkkkkkkk ccceeece DDDDDDDD dddddddd dddddddd dddddddd
Assignable Per-Note Ctrl. | 0x4 | gggg | 0001nnnn rkkkKKKk cceeeeee DDDDDDDD | dddddddd dddddddd dddddddd
Per-Note Management 0x4 | gggg 1111nnn rkkkkkkk option flags reserved reserved reserved reserved
Control Change 0x4 | gggg [1011lnnnn rcceeece reserved DDDDDDDD dddddddd dddddddd dddddddd
Registered Ctrl. (RPN) 0x4 | gggg [0010nnnn rbbbbbbb rPPPPPPP DDDDDDDD dddddddd dddddddd dddddddd
Assignable Ctrl. (NRPN) 0x4 | gggg [0011nnnn rbbbbbbb rPPPPPPP DDDDDDDD dddddddd dddddddd dddddddd
Relative Registered Ctrl 0x4 | gggg | 0100nnnn rbbbbbbb rppPPPPPP DDDDDDDD | dddddddd dddddddd dddddddd
Relative Assignable Ctrl 0x4 | gggg | 0101nnnn rbbbbbbb rpppPpPPPP DDDDDDDD dddddddd dddddddd dddddddd
Program Change 0x4 | gggg | 1100nnnn reserved option flags rppPPPpPPP reserved rBBBBBBB rbbbbbbb
Channel Pressure 0x4 | gggg | 1101nnnn reserved reserved DDDDDDDD dddddddd dddddddd dddddddd
Pitch Bend 0x4 | gggg | 1110nnnn reserved reserved DDDDDDDD dddddddd dddddddd dddddddd
Per-Note Pitch Bend 0x4 | gggg | 0110nnnn rkkkkkkk reserved DDDDDDDD dddddddd dddddddd dddddddd
Version 1.0 Page 14 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

F.3 16-Byte UMP Formats

F.3.1 Message Type 0x5: 16-Byte Data Messages (System Exclusive 8 and Mixed Data

Set)
Table 20 16-Byte UMP Formats for Message Type 0x5: System Exclusive 8 and Mixed Data Set
Byte 1 Byte 2
Message - Byte 3 Bytes 4-16
MT GR Status Low 4 Bits
DATA
SysEx8 in 1 UMP 0x5 ggag 0000 #bytes stream id data/pad
SysEx8 Start 0x5 gggg 0001 #bytes stream id data/pad
SysEx8 Continue 0x5 0999 0010 #bytes stream id data/pad
SysEx8 End 0x5 ggag 0011 #bytes stream id data/pad
Mixed Data Set Header 0x5 gggg 1000 mds id Header Fields
Mixed Data Set .
Payload 0x5 ggag 1001 mds id Payload Data
Version 1.0 Page 15 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix G All Defined Messages

Byte 1 Byte 2 Bytes
Message Type MIDI Message abit | 4 bit Status Channel Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 (63-;?8)
MT | Group / Other
UTILITY NOOP 0x0 0xg 0x0 24 bit 0x00 0000
UTILITY JR Clock 0x0 Oxg 0x1 | reserved 16 bit Oxtttt
UTILITY JR Timestamp 0x0 0xg 0x2 | reserved 16 bit Oxtttt
SYSTEM COMMON MIDI Time Code 0x1 Oxg OxF1 7 bit time code 0xnd reserved
SYSTEM COMMON Song Position Pointer 0x1 Oxg OxF2 7 bit position LSB Oxll | 7 bit position MSB Oxmm
SYSTEM COMMON Song Select 0x1 Oxg OxF3 7 bit song# Oxss reserved
SYSTEM COMMON Tune Request 0x1 Oxg OxF6 reserved reserved
SYSTEM REAL TIME Timing Clock 0x1 Oxg OxF8 reserved reserved
SYSTEM REAL TIME Start 0x1 Oxg OxFA reserved reserved
SYSTEM REAL TIME Continue 0x1 Oxg OxFB reserved reserved
SYSTEM REAL TIME Stop 0x1 Oxg OxFC reserved reserved
SYSTEM REAL TIME Active Sensing 0ox1 0xg OXFE reserved reserved
SYSTEM REAL TIME Reset 0x1 Oxg OxFF reserved reserved
MIDI 1.0 CHANNEL VOICE [Note Off 0x2 Oxg 0x8 oxn 7 bit note# Oxkk 7 bit velocity Oxvv
MIDI 1.0 CHANNEL VOICE [Note On 0x2 Oxg 0x9 Oxn 7 bit note# Oxkk 7 bit velocity Oxvv
MIDI 1.0 CHANNEL VOICE [Poly Pressure 0x2 Oxg OxA oxn 7 bit note# Oxkk 7 bit pressure Oxpp
MIDI 1.0 CHANNEL VOICE |Control Change 0x2 0xg 0xB oxn 7 bit controller# Oxcc 7 bit value Oxvv
MIDI 1.0 CHANNEL VOICE [Program Change 0x2 Oxg 0xC 0oxn 7 bit program# Oxpp reserved
MIDI 1.0 CHANNEL VOICE |Channel Pressure 0x2 Oxg 0xD oxn 7 bit chan pressure reserved
MIDI 1.0 CHANNEL VOICE |Pitch Bend 0x2 0xg OXE oxn 7 bit pitch bend LSB | 7 bit pitch bend MSB
DATA 64 BIT SysEx in 1 Packet 0x3 Oxg 0x0 Oxb 7 bit data/pad 7 bit data/pad 7 bitdata/pad | 7 bitdata/pad | 7 bitdata/pad | 7 bit data/pad
DATA 64 BIT SysEx Start 0x3 0xg 0ox1 Oxb 7 bit data/pad 7 bit data/pad 7 bit data/pad | 7 bitdata/pad | 7 bitdata/pad | 7 bit data/pad
DATA 64 BIT SysEx Continue 0x3 Oxg 0x2 Oxb 7 bit data/pad 7 bit data/pad 7 bitdata/pad | 7 bitdata/pad | 7 bitdata/pad | 7 bit data/pad
DATA 64 BIT SysEx End 0x3 Oxg 0x3 0xb 7 bit data/pad 7 bit data/pad 7 bitdata/pad | 7 bitdata/pad | 7 bitdata/pad | 7 bit data/pad
Version 1.0 Page 16 Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Byte 1

Byte 2

Message Type MIDI Message 4bit | 4 bit Status Channel Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 (3:}%;
MT | Group / Other
MIDI 2.0 CHANNEL VOICE |Regist. Per-Note Citrl. 0x4 0xg 0x0 oxn 7 bit note# Oxkk | 7 bit controller# Oxcc 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE [Assign. Per-Note Ctrl. 0x4 Oxg 0x1 oxn 7 bit note# Oxkk 7 bit controller# Oxcc 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE [Registered Ctrl. (RPN) 0x4 0xg 0x2 oxn 7 bit bank# Oxbb 7 bit index# Oxpp 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE [Assignable Ctrl. (NRPN) 0x4 0xg 0x3 oxn 7 bit bank# Oxbb 7 bit index# Oxpp 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE |Relative Regist. Ctrl. 0x4 0xg 0x4 oxn 7 bit bank# Oxbb 7 bit index# Oxpp 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE |Relative Assign. Ctrl. 0x4 0xg 0x5 oxn 7 bit bank# Oxbb 7 bit index# Oxpp 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE [Per-Note Pitch Bend 0x4 Oxg 0x6 oxn 7 bit note# Oxkk reserved 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE |Note Off 0x4 0xg 0x8 oxn 7 bit note# Oxkk attribute type 16 bit velocity Oxvvvvv 16 bit attribute value Oxaaaa
MIDI 2.0 CHANNEL VOICE [Note On 0x4 Oxg 0x9 0oxn 7 bit note# Oxkk attribute type 16 bit velocity Oxvvvvv 16 bit attribute value Oxaaaa
MIDI 2.0 CHANNEL VOICE |Poly Pressure 0x4 0Oxg 0x10 0oxn 7 bit note# Oxkk reserved 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE |Control Change 0x4 0xg 0x11 oxn 7 bit controller# Oxcc reserved 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE |Program Change ox4 | oxg | ox12 | oOxn reserved option flags 7 bit program Oxpp‘ reserved ‘ 7bitbank MSB | 7 bit bank LSB
MIDI 2.0 CHANNEL VOICE |Channel Pressure 0x4 0xg 0x13 oxn reserved reserved 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE |Pitch Bend 0x4 0xg 0x14 0oxn reserved reserved 32 bit data Oxdddd dddd
MIDI 2.0 CHANNEL VOICE [Per-Note Management 0x4 Oxg 0x15 oxn 7 bit note# Oxkk option flags reserved ‘ reserved | reserved | reserved
DATA 128 BIT SysEx8 in 1 Packet 0x5 Oxg 0x0 #bytes stream id 104 bit data/pad
DATA 128 BIT SysEx8 Start 0x5 0xg 0ox1 #bytes stream id 104 bit data/pad
DATA 128 BIT SysEx8 Continue 0x5 0xg 0x2 #bytes stream id 104 bit data/pad
DATA 128 BIT SysEx8 End 0x5 Oxg 0x3 #bytes stream id 104 bit data/pad
DATA 128 BIT Mixed Data Set Header 0x5 Oxg 0x8 mds id 112 bit header fields
DATA 128 BIT Mixed Data Set Payload 0x5 0xg 0x9 mds id 112 bit payload data/pad

Color Key

Version 1.0

Does not translate to MIDI 1.0 Protocol

Does not translate to MIDI 1.0 Protocol, but may be used by a UMP MIDI 1.0 Device

Reserved for future use by the Association of Musical Electronics Industry and the MIDI Manufacturers Association. Pad with zeros.

Page 17

Feb. 20, 2020

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Appendix H Overview of Extensions to MIDI

Note: The lists below are overviews and are not exhaustive.

H.1 Extensions Enabled by the Universal MIDI Packet Format
These extensions apply to both the MIDI 1.0 Protocol and the MIDI 2.0 Protocol:

16 Groups. Each Group has a set of System Messages and 16 Channels

Messages expanded to 32, 64, 96, or 128-bit message UMPs

Running Status is no longer used

Adds a NOOP (no operation) message

Adds optional Jitter Reduction Timestamps

Adds new System Exclusive 8 Message without the 7-bit limitation of System Exclusive

Adds new Mixed Data Set Message for carrying large data sets

The Message Type field allows future extensibility. Many opcodes are available for new messages to be
defined in the future by MMA/AMELI. The Message Type field also allows future definition of longer
versions of existing messages to include more properties.

H.2 Further Extensions in the MIDI 2.0 Protocol

Increases Resolution of Velocity in Note On and Note Off to 16 bits

Adds 8-bit Articulation Type and 16-bit Articulation Data fields to Note On and Note Off
Increases Resolution of Poly Pressure messages to 32 bits

New Message: Registered Per-Note Controllers

New Message: Assignable Per-Note Controllers

New Message: Per-Note Management Message

Increases Resolution of Control Change messages to 32 bits

RPN and NRPN are now unified messages, and as a result are easier to use plus their resolution has been
extended to 32 bits

Relative Control of RPN/NRPN (Increment & Decrement) now easier to use and high resolution
Renames RPN and NRPN to Registered Controllers and Assignable Controllers

Program Change and Bank Select are combined into a single, unified message

Increases Resolution of Channel Pressure messages to 32 bits

Increases Resolution of Pitch Bend to 32 bits

Adds Per-Note Pitch Bend Message

Version 1.0 Page 18 Feb. 20, 2020

	Table of Contents
	Figures
	Tables
	1. Introduction
	1.1 Reliance Upon Other Specifications
	1.2 References
	1.3 Terminology
	1.4 Reserved Words and Specification Conformance

	2. Universal MIDI Packet (UMP) Format
	2.1 UMP Basic Packet and Message Format
	2.1.1 Bit, Byte, and Word Order in UMP Format Diagrams
	2.1.1.1 Scope of Bit, Byte, and Word Order Guidance

	2.1.2 UMP Format Universal Fields
	2.1.3 Reserved Items
	2.1.4 Message Type (MT) Allocation

	3. MIDI Protocols in UMP Format
	3.1 Overview
	3.1.1 Groups, Ports, and Virtual MIDI Cables
	3.1.2 Selecting a MIDI Protocol for a Group
	3.1.2.1 MIDI-CI Protocol Negotiation

	3.2 MIDI 1.0 Protocol in UMP Format
	3.2.1 Message Types for MIDI 1.0 Protocol
	3.2.1.1 Message Types for Traditional MIDI 1.0 Functionality
	3.2.1.2 Message Types to Extend MIDI 1.0 Functionality

	3.2.2 MIDI 1.0 Protocol and Future Expansion
	3.2.3 Protocol Negotiation to the MIDI 1.0 Protocol

	3.3 MIDI 2.0 Protocol in UMP Format
	3.3.1 Message Types for MIDI 2.0 Protocol
	3.3.2 MIDI 2.0 Protocol and Future Expansion
	3.3.3 Protocol Negotiation to the MIDI 2.0 Protocol

	4. MIDI Messages in UMP Format
	4.1 MIDI 1.0 Channel Voice Messages
	4.1.1 MIDI 1.0 Note Off Message
	4.1.2 MIDI 1.0 Note On Message
	4.1.3 MIDI 1.0 Poly Pressure Message
	4.1.4 MIDI 1.0 Control Change Message
	4.1.5 MIDI 1.0 Program Change Message
	4.1.6 MIDI 1.0 Channel Pressure Message
	4.1.7 MIDI 1.0 Pitch Bend Message

	4.2 MIDI 2.0 Channel Voice Messages
	4.2.1 MIDI 2.0 Note Off Message
	4.2.2 MIDI 2.0 Note On Message
	4.2.3 MIDI 2.0 Poly Pressure Message
	4.2.4 MIDI 2.0 Registered Per-Note Controller and Assignable Per-Note Controller Messages
	4.2.5 MIDI 2.0 Per-Note Management Message
	4.2.6 MIDI 2.0 Control Change Message
	4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller (NRPN) Messages
	4.2.8 MIDI 2.0 Relative Registered Controller (RPN) and Assignable Controller (NRPN) Messages
	4.2.9 MIDI 2.0 Program Change Message
	4.2.10 MIDI 2.0 Channel Pressure Message
	4.2.11 MIDI 2.0 Pitch Bend Message
	4.2.12 MIDI 2.0 Per-Note Pitch Bend Message
	4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data
	4.2.14 MIDI 2.0 Notes and Pitch
	4.2.14.1 MIDI Tuning Standard
	4.2.14.2 MIDI 2.0 Registered Per-Note Controller #3: Pitch 7.25
	Two Typical Uses of Registered Per-Note Controller #3: Pitch 7.25:

	4.2.14.3 MIDI 2.0 Note On With Attribute #3 Pitch 7.9

	4.3 System Common and System Real Time Messages
	4.4 System Exclusive (7-Bit) Messages
	4.4.1 Limitations of Interspersing Other Messages with System Exclusive UMPs

	4.5 System Exclusive 8 (8-Bit) Messages
	4.5.1 Unexpected End of Data

	4.6 Mixed Data Set Message
	4.6.1 End of Mixed Data Set

	4.7 16-Bit Manufacturer IDs
	4.8 Utility Messages
	4.8.1 NOOP
	4.8.2 Basic Timestamp Format
	4.8.3 Jitter Reduction (JR) Timestamps (and JR Clock)
	4.8.4 MIDI-CI Protocol Negotiation and JR Timestamps
	4.8.5 JR Clock Message Format
	4.8.6 JR Timestamp Message Format
	4.8.7 JR Clock Mechanism
	4.8.8 JR Timestamp Mechanism
	4.8.9 JR Timestamps and JR Clock Recommended Practice
	4.8.10 Translation to/from the MIDI 1.0 Protocol

	Appendix A MIDI 2.0 Registered Per-Note Controllers
	Appendix B Special Control Change Messages
	B.1 Channel Mode Messages: Applicable Channels
	B.2 Reset All Controllers

	Appendix C Using MIDI 2.0 Per-Note Messages
	C.1 Shared Per-Note Controllers
	C.2 Using a MIDI 2.0 Per-Note Management Message Before Note On to Reallocate Per-Note Expression
	C.3 Using Note Number Rotation, Per-Note Pitch, and Per-Note Management Message for Independent Per-Note Expression
	Method 1: Sender Using Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3)
	Method 2: Sender Using Note On With Attribute #3 Pitch 7.9 (AttrPitch7.9)

	Appendix D Translation: MIDI 1.0 and MIDI 2.0 Messages
	D.1 Data Value Translations
	D.1.1 Overview
	D.1.2 Core Rules
	D.1.3 Upscaling Translation Methods:
	D.1.4 Downscaling Translation Methods
	D.1.5 Special Considerations

	D.2 MIDI 2.0 to MIDI 1.0 Default Translation
	D.2.1 Note On/Off, Poly Pressure, Control Change
	D.2.2 Channel Pressure
	D.2.3 Assignable Controllers (NRPN) and Registered Controllers (RPN)
	D.2.4 Program Change and Bank Select
	D.2.5 Pitch Bend
	D.2.6 System Messages
	D.2.7 System Exclusive
	D.2.8 Messages That Cannot Be Translated to MIDI 1.0
	D.2.9 Messages That Cannot Be Translated to Non-UMP MIDI 1.0 Systems

	D.3 MIDI 1.0 to MIDI 2.0 Default Translation
	D.3.1 Note On/Off
	D.3.2 Poly Pressure
	D.3.3 Control Change, RPN, and NRPN
	D.3.4 Program Change and Bank Select
	D.3.5 Channel Pressure
	D.3.6 Pitch Bend
	D.3.7 System Messages

	D.4 Alternate Translation Modes
	D.4.1 Selecting an Alternate Translation Mode Using a Profile
	D.4.2 Selecting Alternate Translation Modes Without a Profile

	Appendix E System Exclusive (7-Bit) and System Exclusive 8 (8-Bit) Message Examples
	E.1 Table of System Exclusive Message UMPs
	E.2 Complete System Exclusive Message Examples
	E.3 Table of System Exclusive 8 (8-Bit) Message UMPs

	Appendix F All Defined UMP Formats
	F.1 4-Byte UMP Formats
	F.1.1 Message Type 0x0: Utility
	F.1.2 Message Type 0x1: System Common & System Real Time
	F.1.3 Message Type 0x2: MIDI 1.0 Channel Voice Messages

	F.2 8-Byte UMP Formats
	F.2.1 Message Type 0x3: 8-Byte Data Messages
	F.2.2 Message Type 0x4: MIDI 2.0 Channel Voice Messages

	F.3 16-Byte UMP Formats
	F.3.1 Message Type 0x5: 16-Byte Data Messages (System Exclusive 8 and Mixed Data Set)

	Appendix G All Defined Messages
	Appendix H Overview of Extensions to MIDI
	H.1 Extensions Enabled by the Universal MIDI Packet Format
	H.2 Further Extensions in the MIDI 2.0 Protocol

